SlideShare a Scribd company logo
1 of 75
Download to read offline
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
ENERGY EFFICIENT IMPULSE-RADIO
ULTRA-WIDEBAND WIRELESS BODY AREA
NETWORKS
ARAVIND M T
M160392EC
Under the Guidance of
Dr Lillykutty Jacob
DEPARTMENT OF ELECTRONICS AND COMMUNICATION
NATIONAL INSTITUTE OF TECHNOLOGY CALICUT
November 15, 2017
ARAVIND M T NIT CALICUT November 15, 2017 1 / 60
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
OVERVIEW
1 INTRODUCTION
2 MOTIVATION
3 PROBLEM STATEMENT
4 LITERATURE SURVEY
5 WORK DONE SO FAR
6 WORK SCHEDULE
7 CONCLUSION
8 REFERENCES
ARAVIND M T NIT CALICUT November 15, 2017 2 / 60
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
INTRODUCTION
What is BAN???
Deļ¬nition by IEEE 802.15.6:
A communication standard optimized for low power devices for their
operation on, in or around the human body (but not limited to humans) to
serve a wide variety of applications including medical, consumer electronics
or personal entertainment and other.
ARAVIND M T NIT CALICUT November 15, 2017 3 / 60
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
What is Ultra Wide Band ?
ARAVIND M T NIT CALICUT November 15, 2017 4 / 60
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
ARAVIND M T NIT CALICUT November 15, 2017 4 / 60
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
UWB Properties
Highly Secured .
Non-interfering to each other communication systems.
Appears like noise for other systems.
Both Line of Sight and non-Line of Sight operation .
High multipath immunity.
Low cost, low power, nearly all-digital and single chip architecture.
Large channel capacity.
ARAVIND M T NIT CALICUT November 15, 2017 5 / 60
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
EXAMPLE OF BODY AREA NETWORK
ARAVIND M T NIT CALICUT November 15, 2017 6 / 60
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
WBAN APPLICATIONS
Medical Applications
Wearable WBAN
Implantation WBAN
Remote control of Medical devices
Non-medical applications
ARAVIND M T NIT CALICUT November 15, 2017 7 / 60
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
WBAN Challenges
NETWORK TOPOLOGY
DATA RATE
NODE REPLACEMENT
NODE LIFETIME
POWER SUPPLY
POWER DEMAND
BIOCOMPATIBILITY
SECURITY LEVEL
IMPACT OF DATA LOSS
ARAVIND M T NIT CALICUT November 15, 2017 8 / 60
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Why UWB for WBAN ?
ARAVIND M T NIT CALICUT November 15, 2017 9 / 60
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
UWB Characteristics suited to WBAN
Penetration through obstacles
Low Interference
Security requirements data conļ¬dentiality, authenticity, integrity,
freshness
High precision ranging at the cm level
Low electromagnetic radiation
Low processing energy consumption
ARAVIND M T NIT CALICUT November 15, 2017 10 / 60
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
WBAN Channels
ARAVIND M T NIT CALICUT November 15, 2017 11 / 60
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
In-body WBAN Channel Model
30-35 dB additional loss over free space loss
Path loss exponent between 3 and 4 (depending on the body part
considered)
Antenna height / distance also impacts loss
Loss 20 dB more at 5mm compared to at 5 cm
ARAVIND M T NIT CALICUT November 15, 2017 12 / 60
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Extra-body WBAN Channel Model
LoS / NLoS
Path loss exponent between 5 and 6 (depending on the body part
considered)
NLoS loss more than LoS loss
Diļ¬€raction around the human body
Absorption of large amount of radiation by the body movement of
limbs could cause loss >30 dB
Movement of limbs could cause loss > 30 dB
ARAVIND M T NIT CALICUT November 15, 2017 13 / 60
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Cooperative communication
eļ¬ƒcient strategy for providing spatial diversity in wireless fading
channels .
can improve energy eļ¬ƒciency as well
the source transmits information to the destination not only through
direct link but also through the use of relays.
could be single-relay based or multiple-relay based.
relay selection might be opportunistic or deterministic.
relaying strategy can be ļ¬xed, selective or incremental.
ARAVIND M T NIT CALICUT November 15, 2017 14 / 60
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Incremental relaying
aims to save channel resource compared to cooperative relaying
ensures that relaying process adapts to channel conditions
ACK feedback from destination indicates successful direct transmission
NACK feedback indicates need for relaying
ARAVIND M T NIT CALICUT November 15, 2017 15 / 60
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
2-Hop communication
source node sends packet to the relay node in the 1st time slot ā†’ relay
node forwards that packet to the destination node in the 2nd time slot.
ARAVIND M T NIT CALICUT November 15, 2017 16 / 60
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
MOTIVATION
WBAN sensor nodes have extreme power constraints.
Energy management is one of the key concern in WBAN protocols.
Parameter optimization plays a key role in the energy-eļ¬ƒcient WBAN
design
Objective functions for the optimization are,
ā†’network energy eļ¬ƒciency
ā†’network lifetime
ā†’reliability
ā†’delay
ARAVIND M T NIT CALICUT November 15, 2017 17 / 60
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
MOTIVATION CONTD...
Optimization problems will give rise to various output parameters
such as,
ā†’optimal transmit power
ā†’optimal packet size
ā†’constellation size
ā†’ optimal hop distance
ā†’ optimal throughput
ā†’optimal contention window (at the MAC layer)
ā†’ optimal code rate
ā†’optimal relay selection ā†’ Reliable delivery of information.
