SlideShare a Scribd company logo
1 of 59
Download to read offline
MATH-MODEL DRIVEN APPROACH TO
GAS-EXCHANGE MONITORING
Classic Approach to Gas-Exchange Monitoring
Normalized ratio /
difference
Equation / model
based monitoring
Dead Space Ventilation
-two compartment modeling-
FACO2/ET CO2
V T
VDana
water
FEO2
FECO2
FIO2
FICO2
VA
1
FAO2
1
FACO2
1
VCO2 VO2
Q1
Q
Q2=0
Q
VA
2
FAO2
2
FACO2
2
VA
2/f =VDalv
 𝑭𝑰CO2 = 0
 FACO2
2 = 0
 FECO2 =
π•π‚πŽ 𝟐
𝑴𝑽
 PECO2
BTPS= FECO2 Γ— (πŸ•πŸ”πŸŽ βˆ’ πŸ’πŸ•)
 VCO2 = FACO2 Γ— 𝐕𝐀 = π…π„π‚πŽπŸ Γ— 𝐕𝐓 Γ— 𝐟
 FACO2 Γ— 𝐕𝐀 = FACO2
1 Γ— VA
1 = VCO2
 π…π„π‚πŽ 𝟐 Γ— 𝐕𝐓 = FACO2
1 Γ— VT βˆ’ (VDana+VDalv)
 VDana +V𝐝alv = Vdphys = VTΓ—
𝐅 𝐀 π‚πŽ 𝟐
𝟏
βˆ’π…π„π‚πŽπŸ
𝐅 𝐀 π‚πŽ 𝟐
𝟏
VDana + V𝐝alv = Vdphys = VT Γ—
𝐏 𝐚 π‚πŽ πŸβˆ’π 𝐄 π‚πŽ 𝟐
𝐁𝐓𝐏𝐒
𝐏 𝐚 π‚πŽ 𝟐
 Bohr equation
VDanat/VT =
𝑷𝑨π‘ͺπ‘ΆπŸβˆ’π‘·π‘¬π‘ͺπ‘ΆπŸ
𝑷𝑨π‘ͺπ‘ΆπŸ
 Enghoff modification
VDphysiol/VT =
𝑷𝒂π‘ͺπ‘ΆπŸβˆ’π‘·π‘¬π‘ͺπ‘ΆπŸ
𝑷𝒂π‘ͺπ‘ΆπŸ
 Alveolar dead space by substraction
VDalv/VT = Enghoff – Bohr
VDalv/VT alv =
𝑷𝒂π‘ͺπ‘ΆπŸβˆ’π‘·π’†π’•π‘ͺπ‘ΆπŸ
𝑷𝒂π‘ͺπ‘ΆπŸ
Dead Space
-fractions-
PACO2-alv mixed-
EtCO2(mean)
EtCO2=mean!-
(min+max)/2
Dead Space Caveats
 Shunt dependence ( β€œshunt dead space” – Suter,1975)
because assuming that PaCO2=PACO2 is flawed
 Shunt dependence will spuriously elevate VD
 Regions with ↑ Va/Q are poorly set apart from regions with
Va/Q = ∞(true dead space) because CO2 solubility is rather
modest in comparison to acetone solubility, which is used in
MIGET and distingushes VD as regions with Va/Q>100)
 Severe V/Q mismatch => β€œsloping alveolar plateau”
 Severe heterogeneity in Ο„ => β€œsloping alveolar plateau”
 Sometimes PetCO2 > PaCO2
Shunt dependence of VD
Bull Eur Physiopathol Respir 1984
Effect of right-to-left shunting on alveolar dead space.
Mecikalski et al
Negative βˆ† CO2
Great heterogeneity in Rβ€’C product or/and severe V/Q mismatch
-sloping alveolar plateau-
Negative βˆ† CO2
 ETCO2 is continuously estimated while PaCO2 is a mean value.
 ETCO2 can be regarded as a regional and temporal specific parameter while PaCO2 is a global, mean
parameter with no regional or temporal attributes
 A low Ο„ CO2(FRC/VCO2) as in IACS or a non-homogeneous Ο„ lung(Rβ€’C) will facilitate negative
differences
 Slow alveoli are characterized by a high RC and this assigns them a constant,
moderate sloping.
 Fast alveoli are characterized by a low RC and this gives them a 2 phase sloping, the
second being responsible for the overshoot ( high FRC/VCO2 )
 Eg. Obese patients ( Ecw high )
Negative βˆ† CO2
Dead Space as risk factor
-Enghoff’s dead space-
PULMONARY DEAD-SPACE FRACTION AS A
RISK FACTOR FOR DEATH IN THE ACUTE
RESPIRATORY DISTRESS SYNDROME, NEJM
2002, Nuckton et al
Dead Space as a PEEP setter
Optimum end-expiratory airway pressure in
patients with acute pulmonary failure, Suter et
al, NEJM 1975
Dead Space as a PEEP setter
OL-PEEP
OL-PEEP
Monitoring dead space during recruitment and PEEP titration in an
experimental model, ICM 2006, Suarez-Sipmann et al.
Recruitment=↑ βˆ†EELV=↓STRAINst+dyn=↓VD
Dead Space as a PEEP setter
- VD as an image of respiratory mechanics more than of gas excahnge -
 Best PEEP=lowest dynamic and static STRAIN
 Best E=Best Vd
 VD obeys Hickling model (1998 )
 VD shows histeresis
 VD is mechanics as well as E and is decoupled from gas
excange ( PaO2 )
Compliance and Dead Space Fraction Indicate an Optimal Level
of Positive End-Expiratory Pressure After Recruitment in
Anesthetized Patients, Anesth Analg 2008, Maisch and Tusman
Volumetric Capnography
Ξ²
 Integrating the CO2 and volume signals
 The abscissa is represented by volume
 3 phases, 2 slopes, one inflection point-the curve changes sign-
on SII
Volumetric Capnography
-phases and derived variables-
 Phase I begins with the start of expiration and is completed after
βˆ†CO2>0.1% from baseline
 Phase II starts at the end of phase I and ends at the intersection point of
slopes SII and SIII. Its inflection point (changes sign) is pretty much its
midpoint and likely represents the interface between Vdaw and alveolar gas,
that is the interface between convection and diffusion. It contains both
alveolar gas as well as Vdaw gas. RC influences phase II.
 Phase III begins at the aforementioned intersection and ends with expiration.
This is gas inside the alveoli.
 Slope II is an image of acini expiratory times. The more homogeneous the
expiration, the more the slope increases.
 Slope III is again influenced by mechanical time constants but mostly by V/Q
mismatch. The slope increases with heterogeneity.
VD
FOWLERβ‰ˆ
DRAGER
FLETCHERβ‰ˆ
NICO
TANG
Volumetric Capnography
-the math behind the monitors-
Volumetric Capnography
FOWLER 1948 - VDana
 Ay=ABCD=PNCD
 AMP=MNB=Ax
 Ay=VTCO2
 PNCD=PDΓ—(PN+CD)/2=VTPDΓ—meanCO2alv
 VTCO2=mean expCO2Γ—VT=mean expCO2(VTPD + VTOP)
 ( VT – VTOP) Γ— mean CO2alv= mean expCO2Γ—VT
 VTOP/VT= (meanCO2alv-mean expCO2 )/meanCO2alv
D
o
A P
M
N
B
O
C
Ax
Ax
Ay
Volumetric Capnography
FLETCHER 1981 – all VDs
 Az/Axyz = PaCO2 Γ— VDanat/PaCO2 Γ— VT = VDanat/VT
 Ax = VTCO2 = EtCO2mean Γ— Vtalv
 Ay = Vtalv Γ— ( PaCO2 - meanEtCO2 )
 Vtalv Γ— meanEtCO2 = Vtalveficient Γ— PaCO2
 Ay = Vtalv Γ— PaCO2 – Vtalveficient Γ— PaCO2
 Ay = PaCO2 Γ— Vdalv => Ay/Axyz = VDalv/VT
 (Ay+Az)/Axyz = VDphys/VT
Volumetric Capnography
TANG 2006 – all VDs
Vdana and Vdalv can be read simultaneously on the abscissa
Volumetric Capnography
TANG 2006 – all VDs
=225 ml
=160 ml
=65 ml
Volumetric Capnography
TANG 2006 – all VDs
Vdana and Vdalv can be read simultaneously on the abscissa
 We draw perpendiculars so that AOJA = AHJI (Fowler)
and AOKB = AFEDK (Tang)
 VT = OC ; VDanat = OA (Fowler) ; VDphys = OB (Tang)
 PECO2 = AODC /VT
 VDphys Enghoff = VT Γ— (1-PECO2/PaCO2) =
= VT Γ— (1-AODC/ (PaCO2Γ—VT))
G F E
D
H
I
K
J
C
J
A B
C
D
EFG
H
I
K
 AODC = AOKB + ABKDC = ABKDC+AFEDK = ABCEF
 VDphys Enghoff = VTΓ—[1-ABCEF/(PaCO2Γ—VT) ]=
= VTΓ—[1-(PaCO2Γ—BC)/(PaCO2Γ—VT)]
= OB = VDphys Tang
Volumetric Capnography
assessing recruitment/recruitability
Volumetric capnography for monitoring lung function during mechanical
ventilation, Yearbook of Intensive Care Medicine 2006, Suarez – Sipmann et
al
Volumetric Capnography
assessing recruitment/recruitability
Volumetric capnography for monitoring lung function during mechanical
ventilation, Yearbook of Intensive Care Medicine 2006, Suarez – Sipmann et
al
Volumetric Capnography
assessing recruitment/recruitability
Lung Recruitment Improves the Efficiency of Ventilation and Gas
Exchange During One-Lung Ventilation Anesthesia, Anesth and Analg,
Tusman, Suarez Sipmann et al., 2004
How Tusman et al have confused Graf
Bohr equation
VDphysiol/VT =
𝑷𝑨π‘ͺπ‘ΆπŸβˆ’π‘·π‘¬π‘ͺπ‘ΆπŸ
𝑷𝑨π‘ͺπ‘ΆπŸ
PACO2-alv mixed-
EtCO2(mean)
The answer lies in slopes
Diffusion Limitation
- one compartment modeling -
V T
VDana water
FEO2
FECO2
FIO2
FICO2
CvO2
Q
CcO2PcO2
CaO2
Q
VCO2 VO2
VA
PAO2
PACO2
 π’ƒπ’Šπ’ˆπ’ˆπ’†π’”π’• π’‚π’”π’”π’–π’Žπ’‘π’•π’Šπ’π’ 𝑷𝑨π‘ͺ𝑢 𝟐 = 𝑬𝑻π‘ͺ𝑢 𝟐 π’Žπ’†π’‚π’
 PAO2=PIO2 - PACO2 Γ— 𝑭𝑰𝑢 𝟐 +
πŸβˆ’π‘­π‘°π‘Ά 𝟐
𝑹
 RDIFF =
𝟏
𝑫𝑳𝑢 𝟐
 RDIFF =
𝑷𝑨𝑢 πŸβˆ’π‘·π’‚π‘Ά 𝟐
𝑽𝑢 𝟐
RDIFF, when computed through a one compartment model, is nothing but a global parameter,
It does not set apart any of the gas-exchange abnormalities.
Shunt Model
- two compartments, one parameter -
FACO2/ET CO2
V T
VDana
water
FEO2
FECO2
FIO2
FICO2
VA
1
FAO2
1
FACO2
1
VCO2 VO2
Q1
Q
Q0 or
Qshunt
Q=Q1+ Q0
VA
0= 0
CvO2
CaO2CvO2
CcO2
1 PcO2
1
 CaO2= 1/Q Γ— 𝑸 𝒏 π‘ͺ 𝒄 𝑢 𝟐
π’πŸ
𝒏=𝟎
 π‘ͺ 𝒂 𝑢 𝟐 = 𝟏/𝑸 𝑸 𝒔𝒉𝒖𝒏𝒕 Γ— π‘ͺ𝒗𝑢 𝟐 + 𝑸 βˆ’ 𝑸𝒔𝒉𝒖𝒏𝒕 π‘ͺ 𝒄 𝑢 𝟐
𝟏
 𝒔𝒉𝒖𝒏𝒕 =
π‘ͺ 𝒄 𝑢 𝟐
𝟏
βˆ’π‘ͺ𝒂𝑢 𝟐
π‘ͺ 𝒄 𝑢 𝟐
𝟏
βˆ’π‘ͺ𝒗𝑢 𝟐
 PAO2=FIO2Γ— 𝑷𝑩 βˆ’
𝑷𝑨π‘ͺπ‘ΆπŸ
𝑹𝑸
(simplified alv.eq.)
 𝑷𝑨π‘ͺπ‘ΆπŸ π’Žπ’–π’”π’• 𝒃𝒆, 𝒂𝒔 π’Šπ’Žπ’‘π’π’Šπ’†π’… π’ƒπ’š 𝒕𝒉𝒆 π’Žπ’π’…π’†π’, 𝑬𝑻π‘ͺ𝑢 πŸπ’Žπ’†π’‚π’ .
