SlideShare a Scribd company logo
1 of 2
Download to read offline
Concordia University                                                                February 13, 2009

                                 Applied Differential Equations
                                          Section J
                                         Exam I (A)




                                           ANSWER KEY




   (1) (10 points) The ODE
                                            dy
                                                = 4(y 2 + 1)
                                            dx
       is separable. It can be written in the form
                                               dy
                                                   = 4 dx,
                                             y2 +1
       which, by integration leads to the solution in implicit form
                                           arctan y = 4x + C,
       where C is an arbitrary constant.


   (2) (10 points) The following equation
                                             dy
                                                + y = xy 4
                                             dx
       is a Bernoulli equation with n = 4. We will use the substitution u = y −3 (with du = −3y −4 dy).
         Following this substitution, we obtain the linear ODE
                                            du
                                               − 3u = −3x.
                                            dx
                                                             du
       An integrating factor is then µ(x) = e−3x , so e−3x      − 3e−3x u = −3e−3x x, or
                                                             dx
                                         (e−3x u) = −3xe−3x .

          Consequently, e−3x u = −3 xe−3x dx + C, or (using integration by parts) e−3x u = xe−3x −
         e−3x dx + C.
                                   1                   1                   1
         Finally, e−3x u = xe−3x + e−3x + C, so u = x + + Ce3x and y = (x + + Ce3x )−1/3 ,
                                   3                   3                   3
       where C is an arbitrary constant.


                                                   1
2

    (3) Given
                                 x            3y 2 − x2
                                     dx +               +      2y      dy = 0,
                                2y 4              y5
          we consider f (x, y) such that
                                            ∂f           x
                                               (x, y) = 4
                                            ∂x          2y
                                     ∂f          3y 2 − x2
                                        (x, y) =           + 2y.
                                     ∂y              y5
          Integrating the first equation with respect to x, we obtain

                                                        x2
                                           f (x, y) =        + c(y).
                                                        4y 4
          To find c(y), we evaluate
                             ∂f           x2           3y 2 − x2
                                (x, y) = − 5 + c (y) =           +               2y,
                             ∂y           y                y5
                                                3                                       3     (2y)3/2
       hence c(y) satisfies the ODE: c (y) =        +      2y. Therefore c(y) = −            +         + C, where
                                                y3                                     2y 2      3
       C is an arbitrary constant.
                                          x2      3    (2y)3/2
          Finally we have that f (x, y) =     − 2+              + C, and we conclude that the general
                                         4y 4 2y           3
       solution of the given exact equation is (in implicit form)
                    x2    3  (2y)3/2
                        − 2+         = c,          where c is an arbitrary constant.
                    4y 4 2y     3
          Now, y(0) = 2 implies c = 55/24, hence the solution of the IVP
                                     x2    3  (2y)3/2  55
                                         − 2+         = .
                                     4y 4 2y     3     24


    (4) Denote by A(t) the number of pounds of salt in the tank at time t. Then we must solve the
        IVP
                                dA            5A
                                     = 12 −         , A(0) = 0.
                                 dt         100 − t
                                                                                     5
          The ODE is linear with an integrating factor µ(t) = exp                         dt   = exp(−5 ln(100 −
                                                                                  100 − t
       t)) = (100 − t)−5 .
                                                                                                12
          So, (100−t)−5 A (t)+5A(100−t)−4 = 12(100−t)−5 , hence (100−t)−5 A(t) =                   (100−t)−4 +C
                                                                                                 4
       where C will be determined from A(0) = 0 to be equal to −3/1004 .
                                               3                               21
         Finally, we have A(t) = 3(100 − t) −    4
                                                   (100 − t)5 and A(30) = 210 − 3 ≈ 209.97 lb.
                                              100                              10

More Related Content

What's hot

Engr 213 final sol 2009
Engr 213 final sol 2009Engr 213 final sol 2009
Engr 213 final sol 2009akabaka12
 
Engr 213 midterm 2b sol 2010
Engr 213 midterm 2b sol 2010Engr 213 midterm 2b sol 2010
Engr 213 midterm 2b sol 2010akabaka12
 
