SlideShare a Scribd company logo
1 of 4
Download to read offline
Midterm Exam Emat 213
                               November 2005
                                Marked out of 36

   [10 points] Problem 1.
Write the general solution of the following linear ODEs

                       (a) y (5) − y (4) − y − y + 4y − 2y = 0
                                       1      1
                       (b) x4 y + x2 y + xy − 2y = 0
                                       2      2
You may find this useful:
                            1          1                           1
    m(m − 1)(m − 2)(m − 3) + m(m − 1) + m − 2 = (m − 2)2 m2 − 2m −
                            2          2                           2
    m5 − m4 − m3 − m2 + 4m − 2 = (m − 1)3 (m + 1 − i)(m + 1 + i)

Solution
For (a) the second hint gives the factorization of the auxiliary equation. The
roots are m = 1 with multiplicity 3 and −1 ± i. Therefore the complementary
solution is

            yc = c1 ex + c2 xex + c3 x2 ex + c4 e−x cos(x) + c5 e−x sin(x)

For (b) the first hint gives almost the factorization of the auxiliary equation:
the quadratic polynomial has roots

                          1                                     1      √
            m2 − 2m −       =0        m1,2 = 1 ±         1+       = 1 ± 6/2
                          2                                     2
Therefore                                           √                √
                yc = c1 x2 + c2 x2 ln(x) + c3 x1+       6/2
                                                              + c4 x1−   6/2




   [10 points] Problem 2.
Consider the linear ODE

                             y − 4y + 4y = 25 cos(x)

(i) Find the complementary solution yc (i.e. the general solution of the as-
sociated homogeneous equation).
(ii) Find a particular solution yp (hint: Undetermined coefficients or Varia-
tion of Parameters (whichever)).
(iii) Use the above information to find the solution for the IVP

                             y − 4y + 4y = 25 cos(x)

                             y(0) = 0, y (0) = 0

                                          1
Solution
Complementary: the aux. eq.

                           m2 − 4m + 4 = (m − 2)2

Hence
                                yc = c1 e2x + c2 xe2x
Particular: we use the Ansatz

                               yp = A cos(x) + B sin(x)
                               yp = −A sin(x) + B cos(x)
                               yp = −A cos(x) − B sin(x) .

Plugging into the equation we get

    −A cos(x) − B sin(x) − 4(−A sin(x) + B cos(x)) + 4(A cos(x) + B sin(x)) =
    (3A − 4B) cos(x) + (4A + 3B) sin(x) = 25 cos(x)

        3A − 4B = 25            3A − 4B = 25              − 9 B − 4B = 25
                     →                 3     →              4
         4A + 3B = 0              A = −4B                     A = −3B
                                                                    4


          − 25 B = 25           B = −4
    →        4        →
          A = −3B 4              A=3

                               yp = 3 cos(x) − 4 sin(x)
The general solution is thus

               y = 3 cos(x) − 4 sin(x) + c1 e2x + c2 xe2x
               y = −3 sin(x) − 4 cos(x) + 2c1 e2x + 2c2 xe2x + c2 e2x

We have thus

                    y(0) = 3 + c1 = 0 ⇒ c1 = −3
                    y (0) = −4 − 6 + c2 = 0 ⇒ c2 = 10
                    yIV P = 3 cos(x) − 4 sin(x) − 3e2x + 10xe2x



   [10 points] Problem 3.
Consider the Cauchy-Euler linear ODE

                                x2 y − xy + y = x2

(i) Find the complementary solution yc (i.e. the general solution of the
associated homogeneous equation).
(ii) Find a particular solution yp (hint: Variation of Parameters. Warning:

                                          2
must put in standard form first!). Solution Complementary: the auxiliary
equation is
                m(m − 1) − m + 1 = m2 − 2m + 1 = (m − 1)2
hence
                                    yc = c1 x + c2 x ln x
Particular: using variation of parameters. Note that the standard form is
                                          1     1
                                    y −     y + 2y = 1
                                          x    x
so f (x) in the formula of variation of parameters is f (x) = 1.

        yp = u 1 y 1 + u 2 y 2
                   x x ln x
        W := det               =x
                   1 ln x + 1
             −y2 f    x ln x
        u1 =       =−        = − ln(x) ⇒ u1 = −                   ln(x)dx = −x ln x + x
              W         x
             y1 f   x
        u2 =      = = 1 ⇒ u2 = x
             W      x
So we have

                          yp = (x − x ln x)x + x2 ln x = x2
                                   y = x2 + c1 x + c2 x ln x



   [10 points] Problem 4.
A mass of 2Kg is attached to a spring of constant k = 1 N/m. The medium
offers a damping coefficient of 2 N s/m. The system is subject to an external
force equal to
                             Fext = 13 cos(2t).
Find the motion of the mass if we know that it is released from equilibrium and
at rest.
Solution
The equation of motion is

                                 M x + βx + kx = Fext
                                 2x + 2x + x = 13 cos(2t).