 π‘Ίπ‘¨π‘ΆπŸ π’˜π’Šπ’π’ 𝒃𝒆 π’Šπ’‡π’†π’“π’“π’†π’… π’‡π’“π’π’Ž π‘·π‘¨π‘ΆπŸ π’‚π’„π’„π’π’“π’…π’Šπ’π’ˆ 𝒕𝒐 𝒂
π’”π’Šπ’Žπ’‘π’π’Šπ’‡π’Šπ’†π’… 𝑢𝑫π‘ͺ π’†π’’π’–π’‚π’•π’Šπ’π’
 SO2= 𝑷𝑢 𝟐
πŸ‘ + πŸπŸ“πŸŽπ‘·π‘Ά 𝟐
βˆ’ 𝟏 Γ—
πŸπŸ‘, πŸ’πŸŽπŸŽ + 𝟏 -1
 𝑡𝒆𝒙𝒕, π‘ͺπ’„π‘ΆπŸ π’˜π’Šπ’π’ 𝒃𝒆 π’Šπ’π’‡π’†π’“π’“π’†π’… π’‡π’“π’π’Ž:
CcO2=(HbΓ— π‘Ίπ‘ΆπŸ Γ— 𝟏. πŸ‘πŸ’) + (π‘·π‘ΆπŸ Γ— 𝟎. πŸŽπŸŽπŸ‘πŸ)
True Shunt
- FIO2 = 1 trial -
CcO2-CaO2/
CcO2-Cv02
True shunt(S1)
at FiO2=1, there is
S2>S1 through
resorbtion
atelectasis.
V/Q mismatch
V/Q Mismatch Model
- two compartments, one parameter -
FAO2 VA
FACO2/ET CO2
V T
VO2
VDana
water
FEO2
FECO2
FIO2
FICO2
VA-VA
2
PAO2
1
PACO2
1
VCO2
1 VO2
1
Q1
Q
Q2
Q=Q1+ Q2
CaO2=CcO2CvO2
CcO2
1 PcO2
1
FAO2
1
FAO2
2
VA
2
PAO2
2
PACO2
2
VCO2
2 VO2
2
PcO2
2CcO2
2
PcO2
n=PAO2
n βˆ†PO2=PAO2-PcO2=PAO2-PaO2
 π‘ͺ𝒄𝑢 𝟐
𝟏 = 𝑷𝒄𝑢 𝟐
𝟏 πœΆπ‘Ά 𝟐 + 𝑯𝒃 𝑢𝑫π‘ͺ 𝑷𝒄𝑢 𝟐
𝟏
 CcO2
2 = PcO2
2Ξ±O2 + Hb ODC(PcO2
2)
 𝑽𝑢 𝟐
𝟏 = 𝟏 βˆ’ 𝒇𝑨 𝟐 Γ— 𝑽𝑨 Γ— 𝑭𝑰 𝑢 𝟐 βˆ’ 𝑭𝑨𝑢 𝟐
𝟏
 VO2
1 = QΓ— 𝟎. 𝟏 Γ— (π‘ͺ𝒄𝑢 𝟐
𝟏 βˆ’ π‘ͺ𝒗𝑢 𝟐)
 𝑽𝑢 𝟐
𝟐 = 𝒇𝑨 𝟐 Γ— 𝑽𝑨 Γ— 𝑭𝑰 𝑢 𝟐 βˆ’ 𝑭𝑨𝑢 𝟐
𝟐
 VO2
2 = QΓ— 𝟎. πŸ— Γ— (π‘ͺ𝒄𝑢 𝟐
𝟐 βˆ’ π‘ͺ𝒗𝑢 𝟐)
𝒇𝑨 𝟐 =
𝑽𝑨 𝟐
𝑽𝑨
=
𝑭 𝑨 𝑢 𝟐 βˆ’ 𝑭𝑨𝑢 𝟐
𝟏
𝑭 𝑨 𝑢 𝟐
𝟐 βˆ’ 𝑭𝑨𝑢 𝟐
𝟏
Monoparametric
gas exchange
monitoring
V/Q mismatch
Alveolar deadspace Rdiff
Shunt
Fitting one parameter models to data
84
86
88
90
92
94
96
98
100 SaO2
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
FEO2
Shunt=21%
fA2=0.27
Shunt=11%
fA2=0.19
Shunt=10%
fA2=0.14
Shunt=8%
fA2=0.14
Dashed red line
οƒ˜ Alveolar dead space model
Vdalv/VT=53%
οƒ˜ Diffusion limitation model
Rdiff=42kPa/(l/min)
οƒ˜ V/Q model
fA2=0.27
Solid orange line
οƒ˜ Shunt model
Shunt=15.5%
stands for SaO2/FEO2 for the same
patient.
 using all necessary data, it is
calculated for each of these four
points shunt and fA2 according to
previous equations.
 fitting parameter model to data =
finding the one parameter value that will
subsequently describe patient’s data
with utmost precision
 one parameter models show dependence on inspired O2 fraction
 they cannot appropriately describe gas-exchange
Beginnings of Two Parameter Models
The PIO2 vs. SpO2 diagram: A non-invasive measure of pulmonary oxygen
exchange, EUROPEAN JOURNAL OF ANAESTHESIOLOGY 1995, Sapsford and
Jones - Cambridge
 The two parameters are shunt and V/Q mismatch +
PACO2/R effect measured as % and as P I O2-PcO2
(kPa) respectively
 Mass balance for O2 in blood and air, ODC equation,
computer algorithm based on fitting the model
parameters to P I O2/SaO2 data pairs
Beginnings of Two Parameter Models
A noninvasive method for evaluating the effect of thoracotomy on shunt and
perfusion inequality, ANAESTHESIA 1997, Gray and Jones
Beginnings of Two Parameter Models
- course of family of curves -
Noninvasive assessment of shunt and ventilation/perfusion ratio in neonates with
pulmonary failure, Arch Dis Child Fetal Neonatology Ed. 2001, J G Jones et al
We need the numbers
 In A there is dependency of PIO2 vs SaO2 on aVDO2.
Given that aVDO2 is dependent on Q, we infer Q dependency.
Simply eyeballing might not be enough. We need the numbers.
 In B there is dependency on Hb. Hb is nonetheless more
stable.
The PIO2 vs. SpO2 diagram: A non-invasive measure of pulmonary oxygen
exchange, EUROPEAN JOURNAL OF ANAESTHESIOLOGY 1995, Sapsford and
Jones - Cambridge
Reverse avDO2 dependency
- monitoring cardiac output -
Cardiac output estimation using pulmonary mechanics in mechanically
ventilated patients, Biomedical Engineering Online 2010, Sundaresan et al
Refinement of the two parameter models
β€’Rdiff(βˆ†PO2)Shunt
β€’AlveolarDS(βˆ†PO2)Shunt
β€’V/Q mismatch(βˆ†PO2)Shunt
Mathematical models of pulmonary gas exchange - validation and application to
postoperative hypoxaemia , Aalborg Hospital, Denmark, Soren Kjaergaard
V/Q mismatch and Shunt Model
- three compartments, 2 parameters -
FAO2 VA
FACO2/ET CO2
V T
VO2
VDana
water
FEO2
FECO2
FIO2
FICO2
VA-VA
2
PAO2
1
PACO2
1
VCO2
1 VO2
1
Q1
Q=Qc+ Qshunt
Q2
Qc=Q1+ Q2
CaO2
CvO2 Q
CcO2
1 PcO2
1
FAO2
1
FAO2
2
VA
2
PAO2
2
PACO2
2
VCO2
2 VO2
2
PcO2
2CcO2
2
PcO2
n=PAO2
nβˆ†PO2=PAO2-PcO2
Qshunt
CcO2 PcO2
 𝑽𝑢 𝟐 = 𝟏 βˆ’ 𝒇𝑨 𝟐 Γ— 𝑽𝑨 Γ— 𝑭𝑰 𝑢 𝟐 βˆ’ 𝑭𝑨𝑢 𝟐
𝟏 + 𝒇𝑨 𝟐 Γ— 𝑽𝑨 Γ— 𝑭𝑰 𝑢 𝟐 βˆ’ 𝑭𝑨𝑢 𝟐
 fA2 = VA2/VA
 FAO2 = (1-fA2)Γ— 𝑭𝑨𝑢 𝟐
𝟏 + 𝒇𝑨 𝟐 Γ— 𝑭𝑨𝑢 𝟐
𝟐
 𝑽𝑢 𝟐 = 𝑽𝑢 𝟐
𝟏 + 𝑽𝑢 𝟐
𝟐 = 𝑸 Γ— (π‘ͺ𝒂𝑢 𝟐 βˆ’ π‘ͺ𝒗𝑢 𝟐)
 VO2= Q1 Γ— π‘ͺ𝒄𝑢 𝟐
𝟏 βˆ’ π‘ͺ𝒗𝑢 𝟐 + 𝑸 𝟐 Γ— (π‘ͺ𝒄𝑢 𝟐
𝟐 βˆ’ π‘ͺ𝒗𝑢 𝟐)
 π‘ͺ𝒄𝑢 𝟐 = Q1/ 𝑸𝒄 Γ— π‘ͺ𝒄𝑢 𝟐
𝟏 + Q2/ 𝑸𝒄 Γ— π‘ͺ𝒄𝑢 𝟐
2
 CaO2 = (1-shunt) Γ— π‘ͺ𝒄𝑢 𝟐 + shunt Γ— π‘ͺ𝒗𝑢 𝟐
 π‘ͺ𝒄𝑢 𝟐
𝟏 = 𝑷𝒄𝑢 𝟐
𝟏 πœΆπ‘Ά 𝟐 + 𝑯𝒃 𝑢𝑫π‘ͺ 𝑷𝒄𝑢 𝟐
𝟏
 CcO2
2 = PcO2
2Ξ±O2 + Hb ODC(PcO2
2)
Fitting two parameter models to data
 All three models are equivalent in assessing
shunt
 All three models are equivalent in assessing
βˆ†PO2
 VDalv inferred from an O2 based 2 parameter
model is NOT equivalent to the one determined
from a CO2 based model
 Rdiff is not supported by MIGET as an
important constituent of gasexchange
disturbances
 VDalv O2 based has no meaning in day to day
clinical practice
V/Q mismatch and Shunt Model
- shunt and fA2 impact on ODC -
SHUNT V/Q or fA2
Predicting risk of hypoxemia
V/Q mismatch vs Shunt
Predicting risk of hypoxemia
DISCRIMINATING BETWEEN THE EFFECT OF SHUNT AND REDUCED VA/Q ON ARTERIAL OXYGEN
SATURATION IS PARTICULARLY USEFUL IN CLINICAL PRACTICE, J Clin Monit and Comp 2000, Jones et al
MIGET at the bedside
PaO2/FIO2
 Risk indicator as in Berlin ARDS definition
 Global gas - exchange parameter
 Non independent behavior with respect to shunt,
avDO2, PaCO2, RQ, Hb
 Non independent parameter when FIO2 is varied
PaO2/FIO2 FIO2
dependency according to shunt
 avD02 is constant, that is constant metabolism
 Three shunt values
 At each shunt value, PaO2/FIO2 shows FIO2 dependence
PaO2/FIO2 FIO2
dependency according to avDO2
 avD02 varies, that is changing CO for a constant VO2
 Same shunt value
 At each avDo2 value, PaO2/FIO2 shows FIO2 dependence
PaO2/FIO2 FIO2
dependency according to shunt
 Shunt varies from 0% to 30%
 Thick lines stand for clinically important SaO2 (92%-98%)
 At each shunt value, PaO2/FIO2 shows FIO2 dependence
PaO2/FIO2 FIO2
dependency according to V/Q
 βˆ†PO2 ( image of V/Q ) varies from 0 kPa to 30 kPa
 Thick lines stand for clinically important SaO2 (92%-98%)
 At each βˆ†PO2 value, PaO2/FIO2 shows FIO2 dependence
PaO2/FIO2 FIO2
dependency – switching risk groups
 Six pacients, graphs with SaO2/FIO2 and PaO2/FIO2 FIO2
dependency, two models are used – shunt and shunt+V/Q,
thick lines pertain to SaO2 = 92%-98%, dashed line is shunt model whereas solid line is the other
 PaO2/FIO2 FIO2
dependency brings about different risk groups even though shunt or V/Q do not really change.
FiO2↓ FiO2↑
normal Mild hO2 ALI ARDS
Shunt model Nr =23 Nr=15 Nr=40 Nr=38
Normal =64 23 14 27 0
Mild hO2 =20 0 1 13 6
ALI=14 0 0 0 14
ARDS=18 0 0 0 18
Shunt+V/Q mism Nr=42 Nr=19 Nr=31 Nr=24
Normal=56 39 12 5 0
Mild hO2 =19 3 6 9 1
ALI=23 0 1 16 6
ARDS=18 0 0 1 17
PaO2/FIO2 FIO2
dependency – switching risk groups
N > 350 ; mild hypoxemia = 300 –350 ; ALI = 201-300 ; ARDS < 200
PaO2/FIO2 FIO2
dependency – switching risk groups
 risk group β€œswitching’’ is 50% for shunt model and 38% for two
parameter model
 by ↑ FiO2 (SpO2=92-98%)
- shunt model ALI 14β†’40
- shunt model ARDS 18β†’38
- two parameter model ALI 23β†’31
- two parameter model ARDS 18β†’24
 The shunt model has a poor fit to the data
 PaO2/FiO2 is FIO2 dependent (use the same FIO2 when tracking
evolution)
 PaO2/FiO2 is a poor gas exchange tracker
β€œPerhaps more appropriate would be to replace the PaO2/FiO2 ratio
with two parameters, a parameter to describe the oxygenation
problems due to V/Q mismatch and one to describe oxygenation
problems due to shunt.”
Kjaergaard and Rees, Critical Care 2007
Math modelled approach to gas-exchange monitoring