ARAVIND M T NIT CALICUT November 15, 2017 18 / 60
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Problem Deļ¬nition
We conclude the following from the detailed literature survey on
cooperative communication in UWB based WBAN:
There is need to investigate the energy eļ¬ƒciency and reliability of
UWB WBANs when diļ¬€erent communication schemes are used.
Such a study is very crucial towards energy aware WBAN design.
ARAVIND M T NIT CALICUT November 15, 2017 19 / 60
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Problem Deļ¬nition
Hence, project aims at the following
Investigate direct,2-hop and cooperative communication technique
involving decode-and-forward relays with realistic channel models
applicable for UWB based WBANs.
Develop models for energy eļ¬ƒciency and link reliability for various
strategies under consideration.
Focus on energy consumption and reliability of WBANs considering
IEEE 802.15.6 speciļ¬cations and realistic in-body and on-body channel
models.
Investigate optimal packet size that maximizes energy eļ¬ƒciency of
direct,2-hop and cooperative communication schemes in WBANs with
UWB PHY layer.
ARAVIND M T NIT CALICUT November 15, 2017 20 / 60
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
LITERATURE SURVEY
Energy eļ¬ƒcient communication to increase the lifetime of the
network..
wastage of energy of the sensors are mainly due to
Collision of packets.
Overhearing.
Over emitting.
Idle listening.
Fluctuations in the traļ¬ƒc
Energy management is one of the key concern in WBAN protocols.
ARAVIND M T NIT CALICUT November 15, 2017 21 / 60
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
LITERATURE SURVEY CONTD...
Mohammad Sadegh Mohammadi, in [1] give a detailed literature
about
Optimal Frame Length to Maximize Energy Eļ¬ƒciency in IEEE 802.15.6
UWB BAN
Optimization of the length of the medium access control(MAC) frame
body.
Packet success rate of both the PHY modes of the standard are
derived.
1
Mohammad Sadegh Mohammadi, Qi Zhang, ErykDutkiewicz, and Xiaojing Huang, ā€œOptimal Frame Length to Maximize
Energy Eļ¬ƒciency in IEEE 802.15.6 IR-UWB Body Area Networks ā€, IEEE wireless communications letters , vol. 3, n o .
4,pp:397-400 august 2014
ARAVIND M T NIT CALICUT November 15, 2017 22 / 60
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
LITERATURE SURVEY CONTD...
In [2],Deepak K S, discussed about .
The packet size optimization for maximization of the energy eļ¬ƒciency
in IEEE 802.15.6 UWB- WBANs.
The packet direct as well as incremental relay-based cooperative
schemes are proposed.
2
Deepak K S, Babu A V,ā€œPacket size optimization for energy eļ¬ƒcient cooperative wireless body area networksā€, 2012
annual IEEE India conference ,PP:736-741.
ARAVIND M T NIT CALICUT November 15, 2017 23 / 60
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
LITERATURE SURVEY CONTD...
In [3], Kemal Davaslioglu give a detailed literature about
Joint optimization of the payload size and number of pulses per symbol
for optimizing the energy eļ¬ƒciency .
A cross layer resource allocation which address the rate and reliability
trade -oļ¬€ in the physical layer(PHY).
3
Kemal Davaslioglu, Yang Liu, and Richard D. Gitlin,ā€œCLOEE - Cross-Layer Optimization for Energy Eļ¬ƒciency of IEEE
802.15.6 IR-UWB WBANs. ā€, IEEE GLOBECOM December 2016 Washington DC.
ARAVIND M T NIT CALICUT November 15, 2017 24 / 60
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
LITERATURE SURVEY CONTD...
Selection of the most energy eļ¬ƒcient modulation and FEC scheme.
ā†’In [4], M.C.Domingo,mainly emphasizes the selection of an optimal
packet size.
Automatic Repeat Request (ARQ) scheme, forward error correction
(FEC) block codes, and FEC convolutional codes were analyzed.
The hop-Length extension scheme is also applied to improve the metric
with FEC block codes.
4
M. C. Domingoā€œ Packet Size Optimization for Improving the Energy Eļ¬ƒciency in Body Sensor Networksā€, ETRI Journal,
vol. 33, no. 3, pp. 299-309, Jun 2011.
ARAVIND M T NIT CALICUT November 15, 2017 25 / 60
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
LITERATURE SURVEY CONTD...
In [5] addressed the issue of link adaptation mechanism.
Adaptation scheme proposed can applied to any other IR-UWB system
with non-coherent receivers
Based upon the estimated signal to noise ratio and the channels energy
capture index.
Adapts the number of pulse per symbol to the channel conditions and
thus increases the Energy eļ¬ƒciency.
5
Mohammad Sadegh Mohammadi, Qi Zhang, ErykDutkiewicz, and Xiaojing Huang, ā€œOptimal Energy Efciency Link
Adaptation in IEEE 802.15.6 IR-UWB Body Area Networks ā€, IEEE communications letters, vol. 18, NO. 12,pp.2193 - 2196,
December 2014.
ARAVIND M T NIT CALICUT November 15, 2017 26 / 60
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
LITERATURE SURVEY CONTD...
In[6] the authors discuss about,
energy eļ¬ƒciency models in 1-hop, 2-hop and cooperative
communications in multipath fading channel.
optimal packet size to achieve the maximum energy eļ¬ƒciency.
6
Nattakorn Promwongsa,TeerapatSanguankotchakornā€œPacket Size Optimization for Energy-Eļ¬ƒcient 2-hop in Multipath
Fading for WBAN.ā€, The 22nd Asia-Paciļ¬c Conference on Communications (APCC2016).
ARAVIND M T NIT CALICUT November 15, 2017 27 / 60
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
A cross layer approach for optimizing energy eļ¬ƒciency of impulse
radio (IR) UWB that use non-coherent energy detection receiver and
on-oļ¬€ keying modulation is utilized in [7] and [8].
