SlideShare a Scribd company logo
1 of 30
William Stallings
Computer Organization
and Architecture
7th Edition
Chapter 5
Internal Memory
Semiconductor Memory Types
Semiconductor Memory
• RAM
—Misnamed as all semiconductor memory is
random access
—Read/Write
—Volatile
—Temporary storage
—Static or dynamic
Memory Cell Operation
Dynamic RAM
• Bits stored as charge in capacitors
• Charges leak
• Need refreshing even when powered
• Simpler construction
• Smaller per bit
• Less expensive
• Need refresh circuits
• Slower
• Main memory
• Essentially analogue
—Level of charge determines value
Dynamic RAM Structure
DRAM Operation
• Address line active when bit read or written
—Transistor switch closed (current flows)
• Write
—Voltage to bit line
– High for 1 low for 0
—Then signal address line
– Transfers charge to capacitor
• Read
—Address line selected
– transistor turns on
—Charge from capacitor fed via bit line to sense amplifier
– Compares with reference value to determine 0 or 1
—Capacitor charge must be restored
Static RAM
• Bits stored as on/off switches
• No charges to leak
• No refreshing needed when powered
• More complex construction
• Larger per bit
• More expensive
• Does not need refresh circuits
• Faster
• Cache
• Digital
—Uses flip-flops
Stating RAM Structure
Static RAM Operation
• Transistor arrangement gives stable logic
state
• State 1
—C1 high, C2 low
—T1 T4 off, T2 T3 on
• State 0
—C2 high, C1 low
—T2 T3 off, T1 T4 on
• Address line transistors T5 T6 is switch
• Write – apply value to B & compliment to
B
• Read – value is on line B
SRAM v DRAM
• Both volatile
—Power needed to preserve data
• Dynamic cell
—Simpler to build, smaller
—More dense
—Less expensive
—Needs refresh
—Larger memory units
• Static
—Faster
—Cache
Read Only Memory (ROM)
• Permanent storage
—Nonvolatile
• Microprogramming (see later)
• Library subroutines
• Systems programs (BIOS)
• Function tables
Types of ROM
• Written during manufacture
—Very expensive for small runs
• Programmable (once)
—PROM
—Needs special equipment to program
• Read “mostly”
—Erasable Programmable (EPROM)
– Erased by UV
—Electrically Erasable (EEPROM)
– Takes much longer to write than read
—Flash memory
– Erase whole memory electrically
Organisation in detail
• A 16Mbit chip can be organised as 1M of
16 bit words
• A bit per chip system has 16 lots of 1Mbit
chip with bit 1 of each word in chip 1 and
so on
• A 16Mbit chip can be organised as a 2048
x 2048 x 4bit array
—Reduces number of address pins
– Multiplex row address and column address
– 11 pins to address (211
=2048)
– Adding one more pin doubles range of values so x4
capacity
Refreshing
• Refresh circuit included on chip
• Disable chip
• Count through rows
• Read & Write back
• Takes time
• Slows down apparent performance
Typical 16 Mb DRAM (4M x 4)
Packaging
256kByte Module
Organisation
1MByte Module Organisation
Error Correction
• Hard Failure
—Permanent defect
• Soft Error
—Random, non-destructive
—No permanent damage to memory
• Detected using Hamming error correcting
code
Error Correcting Code Function
Advanced DRAM Organization
• Basic DRAM same since first RAM chips
• Enhanced DRAM
—Contains small SRAM as well
—SRAM holds last line read (c.f. Cache!)
• Cache DRAM
—Larger SRAM component
—Use as cache or serial buffer
Synchronous DRAM (SDRAM)
• Access is synchronized with an external clock
• Address is presented to RAM
• RAM finds data (CPU waits in conventional DRAM)
• Since SDRAM moves data in time with system
clock, CPU knows when data will be ready
• CPU does not have to wait, it can do something
else
• Burst mode allows SDRAM to set up stream of
data and fire it out in block
• DDR-SDRAM sends data twice per clock cycle
(leading & trailing edge)
SDRAM
SDRAM Read Timing
RAMBUS
• Adopted by Intel for Pentium & Itanium
• Main competitor to SDRAM
• Vertical package – all pins on one side
• Data exchange over 28 wires < cm long
• Bus addresses up to 320 RDRAM chips at
1.6Gbps
• Asynchronous block protocol
—480ns access time
—Then 1.6 Gbps
RAMBUS Diagram
DDR SDRAM
• SDRAM can only send data once per clock
• Double-data-rate SDRAM can send data
twice per clock cycle
—Rising edge and falling edge
Cache DRAM
• Mitsubishi
• Integrates small SRAM cache (16 kb) onto
generic DRAM chip
• Used as true cache
—64-bit lines
—Effective for ordinary random access
• To support serial access of block of data
—E.g. refresh bit-mapped screen
– CDRAM can prefetch data from DRAM into SRAM
buffer
– Subsequent accesses solely to SRAM
Reading
• The RAM Guide
• RDRAM

