SlideShare a Scribd company logo
1 of 35
STOICHIOMETRY Or How I Learned to Love Counting Atoms
Equations are the recipes that tell chemists what amounts of reactants to mix and what amounts of products to expect. You can determine the quantities of reactants and products in a reaction from the balanced equation. When you know the quantity of one substance in a reaction, you can calculate the quantity of any other substance consumed or created in the reaction.  (Quantity usually means the amount of a substance expressed in grams or moles. But quantity could just as well be in liters, tons, or molecules.) The calculation of quantities in chemical reactions is a subject of chemistry called  stoichiometry .
Calculations using balanced equations are called stoichiometric calculations . For chemists, stoichiometry is a form of bookkeeping.
INTERPRETING CHEMICAL EQUATIONS As you may recall, ammonia is widely used as a fertilizer. Ammonia is produced industrially by the reaction of nitrogen with hydrogen. What kinds of information can be derived from this equation? N 2 ( g )  +  3H 2 ( g )  2NH 3 ( g )
Do you see that mass and atoms are conserved in this chemical reaction? Mass and atoms are conserved in every chemical reaction. The mass of the reactants equals the mass of the products. The number of atoms of each reactant equals the number of atoms for that reactant in the product(s). Unlike mass and atoms, however, molecules, formula units, moles and volumes of gases will not necessarily be conserved - although they may be. Only mass and atoms are conserved in every chemical reaction.
Interpreting Chemical Reactions Again, the formation of ammonia from hydrogen and nitrogen is 3H 2   +  N 2   2 NH 3
Mole-Mole Calculations ,[object Object],[object Object],[object Object]
The mole ratios are used to calculate the number of moles of product from a given number of moles of reactant or to calculate the number of moles of reactant from a given number of moles of product. Three of the mole ratios for this equation are 1 mol N 2   2 mol NH 3  3 mol H 2 3 mol H 2   1 mol N 2 2 mol NH 3
In the mole ratio below,  W  is the unknown quantity.  The value of  a  and  b  are the coefficients from the balanced equation.  Thus a general solution for a mole-mole problem is given by Given  Mole ratio  Calculated x  mol  G  x   =   mol  W   b  mol  W  xb a  mol   G  a From balanced equation
Using the ammonia reaction, answer the following question. How many moles of ammonia are produced when 0.60 mol of nitrogen reacts with hydrogen? 0.60 mol N 2  x =  1.20 mol NH 3   Given Mole Ratio 2 mol NH 3 1 mol N 2
MASS-MOLES CALCULATIONS Balances don’t tell you numbers in moles but in grams. As such, there are two related stoichiometry calculations: Moles - Mass & Mass - Moles
In a mole-mass problem you are asked to calculate the mass (usually in grams) of a substance that will react with or be produced from a given number of moles of a second substance. (If, in an example, you are told something in is excess, just ignore that substance and solve the problem with the needed substances.) moles A   moles B   mass B moles A  x  mole ratio of  x  molar mass of B B A
Example: Plants use carbon dioxide and water to form glucose (C 6 H 12 O 6 ) and oxygen. What mass, in grams, of glucose is produced when 3.00 mol of water react with carbon dioxide? Answer: 1. Write the balanced equation 6CO 2 (g) + 6H 2 O(l) -> C 6 H 12 O 6 (s) + 6O 2 (g)
2. Determine what you need to find/know. Unknown: mass of   C 6 H 12 O 6  produced Given: amount of H 2 O = 3.00 mol =  grams   C 6 H 12 O 6 3. Determine conversion factors moles H 2 O x   x  moles   C 6 H 12 O 6 moles H 2 O grams   C 6 H 12 O 6 1 mole C 6 H 12 O 6
4. Solve   3.00 moles H 2 O  x  x  =  90.0 g C 6 H 12 O 6 1 mol   C 6 H 12 O 6 6 moles H 2 O 180 g   C 6 H 12 O 6 1 mole C 6 H 12 O 6
In a mass-mole problem you are asked to calculate the moles of a substance that will react with or be produced from a given number of grams of a second substance. mass A   moles A   moles B 1 mole A molar mass A mass A  x    x  mole ratio B A
Worksheet questions Mol    mass mol A    mol B    mass B 75.0 mol C 7 H 6 O 3  = 13500 g C 9 H 8 O 4 = 13.5 kg C 9 H 8 O 4 x  1 mol C 9 H 8 O 4 1 mol C 7 H 6 O 3 180 g C 9 H 8 O 4 1 mol C 9 H 8 O 4 x x 1 kg 1000 g
Mass-Mass Calculations ,[object Object],[object Object],[object Object],[object Object]
If the given sample is measured in grams, the mass can be converted to moles by using the molar mass Then the mole ratio from the balanced equation can be used to calculate the number of moles of the unknown If it is the mass of the unknown that needs to be determined, the number of moles of the unknown can be multiplied by the molar mass. As in mole-mole calculations, the unknown can be either a reactant or a product
Mass-mass problems can be solved in basically the same way as mole-mole problems. 1.  The mass G is changed to moles of G (mass G   mol G)  by using the molar mass of G. Mass  G   X    = mol  G 2.   The moles of  G  are changed to moles of  W  (mol  G   mol  W )  by using the mole ratio from the balanced equation. Mol  G   X  = mol  W 1 mol  G molar mass  G b  mol  W a  mol  G 3.  The moles of  W  are changed to grams of  W  (mol  W  mass  W )
mass A  x x   x  mole ratio molar mass of A molar mass of B   given 1 mole A grams A moles B moles A grams B 1 mole B  The route for solving mass-mass problems is: mass A  moles A    moles B    mass B
Example: Calculate the number of grams of NH 3  produced by the reaction of 5.40 g of hydrogen with an excess of nitrogen. 2. Write what you know: Unknown: g NH 3 ; g H 2  -> g NH 3 Given: 5.40 g H 2 Solution: 1. Write the balanced equation N 2  + 3H 2   2NH 3
4. Solve 5.40 g H 2  x   x   x  given =  30.6 g NH 3 changes given   to moles   mole ratio change moles of wanted to grams 3. Determine conversion factors g H 2     mol H 2   mol NH 3   g NH 3 1 mol H 2 2.00 g H 2 2 mol NH 3 3 mol H 2 17.0 g NH 3 1 mol NH 3
Practice Problems 5.00 g CaC 2   x x x = 2.03 g C 2 H 2 1 mole CaC 2 64.1 g CaC 2 1 mole C 2 H 2 1 mole CaC 2 26.0 g C 2 H 2 1 mole C 2 H 2
Worksheet questions a.  384 g O 2 = 1104 g NO 2  = 1.10x10 3  g NO 2 given Molar mass A Mole ratio Molar mass B x 1 mol O 2 32.0g O 2 x 2 mol NO 2 1 mol O 2 x 46.0g NO 2 1 mol NO 2
OTHER STOICHIOMETRIC CALCULATIONS As you already know, a balanced equation indicates the relative number of moles of reactants and products. From this foundation, stoichiometric calculations can be expanded to include any unit of measurement that is related to the mole. The given quantity can be expressed in number of representative particles, units of mass, or volumes of gases at STP.
The following equation summarizes these steps for a typical stoichiometric problem aG  bW   (given quantity)   (wanted quantity)
 
