Chapter 12 Application of Gibbs Sampling in Variance Component Estimation and Prediction of Breeding Value: R. A. Mrode. (2005). Linear Models for Prediction of Animal Breeding Values. CAB International, Oxon, UK. Second Edition.
Chapter 12 Application of Gibbs Sampling in Variance Component Estimation and Prediction of Breeding Value: R. A. Mrode. (2005). Linear Models for Prediction of Animal Breeding Values. CAB International, Oxon, UK. Second Edition.
Similar to Chapter 12 Application of Gibbs Sampling in Variance Component Estimation and Prediction of Breeding Value: R. A. Mrode. (2005). Linear Models for Prediction of Animal Breeding Values. CAB International, Oxon, UK. Second Edition.
Similar to Chapter 12 Application of Gibbs Sampling in Variance Component Estimation and Prediction of Breeding Value: R. A. Mrode. (2005). Linear Models for Prediction of Animal Breeding Values. CAB International, Oxon, UK. Second Edition. (20)
Chapter 12 Application of Gibbs Sampling in Variance Component Estimation and Prediction of Breeding Value: R. A. Mrode. (2005). Linear Models for Prediction of Animal Breeding Values. CAB International, Oxon, UK. Second Edition.
1. Chapter 12
Application of Gibbs Sampling in Variance Component
Estimation and Prediction of Breeding Value
Linear Models for Prediction of Animal Breeding Values
R .A. Mrode
Gota Morota
May 6, 2010
1 / 18
5. Controversy over REML
• gives joint modes of variance components rather than
marginal modes
quadratic loss function =
ˆ
(yij − yij )2
• not all variance components have equal importance
⇓
variance components of no interest (nuisance paramters)
should be integrated out
⇓
only paramters of interest should be maximized in the
likelihood
5 / 18
6. VEIL (1990)
Variance Estimation from Integrated Likelihood
Gianola D, Foulley JL (1990) Variance Estimation from Integrated
Likelihood (VEIL). Genet Sel Evol 22, 403-417
Inference is based on the marginal posterior distribtuion of each of
the variance components.
⇓
Approximations to the marginal distributions were proposed.
6 / 18
8. History of Bayesian Analyses Coupled with Gibbs
Sampling
• Gelfand AE, and Smith AFM (1990): Introduced in statistics
• Gelfand et al.(1990): One-way radom effects model
• CS.Wang et al. (1993): Univariate mixed linear model using
simulated data
• CS.Wang et al. (1994): Univariate mixed linear model using
field data (litter size)
• DA Sorensen et al. (1995) : Threshold models
• Jamorozik and Shaeffer (1997): Random Regression
Gibbs Sampling
It has been applied to a wide range of animal breeding problems.
8 / 18
9. Likelihood
Bayes’ theorem:
joint posterior distribution ∝ likelihood × priors
• Consider the linear model
y = XB + Zu + e
• Further,
e|σ2 ∼ N (0, Iσ2 )
e
e
• The conditinal distribution which generates the data
(likelihood):
y|B, u, σ2 ∼ N (XB + Zu, Iσ2 )
e
e
n
∝ (σ2 )− 2 exp −
e
(y − XB − Zu) (y − XB − Zu)
2σ2
e
(1)
9 / 18
10. Prior Distribution for Location Parameters
• Prior for B:
p (B) ∝ constant
(2)
• Prior for u
u|Aσ2 ∼ N (0, Aσ2 )
u
u
q
∝ (σ2 )− 2 exp −
u
q
∝ (σ2 )− 2 exp −
u
(u − 0) (u − 0)
2Aσ2
u
u A−1 u
2σ2
u
(3)
10 / 18
11. Prior Distribution for Scale Parameters
• Prior for σ2
u
2
p (σ2 |su , υu ) ∝ (σ2 )−
u
u
υu +2
2
exp −
2
υu su
2σ2
u
(4)
exp −
2
υe se
2 σ2
e
(5)
• Prior for σ2
e
2
p (σ2 |se , υe ) ∝ (σ2 )−
e
e
υe +2
2
Scaled inverted χ2 distribution
Commoly used for priors of variance components in the Bayesian
analyses
11 / 18
12. Joint Posterior Distribution
Multiplication of likelihood (1) and priors (4) to (5)
2
2
Joint posterior distribution = p (B, u, σ2 , σ2 |y, su , υu , se , υe )
u
e
2
2
∝ p (y|B, u, σ2 ) p (B) p (u|σ2 ) p (σ2 |su , υu ) p (σ2 |se , υe )
e
u
u
e
∝ (σ2 )−
u
(σ2 )−
e
n+υe +2
2
exp −
q+υu +2
2
exp −
2
u A−1 u + υu su
2σ2
u
2
(y − XB − Zu) (y − XB − Zu) + υe se
2σ2
e
(6)
12 / 18
13. Fully Conditional Distribution for Location Parameters
The fully conditional distribution of each parameter is obtained by
regarding all other parameters in (6) as known.