More Related Content

What's hot

18 parallel processing
18 parallel processing18 parallel processing
18 parallel processingdilip kumar
 
IT209 Cpu Structure Report
IT209 Cpu Structure ReportIT209 Cpu Structure Report
IT209 Cpu Structure ReportBis Aquino
 
12 processor structure and function
12 processor structure and function12 processor structure and function
12 processor structure and functiondilip kumar
 
chap 18 multicore computers
chap 18 multicore computers chap 18 multicore computers
chap 18 multicore computers Sher Shah Merkhel
 
For students wk4_computer_function_and_interconnection
For students wk4_computer_function_and_interconnectionFor students wk4_computer_function_and_interconnection
For students wk4_computer_function_and_interconnectionlimyamahgoub
 
10 instruction sets characteristics
10 instruction sets characteristics10 instruction sets characteristics
10 instruction sets characteristicsSher Shah Merkhel
 
11 instruction sets addressing modes
11  instruction sets addressing modes 11  instruction sets addressing modes
11 instruction sets addressing modes dilip kumar
 
Computer architecture abhmail
Computer architecture abhmailComputer architecture abhmail
Computer architecture abhmailOm Prakash
 
Wk 4 top_level_view_of_computer_function_and_interconnection
Wk 4 top_level_view_of_computer_function_and_interconnectionWk 4 top_level_view_of_computer_function_and_interconnection
Wk 4 top_level_view_of_computer_function_and_interconnectionlimyamahgoub
 

What's hot (20)

18 parallel processing
18 parallel processing18 parallel processing
18 parallel processing
 
01 introduction
01 introduction01 introduction
01 introduction
 
13 risc
13 risc13 risc
13 risc
 
IT209 Cpu Structure Report
IT209 Cpu Structure ReportIT209 Cpu Structure Report
IT209 Cpu Structure Report
 
13 risc
13 risc13 risc
13 risc
 
12 processor structure and function
12 processor structure and function12 processor structure and function
12 processor structure and function
 
15 ia64
15 ia6415 ia64
15 ia64
 
06 external memory
06 external memory06 external memory
06 external memory
 
16 control unit
16 control unit16 control unit
16 control unit
 
chap 18 multicore computers
chap 18 multicore computers chap 18 multicore computers
chap 18 multicore computers
 
27 multicore
27 multicore27 multicore
27 multicore
 
For students wk4_computer_function_and_interconnection
For students wk4_computer_function_and_interconnectionFor students wk4_computer_function_and_interconnection
For students wk4_computer_function_and_interconnection
 
10 instruction sets characteristics
10 instruction sets characteristics10 instruction sets characteristics
10 instruction sets characteristics
 
09. storage-part-1
09. storage-part-109. storage-part-1
09. storage-part-1
 
11 instruction sets addressing modes
11  instruction sets addressing modes 11  instruction sets addressing modes
11 instruction sets addressing modes
 
Computer architecture abhmail
Computer architecture abhmailComputer architecture abhmail
Computer architecture abhmail
 