Using the ammonia reaction equation, determine the number of liters of ammonia that can be produced from 5 grams of nitrogen at STP. 5.00g N 2 x x x =? N 2   +  3H 2 2NH 3 1 mole N 2 28.0g N 2 2 mole NH 3 1 mole N 2 22.4 L NH 3 1 mole NH 3
PERCENT YIELD When an equation is used to calculate the amount of product that will form during a reaction, a value representing the theoretical yield is obtained. The  theoretical yield  is the maximum amount of product that could be formed from given amounts of reactants. In contrast, the amount of product that actually forms when the reaction is carried out in the laboratory is called the  actual yield . The actual yield is often less than the theoretical yield.
The  percent yield  is the ratio of the actual yield to the theoretical yield expressed as a percent. The percent yield measures the efficiency of the reaction. A percent yield should not normally be larger than 100%. Many factors can cause percent yields to be less than 100%. Percent yield = x 100 actual yield theoretical yield
Example: Calcium carbonate is decomposed by heating, as  shown in the following equation. CaCO 3 (s)   CaO(s) + CO 2 (g) a.  what is the theoretical yield of CaO if 24.8 g of    CaCO 3  is heated? b.  What is the percent yield if 13.1 g CaO is    produced?
Solution: 1. List the knowns and unknowns in  a. known: mass of CaCO 3  = 24.8 g   1 mol CaCO 3  = 1 mol CaO (from    balanced equation)    1 mol CaCO 3  = 100 g (molar mass)   1 mol CaO = 56.1 g (molar mass) unknown: theoretical yield of CaO = ? g CaO
2. Solve for the unknown. 24.8 g CaCO 3  x   x    x  given amount molar mass mole ratio molar mass = 13.9 g CaO Again, this is the theoretical yield, the amount you would make if the reaction were 100% accurate. 1 mol CaCO 3 100 g CaCO 3 1 mol CaO 1 mol CaCO 3 56.1 g CaO 1 mol CaO
3. Determine % yield for  b. actual yield = 13.1 g CaO theoretical yield  = 13.9 g CaO Percent yield =   x 100 actual yield theoretical yield Percent yield =   x 100  =  94.2% 13.1 g CaO 13.9 g CaO

