SlideShare a Scribd company logo
1 of 20
Welding ProcessesFusion Welding Processes
GMAW – Gas Metal Arc Welding
SMAW – Shielded Metal Arc Welding
Non-Consumable Electrode
GTAW – Gas Tungsten Arc Welding
Electron Beam Welding
SAW – Submerged Arc Welding
Consumable Electrode
PAW – Plasma Arc Welding
High Energy Beam
Laser Beam Welding
Welding ProcessesSMAW – Shielded Metal Arc Welding
• Slag keeps oxygen off weld bead during cooling
• Consumable electrode
• Flux produces protective gas around weld pool
• Flux coated rod
Power = VI ≈ 10 kW
Power... Current I (50 - 300 amps)
Voltage V (15 - 45 volts)
• General purpose welding—widely used
• Thicknesses 1/8” – 3/4”
• Portable
Welding ProcessesElectric Arc Welding -- Polarity
SMAW - DC Polarity
Straight Polarity
Shallow penetration Deeper weld penetration
(thin metal)
Reverse Polarity
(+)(+)
(–)(–)
(–)(–)
(+)(+)
AC - Gives pulsing arc
- used for welding thick sections
Welding ProcessesGMAW – Gas Metal Arc Welding (MIG)
• DC reverse polarity - hottest arc
• MIG - Metal Inert Gas
• Consumable wire electrode
• AC - unstable arc
Groover, M., Fundamentals of Modern Manufacturing,, p. 734, 1996
Gas Metal Arc Welding (GMAW) Torch
• Shielding provided by gas
• Double productivity of SMAW
• Easily automated
Welding ProcessesSAW – Submerged Arc Welding
• 300 – 2000 amps (440 V)
• Consumable wire electrode
Gas Metal Arc Welding (GMAW) Torch
• Shielding provided by flux granules
• Automated process (limited to flats)
• Low UV radiation & fumes
• Flux acts as thermal insulator
• High speed & quality (4 – 10x SMAW)
• Suitable for thick plates http://www.twi.co.uk
Welding ProcessesGTAW – Gas Tungsten Arc Welding (TIG)
• Non-consumable electrode
• a.k.a. TIG - Tungsten Inert Gas
• Shield gas usually argon
• Used for thin sections of Al, Mg, Ti.
• With or without filler metal
Power ≈ 8-20 kW
Current I (200 A DC)
(500 A AC)
• Most expensive, highest quality
Welding ProcessesLaser Welding
Typical laser welding applications :
•Catheters & Other Medical Devices
•Small Parts and Components
•Fine Wires
•Jewelry
•Small Sensors
•Thin Sheet Materials Down To 0.001" Thick
• Laser beam produced by a CO2 or YAG Laser
• High penetration, high-speed process
• Concentrated heat = low distortion
• Laser can be shaped/focused & pulsed on/off
• Typically automated & high speed (up to 250 fpm)
• Workpieces up to 1” thick
Welding ProcessesSolid State Welding Processes
Friction Welding
Ultrasonic Welding
Resistance Welding
Diffusion Welding
Welding ProcessesFriction Welding (Inertia Welding)
• One part rotated, one stationary
• Stationary part forced against rotating part
• Friction converts kinetic energy to thermal energy
• Metal at interface melts and is joined
• When sufficiently hot, rotation is stopped
& axial force increased
Welding ProcessesResistance Welding
Resistance Welding is the coordinated application of electric current and
mechanical pressure in the proper magnitudes and for a precise period of
time to create a coalescent bond between two base metals.
• Heat provided by resistance to electrical current (Q=I2
Rt)
• Force applied by pneumatic cylinder
• Typical 0.5 – 10 V but up to 100,000 amps!
• Often fully or partially automated
- Spot welding
- Seam welding
Welding ProcessesResistance Welding
Resistance Welding is the coordinated application of electric current and
mechanical pressure in the proper magnitudes and for a precise period of
time to create a coalescent bond between two base metals.
• Heat provided by resistance to electrical current (Q=I2
Rt)
• Force applied by pneumatic cylinder
• Typical 0.5 – 10 V but up to 100,000 amps!
• Often fully or partially automated
- Spot welding
- Seam welding
Welding ProcessesDiffusion Welding
• Parts forced together at high temperature
(< 0.5Tm absolute) and pressure
Kalpakjian, S., Manufacturing Engineering & Technology, p. 889, 1992
• Atoms diffuse across interface
• After sufficient time the interface disappears
• Good for dissimilar metals
• Heated in furnace or by resistance heating
• Bond can be weakened by surface impurities
Soldering & Brazing Metal Joining Processes
