SlideShare a Scribd company logo
1 of 60
Download to read offline
Random Walks on Random Lattices
and Their Applications
Ryan White
Dissertation Defense
April 24, 2015
Ryan White Random Walks on Random Lattices 2015 1 / 56
Motivation and Models
Random Walks on Random Lattices
(a) Random Walk (b) Random Lattice
Ryan White Random Walks on Random Lattices 2015 2 / 56
Motivation and Models
Stochastic Cumulative Loss Model
Suppose (nk, wk) are iid random vectors valued in N × R≥0 with mutually dependent components
Consider η, a Poisson random measure of rate λ: i.e. for a Poisson point process 0 < t1 < t2 < ... a.s. and
E ∈ B(R≥0),
η(E) =
∞
k=1
(nk, wk)εtk (E)
where εtk is the Dirac (point mass) measure,
εtk (E) =
1, if tk ∈ E
0, else
Ryan White Random Walks on Random Lattices 2015 3 / 56
Motivation and Models
Stochastic Cumulative Loss Process (cont.)
η([0, t]) is a monotone increasing process measuring the cumulative losses up to time t,
Ryan White Random Walks on Random Lattices 2015 4 / 56
Motivation and Models
Delayed Observation
The process is observed upon a delayed renewal process
T =
∞
n=0
ετn
δk = τk − τk−1 are iid with LST l(θ), k ∈ N
τ0 = δ0 is independent of δk, k ≥ 1
The process of interest is the embedded process
Z =
∞
n=0
η((τn−1, τn])ετn =
∞
n=0
(Xn, Yn)ετn
(Nn, Wn) = Z([0, τn]), the value of the process at τn
Ryan White Random Walks on Random Lattices 2015 5 / 56
Motivation and Models
Model Summary: 4 Random Parts
1 The arrival process t1 < t2 < ...
2 The nodes lost per attack
3 The weight per node
4 The observation process τ0 < τ1 < τ2 < ...
Ryan White Random Walks on Random Lattices 2015 6 / 56
Motivation and Models
Delayed Observation as an Embedded Process
We consider the (green) embedded process moving on a random lattice
Ryan White Random Walks on Random Lattices 2015 7 / 56
Motivation and Models
Observed Threshold Crossings
ρ = min{n : Nn > M or Wn > V }
The first observed passage time (FOPT) is τρ
Ryan White Random Walks on Random Lattices 2015 8 / 56
Motivation and Models
Simulations of the Observed Process
Ryan White Random Walks on Random Lattices 2015 9 / 56
Motivation and Models
General Trajectory of the Upcoming Material
1 Analysis of the process upon τρ−1 and τρ (time insensitive analysis)
J. H. Dshalalow and R. White. Neural, Parallel, and Scientific Computations, 21 (2013).
2 Strategy 1 for a refined analysis (auxiliary thresholds)
J. H. Dshalalow and R. White. Stochastic Analysis and Applications, 32:3 (2014).
3 d-dimensional time insensitive analysis (to be written as an additional paper)
4 Strategy 2 for refined analysis (time sensitive analysis)
J.H. Dshalalow and R. White. Time Sensitive Analysis of Independent and Stationary Increment Processes
(2015 submitted paper).
R. White and J. H. Dshalalow. Random Walks on Random Lattices with Applications (2015 submitted paper).
Ryan White Random Walks on Random Lattices 2015 10 / 56
Time Insensitive Analysis
Functional of Interest
We seek a joint functional of the of the process upon τρ−1 and τρ,
Φ(α0, α, β0, β, h0, h) = E α0
Nρ−1
αNρ
e−β0Wρ−1−βWρ
e−h0τρ−1−hτρ
Φ leads to marginal PGFs/LSTs,
Φ(1, α, 0, 0, 0, 0) = E αNρ
Φ(1, 1, β0, 0, 0, 0) = E e−β0Wρ−1
Φ(1, 1, 0, 0, 0, h) = E e−hτρ
which lead to moments and distributions of components of the process upon τρ−1 and τρ
Ryan White Random Walks on Random Lattices 2015 11 / 56
Time Insensitive Analysis
Goal and Operational Calculus Strategy
The goal is to derive Φ in an analytically or numerically tractable form
Strategy to derive Φ,
Φ
H
−→ Ψ
Assumptions
−−−−−−→ Ψ (convenient form)
H−1
−−−→ Φ (tractable)
for an operator H introduced next
Ryan White Random Walks on Random Lattices 2015 12 / 56
Time Insensitive Analysis
Hpq and H−1
xy Operators
Hpq = LCq ◦ Dp
LCq(g(q))(y) = yLq(g(q)) = y
∞
q=0
g(q)e−qy
dq
Dp{f(p)}(x) = (1 − x)
∞
p=0
xp
f(p), x < 1
Dp’s inverse restores a sequence f,
Dk
x (·) = limx→0
1
k!