More Related Content

What's hot

Stoichiometry
StoichiometryStoichiometry
StoichiometryAmie L
 
Chapter 5 stoichiometric calculations summer2014
Chapter 5 stoichiometric calculations summer2014Chapter 5 stoichiometric calculations summer2014
Chapter 5 stoichiometric calculations summer2014Cleophas Rwemera
 
Introduction to stoichiometry
Introduction to stoichiometryIntroduction to stoichiometry
Introduction to stoichiometryMANJUNATH N
 
10 stoichiometry
10 stoichiometry10 stoichiometry
10 stoichiometryzehnerm2
 
Chemistry - Chp 12 - Stoichiometry - PowerPoint
Chemistry - Chp 12 - Stoichiometry - PowerPointChemistry - Chp 12 - Stoichiometry - PowerPoint
Chemistry - Chp 12 - Stoichiometry - PowerPointMr. Walajtys
 
Class 11 sbcc part IX
Class 11 sbcc part IXClass 11 sbcc part IX
Class 11 sbcc part IXAarti Soni
 
Blb12 ch03 lecture
Blb12 ch03 lectureBlb12 ch03 lecture
Blb12 ch03 lectureEric Buday
 
AP Chemistry Chapter 3 Outline
AP Chemistry Chapter 3 OutlineAP Chemistry Chapter 3 Outline
AP Chemistry Chapter 3 OutlineJane Hamze
 
Stoichiometry: Chapter 9
Stoichiometry:  Chapter 9Stoichiometry:  Chapter 9
Stoichiometry: Chapter 9vvchemistry
 
Chem unit 10 presentation
Chem unit 10 presentationChem unit 10 presentation
Chem unit 10 presentationbobcatchemistry
 
Rate of chemical reaction
Rate of chemical reactionRate of chemical reaction
Rate of chemical reactionRAJEEVBAYAN1
 
Stoichiometry PowerPoint
Stoichiometry PowerPointStoichiometry PowerPoint
Stoichiometry PowerPointAngela Willson
 
Chem unit 12 presentation
Chem unit 12 presentationChem unit 12 presentation
Chem unit 12 presentationbobcatchemistry
 
Basics of Chemistry: Chemical stoichiometry
Basics of Chemistry: Chemical stoichiometryBasics of Chemistry: Chemical stoichiometry
Basics of Chemistry: Chemical stoichiometryRAJEEVBAYAN1
 

What's hot (20)

Ch12 stoichiometry
Ch12 stoichiometryCh12 stoichiometry
Ch12 stoichiometry
 
Stoichiometry
StoichiometryStoichiometry
Stoichiometry
 
Chapter 5 stoichiometric calculations summer2014
Chapter 5 stoichiometric calculations summer2014Chapter 5 stoichiometric calculations summer2014
Chapter 5 stoichiometric calculations summer2014
 
Stoichiometry
Stoichiometry Stoichiometry
Stoichiometry
 
Introduction to stoichiometry
Introduction to stoichiometryIntroduction to stoichiometry
Introduction to stoichiometry
 
10 stoichiometry
10 stoichiometry10 stoichiometry
10 stoichiometry
 
Stoichiometry in Chemistry
Stoichiometry in ChemistryStoichiometry in Chemistry
Stoichiometry in Chemistry
 