Soldering & Brazing
• Filler metal distributed by capillary action
• Only filler metal is melted, not base metal
• Strength of joint typically
– Can join dissimilar metals
– Less heat - can join thinner sections (relative to welding)
– stronger than filler metal itself
– weaker than base metal
– Excessive heat during service can weaken joint
• Pros & Cons
• Lower temperatures than welding
– gap at joint important (0.001 – 0.010”)
• Metallurgical bond formed between filler & base metals
Soldering
Solder = Filler metal
Metal Joining Processes
Soldering
Applications:
• Printed Circuit Board (PCB) manufacture
• Pipe joining (copper pipe)
• Jewelry manufacture
Easy to solder: copper, silver, gold
Difficult to solder: aluminum, stainless steels
(can pre-plate difficult to solder metals to aid process)
• Alloys of Tin (silver, bismuth, lead)
• Melt point typically below 840 F
Flux used to clean joint & prevent oxidation
• Typically non-load bearing
Tinning = pre-coating with thin layer of solder
• separate or in core of wire (rosin-core)
PCB Soldering
• Soldering Iron & Solder Wire
Metal Joining Processes
Manual PCB Soldering
• Heating lead & placing solder
• Trim excess lead
• Heat for 2-3 sec. & place wire
opposite iron
PTH - Pin-Through-Hole connectors
PCB Reflow Soldering Metal Joining Processes
Automated Reflow Soldering
SMT = Surface Mount Technology
Printed solder paste on a printed circuit board (PCB)
• Solder Paste serves the following functions:
– supply solder material to the soldering spot,
– hold the components in place prior to soldering,
– clean the solder lands and component leads
– prevent further oxidation of the solder lands.
• Solder/Flux paste mixture applied to PCB using screen print or similar
transfer method
• PCB assembly then heated in “Reflow” oven to melt solder and secure connection
Brazing
Use of low melt point filler metal to fill thin gap between
mating surfaces to be joined utilizing capillary action
Metal Joining Processes
Brazing
Applications:
• Pipe/Tubing joining (HVAC)
• Filler metals include Al, Mg & Cu alloys (melt point
typically above 840 F)
• Automotive - joining tubes
• Electrical equipment - joining wires
• Jewelry Making
• Flux also used
• Types of brazing classified by heating method:
– Torch, Furnace, Resistance
• Joint can possess significant strength
Brazing
Use of low melt point filler metal to fill thin gap between
mating surfaces to be joined utilizing capillary action
Metal Joining Processes
Brazing
Applications:
• Pipe/Tubing joining (HVAC)
• Filler metals include Al, Mg & Cu alloys (melt point
typically above 840 F)
• Automotive - joining tubes
• Electrical equipment - joining wires
• Jewelry Making
• Flux also used
• Types of brazing classified by heating method:
– Torch, Furnace, Resistance
• Joint can possess significant strength
Brazing Metal Joining Processes
Brazing
Figuring length of lap for flat joints.
X = Length of lap
T = Tensile strength of weakest member
W = Thickness of weakest member
C = Joint integrity factor of .8
L = Shear strength of brazed filler metal
Let’s see how this formula works, using an
example.
Problem: What length of lap do you need to join .050" annealed Monel sheet to a metal of equal or greater strength?
Solution:
C = .8 T = 70,000 psi (annealed Monel sheet)
W = .050"
L = 25,000 psi (Typical shear strength for silver brazing filler metals)
X = (70,000 x .050) /(.8 x 25,000) = .18" lap length
Soldering & Brazing Metal Joining Processes
Brazing
Figuring length of lap for tubular joints.
X = Length of lap area
W = Wall thickness of weakest member
D = Diameter of lap area
T = Tensile strength of weakest member
C = Joint integrity factor of .8
L = Shear strength of brazed filler metal
Again, an example will serve to illustrate the use of this formula. Problem: What length of lap do you need to join 3/4" O.D. copper
tubing (wall thickness .064") to 3/4" I.D. steel tubing?
Solution:
W = .064"
D = .750"
C= .8
T = 33,000 psi (annealed copper)
L = 25,000 psi (a typical value)
X = (.064 x (.75 – .064) x 33,000)/(.8 x .75 x 25,000)
X = .097" (length of lap)