More Related Content

What's hot

Aircraft propulsion readme first
Aircraft propulsion   readme firstAircraft propulsion   readme first
Aircraft propulsion readme firstAnurak Atthasit
Β 
EJERCICIO 2
EJERCICIO 2EJERCICIO 2
EJERCICIO 2yeisyynojos
Β 
Aircraft propulsion non ideal cycle analysis
Aircraft propulsion   non ideal cycle analysisAircraft propulsion   non ideal cycle analysis
Aircraft propulsion non ideal cycle analysisAnurak Atthasit
Β 
Pressure and velocity distribution along venture tube
Pressure and velocity distribution along venture tubePressure and velocity distribution along venture tube
Pressure and velocity distribution along venture tubeMuhammed Fuad Al-Barznji
Β 
Density of liquid refrigerants
Density of liquid refrigerantsDensity of liquid refrigerants
Density of liquid refrigerantsShyam Kumar
Β 
Fluid Flow Rate & Bernoulli’s Theorem Demonstration
Fluid Flow Rate & Bernoulli’s Theorem DemonstrationFluid Flow Rate & Bernoulli’s Theorem Demonstration
Fluid Flow Rate & Bernoulli’s Theorem DemonstrationRaboon Redar
Β 
Pressure derivative curve
Pressure derivative curvePressure derivative curve
Pressure derivative curveFarhad Abdulrahman
Β 
Metodod kremser liq liq extr
Metodod kremser liq liq extrMetodod kremser liq liq extr
Metodod kremser liq liq extrFlorencio NuΓ±ez
Β 
Miscellaneos analysis
Miscellaneos analysisMiscellaneos analysis
Miscellaneos analysisUrvish Patel
Β 
Calibration of Venturi and Orifice Meters
Calibration of Venturi and Orifice MetersCalibration of Venturi and Orifice Meters
Calibration of Venturi and Orifice MetersNicely Jane Eleccion
Β 
Head Loss Estimation for Water Jets from Flip Buckets
Head Loss Estimation for Water Jets from Flip BucketsHead Loss Estimation for Water Jets from Flip Buckets
Head Loss Estimation for Water Jets from Flip Bucketstheijes
Β 
Fluid Mechanic Lab - Venturi Meter
Fluid Mechanic Lab - Venturi MeterFluid Mechanic Lab - Venturi Meter
Fluid Mechanic Lab - Venturi MeterMuhammadSRaniYah
Β 
Flowdirection
FlowdirectionFlowdirection
FlowdirectionApoorv00
Β 
Q913 rfp w3 lec 10
Q913 rfp w3 lec 10Q913 rfp w3 lec 10
Q913 rfp w3 lec 10AFATous
Β 
17426 fluid flow operation
17426 fluid flow operation17426 fluid flow operation
17426 fluid flow operationsoni_nits
Β 
A Numerical Study on the Application of BEM to Steady Cavitating Potential Fl...
A Numerical Study on the Application of BEM to Steady Cavitating Potential Fl...A Numerical Study on the Application of BEM to Steady Cavitating Potential Fl...
A Numerical Study on the Application of BEM to Steady Cavitating Potential Fl...JoΓ£o Baltazar
Β 

What's hot (20)

Aircraft propulsion readme first
Aircraft propulsion   readme firstAircraft propulsion   readme first
Aircraft propulsion readme first
Β 
EJERCICIO 2
EJERCICIO 2EJERCICIO 2
EJERCICIO 2
Β 
mezcla de gases
mezcla de gases mezcla de gases
mezcla de gases
Β 
Aircraft propulsion non ideal cycle analysis
Aircraft propulsion   non ideal cycle analysisAircraft propulsion   non ideal cycle analysis
Aircraft propulsion non ideal cycle analysis
Β 
Pressure and velocity distribution along venture tube
Pressure and velocity distribution along venture tubePressure and velocity distribution along venture tube
Pressure and velocity distribution along venture tube
Β 
2012 pe review__hyd_
2012 pe review__hyd_2012 pe review__hyd_
2012 pe review__hyd_
Β 
Density of liquid refrigerants
Density of liquid refrigerantsDensity of liquid refrigerants
Density of liquid refrigerants
Β 
Fluid Flow Rate & Bernoulli’s Theorem Demonstration
Fluid Flow Rate & Bernoulli’s Theorem DemonstrationFluid Flow Rate & Bernoulli’s Theorem Demonstration
Fluid Flow Rate & Bernoulli’s Theorem Demonstration
Β 
Laminar Flow
Laminar FlowLaminar Flow
Laminar Flow
Β 
Pressure derivative curve
Pressure derivative curvePressure derivative curve
Pressure derivative curve
Β 
Metodod kremser liq liq extr
Metodod kremser liq liq extrMetodod kremser liq liq extr
Metodod kremser liq liq extr
Β 
Miscellaneos analysis
Miscellaneos analysisMiscellaneos analysis
Miscellaneos analysis
Β 
Calibration of Venturi and Orifice Meters
Calibration of Venturi and Orifice MetersCalibration of Venturi and Orifice Meters
Calibration of Venturi and Orifice Meters
Β 
@Pipeflow
@Pipeflow@Pipeflow
@Pipeflow
Β 
Head Loss Estimation for Water Jets from Flip Buckets
Head Loss Estimation for Water Jets from Flip BucketsHead Loss Estimation for Water Jets from Flip Buckets
Head Loss Estimation for Water Jets from Flip Buckets
Β 
Fluid Mechanic Lab - Venturi Meter
Fluid Mechanic Lab - Venturi MeterFluid Mechanic Lab - Venturi Meter
Fluid Mechanic Lab - Venturi Meter
Β 
Flowdirection
FlowdirectionFlowdirection
Flowdirection
Β 
Q913 rfp w3 lec 10
Q913 rfp w3 lec 10Q913 rfp w3 lec 10
Q913 rfp w3 lec 10
Β 
17426 fluid flow operation
17426 fluid flow operation17426 fluid flow operation
17426 fluid flow operation
Β 
A Numerical Study on the Application of BEM to Steady Cavitating Potential Fl...
A Numerical Study on the Application of BEM to Steady Cavitating Potential Fl...A Numerical Study on the Application of BEM to Steady Cavitating Potential Fl...
A Numerical Study on the Application of BEM to Steady Cavitating Potential Fl...
Β 