∂k
∂xk
1
1−x
(·) , k ∈ N
Dk
x (Dp{f(p)}(x)) = f(k)
H−1
xy (Ψ(x, y)) (p, q) = L−1
y
1
y
Dp
x (Ψ(x, y)) (q)
Ryan White Random Walks on Random Lattices 2015 13 / 56
Time Insensitive Analysis
Decomposition of Φ
Let µ = inf{n : Nn > M}, ν = inf{n : Wn > V }
Decompose Φ as
Φ = E α0
Nρ−1
αNρ
e−β0Wρ−1−βWρ
e−h0τρ−1−hτρ
= E α
Nµ−1
0 αNµ
e−β0Wµ−1−βWµ−h0τµ−1−hτµ
1{µ<ν}
+ E α
Nµ−1
0 αNµ
e−β0Wµ−1−βWµ−h0τµ−1−hτµ
1{µ=ν}
+ E α
Nν−1
0 αNν
e−β0Wν−1−βWν −h0τν−1−hτν
1{µ>ν}
= Φµ<ν + Φµ=ν + Φµ>ν
We will derive Φµ<ν of the confined process on the trace σ-algebra F ∩ {µ < ν}
Ryan White Random Walks on Random Lattices 2015 14 / 56
Time Insensitive Analysis
Decomposing Further, Applying Hpq
Introduce µ(p) = inf{j : Nj > p}, ν(q) = inf{k : Wk > q}
Φµ(p)<ν(q) =
j≥0 k>j
E α
Nj−1
0 αNj
e−β0Wj−1−βWj −h0τj−1−hτj
1{µ(p)=j, ν(q)=k}
Ryan White Random Walks on Random Lattices 2015 15 / 56
Time Insensitive Analysis
Decomposing Further, Applying Hpq
Introduce µ(p) = inf{j : Nj > p}, ν(q) = inf{k : Wk > q}
Φµ(p)<ν(q) =
j≥0 k>j
E α
Nj−1
0 αNj
e−β0Wj−1−βWj −h0τj−1−hτj
1{µ(p)=j, ν(q)=k}
By Fubini’s Theorem, Hpq can be interchanged with the two series and expectation
Using the memoryless property of the Poisson process and independent increments,
Hpq Φµ(p)<ν(q) (x, y) =
j≥0
E (α0αx)Nj−1
e−(β0+β+y)Wj−1−(h0+h)τj−1
× E αXj
1 − xXj
e−(β+y)Yj −hδj
×
k>j
E e−y(Yj+1+...+Yk−1) E 1 − e−yYk
Ryan White Random Walks on Random Lattices 2015 15 / 56
Time Insensitive Analysis
Deriving Φµ<ν
Denote the joint transform of each observed increment
γ(z, v, ϑ) = E zX1
e−vY1−ϑδ1
The j and k series (assuming γ < 1) become
Γ1
0 − Γ0 + (Γ1
− Γ)γ0
j≥1
γj−1
= Γ1
0 − Γ0 + γ0
Γ1
− Γ
1 − γ
(1 − γ(1, y, 0))
k>j
γk−1−j
(1, y, 0) = 1
Then Φµ<ν = H−1
xy Γ1
0 − Γ0 + γ0
1−γ
Γ1
− Γ (M, V ), where
γ = γ (α0αx, β0 + β + y, h0 + h)
Γ = γ (αx, β + y, h)
ζ1
= γ(αx, β, h)
Ryan White Random Walks on Random Lattices 2015 16 / 56
Time Insensitive Analysis
Result for Φ
Solving for Φµ=ν and Φµ>ν analogously and adding to Φµ<ν ,
Φ = H−1
xy ζ1
0 − Γ0 +
γ0
1 − γ
ζ1
− Γ (M, V )
where
γ = γ (α0αx, β0 + β + y, h0 + h)
Γ = γ (αx, β + y, h)
ζ1
= γ(αx, β, h)
Ryan White Random Walks on Random Lattices 2015 17 / 56
Time Insensitive Analysis
Results for a Special Case
To demonstrate that tractable results can be derived from this, we will consider a special case where
δk ∈ [Exponential(µ)] =⇒ L(θ) = µ
µ+θ
nk ∈ [Geometric(a)] =⇒ g(z) = az
1−bz
, (b = 1 − a)
wjk ∈ [Exponential(ξ)] =⇒ l(u) = ξ
ξ+u
(N0, W0) = (0, 0)
Ryan White Random Walks on Random Lattices 2015 18 / 56
Time Insensitive Analysis
Theorem 1
Φ (1, z, 0, v, 0, θ) = E zNρ
e−vWρ
e−θτρ
= 1 − 1 −
µ
µ + θ + λ
v + ξ(1 − bz)
v + ξ(1 − c2z)
1 +
bµ
λ + bθ
+
aλµ
(λ + bθ) (λ + θ)
φ (z, v, θ) ,
φ(z, v, θ) =
v + ξ
v + ξ(1 − c1z)
−
c1zξ Q(M − 1, c1zξV ) e−(v+ξ(1−c1z))V
v + ξ(1 − c1z)
−
(c1zξ)M
P(M − 1, (ξ + v)V )
(v + ξ(1 − c1z))(ξ + v)M−1
,
c1 =
λ + bθ
λ + θ
, c2 =
λ + b(µ + θ)
λ + µ + θ
,
and Q(x, y) = Γ(x,y)
Γ(x)
is the lower regularized gamma function.