7
H. Karvonen, J. Iinatti, and M. Hamalainen, Energy eļ¬ƒciency optimization for ir-uwb wban based on the ieee 802.15. 6
standard, in Proceedings of the International Conference on Body Area Networks. ICST (Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineering), 2013, pp. 575580.
8
H. Karvonen, Iinatti, and M. Hamalainen, A cross-layer energy eļ¬ƒciency optimization model for wban using ir-uwb
transceivers, Telecommunication Systems, pp. 113, 2014.
ARAVIND M T NIT CALICUT November 15, 2017 28 / 60
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
WORK DONE SO FAR
Packet success probability of direct communication in IEEE 802.15.6
UWB Body Area Networks
Energy Eļ¬ƒciency Analysis of Direct,Incremental Relay based
Cooperative Communication and 2-hop communication in UWB
Wireless Body Area Networks
Both the in-body as well as on-body communication scenarios are
considered for the evaluation.
Very detailed investigations have been carried out on the impact of,
ā‡’ Packet size,hop distance (i.e., sensor node-to-hub distance) and
channel error on the energy eļ¬ƒciency and reliability of the network.
ARAVIND M T NIT CALICUT November 15, 2017 29 / 60
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
SYSTEM MODEL
A set of wireless sensor nodes which communicate with the master
hub node is being assumed .
The nodes transmit in the orthogonal time slots.
Standard speciļ¬es two modes for IR-UWB PHY:
1 Default mode
2 High QOS mode.
Default mode uses on-oļ¬€ keying signaling and BCH(63,51) code.
Non coherent receiver which is based on either energy detection(ED)
or autocorrelation.
ARAVIND M T NIT CALICUT November 15, 2017 30 / 60
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
SYSTEM MODEL CONTD...
Combination based single-stage decode and forward relaying is being
considered.
Relay node is placed at a distance that measures exactly half of the
total distance between the source and destination nodes.
BPSK -modulation.
Half duplex communication
Rayleigh distribution is used to model multipath fading.
ARAVIND M T NIT CALICUT November 15, 2017 31 / 60
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
SYSTEM MODEL CONTD...
Figure: a) 1-hop b) cooperative c) 2-hop
ARAVIND M T NIT CALICUT November 15, 2017 32 / 60
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
SYSTEM MODEL CONTD...
Figure: IEEE 802.15.6 UWB PPDU FORMAT.
ARAVIND M T NIT CALICUT November 15, 2017 33 / 60
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
SYSTEM MODEL CONTD...
MAC PDU comprises,
1 Header of length 7 octets.
2 Frame checksum of length 2 octets.
3 MAC frame body of variable length (LFB )
Physical layer success probability depends upon the successful
reception of the PSDU unit.
MPDU employs a BCH(63,51) code
No of codewords is given by,
NCW = āŒˆ
72 + LFB
k
āŒ‰ =
NT
n
(1)
ARAVIND M T NIT CALICUT November 15, 2017 34 / 60
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
SYSTEM MODEL CONTD...
If mod (72+LFB,k)Ģø=0, then Nbs=kNCW āˆ’ (72+LFB) pad bits are
appended to the last codeword.
For a non-coherent energy detection (ED) receiver, the bit error
probability for uncoded case in IR-UWB transceivers is given by [7]
Pb,d = Q
(āˆš
1
2
Ā·
(hĪµb/N0)2
hĪµb/N0 + NcpbTintWrx
)
, (2)
where h ā†’ channel coeļ¬ƒcient.
N0 ā†’ noise power level
Wrx ā†’ equivalent noise bandwidth .
Ncpb ā†’number of pulses per burst.
7
Yang Liu, Kemal Davaslioglu, and Richard D. Gitlin ā€œLow Cost Energy Eļ¬ƒciency Optimization of Channel Access
Probabilities in IEEE 802.15.6 UWB WBANs.ā€,Wireless communication and Networking conference(WCNC) 2017 IEEE.
ARAVIND M T NIT CALICUT November 15, 2017 35 / 60
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
SYSTEM MODEL CONTD...
Since error correction capability of each of the NCW code word equals
t, the code word error probability can be calculated as [1]
PCW =
nāˆ‘
i=t+1
(
n
i
)
[Pb,d ]i
[1 āˆ’ Pb,d ]nāˆ’i
(3)
Therefore, the bit error probability can be approximated as,
Pb =
1
n
PCW =
1
n
nāˆ‘
i=t+1
(
n
i
)
[Pb,d ]i
[1 āˆ’ Pb,d ]nāˆ’i
(4)
Therefore, for the PSDU of total length l, the packet error probability
can be given by,
Pe = 1 āˆ’ (1 āˆ’ Pb)l
(5)
The probability of successful reception of PSDU is thus given by,
Ps = 1 āˆ’ Pe (6)
ARAVIND M T NIT CALICUT November 15, 2017 36 / 60
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Channel Model
Llink between any two nodes is aļ¬€ected by propagation path
loss,rayleigh fading, shadowing and additive white gaussian noise
(AWGN)
Communication link between source and destination separated by
distance d. The propagation path loss in dB is given by:
PL(d) = PL(do) + 10nlog
d
d0
+ XĻƒ (7)
Here PL(do) is the path loss in dB at a reference distance do, n is the
path-loss exponent; and XĻƒ is a Gaussian-distributed random variable
with zero mean and standard deviation Ļƒ in dB
The signal to noise ratio (SNR) at the receiver is expressed as:
Ī³(dB) = PT āˆ’ PL(d) āˆ’ PN (8)
where PT is the transmit power and PN is the AWGN power.