Chemistry - Chp 12 - Stoichiometry - PowerPoint
Chemistry - Chp 12 - Stoichiometry - PowerPointChemistry - Chp 12 - Stoichiometry - PowerPoint
Chemistry - Chp 12 - Stoichiometry - PowerPoint
 
Class 11 sbcc part IX
Class 11 sbcc part IXClass 11 sbcc part IX
Class 11 sbcc part IX
 
Adv chem chapt 3
Adv chem chapt 3Adv chem chapt 3
Adv chem chapt 3
 
Stoichiometry
StoichiometryStoichiometry
Stoichiometry
 
Blb12 ch03 lecture
Blb12 ch03 lectureBlb12 ch03 lecture
Blb12 ch03 lecture
 
AP Chemistry Chapter 3 Outline
AP Chemistry Chapter 3 OutlineAP Chemistry Chapter 3 Outline
AP Chemistry Chapter 3 Outline
 
Stoichiometry: Chapter 9
Stoichiometry:  Chapter 9Stoichiometry:  Chapter 9
Stoichiometry: Chapter 9
 
Chem unit 10 presentation
Chem unit 10 presentationChem unit 10 presentation
Chem unit 10 presentation
 
Stoichiometry
StoichiometryStoichiometry
Stoichiometry
 
Rate of chemical reaction
Rate of chemical reactionRate of chemical reaction
Rate of chemical reaction
 
Stoichiometry PowerPoint
Stoichiometry PowerPointStoichiometry PowerPoint
Stoichiometry PowerPoint
 
Chem unit 12 presentation
Chem unit 12 presentationChem unit 12 presentation
Chem unit 12 presentation
 
Basics of Chemistry: Chemical stoichiometry
Basics of Chemistry: Chemical stoichiometryBasics of Chemistry: Chemical stoichiometry
Basics of Chemistry: Chemical stoichiometry
 

Similar to Stoichiometry

Ch03 outline
Ch03 outlineCh03 outline
Ch03 outlineAP_Chem
 
New chm 151_unit_3_power_points-sp13
New chm 151_unit_3_power_points-sp13New chm 151_unit_3_power_points-sp13
New chm 151_unit_3_power_points-sp13caneman1
 
MDCAT Chemistry Notes | Nearpeer
MDCAT Chemistry Notes | NearpeerMDCAT Chemistry Notes | Nearpeer
MDCAT Chemistry Notes | NearpeerMianAliImtiaz
 
New chm-151-unit-3-power-points-sp13-140227172226-phpapp01
New chm-151-unit-3-power-points-sp13-140227172226-phpapp01New chm-151-unit-3-power-points-sp13-140227172226-phpapp01
New chm-151-unit-3-power-points-sp13-140227172226-phpapp01Cleophas Rwemera
 
Grade 9 Chemistry ppt.pptx
Grade 9 Chemistry ppt.pptxGrade 9 Chemistry ppt.pptx
Grade 9 Chemistry ppt.pptxSimrgetaAwash1
 
Stoichiometry cheat sheet
Stoichiometry cheat sheetStoichiometry cheat sheet
Stoichiometry cheat sheetTimothy Welsh
 
Chemistry Chapter 3
Chemistry Chapter 3Chemistry Chapter 3
Chemistry Chapter 3tanzmanj
 
Chapter9 stoichiometry-100707061730-phpapp01
Chapter9 stoichiometry-100707061730-phpapp01Chapter9 stoichiometry-100707061730-phpapp01
Chapter9 stoichiometry-100707061730-phpapp01Luis Sarmiento
 
Chapter 10 - Chemical Quantities
Chapter 10 - Chemical QuantitiesChapter 10 - Chemical Quantities
Chapter 10 - Chemical QuantitiesGalen West
 
Stoichiometry ok1294993172
Stoichiometry   ok1294993172Stoichiometry   ok1294993172
Stoichiometry ok1294993172Navin Joshi
 
Gen chem topic 3 guobi
Gen chem topic 3  guobiGen chem topic 3  guobi
Gen chem topic 3 guobiEasyStudy3
 

Similar to Stoichiometry (20)