Profº. Marcelo Santos Chaves - Cálculo I (Limites e Continuidades) - Exercíci...
Profº. Marcelo Santos Chaves - Cálculo I (Limites e Continuidades) - Exercíci...Profº. Marcelo Santos Chaves - Cálculo I (Limites e Continuidades) - Exercíci...
Profº. Marcelo Santos Chaves - Cálculo I (Limites e Continuidades) - Exercíci...MarcelloSantosChaves
 
Engr 213 final 2009
Engr 213 final 2009Engr 213 final 2009
Engr 213 final 2009akabaka12
 
Engr 213 midterm 2b 2009
Engr 213 midterm 2b 2009Engr 213 midterm 2b 2009
Engr 213 midterm 2b 2009akabaka12
 
Differential Equation Tutorial 1
Differential Equation Tutorial 1Differential Equation Tutorial 1
Differential Equation Tutorial 1Yong Sheng
 
Emat 213 final fall 2005
Emat 213 final fall 2005Emat 213 final fall 2005
Emat 213 final fall 2005akabaka12
 
Emat 213 midterm 2 fall 2005
Emat 213 midterm 2 fall 2005Emat 213 midterm 2 fall 2005
Emat 213 midterm 2 fall 2005akabaka12
 
Maxima & Minima of Calculus
Maxima & Minima of CalculusMaxima & Minima of Calculus
Maxima & Minima of CalculusArpit Modh
 
Binomial theorem for any index
Binomial theorem for any indexBinomial theorem for any index
Binomial theorem for any indexindu psthakur
 
Finite elements : basis functions
Finite elements : basis functionsFinite elements : basis functions
Finite elements : basis functionsTarun Gehlot
 
4.1 implicit differentiation
4.1 implicit differentiation4.1 implicit differentiation
4.1 implicit differentiationdicosmo178
 
Applications of maxima and minima
Applications of maxima and minimaApplications of maxima and minima
Applications of maxima and minimarouwejan
 
Maths ppt (mrshpy)
Maths ppt (mrshpy)Maths ppt (mrshpy)
Maths ppt (mrshpy)Dilip Khera
 
Sifat Limit Fungsi Aljabar dan Contoh Soal
Sifat Limit Fungsi Aljabar dan Contoh SoalSifat Limit Fungsi Aljabar dan Contoh Soal
Sifat Limit Fungsi Aljabar dan Contoh SoalAsrifida Juwita Tanjung
 

What's hot (20)

Engr 213 final sol 2009
Engr 213 final sol 2009Engr 213 final sol 2009
Engr 213 final sol 2009
 
Engr 213 midterm 2b sol 2010
Engr 213 midterm 2b sol 2010Engr 213 midterm 2b sol 2010
Engr 213 midterm 2b sol 2010
 
Profº. Marcelo Santos Chaves - Cálculo I (Limites e Continuidades) - Exercíci...
Profº. Marcelo Santos Chaves - Cálculo I (Limites e Continuidades) - Exercíci...Profº. Marcelo Santos Chaves - Cálculo I (Limites e Continuidades) - Exercíci...
Profº. Marcelo Santos Chaves - Cálculo I (Limites e Continuidades) - Exercíci...
 
Complex numbers
Complex numbersComplex numbers
Complex numbers
 
Engr 213 final 2009
Engr 213 final 2009Engr 213 final 2009
Engr 213 final 2009
 
Sect1 2
Sect1 2Sect1 2
Sect1 2
 
Engr 213 midterm 2b 2009
Engr 213 midterm 2b 2009Engr 213 midterm 2b 2009
Engr 213 midterm 2b 2009
 
Differential Equation Tutorial 1
Differential Equation Tutorial 1Differential Equation Tutorial 1
Differential Equation Tutorial 1
 
Emat 213 final fall 2005
Emat 213 final fall 2005Emat 213 final fall 2005
Emat 213 final fall 2005
 
整卷
整卷整卷
整卷
 
Emat 213 midterm 2 fall 2005
Emat 213 midterm 2 fall 2005Emat 213 midterm 2 fall 2005
Emat 213 midterm 2 fall 2005
 