ARAVIND M T NIT CALICUT November 15, 2017 37 / 60
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
The path loss model for in-body channel is given by,
PL(d) = a1.(
d
do
)n
+ Lin + XĻƒ0 (9)
Table: 1: UWB based BAN Path Loss Model Channel Parameters for In-Body
Case
In-Body channel parameters value [12]
a1 0.987
n 0.85
do(mm) 1
Lin[dB] 10
Ļƒ0 7.84
Pt(dBm) 0
ARAVIND M T NIT CALICUT November 15, 2017 38 / 60
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Table: 2: UWB based BAN Path Loss Model Channel Parameters for On-Body
Case
On-Body channel parameters On-Body NLOS On-Body LOS [12]
PL(do)[dB] 48.4 44.6
do(mm) 1 1
n 5.9 3.1
Ļƒi 5 6.1
Pt(dBm) -2 -2
ARAVIND M T NIT CALICUT November 15, 2017 39 / 60
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Cooperative scheme
assume PERSD, PERSR and PERRD represent the error probabilities
of packet reception for the S-D, S-R and R-D links respectively
packet error occurs either when both S-D and S-R links fail, or when
S-D and R-D links fail, while S-R link is error free.
Hence, the packet error probability for cooperative scenario can be
calculated as
Pe,CC = PERSDPERSR + PERSD(1 āˆ’ PERSR)PERRD (10)
Accordingly, the success probability for the cooperative scheme is
calculated as
Ps,CC = 1 āˆ’ Pe,CC (11)
ARAVIND M T NIT CALICUT November 15, 2017 40 / 60
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
2-hop communication scheme
assume PERSR and PERRD represent the error probabilities of packet
reception for the S-R and R-D links respectively
packet error occurs either when S-R links fail, or when R-D links fail,
while S-R link is error free.
Hence, the packet error probability for 2-hop scenario can be
calculated as
PER2āˆ’hop = PERSR + (1 āˆ’ PERSR)PERRD (12)
Accordingly, the success probability for the 2-hop scheme is calculated
as
Ps,2āˆ’hop = 1 āˆ’ PER2āˆ’hop (13)
ARAVIND M T NIT CALICUT November 15, 2017 41 / 60
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Energy Consumption Analysis
consider the transmission of a data packet from a sensor to the hub
consisiting of Nt encoded bits
hub and sensors have diļ¬€erent energy consumption costs
Let Etxāˆ’ul , Erxāˆ’ul , Etxāˆ’dl , and Erxāˆ’dl represent the energy
consumption costs for transmission and reception on the uplink and
downlink respectively
Let Etxāˆ’ack / Erxāˆ’ack denote the enrgy required for
transmission/reception of acknowledgment packets
Let Eenc / Edec be the energy required for data encoding/decoding
Let Np represent the number of pulses per symbol
Etxāˆ’p and Erxāˆ’p denote the total energy spent on transmission of a
pulse and that consumed by electronic circuits on reception of a
pulse, respectively
R is the uncoded bit rate
ARAVIND M T NIT CALICUT November 15, 2017 42 / 60
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Direct Communication
Let Etxāˆ’data represent the energy required for transmitting a packet of
Nt bits. Then
Etxāˆ’data =
Ī²NpEtxāˆ’pEtxāˆ’ul
R
Nt (14)
where Ī² is a modulation dependant parameter and is taken as 0.5 for
on-oļ¬€ signaling.
Similarly, the energy consumed by receiving node to receive the data
packet can be written as
Erxāˆ’data =
NpErxāˆ’pErxāˆ’ul
R
Nt (15)
ARAVIND M T NIT CALICUT November 15, 2017 43 / 60
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
The energy consumption associated with the transmission/reception
of acknowledgment packets of size Nack bits can be expressesed as
Etxāˆ’ack =
Ī²NpEtxāˆ’pEtxāˆ’dl
R
Nack (16)
Erxāˆ’ack =
NpErxāˆ’pErxāˆ’dl
R
Nack (17)
Let the total energy expenditure required for data encoding and
decoding and for transmission and reception of the acknowledgment
packets be denoted by Eo which is expressed as follows :
Eo = Etxāˆ’ul Eenc + Erxāˆ’ul Edec + Etāˆ’ack + Erāˆ’ack (18)
ARAVIND M T NIT CALICUT November 15, 2017 44 / 60
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Then the total energy consumption for transfer of a data packet of
size Nt bits over the source-destination link can be given by
EDC = Etxāˆ’data + Erxāˆ’data + Eo = x(NpNt/R) + Eo (19)
where
x = Ī²Etxāˆ’pEtxāˆ’ul + Erxāˆ’pErxāˆ’ul (20)
The energy eļ¬ƒciency can be computed as the ratio of useful energy
for successful transmission of a packet of LFB bits to the total
consumed energy and is given as
Ī·DC =
x(NpLFB/R)
x(NpNt/R) + Eo
Ps (21)
where Ps is the packet success rate.
ARAVIND M T NIT CALICUT November 15, 2017 45 / 60
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Cooperative Communication
In order to calculate the total energy consumption involved in
successful transmission of a packet, we consider three events :
A successful direct communication occurs with probability Ps,SD. Due
to overhearing by the relay, the energy consumed per bit is
Ec1 = Etxāˆ’data + 2Erxāˆ’data + Ecod (22)
where
Ecod = Etxāˆ’ul Eenc + Erxāˆ’ul Edec (23)
ARAVIND M T NIT CALICUT November 15, 2017 46 / 60
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Both S-D and S-R links fail with probability Pe,SDPe,SR. Due to
decoding failure, the packet is dropped at the relay. Energy
consumption Ec2 is same as in previous case.