Physical Chemistry
Physical Chemistry Physical Chemistry
Physical Chemistry
 
Ch03 outline
Ch03 outlineCh03 outline
Ch03 outline
 
Moles
MolesMoles
Moles
 
Stoichiometry 2nd Tri 0910
Stoichiometry 2nd Tri 0910Stoichiometry 2nd Tri 0910
Stoichiometry 2nd Tri 0910
 
New chm 151_unit_3_power_points-sp13
New chm 151_unit_3_power_points-sp13New chm 151_unit_3_power_points-sp13
New chm 151_unit_3_power_points-sp13
 
MDCAT Chemistry Notes | Nearpeer
MDCAT Chemistry Notes | NearpeerMDCAT Chemistry Notes | Nearpeer
MDCAT Chemistry Notes | Nearpeer
 
New chm-151-unit-3-power-points-sp13-140227172226-phpapp01
New chm-151-unit-3-power-points-sp13-140227172226-phpapp01New chm-151-unit-3-power-points-sp13-140227172226-phpapp01
New chm-151-unit-3-power-points-sp13-140227172226-phpapp01
 
Grade 9 Chemistry ppt.pptx
Grade 9 Chemistry ppt.pptxGrade 9 Chemistry ppt.pptx
Grade 9 Chemistry ppt.pptx
 
Stoikiometri reaksi
Stoikiometri reaksiStoikiometri reaksi
Stoikiometri reaksi
 
Stoichiometry cheat sheet
Stoichiometry cheat sheetStoichiometry cheat sheet
Stoichiometry cheat sheet
 
Chemistry Chapter 3
Chemistry Chapter 3Chemistry Chapter 3
Chemistry Chapter 3
 
Stoichiometry
StoichiometryStoichiometry
Stoichiometry
 
Chapter9 stoichiometry-100707061730-phpapp01
Chapter9 stoichiometry-100707061730-phpapp01Chapter9 stoichiometry-100707061730-phpapp01
Chapter9 stoichiometry-100707061730-phpapp01
 
Chemistry
ChemistryChemistry
Chemistry
 
Chapter 10 - Chemical Quantities
Chapter 10 - Chemical QuantitiesChapter 10 - Chemical Quantities
Chapter 10 - Chemical Quantities
 
Stoichiometry ok1294993172
Stoichiometry   ok1294993172Stoichiometry   ok1294993172
Stoichiometry ok1294993172
 
Chapter 9 Notes
Chapter 9 NotesChapter 9 Notes
Chapter 9 Notes
 
Stoichiometry
StoichiometryStoichiometry
Stoichiometry
 
Final Review
Final ReviewFinal Review
Final Review
 
Gen chem topic 3 guobi
Gen chem topic 3  guobiGen chem topic 3  guobi
Gen chem topic 3 guobi
 

Recently uploaded

Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxmanuelaromero2013
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting DataJhengPantaleon
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,Virag Sontakke
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptxENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptxAnaBeatriceAblay2
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsKarinaGenton
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17Celine George
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Celine George
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdfssuser54595a
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxOH TEIK BIN
 
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfSumit Tiwari
 
Biting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdfBiting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdfadityarao40181
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTiammrhaywood
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentInMediaRes1
 

Recently uploaded (20)

Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptx
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
 
भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptxENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
Staff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSDStaff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSD
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its Characteristics
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptx
 
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
 
Biting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdfBiting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdf
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media Component
 