Ryan White Random Walks on Random Lattices 2015 19 / 56
Time Insensitive Analysis
Corollaries: Marginal Transforms
Φ(1, z, 0, 0, 0, 0) = E zNρ
=
zQ(M − 1, zξV )e−ξ(1−z)V
+ zM
P(M − 1, ξV )
µ + λ − (λ + bµ)z
Φ(1, 1, 0, v, 0, 0) = E e−vWρ
=
λv + bµv + aξµφ(1, v, 0)
aξµ + (λ + µ)v
Φ(1, 1, 0, 0, 0, θ) = E e−θτρ
= 1 −
θ
µ + θ
1 +
bµ
λ + bθ
+
aλµφ(1, 0, θ)
(λ + bθ)(λ + θ)
Ryan White Random Walks on Random Lattices 2015 20 / 56
Time Insensitive Analysis
Useful Results: CDF of First Observed Passage Time, τρ
Fτρ (ϑ) = P (τρ < ϑ)
= λP(M − 1, ξV )
M−1
j=0
cjφj(ϑ) + λe−ξλ
M−2
k=0
(ξV )k
k!
k
j=0
djφj(ϑ)
where
cj =
M − 1
j
(aλ)j
bM−1−j
dj =
k
j
(aλ)j
bk−j
φj(ϑ) =
1
λj+1
P(j + 1, λϑ) −
e−µϑ
(λ − µ)j+1
P(j + 1, (λ − µ)ϑ)
Ryan White Random Walks on Random Lattices 2015 21 / 56
Time Insensitive Analysis
Useful Results: Means at τρ
E [Nρ] =
λ + bµ
aµ
+ M − (M − 1)Q(M − 1, ξV ) + ξV Q(M − 2, ξV )
E [Wρ] =
E [Nρ]
ξ
= E [Nρ] E[w11]
1,000 realizations of the process under each of the some sets of parameters (λ, µ, a, ξ, M, V ) were simulated and
sample means recorded:
Parameters E [Nρ] S. Mean A. Error E [Wρ] S. Mean A. Error
(1) 989.08 988.82 0.26 989.08 990.06 0.98
(2) 990.63 990.39 0.24 990.63 990.27 0.36
(3) 989.28 989.92 0.64 989.28 988.97 0.31
(4) 989.08 989.08 0.00 989.08 989.68 0.31
(5) 503.00 502.73 0.27 1006.00 1005.04 0.96
(6) 1002.00 1001.57 0.43 501.00 500.91 0.09
(7) 803.00 802.68 0.32 803.00 802.67 0.33
(8) 752.00 752.10 0.10 752.00 751.68 0.32
(9) 493.57 493.46 0.11 987.14 986.59 0.55
J. H. Dshalalow and R. White. Neural, Parallel, and Scientific Computations, 21 (2013).
Ryan White Random Walks on Random Lattices 2015 22 / 56
Auxiliary Threshold Models
Auxiliary Threshold Model
We introduce another threshold M1 < M with µ1 = min{n : Nn > M1}.