More Related Content

What's hot (20)

Types of welding
Types of welding Types of welding
Types of welding
 
Welding ppt
Welding pptWelding ppt
Welding ppt
 
Arc welding
Arc weldingArc welding
Arc welding
 
Welding
WeldingWelding
Welding
 
WELDING PROCESS
WELDING PROCESSWELDING PROCESS
WELDING PROCESS
 
Steel Making: Ingot casting defects
Steel Making: Ingot casting defectsSteel Making: Ingot casting defects
Steel Making: Ingot casting defects
 
Mig welding
Mig weldingMig welding
Mig welding
 
Tig welding
Tig welding Tig welding
Tig welding
 
Carburizing
CarburizingCarburizing
Carburizing
 
Metal casting process part 2
Metal casting process part 2Metal casting process part 2
Metal casting process part 2
 
Heat treatment process
Heat treatment processHeat treatment process
Heat treatment process
 
Welding of aluminum alloys
Welding of aluminum alloysWelding of aluminum alloys
Welding of aluminum alloys
 
Carburzing and Different Types of Carburzing
Carburzing and Different Types of CarburzingCarburzing and Different Types of Carburzing
Carburzing and Different Types of Carburzing
 
Tig welding ppt overview
Tig welding ppt overviewTig welding ppt overview
Tig welding ppt overview
 
U4 p1 welding metallurgy
U4 p1 welding metallurgyU4 p1 welding metallurgy
U4 p1 welding metallurgy
 
Hot and cold working
Hot and cold workingHot and cold working
Hot and cold working
 
Heat treatment of steel
Heat treatment of steelHeat treatment of steel
Heat treatment of steel
 
Welding Presentation
Welding Presentation Welding Presentation
Welding Presentation
 
Heat Treatments
Heat TreatmentsHeat Treatments
Heat Treatments
 
METAL CASTING PROCESSES
METAL CASTING PROCESSESMETAL CASTING PROCESSES
METAL CASTING PROCESSES
 

Similar to Welding process

welding_processes.ppt
welding_processes.pptwelding_processes.ppt
welding_processes.pptssuserb0d8b4
 
welding_processes.ppt
welding_processes.pptwelding_processes.ppt
welding_processes.pptssuserf66606
 
welding processes for Fabrication industries
welding processes for Fabrication industrieswelding processes for Fabrication industries
welding processes for Fabrication industriesHarminderKumar6
 
welding_processes.ppt
welding_processes.pptwelding_processes.ppt
welding_processes.pptIzzatTammam
 
welding_processes.ppt.Different types of welding processes
welding_processes.ppt.Different types of welding processeswelding_processes.ppt.Different types of welding processes
welding_processes.ppt.Different types of welding processesnagendran25
 
Joining processes (welding)
Joining processes (welding)Joining processes (welding)
Joining processes (welding)9665930613
 
Advanced welding technology.ppt
Advanced welding technology.pptAdvanced welding technology.ppt
Advanced welding technology.pptshohrabalam3
 
Electric Welding 7.ppt
Electric Welding  7.pptElectric Welding  7.ppt
Electric Welding 7.pptEngr umar
 
Gas and other Welding Shailesh Dewangan.pptx
Gas and other Welding Shailesh Dewangan.pptxGas and other Welding Shailesh Dewangan.pptx
Gas and other Welding Shailesh Dewangan.pptxShailesh Dewangan
 