Similar to Math modelled approach to gas-exchange monitoring

arteial blood gas analysis 2019
 arteial blood gas analysis 2019 arteial blood gas analysis 2019
arteial blood gas analysis 2019intentdoc
Β 
Arterial Blood Gas Analysis
 Arterial Blood Gas Analysis Arterial Blood Gas Analysis
Arterial Blood Gas Analysisintentdoc
Β 
06 Lecture 5 Gases Laws And Alveolar Equations
06 Lecture 5 Gases Laws And Alveolar Equations06 Lecture 5 Gases Laws And Alveolar Equations
06 Lecture 5 Gases Laws And Alveolar EquationsDang Thanh Tuan
Β 
abg cuidados criticos.pptx
abg cuidados criticos.pptxabg cuidados criticos.pptx
abg cuidados criticos.pptxjavier
Β 
ABG Interpretation
ABG InterpretationABG Interpretation
ABG InterpretationAndrew Ferguson
Β 
Arterial blood gas analysis assesment of oxygenation ventilation and acid base
Arterial blood gas analysis assesment of oxygenation ventilation and acid baseArterial blood gas analysis assesment of oxygenation ventilation and acid base
Arterial blood gas analysis assesment of oxygenation ventilation and acid basechandra talur
Β 
Arterial Blood Gases Interpretation
Arterial Blood Gases InterpretationArterial Blood Gases Interpretation
Arterial Blood Gases InterpretationDang Thanh Tuan
Β 
05 Ab Ginterpretation
05 Ab Ginterpretation05 Ab Ginterpretation
05 Ab GinterpretationDang Thanh Tuan
Β 
Arterial Blood Gases an Inigma
Arterial Blood Gases an InigmaArterial Blood Gases an Inigma
Arterial Blood Gases an InigmaRaheel Ahmed
Β 
Patho Physiology Of Respiratory Failure
Patho Physiology Of Respiratory FailurePatho Physiology Of Respiratory Failure
Patho Physiology Of Respiratory FailureDang Thanh Tuan
Β 
Oxygenation and ventilation monitoring
Oxygenation and ventilation monitoringOxygenation and ventilation monitoring
Oxygenation and ventilation monitoringDr Subodh Chaturvedi
Β 
Respiratory physiology
Respiratory physiologyRespiratory physiology
Respiratory physiologyRohit Paswan
Β 
290768014-Euler-Bernolli-equation-ppt.ppt
290768014-Euler-Bernolli-equation-ppt.ppt290768014-Euler-Bernolli-equation-ppt.ppt
290768014-Euler-Bernolli-equation-ppt.pptBramhendraNaik1
Β 
The van der waals gas
The van der waals gasThe van der waals gas
The van der waals gasTaral Soliya
Β 
L6_S18_Introduction to PLL.pptx
L6_S18_Introduction to PLL.pptxL6_S18_Introduction to PLL.pptx
L6_S18_Introduction to PLL.pptxAryanKutemate
Β 
Volumetric-Capnography-ebook-en-ELO20151002N.00.pptx
Volumetric-Capnography-ebook-en-ELO20151002N.00.pptxVolumetric-Capnography-ebook-en-ELO20151002N.00.pptx
Volumetric-Capnography-ebook-en-ELO20151002N.00.pptxpccmdoc
Β 
physiological dead space and its measurements
physiological dead space and its measurementsphysiological dead space and its measurements
physiological dead space and its measurementsmeducationdotnet
Β 
Pocket Guide to Chemical Engineering - CNTQ ( PDFDrive ).pdf
Pocket Guide to Chemical Engineering - CNTQ ( PDFDrive ).pdfPocket Guide to Chemical Engineering - CNTQ ( PDFDrive ).pdf
Pocket Guide to Chemical Engineering - CNTQ ( PDFDrive ).pdfKamilla Barcelos
Β 
2. Fluids 2.ppt
2. Fluids 2.ppt2. Fluids 2.ppt
2. Fluids 2.pptBlahBeleh
Β 

Similar to Math modelled approach to gas-exchange monitoring (20)

arteial blood gas analysis 2019
 arteial blood gas analysis 2019 arteial blood gas analysis 2019
arteial blood gas analysis 2019
Β 
Arterial Blood Gas Analysis
 Arterial Blood Gas Analysis Arterial Blood Gas Analysis
Arterial Blood Gas Analysis
Β 
06 Lecture 5 Gases Laws And Alveolar Equations
06 Lecture 5 Gases Laws And Alveolar Equations06 Lecture 5 Gases Laws And Alveolar Equations
06 Lecture 5 Gases Laws And Alveolar Equations
Β 
abg cuidados criticos.pptx
abg cuidados criticos.pptxabg cuidados criticos.pptx
abg cuidados criticos.pptx
Β 
ABG Interpretation
ABG InterpretationABG Interpretation
ABG Interpretation
Β 
Arterial blood gas analysis assesment of oxygenation ventilation and acid base
Arterial blood gas analysis assesment of oxygenation ventilation and acid baseArterial blood gas analysis assesment of oxygenation ventilation and acid base
Arterial blood gas analysis assesment of oxygenation ventilation and acid base
Β 
Arterial Blood Gases Interpretation
Arterial Blood Gases InterpretationArterial Blood Gases Interpretation
Arterial Blood Gases Interpretation
Β 
05 Ab Ginterpretation
05 Ab Ginterpretation05 Ab Ginterpretation
05 Ab Ginterpretation
Β 
Arterial Blood Gases an Inigma
Arterial Blood Gases an InigmaArterial Blood Gases an Inigma
Arterial Blood Gases an Inigma
Β 
Patho Physiology Of Respiratory Failure
Patho Physiology Of Respiratory FailurePatho Physiology Of Respiratory Failure
Patho Physiology Of Respiratory Failure
Β 
Oxygenation and ventilation monitoring
Oxygenation and ventilation monitoringOxygenation and ventilation monitoring
Oxygenation and ventilation monitoring
Β 
Respiratory physiology
Respiratory physiologyRespiratory physiology
Respiratory physiology
Β 
290768014-Euler-Bernolli-equation-ppt.ppt
290768014-Euler-Bernolli-equation-ppt.ppt290768014-Euler-Bernolli-equation-ppt.ppt
290768014-Euler-Bernolli-equation-ppt.ppt
Β 
The van der waals gas
The van der waals gasThe van der waals gas
The van der waals gas
Β 
L6_S18_Introduction to PLL.pptx
L6_S18_Introduction to PLL.pptxL6_S18_Introduction to PLL.pptx
L6_S18_Introduction to PLL.pptx
Β 
Volumetric-Capnography-ebook-en-ELO20151002N.00.pptx
Volumetric-Capnography-ebook-en-ELO20151002N.00.pptxVolumetric-Capnography-ebook-en-ELO20151002N.00.pptx
Volumetric-Capnography-ebook-en-ELO20151002N.00.pptx
Β 
Arterial Blood Gas Analysis Toufiqur Rahman
Arterial Blood Gas Analysis Toufiqur RahmanArterial Blood Gas Analysis Toufiqur Rahman
Arterial Blood Gas Analysis Toufiqur Rahman
Β 
physiological dead space and its measurements
physiological dead space and its measurementsphysiological dead space and its measurements
physiological dead space and its measurements
Β 
Pocket Guide to Chemical Engineering - CNTQ ( PDFDrive ).pdf
Pocket Guide to Chemical Engineering - CNTQ ( PDFDrive ).pdfPocket Guide to Chemical Engineering - CNTQ ( PDFDrive ).pdf
Pocket Guide to Chemical Engineering - CNTQ ( PDFDrive ).pdf
Β 
2. Fluids 2.ppt
2. Fluids 2.ppt2. Fluids 2.ppt
2. Fluids 2.ppt
Β 

More from Cosmin Balan

ECMO - beyond protective ventilation
ECMO - beyond protective ventilationECMO - beyond protective ventilation
ECMO - beyond protective ventilationCosmin Balan
Β 
Quantitative approach in dysnatremias
Quantitative approach in dysnatremiasQuantitative approach in dysnatremias
Quantitative approach in dysnatremiasCosmin Balan
Β 
Alkalinization induced inotropic enhancement
Alkalinization induced inotropic enhancementAlkalinization induced inotropic enhancement
Alkalinization induced inotropic enhancementCosmin Balan
Β 
Inhalational Anaesthetics Induced Cardioprotection
Inhalational Anaesthetics Induced CardioprotectionInhalational Anaesthetics Induced Cardioprotection
Inhalational Anaesthetics Induced CardioprotectionCosmin Balan
Β 
Hemodynamics - paradigm shifts
Hemodynamics - paradigm shiftsHemodynamics - paradigm shifts
Hemodynamics - paradigm shiftsCosmin Balan
Β 
ARDS - principles of mechanical ventilation
ARDS - principles of mechanical ventilationARDS - principles of mechanical ventilation
ARDS - principles of mechanical ventilationCosmin Balan
Β 
Short bowel syndrome acid base physiology
Short bowel syndrome acid base physiologyShort bowel syndrome acid base physiology
Short bowel syndrome acid base physiologyCosmin Balan
Β 
Acid Base Physiology – Stewart and beyond
Acid Base Physiology – Stewart and beyond Acid Base Physiology – Stewart and beyond
Acid Base Physiology – Stewart and beyond Cosmin Balan
Β 
Contrast Induced Nephropathy
Contrast Induced NephropathyContrast Induced Nephropathy
Contrast Induced NephropathyCosmin Balan
Β 
Abord arterial si venos
Abord arterial si venos Abord arterial si venos
Abord arterial si venos Cosmin Balan
Β 
Monitoring hemodynamics-lost in translation
Monitoring hemodynamics-lost in translationMonitoring hemodynamics-lost in translation
Monitoring hemodynamics-lost in translationCosmin Balan
Β 
Guytonian approach to shock - mean systemic filling pressure centered
Guytonian approach to shock - mean systemic filling pressure centeredGuytonian approach to shock - mean systemic filling pressure centered
Guytonian approach to shock - mean systemic filling pressure centeredCosmin Balan
Β 