Wk 4 top_level_view_of_computer_function_and_interconnection
Wk 4 top_level_view_of_computer_function_and_interconnectionWk 4 top_level_view_of_computer_function_and_interconnection
Wk 4 top_level_view_of_computer_function_and_interconnection
 
10. compute-part-1
10. compute-part-110. compute-part-1
10. compute-part-1
 
Ch8 main memory
Ch8   main memoryCh8   main memory
Ch8 main memory
 
Processors selection
Processors selectionProcessors selection
Processors selection
 

Similar to 05 internal memory

Chapter 8 computer memory system overview
Chapter 8 computer memory system overviewChapter 8 computer memory system overview
Chapter 8 computer memory system overviewAhlamAli20
 
Memory Hierarchy PPT of Computer Organization
Memory Hierarchy PPT of Computer OrganizationMemory Hierarchy PPT of Computer Organization
Memory Hierarchy PPT of Computer Organization2022002857mbit
 
Computer Architecture - Hardware - Lesson 5 - Memory - Eric Vanderburg
Computer Architecture - Hardware - Lesson 5 - Memory - Eric VanderburgComputer Architecture - Hardware - Lesson 5 - Memory - Eric Vanderburg
Computer Architecture - Hardware - Lesson 5 - Memory - Eric VanderburgEric Vanderburg
 
Static and Dynamic Read/Write memories
Static and Dynamic Read/Write memoriesStatic and Dynamic Read/Write memories
Static and Dynamic Read/Write memoriesAbhilash Nair
 
Ct213 memory subsystem
Ct213 memory subsystemCt213 memory subsystem
Ct213 memory subsystemSandeep Kamath
 
Memory Hierarchy (RAM and ROM)
Memory Hierarchy (RAM and ROM)Memory Hierarchy (RAM and ROM)
Memory Hierarchy (RAM and ROM)sumanth ch
 
DLC logic families and memory
DLC logic families and memoryDLC logic families and memory
DLC logic families and memorybalu prithviraj
 
CPU Caches - Jamie Allen
CPU Caches - Jamie AllenCPU Caches - Jamie Allen
CPU Caches - Jamie Allenjaxconf
 
Chapter5 the memory-system-jntuworld
Chapter5 the memory-system-jntuworldChapter5 the memory-system-jntuworld
Chapter5 the memory-system-jntuworldPraveen Kumar
 

Similar to 05 internal memory (20)

05 internal memory
05 internal memory05 internal memory
05 internal memory
 
05 Internal Memory
05  Internal  Memory05  Internal  Memory
05 Internal Memory
 
Chapter 8 computer memory system overview
Chapter 8 computer memory system overviewChapter 8 computer memory system overview
Chapter 8 computer memory system overview
 
Esd mod 3
Esd mod 3Esd mod 3
Esd mod 3
 
Memory Hierarchy PPT of Computer Organization
Memory Hierarchy PPT of Computer OrganizationMemory Hierarchy PPT of Computer Organization
Memory Hierarchy PPT of Computer Organization
 
Memory (Part 3)
Memory (Part 3)Memory (Part 3)
Memory (Part 3)
 
Memory and storage devices
Memory and storage devicesMemory and storage devices
Memory and storage devices
 
Computer Architecture - Hardware - Lesson 5 - Memory - Eric Vanderburg
Computer Architecture - Hardware - Lesson 5 - Memory - Eric VanderburgComputer Architecture - Hardware - Lesson 5 - Memory - Eric Vanderburg
Computer Architecture - Hardware - Lesson 5 - Memory - Eric Vanderburg
 
Static and Dynamic Read/Write memories
Static and Dynamic Read/Write memoriesStatic and Dynamic Read/Write memories
Static and Dynamic Read/Write memories
 
Ram ppt
Ram pptRam ppt
Ram ppt
 
Ct213 memory subsystem
Ct213 memory subsystemCt213 memory subsystem
Ct213 memory subsystem
 
Unit IV Memory.pptx
Unit IV  Memory.pptxUnit IV  Memory.pptx
Unit IV Memory.pptx
 
Memoria interna
Memoria internaMemoria interna
Memoria interna
 
04 cache memory...
04 cache memory...04 cache memory...
04 cache memory...
 