Maxima & Minima of Calculus
Maxima & Minima of CalculusMaxima & Minima of Calculus
Maxima & Minima of Calculus
 
Binomial theorem for any index
Binomial theorem for any indexBinomial theorem for any index
Binomial theorem for any index
 
Finite elements : basis functions
Finite elements : basis functionsFinite elements : basis functions
Finite elements : basis functions
 
4.1 implicit differentiation
4.1 implicit differentiation4.1 implicit differentiation
4.1 implicit differentiation
 
Applications of maxima and minima
Applications of maxima and minimaApplications of maxima and minima
Applications of maxima and minima
 
Maths ppt (mrshpy)
Maths ppt (mrshpy)Maths ppt (mrshpy)
Maths ppt (mrshpy)
 
VECTOR CALCULUS
VECTOR CALCULUS VECTOR CALCULUS
VECTOR CALCULUS
 
Complex varible
Complex varibleComplex varible
Complex varible
 
Sifat Limit Fungsi Aljabar dan Contoh Soal
Sifat Limit Fungsi Aljabar dan Contoh SoalSifat Limit Fungsi Aljabar dan Contoh Soal
Sifat Limit Fungsi Aljabar dan Contoh Soal
 

Viewers also liked

Engr 213 midterm 1b 2009
Engr 213 midterm 1b 2009Engr 213 midterm 1b 2009
Engr 213 midterm 1b 2009akabaka12
 
Engr 213 midterm 1a 2009
Engr 213 midterm 1a 2009Engr 213 midterm 1a 2009
Engr 213 midterm 1a 2009akabaka12
 
Engr 213 midterm 2a 2009
Engr 213 midterm 2a 2009Engr 213 midterm 2a 2009
Engr 213 midterm 2a 2009akabaka12
 
Emat 213 midterm 1 winter 2006
Emat 213 midterm 1 winter 2006Emat 213 midterm 1 winter 2006
Emat 213 midterm 1 winter 2006akabaka12
 
Emat 213 midterm 2 winter 2006
Emat 213 midterm 2 winter 2006Emat 213 midterm 2 winter 2006
Emat 213 midterm 2 winter 2006akabaka12
 
Engr 213 midterm 2b sol 2009
Engr 213 midterm 2b sol 2009Engr 213 midterm 2b sol 2009
Engr 213 midterm 2b sol 2009akabaka12
 
Engr 213 midterm 2a sol 2009
Engr 213 midterm 2a sol 2009Engr 213 midterm 2a sol 2009
Engr 213 midterm 2a sol 2009akabaka12
 
Emat 213 midterm 1 fall 2005
Emat 213 midterm 1 fall 2005Emat 213 midterm 1 fall 2005
Emat 213 midterm 1 fall 2005akabaka12
 
Engr 213 sample midterm 2b sol 2010
Engr 213 sample midterm 2b sol 2010Engr 213 sample midterm 2b sol 2010
Engr 213 sample midterm 2b sol 2010akabaka12
 
Undang-undang No. 18 Tahun 2008 tentang Pengelolaan-Sampah
Undang-undang No. 18 Tahun 2008 tentang Pengelolaan-SampahUndang-undang No. 18 Tahun 2008 tentang Pengelolaan-Sampah
Undang-undang No. 18 Tahun 2008 tentang Pengelolaan-SampahJoy Irman
 

Viewers also liked (10)

Engr 213 midterm 1b 2009
Engr 213 midterm 1b 2009Engr 213 midterm 1b 2009
Engr 213 midterm 1b 2009
 
Engr 213 midterm 1a 2009
Engr 213 midterm 1a 2009Engr 213 midterm 1a 2009
Engr 213 midterm 1a 2009
 
Engr 213 midterm 2a 2009
Engr 213 midterm 2a 2009Engr 213 midterm 2a 2009
Engr 213 midterm 2a 2009
 
Emat 213 midterm 1 winter 2006
Emat 213 midterm 1 winter 2006Emat 213 midterm 1 winter 2006
Emat 213 midterm 1 winter 2006
 