We have the auxiliary equation
                                                        √
                     2                           −1 ±       1−2       −1 ± i
                 2m + 2m + 1 = 0 m1,2 =                           =
                                                        2               2
                                  t
                                 −2
                           xc = e     (c1 cos(t/2) + c2 sin(t/2))

                                             3
The motion is underdamped (complex-conjugate roots).
The particular solution is

                                xp = A cos(2t) + B sin(2t)
                                xp = −2A sin(2t) + 2B cos(2t)
                                xp = −4A cos(2t) − 4B sin(2t)

Plugging into the equation we find

     2 (−4A cos(2t) − 4B sin(2t)) + 2 (−2A sin(2t) + 2B cos(2t)) + A cos(2t) + B sin(2t) =
     = (−7A + 4B) cos(2t) + (−7B − 4A) sin(2t) = 13 cos(2t)

Therefore
                                                                49
          −7A + 4B = 13               −7A + 4B = 13              4 B
                                                                   + 4B = 13
                        →                           →                        →
          −7B − 4A = 0                  A = −7B
                                              4                   A = −7B
                                                                       4

            65
             4 B
              = 13              B=4
                   →                 5
          A = −7B
               4                A = −57


So
                   t                               7             4
     x(t) = e− 2 (c1 cos(t/2) + c2 sin(t/2)) −       cos(2t) + sin(2t)
                                                   5             5
               1 −t                                                  14          8
     x (t) =     e 2   ((c2 − c1 ) cos(t/2) − (c1 + c2 ) sin(t/2)) +    sin(2t) + cos(2t)
               2                                                      5          5

                          7         7
         0 = x(0) = c1 −     ⇒ c1 =
                          5         5
                     c2 − c1   8    c2   7   16   c2    9          9
         0 = x (0) =         + =       −   +    =    +    ⇒ c2 = −
                        2      5    2    10 10    2    10          5
                        t   7           9          7         4
         xIV P = e− 2         cos(t/2) − sin(t/2) − cos(2t) + sin(2t)
                            5           5          5         5




                                            4

More Related Content

What's hot (19)

Engr 213 midterm 2b sol 2010
Engr 213 midterm 2b sol 2010Engr 213 midterm 2b sol 2010
Engr 213 midterm 2b sol 2010
 
MODULE 4- Quadratic Expression and Equations
MODULE 4- Quadratic Expression and EquationsMODULE 4- Quadratic Expression and Equations
MODULE 4- Quadratic Expression and Equations
 
Engr 213 midterm 2a sol 2009
Engr 213 midterm 2a sol 2009Engr 213 midterm 2a sol 2009
Engr 213 midterm 2a sol 2009
 
Engr 213 midterm 1a sol 2010
Engr 213 midterm 1a sol 2010Engr 213 midterm 1a sol 2010
Engr 213 midterm 1a sol 2010
 
Linear algebra-solutions-manual-kuttler-1-30-11-otc
Linear algebra-solutions-manual-kuttler-1-30-11-otcLinear algebra-solutions-manual-kuttler-1-30-11-otc
Linear algebra-solutions-manual-kuttler-1-30-11-otc
 
Matematika Kalkulus ( Limit )
Matematika Kalkulus ( Limit )Matematika Kalkulus ( Limit )
Matematika Kalkulus ( Limit )
 
Metrix[1]
Metrix[1]Metrix[1]
Metrix[1]
 
Engr 213 final 2009
Engr 213 final 2009Engr 213 final 2009
Engr 213 final 2009
 
Engr 213 midterm 2a 2009
Engr 213 midterm 2a 2009Engr 213 midterm 2a 2009
Engr 213 midterm 2a 2009
 
1. functions
1. functions1. functions
1. functions
 
Engr 213 midterm 1a sol 2009
Engr 213 midterm 1a sol 2009Engr 213 midterm 1a sol 2009
Engr 213 midterm 1a sol 2009
 
Add Maths 2
Add Maths 2Add Maths 2
Add Maths 2
 
Ponencia en el XVIII CCM
Ponencia en el XVIII CCMPonencia en el XVIII CCM
Ponencia en el XVIII CCM
 