Advanced welding
Advanced weldingAdvanced welding
Advanced weldingraajeeradha
 
welding system.............30.07.1997
welding system.............30.07.1997welding system.............30.07.1997
welding system.............30.07.1997ashwinwarade30
 
Fusion Welding Parameters
Fusion Welding ParametersFusion Welding Parameters
Fusion Welding ParametersAnkit Kumar
 

Similar to Welding process (20)

welding_processes.ppt
welding_processes.pptwelding_processes.ppt
welding_processes.ppt
 
welding_processes.ppt
welding_processes.pptwelding_processes.ppt
welding_processes.ppt
 
welding_processes.ppt
welding_processes.pptwelding_processes.ppt
welding_processes.ppt
 
welding_processes.ppt
welding_processes.pptwelding_processes.ppt
welding_processes.ppt
 
welding_processes.ppt
welding_processes.pptwelding_processes.ppt
welding_processes.ppt
 
welding processes for Fabrication industries
welding processes for Fabrication industrieswelding processes for Fabrication industries
welding processes for Fabrication industries
 
welding_processes.ppt
welding_processes.pptwelding_processes.ppt
welding_processes.ppt
 
welding_processes.ppt
welding_processes.pptwelding_processes.ppt
welding_processes.ppt
 
welding_processes.ppt.Different types of welding processes
welding_processes.ppt.Different types of welding processeswelding_processes.ppt.Different types of welding processes
welding_processes.ppt.Different types of welding processes
 
Joining processes (welding)
Joining processes (welding)Joining processes (welding)
Joining processes (welding)
 
Advanced welding technology.ppt
Advanced welding technology.pptAdvanced welding technology.ppt
Advanced welding technology.ppt
 
Welding revision
Welding revisionWelding revision
Welding revision
 
Electric Welding 7.ppt
Electric Welding  7.pptElectric Welding  7.ppt
Electric Welding 7.ppt
 
Arc Welding
Arc WeldingArc Welding
Arc Welding
 
Gas and other Welding Shailesh Dewangan.pptx
Gas and other Welding Shailesh Dewangan.pptxGas and other Welding Shailesh Dewangan.pptx
Gas and other Welding Shailesh Dewangan.pptx
 
Advanced welding
Advanced weldingAdvanced welding
Advanced welding
 
Welding 2
Welding 2Welding 2
Welding 2
 
welding system.............30.07.1997
welding system.............30.07.1997welding system.............30.07.1997
welding system.............30.07.1997
 
Fusion Welding Parameters
Fusion Welding ParametersFusion Welding Parameters
Fusion Welding Parameters
 
Arc Welding Shailesh.pptx
Arc Welding Shailesh.pptxArc Welding Shailesh.pptx
Arc Welding Shailesh.pptx
 

More from Ashish Kumar Jain

Proximate & ultimate analysis of coal
Proximate & ultimate analysis of coalProximate & ultimate analysis of coal
Proximate & ultimate analysis of coalAshish Kumar Jain
 
Assessment of boiler performance
Assessment of boiler performanceAssessment of boiler performance
Assessment of boiler performanceAshish Kumar Jain
 
Belt conveyor-manufacturing & utilization
Belt conveyor-manufacturing & utilizationBelt conveyor-manufacturing & utilization
Belt conveyor-manufacturing & utilizationAshish Kumar Jain
 
Permacare RO membrane expertise
Permacare RO membrane expertisePermacare RO membrane expertise
Permacare RO membrane expertiseAshish Kumar Jain
 
Hydraullically assisted pressure relief valve service sheet
Hydraullically assisted pressure relief valve service sheetHydraullically assisted pressure relief valve service sheet
Hydraullically assisted pressure relief valve service sheetAshish Kumar Jain
 
Bhel STEAM safety valve_1700_series
Bhel STEAM safety valve_1700_seriesBhel STEAM safety valve_1700_series
Bhel STEAM safety valve_1700_seriesAshish Kumar Jain
 
Deaerator -thermal power plants
Deaerator  -thermal power plantsDeaerator  -thermal power plants
Deaerator -thermal power plantsAshish Kumar Jain
 