More from Cosmin Balan (13)

ECMO - beyond protective ventilation
ECMO - beyond protective ventilationECMO - beyond protective ventilation
ECMO - beyond protective ventilation
Β 
Quantitative approach in dysnatremias
Quantitative approach in dysnatremiasQuantitative approach in dysnatremias
Quantitative approach in dysnatremias
Β 
Alkalinization induced inotropic enhancement
Alkalinization induced inotropic enhancementAlkalinization induced inotropic enhancement
Alkalinization induced inotropic enhancement
Β 
Inhalational Anaesthetics Induced Cardioprotection
Inhalational Anaesthetics Induced CardioprotectionInhalational Anaesthetics Induced Cardioprotection
Inhalational Anaesthetics Induced Cardioprotection
Β 
Hemodynamics - paradigm shifts
Hemodynamics - paradigm shiftsHemodynamics - paradigm shifts
Hemodynamics - paradigm shifts
Β 
ARDS - principles of mechanical ventilation
ARDS - principles of mechanical ventilationARDS - principles of mechanical ventilation
ARDS - principles of mechanical ventilation
Β 
Ttp shu
Ttp shuTtp shu
Ttp shu
Β 
Short bowel syndrome acid base physiology
Short bowel syndrome acid base physiologyShort bowel syndrome acid base physiology
Short bowel syndrome acid base physiology
Β 
Acid Base Physiology – Stewart and beyond
Acid Base Physiology – Stewart and beyond Acid Base Physiology – Stewart and beyond
Acid Base Physiology – Stewart and beyond
Β 
Contrast Induced Nephropathy
Contrast Induced NephropathyContrast Induced Nephropathy
Contrast Induced Nephropathy
Β 
Abord arterial si venos
Abord arterial si venos Abord arterial si venos
Abord arterial si venos
Β 
Monitoring hemodynamics-lost in translation
Monitoring hemodynamics-lost in translationMonitoring hemodynamics-lost in translation
Monitoring hemodynamics-lost in translation
Β 
Guytonian approach to shock - mean systemic filling pressure centered
Guytonian approach to shock - mean systemic filling pressure centeredGuytonian approach to shock - mean systemic filling pressure centered
Guytonian approach to shock - mean systemic filling pressure centered
Β 

Recently uploaded

Russian Escorts Girls Nehru Place ZINATHI πŸ”9711199012 β˜ͺ 24/7 Call Girls Delhi
Russian Escorts Girls  Nehru Place ZINATHI πŸ”9711199012 β˜ͺ 24/7 Call Girls DelhiRussian Escorts Girls  Nehru Place ZINATHI πŸ”9711199012 β˜ͺ 24/7 Call Girls Delhi
Russian Escorts Girls Nehru Place ZINATHI πŸ”9711199012 β˜ͺ 24/7 Call Girls DelhiAlinaDevecerski
Β 
Manyata Tech Park ( Call Girls ) Bangalore βœ” 6297143586 βœ” Hot Model With Sexy...
Manyata Tech Park ( Call Girls ) Bangalore βœ” 6297143586 βœ” Hot Model With Sexy...Manyata Tech Park ( Call Girls ) Bangalore βœ” 6297143586 βœ” Hot Model With Sexy...
Manyata Tech Park ( Call Girls ) Bangalore βœ” 6297143586 βœ” Hot Model With Sexy...vidya singh
Β 
VIP Service Call Girls Sindhi Colony πŸ“³ 7877925207 For 18+ VIP Call Girl At Th...
VIP Service Call Girls Sindhi Colony πŸ“³ 7877925207 For 18+ VIP Call Girl At Th...VIP Service Call Girls Sindhi Colony πŸ“³ 7877925207 For 18+ VIP Call Girl At Th...
VIP Service Call Girls Sindhi Colony πŸ“³ 7877925207 For 18+ VIP Call Girl At Th...jageshsingh5554
Β 
Best Rate (Patna ) Call Girls Patna ⟟ 8617370543 ⟟ High Class Call Girl In 5 ...
Best Rate (Patna ) Call Girls Patna ⟟ 8617370543 ⟟ High Class Call Girl In 5 ...Best Rate (Patna ) Call Girls Patna ⟟ 8617370543 ⟟ High Class Call Girl In 5 ...
Best Rate (Patna ) Call Girls Patna ⟟ 8617370543 ⟟ High Class Call Girl In 5 ...Dipal Arora
Β 
Lucknow Call girls - 8800925952 - 24x7 service with hotel room
Lucknow Call girls - 8800925952 - 24x7 service with hotel roomLucknow Call girls - 8800925952 - 24x7 service with hotel room
Lucknow Call girls - 8800925952 - 24x7 service with hotel roomdiscovermytutordmt
Β 
Night 7k to 12k Chennai City Center Call Girls πŸ‘‰πŸ‘‰ 7427069034⭐⭐ 100% Genuine E...
Night 7k to 12k Chennai City Center Call Girls πŸ‘‰πŸ‘‰ 7427069034⭐⭐ 100% Genuine E...Night 7k to 12k Chennai City Center Call Girls πŸ‘‰πŸ‘‰ 7427069034⭐⭐ 100% Genuine E...
Night 7k to 12k Chennai City Center Call Girls πŸ‘‰πŸ‘‰ 7427069034⭐⭐ 100% Genuine E...hotbabesbook
Β 
Bangalore Call Girls Nelamangala Number 9332606886 Meetin With Bangalore Esc...
Bangalore Call Girls Nelamangala Number 9332606886  Meetin With Bangalore Esc...Bangalore Call Girls Nelamangala Number 9332606886  Meetin With Bangalore Esc...
Bangalore Call Girls Nelamangala Number 9332606886 Meetin With Bangalore Esc...narwatsonia7
Β 
VIP Hyderabad Call Girls Bahadurpally 7877925207 β‚Ή5000 To 25K With AC Room πŸ’šπŸ˜‹
VIP Hyderabad Call Girls Bahadurpally 7877925207 β‚Ή5000 To 25K With AC Room πŸ’šπŸ˜‹VIP Hyderabad Call Girls Bahadurpally 7877925207 β‚Ή5000 To 25K With AC Room πŸ’šπŸ˜‹
VIP Hyderabad Call Girls Bahadurpally 7877925207 β‚Ή5000 To 25K With AC Room πŸ’šπŸ˜‹TANUJA PANDEY
Β 
Call Girls Varanasi Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Varanasi Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Varanasi Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Varanasi Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
Β 
VIP Call Girls Indore Kirti πŸ’šπŸ˜‹ 9256729539 πŸš€ Indore Escorts
VIP Call Girls Indore Kirti πŸ’šπŸ˜‹  9256729539 πŸš€ Indore EscortsVIP Call Girls Indore Kirti πŸ’šπŸ˜‹  9256729539 πŸš€ Indore Escorts
VIP Call Girls Indore Kirti πŸ’šπŸ˜‹ 9256729539 πŸš€ Indore Escortsaditipandeya
Β 
Top Quality Call Girl Service Kalyanpur 6378878445 Available Call Girls Any Time
Top Quality Call Girl Service Kalyanpur 6378878445 Available Call Girls Any TimeTop Quality Call Girl Service Kalyanpur 6378878445 Available Call Girls Any Time
Top Quality Call Girl Service Kalyanpur 6378878445 Available Call Girls Any TimeCall Girls Delhi
Β 
Call Girls Kochi Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Kochi Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Kochi Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Kochi Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
Β 
Book Paid Powai Call Girls Mumbai π– ‹ 9930245274 π– ‹Low Budget Full Independent H...
Book Paid Powai Call Girls Mumbai π– ‹ 9930245274 π– ‹Low Budget Full Independent H...Book Paid Powai Call Girls Mumbai π– ‹ 9930245274 π– ‹Low Budget Full Independent H...
Book Paid Powai Call Girls Mumbai π– ‹ 9930245274 π– ‹Low Budget Full Independent H...Call Girls in Nagpur High Profile
Β 
Call Girls Jabalpur Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Jabalpur Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Jabalpur Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Jabalpur Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
Β 
Premium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort Service
Premium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort ServicePremium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort Service
Premium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort Servicevidya singh
Β 
(Rocky) Jaipur Call Girl - 09521753030 Escorts Service 50% Off with Cash ON D...
(Rocky) Jaipur Call Girl - 09521753030 Escorts Service 50% Off with Cash ON D...(Rocky) Jaipur Call Girl - 09521753030 Escorts Service 50% Off with Cash ON D...
(Rocky) Jaipur Call Girl - 09521753030 Escorts Service 50% Off with Cash ON D...indiancallgirl4rent
Β 
Call Girls Coimbatore Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Coimbatore Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Coimbatore Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Coimbatore Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
Β 
Top Rated Bangalore Call Girls Richmond Circle ⟟ 9332606886 ⟟ Call Me For Ge...
Top Rated Bangalore Call Girls Richmond Circle ⟟  9332606886 ⟟ Call Me For Ge...Top Rated Bangalore Call Girls Richmond Circle ⟟  9332606886 ⟟ Call Me For Ge...
Top Rated Bangalore Call Girls Richmond Circle ⟟ 9332606886 ⟟ Call Me For Ge...narwatsonia7
Β 
Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...
Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...
Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...Dipal Arora
Β 
Call Girls Bangalore Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Bangalore Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Bangalore Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Bangalore Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
Β 

Recently uploaded (20)