Maths04
Maths04Maths04
Maths04
 
Legendre Function
Legendre FunctionLegendre Function
Legendre Function
 
Chapter 1 functions
Chapter 1  functionsChapter 1  functions
Chapter 1 functions
 
Algebra
AlgebraAlgebra
Algebra
 
Emat 213 final fall 2005
Emat 213 final fall 2005Emat 213 final fall 2005
Emat 213 final fall 2005
 
Sect4 5
Sect4 5Sect4 5
Sect4 5
 

Similar to Emat 213 midterm 2 fall 2005

Emat 213 midterm 2 winter 2006
Emat 213 midterm 2 winter 2006Emat 213 midterm 2 winter 2006
Emat 213 midterm 2 winter 2006
akabaka12
 
Quadratic Function Presentation
Quadratic Function PresentationQuadratic Function Presentation
Quadratic Function Presentation
RyanWatt
 
Quadratic functions and models
Quadratic functions and modelsQuadratic functions and models
Quadratic functions and models
Tarun Gehlot
 
Engr 213 midterm 2b sol 2009
Engr 213 midterm 2b sol 2009Engr 213 midterm 2b sol 2009
Engr 213 midterm 2b sol 2009
akabaka12
 
Engr 213 midterm 1b sol 2010
Engr 213 midterm 1b sol 2010Engr 213 midterm 1b sol 2010
Engr 213 midterm 1b sol 2010
akabaka12
 
Maths assignment
Maths assignmentMaths assignment
Maths assignment
Ntshima
 
Week 7 [compatibility mode]
Week 7 [compatibility mode]Week 7 [compatibility mode]
Week 7 [compatibility mode]
Hazrul156
 
Algebra lesson 4.2 zeroes of quadratic functions
Algebra lesson 4.2 zeroes of quadratic functionsAlgebra lesson 4.2 zeroes of quadratic functions
Algebra lesson 4.2 zeroes of quadratic functions
pipamutuc
 
Solving quadratic equations using the quadratic formula
Solving quadratic equations using the quadratic formulaSolving quadratic equations using the quadratic formula
Solving quadratic equations using the quadratic formula
DaisyListening
 
Solving quadratic equations using the quadratic formula
Solving quadratic equations using the quadratic formulaSolving quadratic equations using the quadratic formula
Solving quadratic equations using the quadratic formula
DaisyListening
 

Similar to Emat 213 midterm 2 fall 2005 (20)

Emat 213 midterm 2 winter 2006
Emat 213 midterm 2 winter 2006Emat 213 midterm 2 winter 2006
Emat 213 midterm 2 winter 2006
 
Quadratic Function Presentation
Quadratic Function PresentationQuadratic Function Presentation
Quadratic Function Presentation
 
Quadratic functions and models
Quadratic functions and modelsQuadratic functions and models
Quadratic functions and models
 
First Quarter - Chapter 2 - Quadratic Equation
First Quarter - Chapter 2 - Quadratic EquationFirst Quarter - Chapter 2 - Quadratic Equation
First Quarter - Chapter 2 - Quadratic Equation
 
Engr 213 midterm 2b sol 2009
Engr 213 midterm 2b sol 2009Engr 213 midterm 2b sol 2009
Engr 213 midterm 2b sol 2009
 
Engr 213 midterm 1b sol 2010
Engr 213 midterm 1b sol 2010Engr 213 midterm 1b sol 2010
Engr 213 midterm 1b sol 2010
 
Maths assignment
Maths assignmentMaths assignment
Maths assignment
 
Hw 4 sol
Hw 4 solHw 4 sol
Hw 4 sol
 
Sample question paper 2 with solution
Sample question paper 2 with solutionSample question paper 2 with solution
Sample question paper 2 with solution
 
Sect1 1
Sect1 1Sect1 1
Sect1 1
 
Week 7 [compatibility mode]
Week 7 [compatibility mode]Week 7 [compatibility mode]
Week 7 [compatibility mode]
 
Module 3 quadratic functions
Module 3   quadratic functionsModule 3   quadratic functions
Module 3 quadratic functions
 
Algebra slideshow
Algebra slideshowAlgebra slideshow
Algebra slideshow
 
Chithra
ChithraChithra
Chithra
 
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
 
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
 
Algebra lesson 4.2 zeroes of quadratic functions
Algebra lesson 4.2 zeroes of quadratic functionsAlgebra lesson 4.2 zeroes of quadratic functions
Algebra lesson 4.2 zeroes of quadratic functions
 
Simultaneous equations
Simultaneous equations Simultaneous equations
Simultaneous equations
 