Chiller absorption machine working principle
Chiller absorption machine  working principleChiller absorption machine  working principle
Chiller absorption machine working principleAshish Kumar Jain
 
STEAM TURBINES Governing System & TROUBLE SHOOTING
STEAM TURBINES Governing System & TROUBLE SHOOTINGSTEAM TURBINES Governing System & TROUBLE SHOOTING
STEAM TURBINES Governing System & TROUBLE SHOOTINGAshish Kumar Jain
 
High speed balancing of turbine rotors
High speed balancing of turbine rotorsHigh speed balancing of turbine rotors
High speed balancing of turbine rotorsAshish Kumar Jain
 
Thermal Power Plant - Emergency situations
Thermal Power Plant   -   Emergency situations Thermal Power Plant   -   Emergency situations
Thermal Power Plant - Emergency situations Ashish Kumar Jain
 

More from Ashish Kumar Jain (20)

Proximate & ultimate analysis of coal
Proximate & ultimate analysis of coalProximate & ultimate analysis of coal
Proximate & ultimate analysis of coal
 
Assessment of boiler performance
Assessment of boiler performanceAssessment of boiler performance
Assessment of boiler performance
 
Condensate
Condensate Condensate
Condensate
 
Belt conveyor-manufacturing & utilization
Belt conveyor-manufacturing & utilizationBelt conveyor-manufacturing & utilization
Belt conveyor-manufacturing & utilization
 
Cooling tower
Cooling towerCooling tower
Cooling tower
 
Permacare RO membrane expertise
Permacare RO membrane expertisePermacare RO membrane expertise
Permacare RO membrane expertise
 
Governing system
Governing systemGoverning system
Governing system
 
Generator capability curve
Generator capability curve Generator capability curve
Generator capability curve
 
Hydraullically assisted pressure relief valve service sheet
Hydraullically assisted pressure relief valve service sheetHydraullically assisted pressure relief valve service sheet
Hydraullically assisted pressure relief valve service sheet
 
Bhel STEAM safety valve_1700_series
Bhel STEAM safety valve_1700_seriesBhel STEAM safety valve_1700_series
Bhel STEAM safety valve_1700_series
 
Deaerator -thermal power plants
Deaerator  -thermal power plantsDeaerator  -thermal power plants
Deaerator -thermal power plants
 
Chiller absorption machine working principle
Chiller absorption machine  working principleChiller absorption machine  working principle
Chiller absorption machine working principle
 
Belt Conveyor System
Belt Conveyor SystemBelt Conveyor System
Belt Conveyor System
 
STEAM TURBINES Governing System & TROUBLE SHOOTING
STEAM TURBINES Governing System & TROUBLE SHOOTINGSTEAM TURBINES Governing System & TROUBLE SHOOTING
STEAM TURBINES Governing System & TROUBLE SHOOTING
 
High speed balancing of turbine rotors
High speed balancing of turbine rotorsHigh speed balancing of turbine rotors
High speed balancing of turbine rotors
 
Excel Tips in computers
Excel Tips in computersExcel Tips in computers
Excel Tips in computers
 
Thermal Power Plant - Emergency situations
Thermal Power Plant   -   Emergency situations Thermal Power Plant   -   Emergency situations
Thermal Power Plant - Emergency situations
 
Boiler -Emergency Handling
 Boiler -Emergency Handling Boiler -Emergency Handling
Boiler -Emergency Handling
 
Cogeneration power plant
Cogeneration power plantCogeneration power plant
Cogeneration power plant
 
Rankine cycle
Rankine cycleRankine cycle
Rankine cycle
 

Recently uploaded

SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024Lorenzo Miniero
 
Artificial intelligence in the post-deep learning era
Artificial intelligence in the post-deep learning eraArtificial intelligence in the post-deep learning era
Artificial intelligence in the post-deep learning eraDeakin University
 
Unleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubUnleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubKalema Edgar
 
Vertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsVertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsMiki Katsuragi
 
Understanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitectureUnderstanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitecturePixlogix Infotech
 