Russian Escorts Girls Nehru Place ZINATHI πŸ”9711199012 β˜ͺ 24/7 Call Girls Delhi
Russian Escorts Girls  Nehru Place ZINATHI πŸ”9711199012 β˜ͺ 24/7 Call Girls DelhiRussian Escorts Girls  Nehru Place ZINATHI πŸ”9711199012 β˜ͺ 24/7 Call Girls Delhi
Russian Escorts Girls Nehru Place ZINATHI πŸ”9711199012 β˜ͺ 24/7 Call Girls Delhi
Β 
Manyata Tech Park ( Call Girls ) Bangalore βœ” 6297143586 βœ” Hot Model With Sexy...
Manyata Tech Park ( Call Girls ) Bangalore βœ” 6297143586 βœ” Hot Model With Sexy...Manyata Tech Park ( Call Girls ) Bangalore βœ” 6297143586 βœ” Hot Model With Sexy...
Manyata Tech Park ( Call Girls ) Bangalore βœ” 6297143586 βœ” Hot Model With Sexy...
Β 
VIP Service Call Girls Sindhi Colony πŸ“³ 7877925207 For 18+ VIP Call Girl At Th...
VIP Service Call Girls Sindhi Colony πŸ“³ 7877925207 For 18+ VIP Call Girl At Th...VIP Service Call Girls Sindhi Colony πŸ“³ 7877925207 For 18+ VIP Call Girl At Th...
VIP Service Call Girls Sindhi Colony πŸ“³ 7877925207 For 18+ VIP Call Girl At Th...
Β 
Best Rate (Patna ) Call Girls Patna ⟟ 8617370543 ⟟ High Class Call Girl In 5 ...
Best Rate (Patna ) Call Girls Patna ⟟ 8617370543 ⟟ High Class Call Girl In 5 ...Best Rate (Patna ) Call Girls Patna ⟟ 8617370543 ⟟ High Class Call Girl In 5 ...
Best Rate (Patna ) Call Girls Patna ⟟ 8617370543 ⟟ High Class Call Girl In 5 ...
Β 
Lucknow Call girls - 8800925952 - 24x7 service with hotel room
Lucknow Call girls - 8800925952 - 24x7 service with hotel roomLucknow Call girls - 8800925952 - 24x7 service with hotel room
Lucknow Call girls - 8800925952 - 24x7 service with hotel room
Β 
Night 7k to 12k Chennai City Center Call Girls πŸ‘‰πŸ‘‰ 7427069034⭐⭐ 100% Genuine E...
Night 7k to 12k Chennai City Center Call Girls πŸ‘‰πŸ‘‰ 7427069034⭐⭐ 100% Genuine E...Night 7k to 12k Chennai City Center Call Girls πŸ‘‰πŸ‘‰ 7427069034⭐⭐ 100% Genuine E...
Night 7k to 12k Chennai City Center Call Girls πŸ‘‰πŸ‘‰ 7427069034⭐⭐ 100% Genuine E...
Β 
Bangalore Call Girls Nelamangala Number 9332606886 Meetin With Bangalore Esc...
Bangalore Call Girls Nelamangala Number 9332606886  Meetin With Bangalore Esc...Bangalore Call Girls Nelamangala Number 9332606886  Meetin With Bangalore Esc...
Bangalore Call Girls Nelamangala Number 9332606886 Meetin With Bangalore Esc...
Β 
VIP Hyderabad Call Girls Bahadurpally 7877925207 β‚Ή5000 To 25K With AC Room πŸ’šπŸ˜‹
VIP Hyderabad Call Girls Bahadurpally 7877925207 β‚Ή5000 To 25K With AC Room πŸ’šπŸ˜‹VIP Hyderabad Call Girls Bahadurpally 7877925207 β‚Ή5000 To 25K With AC Room πŸ’šπŸ˜‹
VIP Hyderabad Call Girls Bahadurpally 7877925207 β‚Ή5000 To 25K With AC Room πŸ’šπŸ˜‹
Β 
Call Girls Varanasi Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Varanasi Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Varanasi Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Varanasi Just Call 9907093804 Top Class Call Girl Service Available
Β 
VIP Call Girls Indore Kirti πŸ’šπŸ˜‹ 9256729539 πŸš€ Indore Escorts
VIP Call Girls Indore Kirti πŸ’šπŸ˜‹  9256729539 πŸš€ Indore EscortsVIP Call Girls Indore Kirti πŸ’šπŸ˜‹  9256729539 πŸš€ Indore Escorts
VIP Call Girls Indore Kirti πŸ’šπŸ˜‹ 9256729539 πŸš€ Indore Escorts
Β 
Top Quality Call Girl Service Kalyanpur 6378878445 Available Call Girls Any Time
Top Quality Call Girl Service Kalyanpur 6378878445 Available Call Girls Any TimeTop Quality Call Girl Service Kalyanpur 6378878445 Available Call Girls Any Time
Top Quality Call Girl Service Kalyanpur 6378878445 Available Call Girls Any Time
Β 
Call Girls Kochi Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Kochi Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Kochi Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Kochi Just Call 9907093804 Top Class Call Girl Service Available
Β 
Book Paid Powai Call Girls Mumbai π– ‹ 9930245274 π– ‹Low Budget Full Independent H...
Book Paid Powai Call Girls Mumbai π– ‹ 9930245274 π– ‹Low Budget Full Independent H...Book Paid Powai Call Girls Mumbai π– ‹ 9930245274 π– ‹Low Budget Full Independent H...
Book Paid Powai Call Girls Mumbai π– ‹ 9930245274 π– ‹Low Budget Full Independent H...
Β 
Call Girls Jabalpur Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Jabalpur Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Jabalpur Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Jabalpur Just Call 9907093804 Top Class Call Girl Service Available
Β 
Premium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort Service
Premium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort ServicePremium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort Service
Premium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort Service
Β 
(Rocky) Jaipur Call Girl - 09521753030 Escorts Service 50% Off with Cash ON D...
(Rocky) Jaipur Call Girl - 09521753030 Escorts Service 50% Off with Cash ON D...(Rocky) Jaipur Call Girl - 09521753030 Escorts Service 50% Off with Cash ON D...
(Rocky) Jaipur Call Girl - 09521753030 Escorts Service 50% Off with Cash ON D...
Β 
Call Girls Coimbatore Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Coimbatore Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Coimbatore Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Coimbatore Just Call 9907093804 Top Class Call Girl Service Available
Β 
Top Rated Bangalore Call Girls Richmond Circle ⟟ 9332606886 ⟟ Call Me For Ge...
Top Rated Bangalore Call Girls Richmond Circle ⟟  9332606886 ⟟ Call Me For Ge...Top Rated Bangalore Call Girls Richmond Circle ⟟  9332606886 ⟟ Call Me For Ge...
Top Rated Bangalore Call Girls Richmond Circle ⟟ 9332606886 ⟟ Call Me For Ge...
Β 
Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...
Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...
Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...
Β 
Call Girls Bangalore Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Bangalore Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Bangalore Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Bangalore Just Call 9907093804 Top Class Call Girl Service Available
Β 