Solving quadratic equations using the quadratic formula
Solving quadratic equations using the quadratic formulaSolving quadratic equations using the quadratic formula
Solving quadratic equations using the quadratic formula
 
Solving quadratic equations using the quadratic formula
Solving quadratic equations using the quadratic formulaSolving quadratic equations using the quadratic formula
Solving quadratic equations using the quadratic formula
 

More from akabaka12

Engr 213 midterm 2b 2009
Engr 213 midterm 2b 2009Engr 213 midterm 2b 2009
Engr 213 midterm 2b 2009
akabaka12
 
Emat 213 study guide
Emat 213 study guideEmat 213 study guide
Emat 213 study guide
akabaka12
 
Engr 213 midterm 1b sol 2009
Engr 213 midterm 1b sol 2009Engr 213 midterm 1b sol 2009
Engr 213 midterm 1b sol 2009
akabaka12
 
Engr 213 midterm 1a 2009
Engr 213 midterm 1a 2009Engr 213 midterm 1a 2009
Engr 213 midterm 1a 2009
akabaka12
 
Emat 213 midterm 1 winter 2006
Emat 213 midterm 1 winter 2006Emat 213 midterm 1 winter 2006
Emat 213 midterm 1 winter 2006
akabaka12
 
Engr 213 midterm 1b 2009
Engr 213 midterm 1b 2009Engr 213 midterm 1b 2009
Engr 213 midterm 1b 2009
akabaka12
 
Engr 213 final 2007
Engr 213 final 2007Engr 213 final 2007
Engr 213 final 2007
akabaka12
 
Engr 213 final sol 2007
Engr 213 final sol 2007Engr 213 final sol 2007
Engr 213 final sol 2007
akabaka12
 

More from akabaka12 (8)

Engr 213 midterm 2b 2009
Engr 213 midterm 2b 2009Engr 213 midterm 2b 2009
Engr 213 midterm 2b 2009
 
Emat 213 study guide
Emat 213 study guideEmat 213 study guide
Emat 213 study guide
 
Engr 213 midterm 1b sol 2009
Engr 213 midterm 1b sol 2009Engr 213 midterm 1b sol 2009
Engr 213 midterm 1b sol 2009
 
Engr 213 midterm 1a 2009
Engr 213 midterm 1a 2009Engr 213 midterm 1a 2009
Engr 213 midterm 1a 2009
 
Emat 213 midterm 1 winter 2006
Emat 213 midterm 1 winter 2006Emat 213 midterm 1 winter 2006
Emat 213 midterm 1 winter 2006
 
Engr 213 midterm 1b 2009
Engr 213 midterm 1b 2009Engr 213 midterm 1b 2009
Engr 213 midterm 1b 2009
 
Engr 213 final 2007
Engr 213 final 2007Engr 213 final 2007
Engr 213 final 2007
 
Engr 213 final sol 2007
Engr 213 final sol 2007Engr 213 final sol 2007
Engr 213 final sol 2007
 