The S-D link fails, while S-R link is error free, so that the relay
decodes and forwards the packet. This occurs with probability
Pe,SDPs,SR. Because of two transmissions at the source and the relay
and also overhearing at the relay, the energy consumption equals
Ec3 = 2Etxāˆ’data + 3Erxāˆ’data + 2Ecod (24)
ARAVIND M T NIT CALICUT November 15, 2017 47 / 60
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Accordingly, the total energy consumed for transmission of data and
acknowledgment packets, Ec and Ecack, can be written as
Ec = Ec1(PERSD) + Ec2(PERSD)(PERSR) + Ec3(PERSD)(PERSR)
(25)
Ecack = (Etxāˆ’ack + 2Erxāˆ’ack)[1 + (PERSD)(PERSR)] (26)
Thus, eļ¬ƒciency for single-relay based cooperative scheme can be
calculated as
Ī·CC =
(NpLFB/R)
Ec + Ecack
Ps,CC (27)
where Ps,CC can be obtained from Equation(12).
ARAVIND M T NIT CALICUT November 15, 2017 48 / 60
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
2-hop communication
In order to calculate the total energy consumption involved in
successful transmission of a packet, we consider two events :
1 Failure of transmission from source to relay nodes in the 1st time slot
ā†’ which consumes energy E1 with probability (1 āˆ’ PERSR ).
2 Successful transmission from source to relay nodes in the 1st time slot
,and the failure of transmission from relay to destination nodes in the
2nd time slot
ā†’ which consumes energy E2 with probability PERSR
E1 and E2 can be expressed as,
E1 = 2E2 = 2{Etxāˆ’data + Erxāˆ’data + Ecod } (28)
ARAVIND M T NIT CALICUT November 15, 2017 49 / 60
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Therefore the average total energy consumption per bit of 2-hop
communication can be expressed as,
E2āˆ’hop
total = E1(1 āˆ’ PERSR) + E2PERSR (29)
The total energy consumed for transmission of acknowledgment
packets in 2-hop communication (E2āˆ’HOP,ack), can be written as,
E2āˆ’HOP,ack = (Etxāˆ’ack + Erxāˆ’ack)[1 āˆ’ PERSR] (30)
Energy eļ¬ƒciency for 2-hop communication (Ī·2āˆ’hop) in ultra
wide-band WBAN communication can be expressed as,
Ī·2āˆ’hop =
(1 āˆ’ PER2āˆ’hop)(x(NpLFB/R)
E2āˆ’hop
total + E2āˆ’HOP,ack
(31)
ARAVIND M T NIT CALICUT November 15, 2017 50 / 60
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Optimal Frame Length
an optimal frame length, LFB,opt exists, where loss of energy is
minimized exists for a given probability of error.
Substituting for Ps in (10), the equation for Ī·DC can be written as
Ī·DC =
xLFB (1 āˆ’ Pb)(w(LFB +72))
x(w(LFB + 72)) + EoR/Np
(32)
where w = 1 + r/k.
By setting dĪ·DC
dLFB
= 0, the optimal frame length can be obtained as [1]
1
Mohammad Sadegh Mohammadi, Qi Zhang, ErykDutkiewicz, and Xiaojing Huang, ā€œOptimal Frame Length to Maximize
Energy Eļ¬ƒciency in IEEE 802.15.6 IR-UWB Body Area Networks ā€, IEEE wireless communications letters , vol. 3, n o .
4,pp:397-400 august 2014
ARAVIND M T NIT CALICUT November 15, 2017 51 / 60
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
LFB,opt = āˆ’
v
2
+
1
2
āˆš
v2 āˆ’
4v
ln(1 āˆ’ Pb)
(33)
where v =
EoR
xwNp
For cooperative case also, optimal frame length can be obtained by
solving dĪ·CC
dLFB
= 0, but closed-form expression cannot be obtained
ARAVIND M T NIT CALICUT November 15, 2017 52 / 60
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Table: 3: UWB System Related Parameters [?], [?], [?]
W 499.2MHz
Np 32
T 2ns
Etxāˆ’ul 0.9
Erxāˆ’dl 0.9
Erxāˆ’ul 0.1
Etxāˆ’dl 0.1
Eenc 4pJ
Edec 2nJ
Etxāˆ’p 20pJ
Erxāˆ’p 2.5nJ
R 487Mbps
Nack 144
PN (dBm) -100
ARAVIND M T NIT CALICUT November 15, 2017 53 / 60
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
SIMULATION RESULTS
Figure: packet error rate vs distance for on-body (LOS and NLOS) and in-body
direct communication .
ARAVIND M T NIT CALICUT November 15, 2017 54 / 60
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Figure: packet error rate vs distance for on-body direct and cooperative LOS
communication.
ARAVIND M T NIT CALICUT November 15, 2017 54 / 60
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Figure: packet error rate vs distance for in-body direct and cooperative
communication.
ARAVIND M T NIT CALICUT November 15, 2017 54 / 60
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Figure: packet error rate vs distance for on-body direct and cooperative NLOS
communication.
ARAVIND M T NIT CALICUT November 15, 2017 54 / 60
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Figure: packet error rate vs distance for on-body direct,2-hop and cooperative
LOS communication.
ARAVIND M T NIT CALICUT November 15, 2017 54 / 60
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Figure: Energy eļ¬ƒciency vs packet size with diļ¬€erent bit error probabilities for
in-body communication at S-D distance of 21 cm.