Math modelled approach to gas-exchange monitoring

  • 1. MATH-MODEL DRIVEN APPROACH TO GAS-EXCHANGE MONITORING
  • 2. Classic Approach to Gas-Exchange Monitoring Normalized ratio / difference Equation / model based monitoring
  • 3. Dead Space Ventilation -two compartment modeling- FACO2/ET CO2 V T VDana water FEO2 FECO2 FIO2 FICO2 VA 1 FAO2 1 FACO2 1 VCO2 VO2 Q1 Q Q2=0 Q VA 2 FAO2 2 FACO2 2 VA 2/f =VDalv  𝑭𝑰CO2 = 0  FACO2 2 = 0  FECO2 = π•π‚πŽ 𝟐 𝑴𝑽  PECO2 BTPS= FECO2 Γ— (πŸ•πŸ”πŸŽ βˆ’ πŸ’πŸ•)  VCO2 = FACO2 Γ— 𝐕𝐀 = π…π„π‚πŽπŸ Γ— 𝐕𝐓 Γ— 𝐟  FACO2 Γ— 𝐕𝐀 = FACO2 1 Γ— VA 1 = VCO2  π…π„π‚πŽ 𝟐 Γ— 𝐕𝐓 = FACO2 1 Γ— VT βˆ’ (VDana+VDalv)  VDana +V𝐝alv = Vdphys = VTΓ— 𝐅 𝐀 π‚πŽ 𝟐 𝟏 βˆ’π…π„π‚πŽπŸ 𝐅 𝐀 π‚πŽ 𝟐 𝟏 VDana + V𝐝alv = Vdphys = VT Γ— 𝐏 𝐚 π‚πŽ πŸβˆ’π 𝐄 π‚πŽ 𝟐 𝐁𝐓𝐏𝐒 𝐏 𝐚 π‚πŽ 𝟐
  • 4.  Bohr equation VDanat/VT = 𝑷𝑨π‘ͺπ‘ΆπŸβˆ’π‘·π‘¬π‘ͺπ‘ΆπŸ 𝑷𝑨π‘ͺπ‘ΆπŸ  Enghoff modification VDphysiol/VT = 𝑷𝒂π‘ͺπ‘ΆπŸβˆ’π‘·π‘¬π‘ͺπ‘ΆπŸ 𝑷𝒂π‘ͺπ‘ΆπŸ  Alveolar dead space by substraction VDalv/VT = Enghoff – Bohr VDalv/VT alv = 𝑷𝒂π‘ͺπ‘ΆπŸβˆ’π‘·π’†π’•π‘ͺπ‘ΆπŸ 𝑷𝒂π‘ͺπ‘ΆπŸ Dead Space -fractions- PACO2-alv mixed- EtCO2(mean) EtCO2=mean!- (min+max)/2
  • 5. Dead Space Caveats  Shunt dependence ( β€œshunt dead space” – Suter,1975) because assuming that PaCO2=PACO2 is flawed  Shunt dependence will spuriously elevate VD  Regions with ↑ Va/Q are poorly set apart from regions with Va/Q = ∞(true dead space) because CO2 solubility is rather modest in comparison to acetone solubility, which is used in MIGET and distingushes VD as regions with Va/Q>100)  Severe V/Q mismatch => β€œsloping alveolar plateau”  Severe heterogeneity in Ο„ => β€œsloping alveolar plateau”  Sometimes PetCO2 > PaCO2
  • 6. Shunt dependence of VD Bull Eur Physiopathol Respir 1984 Effect of right-to-left shunting on alveolar dead space. Mecikalski et al
  • 7. Negative βˆ† CO2 Great heterogeneity in Rβ€’C product or/and severe V/Q mismatch -sloping alveolar plateau-
  • 8. Negative βˆ† CO2  ETCO2 is continuously estimated while PaCO2 is a mean value.  ETCO2 can be regarded as a regional and temporal specific parameter while PaCO2 is a global, mean parameter with no regional or temporal attributes  A low Ο„ CO2(FRC/VCO2) as in IACS or a non-homogeneous Ο„ lung(Rβ€’C) will facilitate negative differences
  • 9.  Slow alveoli are characterized by a high RC and this assigns them a constant, moderate sloping.  Fast alveoli are characterized by a low RC and this gives them a 2 phase sloping, the second being responsible for the overshoot ( high FRC/VCO2 )  Eg. Obese patients ( Ecw high ) Negative βˆ† CO2
  • 10. Dead Space as risk factor -Enghoff’s dead space- PULMONARY DEAD-SPACE FRACTION AS A RISK FACTOR FOR DEATH IN THE ACUTE RESPIRATORY DISTRESS SYNDROME, NEJM 2002, Nuckton et al
  • 11. Dead Space as a PEEP setter Optimum end-expiratory airway pressure in patients with acute pulmonary failure, Suter et al, NEJM 1975
  • 12. Dead Space as a PEEP setter OL-PEEP OL-PEEP Monitoring dead space during recruitment and PEEP titration in an experimental model, ICM 2006, Suarez-Sipmann et al. Recruitment=↑ βˆ†EELV=↓STRAINst+dyn=↓VD
  • 13. Dead Space as a PEEP setter - VD as an image of respiratory mechanics more than of gas excahnge -  Best PEEP=lowest dynamic and static STRAIN  Best E=Best Vd  VD obeys Hickling model (1998 )  VD shows histeresis  VD is mechanics as well as E and is decoupled from gas excange ( PaO2 ) Compliance and Dead Space Fraction Indicate an Optimal Level of Positive End-Expiratory Pressure After Recruitment in Anesthetized Patients, Anesth Analg 2008, Maisch and Tusman
  • 14. Volumetric Capnography Ξ²  Integrating the CO2 and volume signals  The abscissa is represented by volume  3 phases, 2 slopes, one inflection point-the curve changes sign- on SII
  • 15. Volumetric Capnography -phases and derived variables-  Phase I begins with the start of expiration and is completed after βˆ†CO2>0.1% from baseline  Phase II starts at the end of phase I and ends at the intersection point of slopes SII and SIII. Its inflection point (changes sign) is pretty much its midpoint and likely represents the interface between Vdaw and alveolar gas, that is the interface between convection and diffusion. It contains both alveolar gas as well as Vdaw gas. RC influences phase II.  Phase III begins at the aforementioned intersection and ends with expiration. This is gas inside the alveoli.  Slope II is an image of acini expiratory times. The more homogeneous the expiration, the more the slope increases.  Slope III is again influenced by mechanical time constants but mostly by V/Q mismatch. The slope increases with heterogeneity.
  • 18.  Ay=ABCD=PNCD  AMP=MNB=Ax  Ay=VTCO2  PNCD=PDΓ—(PN+CD)/2=VTPDΓ—meanCO2alv  VTCO2=mean expCO2Γ—VT=mean expCO2(VTPD + VTOP)  ( VT – VTOP) Γ— mean CO2alv= mean expCO2Γ—VT  VTOP/VT= (meanCO2alv-mean expCO2 )/meanCO2alv D o A P M N B O C Ax Ax Ay
  • 20.  Az/Axyz = PaCO2 Γ— VDanat/PaCO2 Γ— VT = VDanat/VT  Ax = VTCO2 = EtCO2mean Γ— Vtalv  Ay = Vtalv Γ— ( PaCO2 - meanEtCO2 )  Vtalv Γ— meanEtCO2 = Vtalveficient Γ— PaCO2  Ay = Vtalv Γ— PaCO2 – Vtalveficient Γ— PaCO2  Ay = PaCO2 Γ— Vdalv => Ay/Axyz = VDalv/VT  (Ay+Az)/Axyz = VDphys/VT
  • 22. Vdana and Vdalv can be read simultaneously on the abscissa Volumetric Capnography TANG 2006 – all VDs
  • 23. =225 ml =160 ml =65 ml Volumetric Capnography TANG 2006 – all VDs Vdana and Vdalv can be read simultaneously on the abscissa
  • 24.  We draw perpendiculars so that AOJA = AHJI (Fowler) and AOKB = AFEDK (Tang)  VT = OC ; VDanat = OA (Fowler) ; VDphys = OB (Tang)  PECO2 = AODC /VT  VDphys Enghoff = VT Γ— (1-PECO2/PaCO2) = = VT Γ— (1-AODC/ (PaCO2Γ—VT)) G F E D H I K J C J A B C D EFG H I K  AODC = AOKB + ABKDC = ABKDC+AFEDK = ABCEF  VDphys Enghoff = VTΓ—[1-ABCEF/(PaCO2Γ—VT) ]= = VTΓ—[1-(PaCO2Γ—BC)/(PaCO2Γ—VT)] = OB = VDphys Tang
  • 25. Volumetric Capnography assessing recruitment/recruitability Volumetric capnography for monitoring lung function during mechanical ventilation, Yearbook of Intensive Care Medicine 2006, Suarez – Sipmann et al
  • 26. Volumetric Capnography assessing recruitment/recruitability Volumetric capnography for monitoring lung function during mechanical ventilation, Yearbook of Intensive Care Medicine 2006, Suarez – Sipmann et al
  • 27. Volumetric Capnography assessing recruitment/recruitability Lung Recruitment Improves the Efficiency of Ventilation and Gas Exchange During One-Lung Ventilation Anesthesia, Anesth and Analg, Tusman, Suarez Sipmann et al., 2004
  • 28. How Tusman et al have confused Graf Bohr equation VDphysiol/VT = 𝑷𝑨π‘ͺπ‘ΆπŸβˆ’π‘·π‘¬π‘ͺπ‘ΆπŸ 𝑷𝑨π‘ͺπ‘ΆπŸ PACO2-alv mixed- EtCO2(mean)
  • 29. The answer lies in slopes
  • 30. Diffusion Limitation - one compartment modeling - V T VDana water FEO2 FECO2 FIO2 FICO2 CvO2 Q CcO2PcO2 CaO2 Q VCO2 VO2 VA PAO2 PACO2  π’ƒπ’Šπ’ˆπ’ˆπ’†π’”π’• π’‚π’”π’”π’–π’Žπ’‘π’•π’Šπ’π’ 𝑷𝑨π‘ͺ𝑢 𝟐 = 𝑬𝑻π‘ͺ𝑢 𝟐 π’Žπ’†π’‚π’  PAO2=PIO2 - PACO2 Γ— 𝑭𝑰𝑢 𝟐 + πŸβˆ’π‘­π‘°π‘Ά 𝟐 𝑹  RDIFF = 𝟏 𝑫𝑳𝑢 𝟐  RDIFF = 𝑷𝑨𝑢 πŸβˆ’π‘·π’‚π‘Ά 𝟐 𝑽𝑢 𝟐 RDIFF, when computed through a one compartment model, is nothing but a global parameter, It does not set apart any of the gas-exchange abnormalities.
  • 31. Shunt Model - two compartments, one parameter - FACO2/ET CO2 V T VDana water FEO2 FECO2 FIO2 FICO2 VA 1 FAO2 1 FACO2 1 VCO2 VO2 Q1 Q Q0 or Qshunt Q=Q1+ Q0 VA 0= 0 CvO2 CaO2CvO2 CcO2 1 PcO2 1  CaO2= 1/Q Γ— 𝑸 𝒏 π‘ͺ 𝒄 𝑢 𝟐 π’πŸ 𝒏=𝟎  π‘ͺ 𝒂 𝑢 𝟐 = 𝟏/𝑸 𝑸 𝒔𝒉𝒖𝒏𝒕 Γ— π‘ͺ𝒗𝑢 𝟐 + 𝑸 βˆ’ 𝑸𝒔𝒉𝒖𝒏𝒕 π‘ͺ 𝒄 𝑢 𝟐 𝟏  𝒔𝒉𝒖𝒏𝒕 = π‘ͺ 𝒄 𝑢 𝟐 𝟏 βˆ’π‘ͺ𝒂𝑢 𝟐 π‘ͺ 𝒄 𝑢 𝟐 𝟏 βˆ’π‘ͺ𝒗𝑢 𝟐  PAO2=FIO2Γ— 𝑷𝑩 βˆ’ 𝑷𝑨π‘ͺπ‘ΆπŸ 𝑹𝑸 (simplified alv.eq.)  𝑷𝑨π‘ͺπ‘ΆπŸ π’Žπ’–π’”π’• 𝒃𝒆, 𝒂𝒔 π’Šπ’Žπ’‘π’π’Šπ’†π’… π’ƒπ’š 𝒕𝒉𝒆 π’Žπ’π’…π’†π’, 𝑬𝑻π‘ͺ𝑢 πŸπ’Žπ’†π’‚π’ .  π‘Ίπ‘¨π‘ΆπŸ π’˜π’Šπ’π’ 𝒃𝒆 π’Šπ’‡π’†π’“π’“π’†π’… π’‡π’“π’π’Ž π‘·π‘¨π‘ΆπŸ π’‚π’„π’„π’π’“π’…π’Šπ’π’ˆ 𝒕𝒐 𝒂 π’”π’Šπ’Žπ’‘π’π’Šπ’‡π’Šπ’†π’… 𝑢𝑫π‘ͺ π’†π’’π’–π’‚π’•π’Šπ’π’  SO2= 𝑷𝑢 𝟐 πŸ‘ + πŸπŸ“πŸŽπ‘·π‘Ά 𝟐 βˆ’ 𝟏 Γ— πŸπŸ‘, πŸ’πŸŽπŸŽ + 𝟏 -1  𝑡𝒆𝒙𝒕, π‘ͺπ’„π‘ΆπŸ π’˜π’Šπ’π’ 𝒃𝒆 π’Šπ’π’‡π’†π’“π’“π’†π’… π’‡π’“π’π’Ž: CcO2=(HbΓ— π‘Ίπ‘ΆπŸ Γ— 𝟏. πŸ‘πŸ’) + (π‘·π‘ΆπŸ Γ— 𝟎. πŸŽπŸŽπŸ‘πŸ)