Memory Hierarchy (RAM and ROM)
Memory Hierarchy (RAM and ROM)Memory Hierarchy (RAM and ROM)
Memory Hierarchy (RAM and ROM)
 
DLC logic families and memory
DLC logic families and memoryDLC logic families and memory
DLC logic families and memory
 
Memory
MemoryMemory
Memory
 
CPU Caches - Jamie Allen
CPU Caches - Jamie AllenCPU Caches - Jamie Allen
CPU Caches - Jamie Allen
 
Cpu Caches
Cpu CachesCpu Caches
Cpu Caches
 
Chapter5 the memory-system-jntuworld
Chapter5 the memory-system-jntuworldChapter5 the memory-system-jntuworld
Chapter5 the memory-system-jntuworld
 

More from dilip kumar

17 micro programmed control
17 micro programmed control17 micro programmed control
17 micro programmed controldilip kumar
 
10 instruction sets characteristics
10 instruction sets characteristics10 instruction sets characteristics
10 instruction sets characteristicsdilip kumar
 
06 external memory
06 external memory06 external memory
06 external memorydilip kumar
 

More from dilip kumar (8)

FLAT Notes
FLAT NotesFLAT Notes
FLAT Notes
 
17 micro programmed control
17 micro programmed control17 micro programmed control
17 micro programmed control
 
14 superscalar
14 superscalar14 superscalar
14 superscalar
 
10 instruction sets characteristics
10 instruction sets characteristics10 instruction sets characteristics
10 instruction sets characteristics
 
09 arithmetic
09 arithmetic09 arithmetic
09 arithmetic
 
06 external memory
06 external memory06 external memory
06 external memory
 
04 cache memory
04 cache memory04 cache memory
04 cache memory
 
03 buses
03 buses03 buses
03 buses
 

Recently uploaded

chaitra-1.pptx fake news detection using machine learning
chaitra-1.pptx  fake news detection using machine learningchaitra-1.pptx  fake news detection using machine learning
chaitra-1.pptx fake news detection using machine learningmisbanausheenparvam
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024hassan khalil
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.eptoze12
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )Tsuyoshi Horigome
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AIabhishek36461
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVRajaP95
 
Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxbritheesh05
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxpurnimasatapathy1234
 
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)dollysharma2066
 
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEINFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEroselinkalist12
 
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxJoão Esperancinha
 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxPoojaBan
 
Introduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptxIntroduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptxvipinkmenon1
 

Recently uploaded (20)

chaitra-1.pptx fake news detection using machine learning
chaitra-1.pptx  fake news detection using machine learningchaitra-1.pptx  fake news detection using machine learning
chaitra-1.pptx fake news detection using machine learning
 
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
 
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
 
Design and analysis of solar grass cutter.pdf
Design and analysis of solar grass cutter.pdfDesign and analysis of solar grass cutter.pdf
Design and analysis of solar grass cutter.pdf
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AI
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
 
Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptx
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptx
 
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
 
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
 
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEINFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
 
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptx
 
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptxExploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
 
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCRCall Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
 
Introduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptxIntroduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptx
 