Bluetooth Controlled Car with Arduino.pdf
Bluetooth Controlled Car with Arduino.pdfBluetooth Controlled Car with Arduino.pdf
Bluetooth Controlled Car with Arduino.pdfngoud9212
 
Benefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other FrameworksBenefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other FrameworksSoftradix Technologies
 
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Patryk Bandurski
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Mark Simos
 
Science&tech:THE INFORMATION AGE STS.pdf
Science&tech:THE INFORMATION AGE STS.pdfScience&tech:THE INFORMATION AGE STS.pdf
Science&tech:THE INFORMATION AGE STS.pdfjimielynbastida
 
Build your next Gen AI Breakthrough - April 2024
Build your next Gen AI Breakthrough - April 2024Build your next Gen AI Breakthrough - April 2024
Build your next Gen AI Breakthrough - April 2024Neo4j
 
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...shyamraj55
 
Install Stable Diffusion in windows machine
Install Stable Diffusion in windows machineInstall Stable Diffusion in windows machine
Install Stable Diffusion in windows machinePadma Pradeep
 
Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Mattias Andersson
 
Key Features Of Token Development (1).pptx
Key  Features Of Token  Development (1).pptxKey  Features Of Token  Development (1).pptx
Key Features Of Token Development (1).pptxLBM Solutions
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr BaganFwdays
 
My Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationMy Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationRidwan Fadjar
 

Recently uploaded (20)

E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptxE-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
 
SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024
 
Artificial intelligence in the post-deep learning era
Artificial intelligence in the post-deep learning eraArtificial intelligence in the post-deep learning era
Artificial intelligence in the post-deep learning era
 
Unleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubUnleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding Club
 
Vertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsVertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering Tips
 
Understanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitectureUnderstanding the Laravel MVC Architecture
Understanding the Laravel MVC Architecture
 
Bluetooth Controlled Car with Arduino.pdf
Bluetooth Controlled Car with Arduino.pdfBluetooth Controlled Car with Arduino.pdf
Bluetooth Controlled Car with Arduino.pdf
 
Benefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other FrameworksBenefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other Frameworks
 
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
 
Science&tech:THE INFORMATION AGE STS.pdf
Science&tech:THE INFORMATION AGE STS.pdfScience&tech:THE INFORMATION AGE STS.pdf
Science&tech:THE INFORMATION AGE STS.pdf
 
Build your next Gen AI Breakthrough - April 2024
Build your next Gen AI Breakthrough - April 2024Build your next Gen AI Breakthrough - April 2024
Build your next Gen AI Breakthrough - April 2024
 
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
 
Install Stable Diffusion in windows machine
Install Stable Diffusion in windows machineInstall Stable Diffusion in windows machine
Install Stable Diffusion in windows machine
 
Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?
 
DMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special EditionDMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special Edition
 
Key Features Of Token Development (1).pptx
Key  Features Of Token  Development (1).pptxKey  Features Of Token  Development (1).pptx
Key Features Of Token Development (1).pptx
 
Vulnerability_Management_GRC_by Sohang Sengupta.pptx
Vulnerability_Management_GRC_by Sohang Sengupta.pptxVulnerability_Management_GRC_by Sohang Sengupta.pptx
Vulnerability_Management_GRC_by Sohang Sengupta.pptx
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan
 
My Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationMy Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 Presentation
 