ARAVIND M T NIT CALICUT November 15, 2017 54 / 60
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Figure: Energy eļ¬ƒciency vs packet size for on-body NLOS communication for
source-destination distance of 27 cm,42 cm and 65 cm
ARAVIND M T NIT CALICUT November 15, 2017 54 / 60
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Figure: Energy eļ¬ƒciency vs packet size for on-body NLOS communication for
source-destination distance of 12 cm.
ARAVIND M T NIT CALICUT November 15, 2017 54 / 60
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Figure: Energy eļ¬ƒciency vs packet size for on-body NLOS communication for
source-destination distance of 27 cm.
ARAVIND M T NIT CALICUT November 15, 2017 54 / 60
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Figure: Energy eļ¬ƒciency vs packet size for on-body NLOS communication for
source-destination distance of 42 cm.
ARAVIND M T NIT CALICUT November 15, 2017 54 / 60
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Figure: Energy eļ¬ƒciency vs packet size for on-body LOS communication for
source-destination distance of 27 cm.
ARAVIND M T NIT CALICUT November 15, 2017 54 / 60
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Figure: Energy eļ¬ƒciency vs packet size for on-body LOS communication for
source-destination distance of 135 cm..
ARAVIND M T NIT CALICUT November 15, 2017 54 / 60
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Figure: Energy eļ¬ƒciency vs packet size for on-body NLOS communication for
source-destination distance of 45 cm.
ARAVIND M T NIT CALICUT November 15, 2017 54 / 60
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Figure: Energy eļ¬ƒciency vs source-destination distance for on-body NLOS
communication.
ARAVIND M T NIT CALICUT November 15, 2017 54 / 60
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Figure: Energy eļ¬ƒciency vs source-destination distance for in-body
communication.
ARAVIND M T NIT CALICUT November 15, 2017 55 / 60
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
WORK SCHEDULE
The energy eļ¬ƒciency of direct,2-hop and cooperative communication
is analyzed.
Under poor channel condition,an adoption of a 2-hop and cooperative
communication technique will improve,
ā‡’ energy eļ¬ƒciency
ā‡’ supports a comparatively larger packet size
ā‡’ increase the energy eļ¬ƒcient hop length.
As a continuation of the same it is being planned to work upon,
ā‡’ Diļ¬€erent cooperative diversity techniques for WBANs.
ā‡’ Determination of an optimum relay position.
ā‡’ Energy aware topology design for cooperative WBANs.
ā‡’Cooperative relaying scheme employing hybrid relays
ā‡’ Design of routing protocols in which an incremental relay-based
cooperation is used to improve energy eļ¬ƒciency.
ARAVIND M T NIT CALICUT November 15, 2017 55 / 60
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Conclusion
Energy eļ¬ƒciency in the default mode of IR-UWB PHY in the IEEE
802.15.6 for an AWGN channel with path loss model for both direct
and single-relay cooperative communication scenarios has been
analyzed .
Energy eļ¬ƒciency of diļ¬€erent communication scenarios (on body- LOS
and NLOS ,in body) have been evaluated by including the impact of
packet error rate into the analysis.
Compared to direct transmission cooperative communication oļ¬€ers
higher packet success rates and also better eļ¬ƒciency values when the
source-destination hop length exceeds a certain threshold.
ARAVIND M T NIT CALICUT November 15, 2017 56 / 60
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Conclusion
The optimal packet size for energy eļ¬ƒcient cooperative
communication has been observed to be larger than that of direct
communication.
Under shadowing eļ¬€ects, adoption of cooperative communication
techniques will improve the energy eļ¬ƒciency, support larger frame
lengths and will increase the hop length.
Energy eļ¬ƒciency of 2-hop communication in multipath fading is also
investigated.
2-hop communication provides the maximum energy eļ¬ƒciency and
the highest optimal payload size when channel is poor.
In in-body channel, 2-hop or cooperative communications are very
necessary when 1-hop communication is not feasible.
ARAVIND M T NIT CALICUT November 15, 2017 57 / 60
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
References
Mohammad Sadegh Mohammadi, Qi Zhang, ErykDutkiewicz, and Xiaojing Huang
Optimal Frame Length to Maximize Energy Eļ¬ƒciency in IEEE 802.15.6 IR-UWB
Body Area Networks .
IEEE wireless communications letters , vol. 3, n o . 4,pp:397-400 august 2014
Deepak K S, Babu A V
Packet size optimization for energy eļ¬ƒcient cooperative wireless body area
networks
2012 annual IEEE India conference PP:736-741.
Kemal Davaslioglu, Yang Liu, and Richard D. Gitlin
CLOEE - Cross-Layer Optimization for Energy Eļ¬ƒciency of IEEE 802.15.6 IR-UWB
WBANs.
IEEE GLOBECOM December 2016 Washington DC.
M. C. Domingo
Packet Size Optimization for Improving the Energy Eļ¬ƒciency in Body Sensor
Networks
ETRI Journal, vol. 33, no. 3, pp. 299-309, Jun 2011.
ARAVIND M T NIT CALICUT November 15, 2017 58 / 60
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Mohammad Sadegh Mohammadi, Qi Zhang, ErykDutkiewicz, and Xiaojing Huang
Optimal Energy Efciency Link Adaptation in IEEE 802.15.6 IR-UWB Body Area
Networks
IEEE communications letters, vol. 18, NO. 12,pp.2193 - 2196, December 2014.
Yang Liu, Kemal Davaslioglu, and Richard D. Gitlin
Energy Eļ¬ƒciency Optimization of Channel Access Probabilities in IEEE 802.15.6
UWB WBANs.
Wireless communication and Networking conference(WCNC) 2017 IEEE.
H. Karvonen, J. Iinatti, and M. Hamalainen
A cross-layer energy eļ¬ƒciency optimization model for wban using ir-uwb
transceivers.