Emat 213 midterm 2 fall 2005

  • 1. Midterm Exam Emat 213 November 2005 Marked out of 36 [10 points] Problem 1. Write the general solution of the following linear ODEs (a) y (5) − y (4) − y − y + 4y − 2y = 0 1 1 (b) x4 y + x2 y + xy − 2y = 0 2 2 You may find this useful: 1 1 1 m(m − 1)(m − 2)(m − 3) + m(m − 1) + m − 2 = (m − 2)2 m2 − 2m − 2 2 2 m5 − m4 − m3 − m2 + 4m − 2 = (m − 1)3 (m + 1 − i)(m + 1 + i) Solution For (a) the second hint gives the factorization of the auxiliary equation. The roots are m = 1 with multiplicity 3 and −1 ± i. Therefore the complementary solution is yc = c1 ex + c2 xex + c3 x2 ex + c4 e−x cos(x) + c5 e−x sin(x) For (b) the first hint gives almost the factorization of the auxiliary equation: the quadratic polynomial has roots 1 1 √ m2 − 2m − =0 m1,2 = 1 ± 1+ = 1 ± 6/2 2 2 Therefore √ √ yc = c1 x2 + c2 x2 ln(x) + c3 x1+ 6/2 + c4 x1− 6/2 [10 points] Problem 2. Consider the linear ODE y − 4y + 4y = 25 cos(x) (i) Find the complementary solution yc (i.e. the general solution of the as- sociated homogeneous equation). (ii) Find a particular solution yp (hint: Undetermined coefficients or Varia- tion of Parameters (whichever)). (iii) Use the above information to find the solution for the IVP y − 4y + 4y = 25 cos(x) y(0) = 0, y (0) = 0 1
  • 2. Solution Complementary: the aux. eq. m2 − 4m + 4 = (m − 2)2 Hence yc = c1 e2x + c2 xe2x Particular: we use the Ansatz yp = A cos(x) + B sin(x) yp = −A sin(x) + B cos(x) yp = −A cos(x) − B sin(x) . Plugging into the equation we get −A cos(x) − B sin(x) − 4(−A sin(x) + B cos(x)) + 4(A cos(x) + B sin(x)) = (3A − 4B) cos(x) + (4A + 3B) sin(x) = 25 cos(x) 3A − 4B = 25 3A − 4B = 25 − 9 B − 4B = 25 → 3 → 4 4A + 3B = 0 A = −4B A = −3B 4 − 25 B = 25 B = −4 → 4 → A = −3B 4 A=3 yp = 3 cos(x) − 4 sin(x) The general solution is thus y = 3 cos(x) − 4 sin(x) + c1 e2x + c2 xe2x y = −3 sin(x) − 4 cos(x) + 2c1 e2x + 2c2 xe2x + c2 e2x We have thus y(0) = 3 + c1 = 0 ⇒ c1 = −3 y (0) = −4 − 6 + c2 = 0 ⇒ c2 = 10 yIV P = 3 cos(x) − 4 sin(x) − 3e2x + 10xe2x [10 points] Problem 3. Consider the Cauchy-Euler linear ODE x2 y − xy + y = x2 (i) Find the complementary solution yc (i.e. the general solution of the associated homogeneous equation). (ii) Find a particular solution yp (hint: Variation of Parameters. Warning: 2
  • 3. must put in standard form first!). Solution Complementary: the auxiliary equation is m(m − 1) − m + 1 = m2 − 2m + 1 = (m − 1)2 hence yc = c1 x + c2 x ln x Particular: using variation of parameters. Note that the standard form is 1 1 y − y + 2y = 1 x x so f (x) in the formula of variation of parameters is f (x) = 1. yp = u 1 y 1 + u 2 y 2 x x ln x W := det =x 1 ln x + 1 −y2 f x ln x u1 = =− = − ln(x) ⇒ u1 = − ln(x)dx = −x ln x + x W x y1 f x u2 = = = 1 ⇒ u2 = x W x So we have yp = (x − x ln x)x + x2 ln x = x2 y = x2 + c1 x + c2 x ln x [10 points] Problem 4. A mass of 2Kg is attached to a spring of constant k = 1 N/m. The medium offers a damping coefficient of 2 N s/m. The system is subject to an external force equal to Fext = 13 cos(2t). Find the motion of the mass if we know that it is released from equilibrium and at rest. Solution The equation of motion is M x + βx + kx = Fext 2x + 2x + x = 13 cos(2t). We have the auxiliary equation √ 2 −1 ± 1−2 −1 ± i 2m + 2m + 1 = 0 m1,2 = = 2 2 t −2 xc = e (c1 cos(t/2) + c2 sin(t/2)) 3
  • 4. The motion is underdamped (complex-conjugate roots). The particular solution is xp = A cos(2t) + B sin(2t) xp = −2A sin(2t) + 2B cos(2t) xp = −4A cos(2t) − 4B sin(2t) Plugging into the equation we find 2 (−4A cos(2t) − 4B sin(2t)) + 2 (−2A sin(2t) + 2B cos(2t)) + A cos(2t) + B sin(2t) = = (−7A + 4B) cos(2t) + (−7B − 4A) sin(2t) = 13 cos(2t) Therefore 49 −7A + 4B = 13 −7A + 4B = 13 4 B + 4B = 13 → → → −7B − 4A = 0 A = −7B 4 A = −7B 4 65 4 B = 13 B=4 → 5 A = −7B 4 A = −57 So t 7 4 x(t) = e− 2 (c1 cos(t/2) + c2 sin(t/2)) − cos(2t) + sin(2t) 5 5 1 −t 14 8 x (t) = e 2 ((c2 − c1 ) cos(t/2) − (c1 + c2 ) sin(t/2)) + sin(2t) + cos(2t) 2 5 5 7 7 0 = x(0) = c1 − ⇒ c1 = 5 5 c2 − c1 8 c2 7 16 c2 9 9 0 = x (0) = + = − + = + ⇒ c2 = − 2 5 2 10 10 2 10 5 t 7 9 7 4 xIV P = e− 2 cos(t/2) − sin(t/2) − cos(2t) + sin(2t) 5 5 5 5 4