Welding process

  • 1. Welding ProcessesFusion Welding Processes GMAW – Gas Metal Arc Welding SMAW – Shielded Metal Arc Welding Non-Consumable Electrode GTAW – Gas Tungsten Arc Welding Electron Beam Welding SAW – Submerged Arc Welding Consumable Electrode PAW – Plasma Arc Welding High Energy Beam Laser Beam Welding
  • 2. Welding ProcessesSMAW – Shielded Metal Arc Welding • Slag keeps oxygen off weld bead during cooling • Consumable electrode • Flux produces protective gas around weld pool • Flux coated rod Power = VI ≈ 10 kW Power... Current I (50 - 300 amps) Voltage V (15 - 45 volts) • General purpose welding—widely used • Thicknesses 1/8” – 3/4” • Portable
  • 3. Welding ProcessesElectric Arc Welding -- Polarity SMAW - DC Polarity Straight Polarity Shallow penetration Deeper weld penetration (thin metal) Reverse Polarity (+)(+) (–)(–) (–)(–) (+)(+) AC - Gives pulsing arc - used for welding thick sections
  • 4. Welding ProcessesGMAW – Gas Metal Arc Welding (MIG) • DC reverse polarity - hottest arc • MIG - Metal Inert Gas • Consumable wire electrode • AC - unstable arc Groover, M., Fundamentals of Modern Manufacturing,, p. 734, 1996 Gas Metal Arc Welding (GMAW) Torch • Shielding provided by gas • Double productivity of SMAW • Easily automated
  • 5. Welding ProcessesSAW – Submerged Arc Welding • 300 – 2000 amps (440 V) • Consumable wire electrode Gas Metal Arc Welding (GMAW) Torch • Shielding provided by flux granules • Automated process (limited to flats) • Low UV radiation & fumes • Flux acts as thermal insulator • High speed & quality (4 – 10x SMAW) • Suitable for thick plates http://www.twi.co.uk
  • 6. Welding ProcessesGTAW – Gas Tungsten Arc Welding (TIG) • Non-consumable electrode • a.k.a. TIG - Tungsten Inert Gas • Shield gas usually argon • Used for thin sections of Al, Mg, Ti. • With or without filler metal Power ≈ 8-20 kW Current I (200 A DC) (500 A AC) • Most expensive, highest quality
  • 7. Welding ProcessesLaser Welding Typical laser welding applications : •Catheters & Other Medical Devices •Small Parts and Components •Fine Wires •Jewelry •Small Sensors •Thin Sheet Materials Down To 0.001" Thick • Laser beam produced by a CO2 or YAG Laser • High penetration, high-speed process • Concentrated heat = low distortion • Laser can be shaped/focused & pulsed on/off • Typically automated & high speed (up to 250 fpm) • Workpieces up to 1” thick
  • 8. Welding ProcessesSolid State Welding Processes Friction Welding Ultrasonic Welding Resistance Welding Diffusion Welding
  • 9. Welding ProcessesFriction Welding (Inertia Welding) • One part rotated, one stationary • Stationary part forced against rotating part • Friction converts kinetic energy to thermal energy • Metal at interface melts and is joined • When sufficiently hot, rotation is stopped & axial force increased
  • 10. Welding ProcessesResistance Welding Resistance Welding is the coordinated application of electric current and mechanical pressure in the proper magnitudes and for a precise period of time to create a coalescent bond between two base metals. • Heat provided by resistance to electrical current (Q=I2 Rt) • Force applied by pneumatic cylinder • Typical 0.5 – 10 V but up to 100,000 amps! • Often fully or partially automated - Spot welding - Seam welding
  • 11. Welding ProcessesResistance Welding Resistance Welding is the coordinated application of electric current and mechanical pressure in the proper magnitudes and for a precise period of time to create a coalescent bond between two base metals. • Heat provided by resistance to electrical current (Q=I2 Rt) • Force applied by pneumatic cylinder • Typical 0.5 – 10 V but up to 100,000 amps! • Often fully or partially automated - Spot welding - Seam welding
  • 12. Welding ProcessesDiffusion Welding • Parts forced together at high temperature (< 0.5Tm absolute) and pressure Kalpakjian, S., Manufacturing Engineering & Technology, p. 889, 1992 • Atoms diffuse across interface • After sufficient time the interface disappears • Good for dissimilar metals • Heated in furnace or by resistance heating • Bond can be weakened by surface impurities