Stoichiometry

  • 1. STOICHIOMETRY Or How I Learned to Love Counting Atoms
  • 2. Equations are the recipes that tell chemists what amounts of reactants to mix and what amounts of products to expect. You can determine the quantities of reactants and products in a reaction from the balanced equation. When you know the quantity of one substance in a reaction, you can calculate the quantity of any other substance consumed or created in the reaction. (Quantity usually means the amount of a substance expressed in grams or moles. But quantity could just as well be in liters, tons, or molecules.) The calculation of quantities in chemical reactions is a subject of chemistry called stoichiometry .
  • 3. Calculations using balanced equations are called stoichiometric calculations . For chemists, stoichiometry is a form of bookkeeping.
  • 4. INTERPRETING CHEMICAL EQUATIONS As you may recall, ammonia is widely used as a fertilizer. Ammonia is produced industrially by the reaction of nitrogen with hydrogen. What kinds of information can be derived from this equation? N 2 ( g ) + 3H 2 ( g ) 2NH 3 ( g )
  • 5. Do you see that mass and atoms are conserved in this chemical reaction? Mass and atoms are conserved in every chemical reaction. The mass of the reactants equals the mass of the products. The number of atoms of each reactant equals the number of atoms for that reactant in the product(s). Unlike mass and atoms, however, molecules, formula units, moles and volumes of gases will not necessarily be conserved - although they may be. Only mass and atoms are conserved in every chemical reaction.
  • 6. Interpreting Chemical Reactions Again, the formation of ammonia from hydrogen and nitrogen is 3H 2 + N 2 2 NH 3
  • 7.
  • 8. The mole ratios are used to calculate the number of moles of product from a given number of moles of reactant or to calculate the number of moles of reactant from a given number of moles of product. Three of the mole ratios for this equation are 1 mol N 2 2 mol NH 3 3 mol H 2 3 mol H 2 1 mol N 2 2 mol NH 3
  • 9. In the mole ratio below, W is the unknown quantity. The value of a and b are the coefficients from the balanced equation. Thus a general solution for a mole-mole problem is given by Given Mole ratio Calculated x mol G x = mol W b mol W xb a mol G a From balanced equation
  • 10. Using the ammonia reaction, answer the following question. How many moles of ammonia are produced when 0.60 mol of nitrogen reacts with hydrogen? 0.60 mol N 2 x = 1.20 mol NH 3 Given Mole Ratio 2 mol NH 3 1 mol N 2
  • 11. MASS-MOLES CALCULATIONS Balances don’t tell you numbers in moles but in grams. As such, there are two related stoichiometry calculations: Moles - Mass & Mass - Moles
  • 12. In a mole-mass problem you are asked to calculate the mass (usually in grams) of a substance that will react with or be produced from a given number of moles of a second substance. (If, in an example, you are told something in is excess, just ignore that substance and solve the problem with the needed substances.) moles A moles B mass B moles A x mole ratio of x molar mass of B B A
  • 13. Example: Plants use carbon dioxide and water to form glucose (C 6 H 12 O 6 ) and oxygen. What mass, in grams, of glucose is produced when 3.00 mol of water react with carbon dioxide? Answer: 1. Write the balanced equation 6CO 2 (g) + 6H 2 O(l) -> C 6 H 12 O 6 (s) + 6O 2 (g)
  • 14. 2. Determine what you need to find/know. Unknown: mass of C 6 H 12 O 6 produced Given: amount of H 2 O = 3.00 mol = grams C 6 H 12 O 6 3. Determine conversion factors moles H 2 O x x moles C 6 H 12 O 6 moles H 2 O grams C 6 H 12 O 6 1 mole C 6 H 12 O 6
  • 15. 4. Solve 3.00 moles H 2 O x x = 90.0 g C 6 H 12 O 6 1 mol C 6 H 12 O 6 6 moles H 2 O 180 g C 6 H 12 O 6 1 mole C 6 H 12 O 6
  • 16. In a mass-mole problem you are asked to calculate the moles of a substance that will react with or be produced from a given number of grams of a second substance. mass A moles A moles B 1 mole A molar mass A mass A x x mole ratio B A
  • 17. Worksheet questions Mol  mass mol A  mol B  mass B 75.0 mol C 7 H 6 O 3 = 13500 g C 9 H 8 O 4 = 13.5 kg C 9 H 8 O 4 x 1 mol C 9 H 8 O 4 1 mol C 7 H 6 O 3 180 g C 9 H 8 O 4 1 mol C 9 H 8 O 4 x x 1 kg 1000 g
  • 18.