  • 32. True Shunt - FIO2 = 1 trial - CcO2-CaO2/ CcO2-Cv02 True shunt(S1) at FiO2=1, there is S2>S1 through resorbtion atelectasis. V/Q mismatch
  • 33. V/Q Mismatch Model - two compartments, one parameter - FAO2 VA FACO2/ET CO2 V T VO2 VDana water FEO2 FECO2 FIO2 FICO2 VA-VA 2 PAO2 1 PACO2 1 VCO2 1 VO2 1 Q1 Q Q2 Q=Q1+ Q2 CaO2=CcO2CvO2 CcO2 1 PcO2 1 FAO2 1 FAO2 2 VA 2 PAO2 2 PACO2 2 VCO2 2 VO2 2 PcO2 2CcO2 2 PcO2 n=PAO2 n βˆ†PO2=PAO2-PcO2=PAO2-PaO2  π‘ͺ𝒄𝑢 𝟐 𝟏 = 𝑷𝒄𝑢 𝟐 𝟏 πœΆπ‘Ά 𝟐 + 𝑯𝒃 𝑢𝑫π‘ͺ 𝑷𝒄𝑢 𝟐 𝟏  CcO2 2 = PcO2 2Ξ±O2 + Hb ODC(PcO2 2)  𝑽𝑢 𝟐 𝟏 = 𝟏 βˆ’ 𝒇𝑨 𝟐 Γ— 𝑽𝑨 Γ— 𝑭𝑰 𝑢 𝟐 βˆ’ 𝑭𝑨𝑢 𝟐 𝟏  VO2 1 = QΓ— 𝟎. 𝟏 Γ— (π‘ͺ𝒄𝑢 𝟐 𝟏 βˆ’ π‘ͺ𝒗𝑢 𝟐)  𝑽𝑢 𝟐 𝟐 = 𝒇𝑨 𝟐 Γ— 𝑽𝑨 Γ— 𝑭𝑰 𝑢 𝟐 βˆ’ 𝑭𝑨𝑢 𝟐 𝟐  VO2 2 = QΓ— 𝟎. πŸ— Γ— (π‘ͺ𝒄𝑢 𝟐 𝟐 βˆ’ π‘ͺ𝒗𝑢 𝟐) 𝒇𝑨 𝟐 = 𝑽𝑨 𝟐 𝑽𝑨 = 𝑭 𝑨 𝑢 𝟐 βˆ’ 𝑭𝑨𝑢 𝟐 𝟏 𝑭 𝑨 𝑢 𝟐 𝟐 βˆ’ 𝑭𝑨𝑢 𝟐 𝟏
  • 35. Fitting one parameter models to data 84 86 88 90 92 94 96 98 100 SaO2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 FEO2 Shunt=21% fA2=0.27 Shunt=11% fA2=0.19 Shunt=10% fA2=0.14 Shunt=8% fA2=0.14 Dashed red line οƒ˜ Alveolar dead space model Vdalv/VT=53% οƒ˜ Diffusion limitation model Rdiff=42kPa/(l/min) οƒ˜ V/Q model fA2=0.27 Solid orange line οƒ˜ Shunt model Shunt=15.5% stands for SaO2/FEO2 for the same patient.  using all necessary data, it is calculated for each of these four points shunt and fA2 according to previous equations.  fitting parameter model to data = finding the one parameter value that will subsequently describe patient’s data with utmost precision  one parameter models show dependence on inspired O2 fraction  they cannot appropriately describe gas-exchange
  • 36. Beginnings of Two Parameter Models The PIO2 vs. SpO2 diagram: A non-invasive measure of pulmonary oxygen exchange, EUROPEAN JOURNAL OF ANAESTHESIOLOGY 1995, Sapsford and Jones - Cambridge  The two parameters are shunt and V/Q mismatch + PACO2/R effect measured as % and as P I O2-PcO2 (kPa) respectively  Mass balance for O2 in blood and air, ODC equation, computer algorithm based on fitting the model parameters to P I O2/SaO2 data pairs
  • 37. Beginnings of Two Parameter Models A noninvasive method for evaluating the effect of thoracotomy on shunt and perfusion inequality, ANAESTHESIA 1997, Gray and Jones
  • 38. Beginnings of Two Parameter Models - course of family of curves - Noninvasive assessment of shunt and ventilation/perfusion ratio in neonates with pulmonary failure, Arch Dis Child Fetal Neonatology Ed. 2001, J G Jones et al
  • 39. We need the numbers  In A there is dependency of PIO2 vs SaO2 on aVDO2. Given that aVDO2 is dependent on Q, we infer Q dependency. Simply eyeballing might not be enough. We need the numbers.  In B there is dependency on Hb. Hb is nonetheless more stable. The PIO2 vs. SpO2 diagram: A non-invasive measure of pulmonary oxygen exchange, EUROPEAN JOURNAL OF ANAESTHESIOLOGY 1995, Sapsford and Jones - Cambridge
  • 40. Reverse avDO2 dependency - monitoring cardiac output - Cardiac output estimation using pulmonary mechanics in mechanically ventilated patients, Biomedical Engineering Online 2010, Sundaresan et al
  • 41. Refinement of the two parameter models β€’Rdiff(βˆ†PO2)Shunt β€’AlveolarDS(βˆ†PO2)Shunt β€’V/Q mismatch(βˆ†PO2)Shunt Mathematical models of pulmonary gas exchange - validation and application to postoperative hypoxaemia , Aalborg Hospital, Denmark, Soren Kjaergaard
  • 42. V/Q mismatch and Shunt Model - three compartments, 2 parameters - FAO2 VA FACO2/ET CO2 V T VO2 VDana water FEO2 FECO2 FIO2 FICO2 VA-VA 2 PAO2 1 PACO2 1 VCO2 1 VO2 1 Q1 Q=Qc+ Qshunt Q2 Qc=Q1+ Q2 CaO2 CvO2 Q CcO2 1 PcO2 1 FAO2 1 FAO2 2 VA 2 PAO2 2 PACO2 2 VCO2 2 VO2 2 PcO2 2CcO2 2 PcO2 n=PAO2 nβˆ†PO2=PAO2-PcO2 Qshunt CcO2 PcO2  𝑽𝑢 𝟐 = 𝟏 βˆ’ 𝒇𝑨 𝟐 Γ— 𝑽𝑨 Γ— 𝑭𝑰 𝑢 𝟐 βˆ’ 𝑭𝑨𝑢 𝟐 𝟏 + 𝒇𝑨 𝟐 Γ— 𝑽𝑨 Γ— 𝑭𝑰 𝑢 𝟐 βˆ’ 𝑭𝑨𝑢 𝟐  fA2 = VA2/VA  FAO2 = (1-fA2)Γ— 𝑭𝑨𝑢 𝟐 𝟏 + 𝒇𝑨 𝟐 Γ— 𝑭𝑨𝑢 𝟐 𝟐  𝑽𝑢 𝟐 = 𝑽𝑢 𝟐 𝟏 + 𝑽𝑢 𝟐 𝟐 = 𝑸 Γ— (π‘ͺ𝒂𝑢 𝟐 βˆ’ π‘ͺ𝒗𝑢 𝟐)  VO2= Q1 Γ— π‘ͺ𝒄𝑢 𝟐 𝟏 βˆ’ π‘ͺ𝒗𝑢 𝟐 + 𝑸 𝟐 Γ— (π‘ͺ𝒄𝑢 𝟐 𝟐 βˆ’ π‘ͺ𝒗𝑢 𝟐)  π‘ͺ𝒄𝑢 𝟐 = Q1/ 𝑸𝒄 Γ— π‘ͺ𝒄𝑢 𝟐 𝟏 + Q2/ 𝑸𝒄 Γ— π‘ͺ𝒄𝑢 𝟐 2  CaO2 = (1-shunt) Γ— π‘ͺ𝒄𝑢 𝟐 + shunt Γ— π‘ͺ𝒗𝑢 𝟐  π‘ͺ𝒄𝑢 𝟐 𝟏 = 𝑷𝒄𝑢 𝟐 𝟏 πœΆπ‘Ά 𝟐 + 𝑯𝒃 𝑢𝑫π‘ͺ 𝑷𝒄𝑢 𝟐 𝟏  CcO2 2 = PcO2 2Ξ±O2 + Hb ODC(PcO2 2)
  • 43. Fitting two parameter models to data  All three models are equivalent in assessing shunt  All three models are equivalent in assessing βˆ†PO2  VDalv inferred from an O2 based 2 parameter model is NOT equivalent to the one determined from a CO2 based model  Rdiff is not supported by MIGET as an important constituent of gasexchange disturbances  VDalv O2 based has no meaning in day to day clinical practice
  • 44. V/Q mismatch and Shunt Model - shunt and fA2 impact on ODC - SHUNT V/Q or fA2
  • 45. Predicting risk of hypoxemia V/Q mismatch vs Shunt
  • 46. Predicting risk of hypoxemia DISCRIMINATING BETWEEN THE EFFECT OF SHUNT AND REDUCED VA/Q ON ARTERIAL OXYGEN SATURATION IS PARTICULARLY USEFUL IN CLINICAL PRACTICE, J Clin Monit and Comp 2000, Jones et al
  • 47. MIGET at the bedside
  • 48.
  • 49.
  • 50. PaO2/FIO2  Risk indicator as in Berlin ARDS definition  Global gas - exchange parameter  Non independent behavior with respect to shunt, avDO2, PaCO2, RQ, Hb  Non independent parameter when FIO2 is varied
  • 51. PaO2/FIO2 FIO2 dependency according to shunt  avD02 is constant, that is constant metabolism  Three shunt values  At each shunt value, PaO2/FIO2 shows FIO2 dependence
  • 52. PaO2/FIO2 FIO2 dependency according to avDO2  avD02 varies, that is changing CO for a constant VO2  Same shunt value  At each avDo2 value, PaO2/FIO2 shows FIO2 dependence
  • 53. PaO2/FIO2 FIO2 dependency according to shunt  Shunt varies from 0% to 30%  Thick lines stand for clinically important SaO2 (92%-98%)  At each shunt value, PaO2/FIO2 shows FIO2 dependence
  • 54. PaO2/FIO2 FIO2 dependency according to V/Q  βˆ†PO2 ( image of V/Q ) varies from 0 kPa to 30 kPa  Thick lines stand for clinically important SaO2 (92%-98%)  At each βˆ†PO2 value, PaO2/FIO2 shows FIO2 dependence
  • 55. PaO2/FIO2 FIO2 dependency – switching risk groups  Six pacients, graphs with SaO2/FIO2 and PaO2/FIO2 FIO2 dependency, two models are used – shunt and shunt+V/Q, thick lines pertain to SaO2 = 92%-98%, dashed line is shunt model whereas solid line is the other  PaO2/FIO2 FIO2 dependency brings about different risk groups even though shunt or V/Q do not really change.
  • 56. FiO2↓ FiO2↑ normal Mild hO2 ALI ARDS Shunt model Nr =23 Nr=15 Nr=40 Nr=38 Normal =64 23 14 27 0 Mild hO2 =20 0 1 13 6 ALI=14 0 0 0 14 ARDS=18 0 0 0 18 Shunt+V/Q mism Nr=42 Nr=19 Nr=31 Nr=24 Normal=56 39 12 5 0 Mild hO2 =19 3 6 9 1 ALI=23 0 1 16 6 ARDS=18 0 0 1 17 PaO2/FIO2 FIO2 dependency – switching risk groups N > 350 ; mild hypoxemia = 300 –350 ; ALI = 201-300 ; ARDS < 200
  • 57. PaO2/FIO2 FIO2 dependency – switching risk groups  risk group β€œswitching’’ is 50% for shunt model and 38% for two parameter model  by ↑ FiO2 (SpO2=92-98%) - shunt model ALI 14β†’40 - shunt model ARDS 18β†’38 - two parameter model ALI 23β†’31 - two parameter model ARDS 18β†’24  The shunt model has a poor fit to the data  PaO2/FiO2 is FIO2 dependent (use the same FIO2 when tracking evolution)  PaO2/FiO2 is a poor gas exchange tracker
  • 58. β€œPerhaps more appropriate would be to replace the PaO2/FiO2 ratio with two parameters, a parameter to describe the oxygenation problems due to V/Q mismatch and one to describe oxygenation problems due to shunt.” Kjaergaard and Rees, Critical Care 2007