  • 13. Soldering & Brazing Metal Joining Processes Soldering & Brazing • Filler metal distributed by capillary action • Only filler metal is melted, not base metal • Strength of joint typically – Can join dissimilar metals – Less heat - can join thinner sections (relative to welding) – stronger than filler metal itself – weaker than base metal – Excessive heat during service can weaken joint • Pros & Cons • Lower temperatures than welding – gap at joint important (0.001 – 0.010”) • Metallurgical bond formed between filler & base metals
  • 14. Soldering Solder = Filler metal Metal Joining Processes Soldering Applications: • Printed Circuit Board (PCB) manufacture • Pipe joining (copper pipe) • Jewelry manufacture Easy to solder: copper, silver, gold Difficult to solder: aluminum, stainless steels (can pre-plate difficult to solder metals to aid process) • Alloys of Tin (silver, bismuth, lead) • Melt point typically below 840 F Flux used to clean joint & prevent oxidation • Typically non-load bearing Tinning = pre-coating with thin layer of solder • separate or in core of wire (rosin-core)
  • 15. PCB Soldering • Soldering Iron & Solder Wire Metal Joining Processes Manual PCB Soldering • Heating lead & placing solder • Trim excess lead • Heat for 2-3 sec. & place wire opposite iron PTH - Pin-Through-Hole connectors
  • 16. PCB Reflow Soldering Metal Joining Processes Automated Reflow Soldering SMT = Surface Mount Technology Printed solder paste on a printed circuit board (PCB) • Solder Paste serves the following functions: – supply solder material to the soldering spot, – hold the components in place prior to soldering, – clean the solder lands and component leads – prevent further oxidation of the solder lands. • Solder/Flux paste mixture applied to PCB using screen print or similar transfer method • PCB assembly then heated in “Reflow” oven to melt solder and secure connection
  • 17. Brazing Use of low melt point filler metal to fill thin gap between mating surfaces to be joined utilizing capillary action Metal Joining Processes Brazing Applications: • Pipe/Tubing joining (HVAC) • Filler metals include Al, Mg & Cu alloys (melt point typically above 840 F) • Automotive - joining tubes • Electrical equipment - joining wires • Jewelry Making • Flux also used • Types of brazing classified by heating method: – Torch, Furnace, Resistance • Joint can possess significant strength
  • 18. Brazing Use of low melt point filler metal to fill thin gap between mating surfaces to be joined utilizing capillary action Metal Joining Processes Brazing Applications: • Pipe/Tubing joining (HVAC) • Filler metals include Al, Mg & Cu alloys (melt point typically above 840 F) • Automotive - joining tubes • Electrical equipment - joining wires • Jewelry Making • Flux also used • Types of brazing classified by heating method: – Torch, Furnace, Resistance • Joint can possess significant strength
  • 19. Brazing Metal Joining Processes Brazing Figuring length of lap for flat joints. X = Length of lap T = Tensile strength of weakest member W = Thickness of weakest member C = Joint integrity factor of .8 L = Shear strength of brazed filler metal Let’s see how this formula works, using an example. Problem: What length of lap do you need to join .050" annealed Monel sheet to a metal of equal or greater strength? Solution: C = .8 T = 70,000 psi (annealed Monel sheet) W = .050" L = 25,000 psi (Typical shear strength for silver brazing filler metals) X = (70,000 x .050) /(.8 x 25,000) = .18" lap length
  • 20. Soldering & Brazing Metal Joining Processes Brazing Figuring length of lap for tubular joints. X = Length of lap area W = Wall thickness of weakest member D = Diameter of lap area T = Tensile strength of weakest member C = Joint integrity factor of .8 L = Shear strength of brazed filler metal Again, an example will serve to illustrate the use of this formula. Problem: What length of lap do you need to join 3/4" O.D. copper tubing (wall thickness .064") to 3/4" I.D. steel tubing? Solution: W = .064" D = .750" C= .8 T = 33,000 psi (annealed copper) L = 25,000 psi (a typical value) X = (.064 x (.75 – .064) x 33,000)/(.8 x .75 x 25,000) X = .097" (length of lap)

Editor's Notes

  1. To be finished
  2. To be finished
  3. To be finished
  4. To be finished
  5. To be finished
  6. To be finished
  7. To be finished
  8. To be finished
  9. To be finished
  10. To be finished
  11. To be finished
  12. To be finished
  13. To be finished
  14. To be finished
  15. To be finished
  16. To be finished
  17. To be finished
  18. To be finished
  19. To be finished
  20. To be finished