Emat 213 midterm 2 winter 2006
Emat 213 midterm 2 winter 2006Emat 213 midterm 2 winter 2006
Emat 213 midterm 2 winter 2006
 
Engr 213 midterm 2b sol 2009
Engr 213 midterm 2b sol 2009Engr 213 midterm 2b sol 2009
Engr 213 midterm 2b sol 2009
 
Engr 213 midterm 2a sol 2009
Engr 213 midterm 2a sol 2009Engr 213 midterm 2a sol 2009
Engr 213 midterm 2a sol 2009
 
Emat 213 midterm 1 fall 2005
Emat 213 midterm 1 fall 2005Emat 213 midterm 1 fall 2005
Emat 213 midterm 1 fall 2005
 
Engr 213 sample midterm 2b sol 2010
Engr 213 sample midterm 2b sol 2010Engr 213 sample midterm 2b sol 2010
Engr 213 sample midterm 2b sol 2010
 
Undang-undang No. 18 Tahun 2008 tentang Pengelolaan-Sampah
Undang-undang No. 18 Tahun 2008 tentang Pengelolaan-SampahUndang-undang No. 18 Tahun 2008 tentang Pengelolaan-Sampah
Undang-undang No. 18 Tahun 2008 tentang Pengelolaan-Sampah
 

Similar to Engr 213 midterm 1a sol 2009

Week 3 [compatibility mode]
Week 3 [compatibility mode]Week 3 [compatibility mode]
Week 3 [compatibility mode]Hazrul156
 
Week 4 [compatibility mode]
Week 4 [compatibility mode]Week 4 [compatibility mode]
Week 4 [compatibility mode]Hazrul156
 
Lesson 28: Integration by Substitution (worksheet solutions)
Lesson 28: Integration by Substitution (worksheet solutions)Lesson 28: Integration by Substitution (worksheet solutions)
Lesson 28: Integration by Substitution (worksheet solutions)Matthew Leingang
 
Implicit differentiation
Implicit differentiationImplicit differentiation
Implicit differentiationSporsho
 
Advanced Engineering Mathematics Solutions Manual.pdf
Advanced Engineering Mathematics Solutions Manual.pdfAdvanced Engineering Mathematics Solutions Manual.pdf
Advanced Engineering Mathematics Solutions Manual.pdfWhitney Anderson
 
AEM Integrating factor to orthogonal trajactories
AEM Integrating factor to orthogonal trajactoriesAEM Integrating factor to orthogonal trajactories
AEM Integrating factor to orthogonal trajactoriesSukhvinder Singh
 
Lesson 29: Integration by Substition (worksheet solutions)
Lesson 29: Integration by Substition (worksheet solutions)Lesson 29: Integration by Substition (worksheet solutions)
Lesson 29: Integration by Substition (worksheet solutions)Matthew Leingang
 
Math refresher
Math refresherMath refresher
Math refresherdelilahnan
 

Similar to Engr 213 midterm 1a sol 2009 (19)

Week 2
Week 2 Week 2
Week 2
 
Week 3 [compatibility mode]
Week 3 [compatibility mode]Week 3 [compatibility mode]
Week 3 [compatibility mode]
 
125 5.2
125 5.2125 5.2
125 5.2
 
Week 4 [compatibility mode]
Week 4 [compatibility mode]Week 4 [compatibility mode]
Week 4 [compatibility mode]
 
Sect1 5
Sect1 5Sect1 5
Sect1 5
 
Sect1 4
Sect1 4Sect1 4
Sect1 4
 
Double integration
Double integrationDouble integration
Double integration
 
Lesson 28: Integration by Substitution (worksheet solutions)
Lesson 28: Integration by Substitution (worksheet solutions)Lesson 28: Integration by Substitution (worksheet solutions)
Lesson 28: Integration by Substitution (worksheet solutions)
 
lec12.pdf
lec12.pdflec12.pdf
lec12.pdf
 
Nts
NtsNts
Nts
 
Implicit differentiation
Implicit differentiationImplicit differentiation
Implicit differentiation
 