• B:
p (B|u, σ2 , σ2 , y) ∝ exp −
e
u
(y − XB − Zu) (y − XB − Zu)
2σ2
e
B|u, σ2 , σ2 , y ∼ N ((X X)−1 X (y − Zu), (X X)−1 σ2 )
e
e
u
(7)
2 −1
2
−1 σe
Z Zi + A
σ
i
e
i
σ2 i
u
(8)
• u:
ui |B, u−i , σ2 , σ2 , y
u
e
˜
∼ N ui ,
where
q
2 −1
Z Zi + A−1 σe Z (y − XB −
i
˜
Zj uj )
ui = i
i
σ2 i
u
j=1,j i
13 / 18
14. Fully Conditional Distribution for Scale Parameters
The fully conditional distribution of each parameter is obtained by
regarding all other parameters in (6) as known.
• σ2 :
e
p (σ2 |B, u, σ2 , y) ∝
e
u
(σ2 )−
e
n+υe +2
2
exp −
2
(y − XB − Zu) (y − XB − Zu) + υe se
2σ2
e
(9)
2
˜2
υe = n + υe , se = [(y − XB − Zu) (y − XB − Zu) + υe se ]/υe
˜
˜
• σ2 :
u
p (σ2 |B, u, σ2 , y) ∝ (σ2 )−
u
e
u
q+υu +2
2
exp −
2
u A−1 u + υu su
2 σ2
u
(10)
2
˜2
υu = q + υu , su = [u A−1 u + υu su ]/υu
˜
˜
14 / 18
15. Sampling
• Consider following linear model
XT X
XT Z
B
XT y
= T
ZT X ZT Z + A−1 α u
Z y
LHS · C = RHS
• Iteration
Ci |(ELSE) ∼ N
RHS[i] −
j =1,j i
LHS[i, j] · Bj
LHS[i, i]
,
σ2
e
LHS[i, i]
2
2
σ2 |(ELSE) ∼ [(y − Xb − Zu)T (y − Xb − Zu) + υe se ] · χ−+υe
e
n
2
2
σ2 |(ELSE) ∼ [uT A−1 u + υu su ] · χ−+υu
a
q
15 / 18
16. Inferences from the Gibbs Sampling Output
σ2 : σ21 , σ21 , · · · , σ2k ,
u
u
u
u
• Direct inference from samples
post mean =
post variance =
k
i =1
σ2i
u
k
k
2
i =1 (σui
− post mean)2
k
• Density Estimation
• Kernel Density Estimation
16 / 18
17. Gibbs Sampling vs. REML and BLUP
In practice, we don’t know the variance components.
REML → BLUP procedure
• does not take into account uncertainty in estimating variance
components
• estimating variance components are ignored in predicting
breeding values
• BLUP from the MME is no longer BLUP (empirical BLUP)
Gibbs Sampling
Able to estimates location paramters and scale paratmers jointly.
17 / 18