Telecommunication Systems, pp. 113, 2014.
H. Karvonen, J. Iinatti, and M. Hamalainen
Energy eļ¬ƒciency optimization for ir-uwb wban based on the ieee 802.15. 6
standard.
in Proceedings of the International Conference on Body Area Networks. ICST
(Institute for Computer Sciences, Social-Informatics and Telecommunications
Engineering), 2013, pp. 575580.
ARAVIND M T NIT CALICUT November 15, 2017 59 / 60
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Thank You
ARAVIND M T NIT CALICUT November 15, 2017 60 / 60

More Related Content

Similar to Energy efficient and reliable communication in IEEE 802.15.6 IR UWB WBAN

Cluster-based Wireless Sensor Network (WSN) Methods for Secure and Efficient ...
Cluster-based Wireless Sensor Network (WSN) Methods for Secure and Efficient ...Cluster-based Wireless Sensor Network (WSN) Methods for Secure and Efficient ...
Cluster-based Wireless Sensor Network (WSN) Methods for Secure and Efficient ...
Swapnil Jagtap
Ā 
Routing Protocols for Wireless Sensor Networks
Routing Protocols for Wireless Sensor NetworksRouting Protocols for Wireless Sensor Networks
Routing Protocols for Wireless Sensor Networks
Darpan Dekivadiya
Ā 
ZAMBIAN DISTRIBUTION GRID CODE
ZAMBIAN DISTRIBUTION GRID CODEZAMBIAN DISTRIBUTION GRID CODE
ZAMBIAN DISTRIBUTION GRID CODE
Power System Operation
Ā 
TRANSIENT STABILITY ENHANCEMENT OF WIND FARMS USING POWER ELECTRONICS AND FAC...
TRANSIENT STABILITY ENHANCEMENT OF WIND FARMS USING POWER ELECTRONICS AND FAC...TRANSIENT STABILITY ENHANCEMENT OF WIND FARMS USING POWER ELECTRONICS AND FAC...
TRANSIENT STABILITY ENHANCEMENT OF WIND FARMS USING POWER ELECTRONICS AND FAC...
University of South Carolina
Ā 
176791854 lte-uplink-optimization
176791854 lte-uplink-optimization176791854 lte-uplink-optimization
176791854 lte-uplink-optimization
Rajeev sharma
Ā 
Performance Analysis of Routing Protocols of Wireless Sensor Networks
Performance Analysis of Routing Protocols of Wireless Sensor NetworksPerformance Analysis of Routing Protocols of Wireless Sensor Networks
Performance Analysis of Routing Protocols of Wireless Sensor Networks
Darpan Dekivadiya
Ā 
234-Article Text-423-1-10-20210316.pdf
234-Article Text-423-1-10-20210316.pdf234-Article Text-423-1-10-20210316.pdf
234-Article Text-423-1-10-20210316.pdf
NiharikaDubey17
Ā 

Similar to Energy efficient and reliable communication in IEEE 802.15.6 IR UWB WBAN (20)

IRJET- Security Efficiency of Transfering the Data for Wireless Sensor Ne...
IRJET-  	  Security Efficiency of Transfering the Data for Wireless Sensor Ne...IRJET-  	  Security Efficiency of Transfering the Data for Wireless Sensor Ne...
IRJET- Security Efficiency of Transfering the Data for Wireless Sensor Ne...
Ā 
Directional patch antenna array design for desktop wireless inter
Directional patch antenna array design for desktop wireless interDirectional patch antenna array design for desktop wireless inter
Directional patch antenna array design for desktop wireless inter
Ā 
Cluster-based Wireless Sensor Network (WSN) Methods for Secure and Efficient ...
Cluster-based Wireless Sensor Network (WSN) Methods for Secure and Efficient ...Cluster-based Wireless Sensor Network (WSN) Methods for Secure and Efficient ...
Cluster-based Wireless Sensor Network (WSN) Methods for Secure and Efficient ...
Ā 
RASC January 2010
RASC January 2010RASC January 2010
RASC January 2010
Ā 
OFDM Based Cognitive radio
OFDM Based Cognitive radioOFDM Based Cognitive radio
OFDM Based Cognitive radio
Ā 
A Study Of Successive Approximation Registers And Implementation Of An Ultra-...
A Study Of Successive Approximation Registers And Implementation Of An Ultra-...A Study Of Successive Approximation Registers And Implementation Of An Ultra-...
A Study Of Successive Approximation Registers And Implementation Of An Ultra-...
Ā 
report
reportreport
report
Ā 
Routing Protocols for Wireless Sensor Networks
Routing Protocols for Wireless Sensor NetworksRouting Protocols for Wireless Sensor Networks
Routing Protocols for Wireless Sensor Networks
Ā 
M.tech Term paper report | Cognitive Radio Network
M.tech Term paper report | Cognitive Radio Network M.tech Term paper report | Cognitive Radio Network
M.tech Term paper report | Cognitive Radio Network
Ā 
QoS in WSN thesis
QoS in WSN thesisQoS in WSN thesis
QoS in WSN thesis
Ā 
ENERGY EFFICIENCY OPTIMIZATION OF IEEE 802.15.6 IR-UWB WBAN
ENERGY EFFICIENCY OPTIMIZATION OF IEEE 802.15.6 IR-UWB WBANENERGY EFFICIENCY OPTIMIZATION OF IEEE 802.15.6 IR-UWB WBAN
ENERGY EFFICIENCY OPTIMIZATION OF IEEE 802.15.6 IR-UWB WBAN
Ā 
IRJET- Modified SIMPLE Protocol for Wireless Body Area Networks
IRJET-  	  Modified SIMPLE Protocol for Wireless Body Area NetworksIRJET-  	  Modified SIMPLE Protocol for Wireless Body Area Networks
IRJET- Modified SIMPLE Protocol for Wireless Body Area Networks
Ā 
ZAMBIAN DISTRIBUTION GRID CODE
ZAMBIAN DISTRIBUTION GRID CODEZAMBIAN DISTRIBUTION GRID CODE
ZAMBIAN DISTRIBUTION GRID CODE
Ā 
1891121731 microstrip
1891121731 microstrip1891121731 microstrip
1891121731 microstrip
Ā 
TRANSIENT STABILITY ENHANCEMENT OF WIND FARMS USING POWER ELECTRONICS AND FAC...