125 5.3
125 5.3125 5.3
125 5.3
 
Advanced Engineering Mathematics Solutions Manual.pdf
Advanced Engineering Mathematics Solutions Manual.pdfAdvanced Engineering Mathematics Solutions Manual.pdf
Advanced Engineering Mathematics Solutions Manual.pdf
 
AEM Integrating factor to orthogonal trajactories
AEM Integrating factor to orthogonal trajactoriesAEM Integrating factor to orthogonal trajactories
AEM Integrating factor to orthogonal trajactories
 
Sect1 1
Sect1 1Sect1 1
Sect1 1
 
Linear Differential Equations1
Linear Differential Equations1Linear Differential Equations1
Linear Differential Equations1
 
Lesson 29: Integration by Substition (worksheet solutions)
Lesson 29: Integration by Substition (worksheet solutions)Lesson 29: Integration by Substition (worksheet solutions)
Lesson 29: Integration by Substition (worksheet solutions)
 
Assignment6
Assignment6Assignment6
Assignment6
 
Math refresher
Math refresherMath refresher
Math refresher
 

Engr 213 midterm 1a sol 2009

  • 1. Concordia University February 13, 2009 Applied Differential Equations Section J Exam I (A) ANSWER KEY (1) (10 points) The ODE dy = 4(y 2 + 1) dx is separable. It can be written in the form dy = 4 dx, y2 +1 which, by integration leads to the solution in implicit form arctan y = 4x + C, where C is an arbitrary constant. (2) (10 points) The following equation dy + y = xy 4 dx is a Bernoulli equation with n = 4. We will use the substitution u = y −3 (with du = −3y −4 dy). Following this substitution, we obtain the linear ODE du − 3u = −3x. dx du An integrating factor is then µ(x) = e−3x , so e−3x − 3e−3x u = −3e−3x x, or dx (e−3x u) = −3xe−3x . Consequently, e−3x u = −3 xe−3x dx + C, or (using integration by parts) e−3x u = xe−3x − e−3x dx + C. 1 1 1 Finally, e−3x u = xe−3x + e−3x + C, so u = x + + Ce3x and y = (x + + Ce3x )−1/3 , 3 3 3 where C is an arbitrary constant. 1
  • 2. 2 (3) Given x 3y 2 − x2 dx + + 2y dy = 0, 2y 4 y5 we consider f (x, y) such that ∂f x (x, y) = 4 ∂x 2y ∂f 3y 2 − x2 (x, y) = + 2y. ∂y y5 Integrating the first equation with respect to x, we obtain x2 f (x, y) = + c(y). 4y 4 To find c(y), we evaluate ∂f x2 3y 2 − x2 (x, y) = − 5 + c (y) = + 2y, ∂y y y5 3 3 (2y)3/2 hence c(y) satisfies the ODE: c (y) = + 2y. Therefore c(y) = − + + C, where y3 2y 2 3 C is an arbitrary constant. x2 3 (2y)3/2 Finally we have that f (x, y) = − 2+ + C, and we conclude that the general 4y 4 2y 3 solution of the given exact equation is (in implicit form) x2 3 (2y)3/2 − 2+ = c, where c is an arbitrary constant. 4y 4 2y 3 Now, y(0) = 2 implies c = 55/24, hence the solution of the IVP x2 3 (2y)3/2 55 − 2+ = . 4y 4 2y 3 24 (4) Denote by A(t) the number of pounds of salt in the tank at time t. Then we must solve the IVP dA 5A = 12 − , A(0) = 0. dt 100 − t 5 The ODE is linear with an integrating factor µ(t) = exp dt = exp(−5 ln(100 − 100 − t t)) = (100 − t)−5 . 12 So, (100−t)−5 A (t)+5A(100−t)−4 = 12(100−t)−5 , hence (100−t)−5 A(t) = (100−t)−4 +C 4 where C will be determined from A(0) = 0 to be equal to −3/1004 . 3 21 Finally, we have A(t) = 3(100 − t) − 4 (100 − t)5 and A(30) = 210 − 3 ≈ 209.97 lb. 100 10