  • 19. If the given sample is measured in grams, the mass can be converted to moles by using the molar mass Then the mole ratio from the balanced equation can be used to calculate the number of moles of the unknown If it is the mass of the unknown that needs to be determined, the number of moles of the unknown can be multiplied by the molar mass. As in mole-mole calculations, the unknown can be either a reactant or a product
  • 20. Mass-mass problems can be solved in basically the same way as mole-mole problems. 1. The mass G is changed to moles of G (mass G mol G) by using the molar mass of G. Mass G X = mol G 2. The moles of G are changed to moles of W (mol G mol W ) by using the mole ratio from the balanced equation. Mol G X = mol W 1 mol G molar mass G b mol W a mol G 3. The moles of W are changed to grams of W (mol W mass W )
  • 21. mass A x x x mole ratio molar mass of A molar mass of B given 1 mole A grams A moles B moles A grams B 1 mole B The route for solving mass-mass problems is: mass A moles A moles B mass B
  • 22. Example: Calculate the number of grams of NH 3 produced by the reaction of 5.40 g of hydrogen with an excess of nitrogen. 2. Write what you know: Unknown: g NH 3 ; g H 2 -> g NH 3 Given: 5.40 g H 2 Solution: 1. Write the balanced equation N 2 + 3H 2 2NH 3
  • 23. 4. Solve 5.40 g H 2 x x x given = 30.6 g NH 3 changes given to moles mole ratio change moles of wanted to grams 3. Determine conversion factors g H 2 mol H 2 mol NH 3 g NH 3 1 mol H 2 2.00 g H 2 2 mol NH 3 3 mol H 2 17.0 g NH 3 1 mol NH 3
  • 24. Practice Problems 5.00 g CaC 2 x x x = 2.03 g C 2 H 2 1 mole CaC 2 64.1 g CaC 2 1 mole C 2 H 2 1 mole CaC 2 26.0 g C 2 H 2 1 mole C 2 H 2
  • 25. Worksheet questions a. 384 g O 2 = 1104 g NO 2 = 1.10x10 3 g NO 2 given Molar mass A Mole ratio Molar mass B x 1 mol O 2 32.0g O 2 x 2 mol NO 2 1 mol O 2 x 46.0g NO 2 1 mol NO 2
  • 26. OTHER STOICHIOMETRIC CALCULATIONS As you already know, a balanced equation indicates the relative number of moles of reactants and products. From this foundation, stoichiometric calculations can be expanded to include any unit of measurement that is related to the mole. The given quantity can be expressed in number of representative particles, units of mass, or volumes of gases at STP.
  • 27. The following equation summarizes these steps for a typical stoichiometric problem aG bW (given quantity) (wanted quantity)
  • 28.  
  • 29. Using the ammonia reaction equation, determine the number of liters of ammonia that can be produced from 5 grams of nitrogen at STP. 5.00g N 2 x x x =? N 2 + 3H 2 2NH 3 1 mole N 2 28.0g N 2 2 mole NH 3 1 mole N 2 22.4 L NH 3 1 mole NH 3
  • 30. PERCENT YIELD When an equation is used to calculate the amount of product that will form during a reaction, a value representing the theoretical yield is obtained. The theoretical yield is the maximum amount of product that could be formed from given amounts of reactants. In contrast, the amount of product that actually forms when the reaction is carried out in the laboratory is called the actual yield . The actual yield is often less than the theoretical yield.
  • 31. The percent yield is the ratio of the actual yield to the theoretical yield expressed as a percent. The percent yield measures the efficiency of the reaction. A percent yield should not normally be larger than 100%. Many factors can cause percent yields to be less than 100%. Percent yield = x 100 actual yield theoretical yield
  • 32. Example: Calcium carbonate is decomposed by heating, as shown in the following equation. CaCO 3 (s) CaO(s) + CO 2 (g) a. what is the theoretical yield of CaO if 24.8 g of CaCO 3 is heated? b. What is the percent yield if 13.1 g CaO is produced?
  • 33. Solution: 1. List the knowns and unknowns in a. known: mass of CaCO 3 = 24.8 g 1 mol CaCO 3 = 1 mol CaO (from balanced equation) 1 mol CaCO 3 = 100 g (molar mass) 1 mol CaO = 56.1 g (molar mass) unknown: theoretical yield of CaO = ? g CaO
  • 34. 2. Solve for the unknown. 24.8 g CaCO 3 x x x given amount molar mass mole ratio molar mass = 13.9 g CaO Again, this is the theoretical yield, the amount you would make if the reaction were 100% accurate. 1 mol CaCO 3 100 g CaCO 3 1 mol CaO 1 mol CaCO 3 56.1 g CaO 1 mol CaO
  • 35. 3. Determine % yield for b. actual yield = 13.1 g CaO theoretical yield = 13.9 g CaO Percent yield = x 100 actual yield theoretical yield Percent yield = x 100 = 94.2% 13.1 g CaO 13.9 g CaO