05 internal memory

  • 1. William Stallings Computer Organization and Architecture 7th Edition Chapter 5 Internal Memory
  • 3. Semiconductor Memory • RAM —Misnamed as all semiconductor memory is random access —Read/Write —Volatile —Temporary storage —Static or dynamic
  • 5. Dynamic RAM • Bits stored as charge in capacitors • Charges leak • Need refreshing even when powered • Simpler construction • Smaller per bit • Less expensive • Need refresh circuits • Slower • Main memory • Essentially analogue —Level of charge determines value
  • 7. DRAM Operation • Address line active when bit read or written —Transistor switch closed (current flows) • Write —Voltage to bit line – High for 1 low for 0 —Then signal address line – Transfers charge to capacitor • Read —Address line selected – transistor turns on —Charge from capacitor fed via bit line to sense amplifier – Compares with reference value to determine 0 or 1 —Capacitor charge must be restored
  • 8. Static RAM • Bits stored as on/off switches • No charges to leak • No refreshing needed when powered • More complex construction • Larger per bit • More expensive • Does not need refresh circuits • Faster • Cache • Digital —Uses flip-flops
  • 10. Static RAM Operation • Transistor arrangement gives stable logic state • State 1 —C1 high, C2 low —T1 T4 off, T2 T3 on • State 0 —C2 high, C1 low —T2 T3 off, T1 T4 on • Address line transistors T5 T6 is switch • Write – apply value to B & compliment to B • Read – value is on line B
  • 11. SRAM v DRAM • Both volatile —Power needed to preserve data • Dynamic cell —Simpler to build, smaller —More dense —Less expensive —Needs refresh —Larger memory units • Static —Faster —Cache
  • 12. Read Only Memory (ROM) • Permanent storage —Nonvolatile • Microprogramming (see later) • Library subroutines • Systems programs (BIOS) • Function tables
  • 13. Types of ROM • Written during manufacture —Very expensive for small runs • Programmable (once) —PROM —Needs special equipment to program • Read “mostly” —Erasable Programmable (EPROM) – Erased by UV —Electrically Erasable (EEPROM) – Takes much longer to write than read —Flash memory – Erase whole memory electrically
  • 14. Organisation in detail • A 16Mbit chip can be organised as 1M of 16 bit words • A bit per chip system has 16 lots of 1Mbit chip with bit 1 of each word in chip 1 and so on • A 16Mbit chip can be organised as a 2048 x 2048 x 4bit array —Reduces number of address pins – Multiplex row address and column address – 11 pins to address (211 =2048) – Adding one more pin doubles range of values so x4 capacity
  • 15. Refreshing • Refresh circuit included on chip • Disable chip • Count through rows • Read & Write back • Takes time • Slows down apparent performance
  • 16. Typical 16 Mb DRAM (4M x 4)
  • 20. Error Correction • Hard Failure —Permanent defect • Soft Error —Random, non-destructive —No permanent damage to memory • Detected using Hamming error correcting code
  • 22. Advanced DRAM Organization • Basic DRAM same since first RAM chips • Enhanced DRAM —Contains small SRAM as well —SRAM holds last line read (c.f. Cache!) • Cache DRAM —Larger SRAM component —Use as cache or serial buffer
  • 23. Synchronous DRAM (SDRAM) • Access is synchronized with an external clock • Address is presented to RAM • RAM finds data (CPU waits in conventional DRAM) • Since SDRAM moves data in time with system clock, CPU knows when data will be ready • CPU does not have to wait, it can do something else • Burst mode allows SDRAM to set up stream of data and fire it out in block • DDR-SDRAM sends data twice per clock cycle (leading & trailing edge)
  • 24. SDRAM
  • 26. RAMBUS • Adopted by Intel for Pentium & Itanium • Main competitor to SDRAM • Vertical package – all pins on one side • Data exchange over 28 wires < cm long • Bus addresses up to 320 RDRAM chips at 1.6Gbps • Asynchronous block protocol —480ns access time —Then 1.6 Gbps
  • 28. DDR SDRAM • SDRAM can only send data once per clock • Double-data-rate SDRAM can send data twice per clock cycle —Rising edge and falling edge
  • 29. Cache DRAM • Mitsubishi • Integrates small SRAM cache (16 kb) onto generic DRAM chip • Used as true cache —64-bit lines —Effective for ordinary random access • To support serial access of block of data —E.g. refresh bit-mapped screen – CDRAM can prefetch data from DRAM into SRAM buffer – Subsequent accesses solely to SRAM
  • 30. Reading • The RAM Guide • RDRAM