TRANSIENT STABILITY ENHANCEMENT OF WIND FARMS USING POWER ELECTRONICS AND FAC...TRANSIENT STABILITY ENHANCEMENT OF WIND FARMS USING POWER ELECTRONICS AND FAC...
TRANSIENT STABILITY ENHANCEMENT OF WIND FARMS USING POWER ELECTRONICS AND FAC...
Ā 
176791854 lte-uplink-optimization
176791854 lte-uplink-optimization176791854 lte-uplink-optimization
176791854 lte-uplink-optimization
Ā 
Performance Analysis of Routing Protocols of Wireless Sensor Networks
Performance Analysis of Routing Protocols of Wireless Sensor NetworksPerformance Analysis of Routing Protocols of Wireless Sensor Networks
Performance Analysis of Routing Protocols of Wireless Sensor Networks
Ā 
Report on Enhancing the performance of WSN
Report on Enhancing the performance of WSNReport on Enhancing the performance of WSN
Report on Enhancing the performance of WSN
Ā 
EFFICIENT REBROADCASTING USING TRUSTWORTHINESS OF NODE WITH NEIGHBOUR KNOWLED...
EFFICIENT REBROADCASTING USING TRUSTWORTHINESS OF NODE WITH NEIGHBOUR KNOWLED...EFFICIENT REBROADCASTING USING TRUSTWORTHINESS OF NODE WITH NEIGHBOUR KNOWLED...
EFFICIENT REBROADCASTING USING TRUSTWORTHINESS OF NODE WITH NEIGHBOUR KNOWLED...
Ā 
234-Article Text-423-1-10-20210316.pdf
234-Article Text-423-1-10-20210316.pdf234-Article Text-423-1-10-20210316.pdf
234-Article Text-423-1-10-20210316.pdf
Ā 

Recently uploaded

Integrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - NeometrixIntegrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - Neometrix
Neometrix_Engineering_Pvt_Ltd
Ā 
Hospital management system project report.pdf
Hospital management system project report.pdfHospital management system project report.pdf
Hospital management system project report.pdf
Kamal Acharya
Ā 

Recently uploaded (20)

Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Ā 
PE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and propertiesPE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and properties
Ā 
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKARHAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
Ā 
Integrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - NeometrixIntegrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - Neometrix
Ā 
Wadi Rum luxhotel lodge Analysis case study.pptx
Wadi Rum luxhotel lodge Analysis case study.pptxWadi Rum luxhotel lodge Analysis case study.pptx
Wadi Rum luxhotel lodge Analysis case study.pptx
Ā 
Orlandoā€™s Arnold Palmer Hospital Layout Strategy-1.pptx
Orlandoā€™s Arnold Palmer Hospital Layout Strategy-1.pptxOrlandoā€™s Arnold Palmer Hospital Layout Strategy-1.pptx
Orlandoā€™s Arnold Palmer Hospital Layout Strategy-1.pptx
Ā 
Computer Networks Basics of Network Devices
Computer Networks  Basics of Network DevicesComputer Networks  Basics of Network Devices
Computer Networks Basics of Network Devices
Ā 
DC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationDC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equation
Ā 
Double Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueDouble Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torque
Ā 
BhubaneswaršŸŒ¹Call Girls Bhubaneswar ā¤Komal 9777949614 šŸ’Ÿ Full Trusted CALL GIRL...
BhubaneswaršŸŒ¹Call Girls Bhubaneswar ā¤Komal 9777949614 šŸ’Ÿ Full Trusted CALL GIRL...BhubaneswaršŸŒ¹Call Girls Bhubaneswar ā¤Komal 9777949614 šŸ’Ÿ Full Trusted CALL GIRL...
BhubaneswaršŸŒ¹Call Girls Bhubaneswar ā¤Komal 9777949614 šŸ’Ÿ Full Trusted CALL GIRL...
Ā 
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best ServiceTamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Ā 
Generative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTGenerative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPT
Ā 
Hostel management system project report..pdf
Hostel management system project report..pdfHostel management system project report..pdf
Hostel management system project report..pdf
Ā 
Moment Distribution Method For Btech Civil
Moment Distribution Method For Btech CivilMoment Distribution Method For Btech Civil
Moment Distribution Method For Btech Civil
Ā 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
Ā 
Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the start
Ā 
Hospital management system project report.pdf
Hospital management system project report.pdfHospital management system project report.pdf
Hospital management system project report.pdf
Ā 
kiln thermal load.pptx kiln tgermal load
kiln thermal load.pptx kiln tgermal loadkiln thermal load.pptx kiln tgermal load
kiln thermal load.pptx kiln tgermal load
Ā 
Block diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptBlock diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.ppt
Ā 
Online food ordering system project report.pdf
Online food ordering system project report.pdfOnline food ordering system project report.pdf
Online food ordering system project report.pdf
Ā 

Energy efficient and reliable communication in IEEE 802.15.6 IR UWB WBAN