Ryan White Random Walks on Random Lattices 2015 23 / 56
Auxiliary Threshold Models
Functional of Interest
Our functional of interest will be similar to before, but containing terms associated with the auxiliary crossing at
µ1
Φµ1<ρ = Φµ1<ρ (z0, z, α0, α, v0, v, β0, β, θ0, θ, h0, h)
= E z
Nµ1−1
0 zNµ1 α
Nρ−1
0 αNρ
e−v0Wµ1−1−vWµ1 e−β0Wρ−1−βWρ
e−θ0τµ1−1−θτµ1 e−h0τρ−1−hτρ
1{µ1<ρ}
= Φµ1<µ<ν + Φµ1<µ=ν + Φµ1<ν<µ
=


j≥0 k>j n>k

 +


j≥0 n=k>j

 +


j≥0 n>j k>n

 (µ1 = j, µ = k, ν = n)
We use an operator Hpqs = LCs ◦ Dq ◦ Dp adaped to work with the additional discrete threshold, but the path
to results remains the same
Φµ1<ρ
Hpqs
−−−→ Ψµ1<ρ
Assumptions
−−−−−−→ Ψµ1<ρ (convenient)
H−1
xyw
−−−−→ Φµ1<ρ (tractable)
Ryan White Random Walks on Random Lattices 2015 24 / 56
Auxiliary Threshold Models
Results for Φµ1<ρ
Φµ1<ρ = H−1
xyw φ1
0 − φ0 +
ϕ0
1 − ϕ
(φ1
− φ)
ξ1
− χ
1 − ψ
(M1, M, V )
where
ϕ = γ (u0uα0αxy, v0 + v + β0 + β + w, θ0 + θ + h0 + h)
φ = γ (uα0αxy, v + β0 + β + w, θ + h0 + h)
φ1
= γ (uα0αy, v + β0 + β + w, θ + h0 + h)
ψ = γ (α0αy, β0 + β + w, h0 + h)
χ = γ (αy, β + w, h)
ξ1
= γ (α, β, h)
Ryan White Random Walks on Random Lattices 2015 25 / 56
Auxiliary Threshold Models
Results for a Special Case
Suppose
δk = c a.s.
nk with arbitrary finite distribution (p1, p2, ..., pm)
wjk ∈ [Gamma(α, ξ)]
Ryan White Random Walks on Random Lattices 2015 26 / 56
Auxiliary Threshold Models
Theorem
Φµ1<ρ(1, z, 1, 1, 0, v, 0, 0, 0, θ, 0, 0) = E zNµ1 e−vWµ1 e−θτµ1 1{µ1<ρ}
=
M1−1
k=0
zk
Fk
M−1−k
m=0
zm
Em
ξ
v + ξ
α(k+m)
P(α(k + m), (v + ξ)V )
−
M1−1
k=0
zk ξ
v + ξ
αk
P(αk, (v + ξ)V )
k
n=0
EnFk−n e−c(θ+λ)
Fj =
R−1
R
j
r=0
(cλ)j−r
Li−(j−r) e−c(θ+λ)
β 1=j
[R]·β=r+j
pβ1
1 · · · pβR
R
β1! · · · βR!
,
Ej =
R−1
R
j
r=0
(cλ)j−r
β 1=j
[R]·β=r+j
pβ1
1 · · · pβR
R
β1! · · · βR!
Ryan White Random Walks on Random Lattices 2015 27 / 56
Auxiliary Threshold Models
A Computational Difficulty
β 1=j
[R]·β=r+j
pβ1
1 · · · pβR
R
β1! · · · βR!
,
Model 1 is general and useful, but it requires calculation of all integer solutions in {0, 1, ..., R}R
of the linear
system
β1 + β2 + ... + βR = j
β1 + 2β2 + ... + RβR = r + j
for each j = 0, 1, ..., M − 1 and r = 0, 1, ..., R−1
R
j .
Other special cases: nk geometric, nk = n a.s.,
Ryan White Random Walks on Random Lattices 2015 28 / 56
Auxiliary Threshold Models
Results and Simulation
We find Φµ1<ρ(1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0) = E 1{µ1<ρ} = P{µ1 < ρ} and compare to simulated results for a
range of M1 values
J. H. Dshalalow and R. White. Stochastic Analysis and Applications, 32:3 (2014).
Ryan White Random Walks on Random Lattices 2015 29 / 56
Auxiliary Threshold Models
Simulation for an Alternate Model
We did the same under the assumptions δ1 ∈ [Exponential(µ)], n1 ∈ [Geometric(a)], w11 ∈ [Exponential(ξ)].
J. H. Dshalalow and R. White. Stochastic Analysis and Applications, 32:3 (2014).
Ryan White Random Walks on Random Lattices 2015 30 / 56
Auxiliary Threshold Models
Continuous and Dual Auxiliary Threshold Models
Figure: Continuous Auxiliary Model,
ν1 = min{n : Wn > V1} Figure: Dual Auxiliary Model, ρ1 = max{µ1, ν1}
Ryan White Random Walks on Random Lattices 2015 31 / 56
d-Dimensional Insensitive Model
d-dimensional Model
Suppose A(t) is a d-dimensional process similar to the models above, with observed crossing indices
{ν1, ..., νd} and ρ = min{ν1, ..., νd}. We investigate
Φ(u) = E u
A1ρ
1 · · · u
Adρ
d
If a dimension of the mark is continuous-valued, the operator Dp may be replaced with LCp
In addition, terms of the form u
Ajρ
j in the functionals should be replaced with terms of the form e−uj Ajρ
i.e. take uj → e−uj
Thus, we lose no generality by assuming the process is discrete-valued
Ryan White Random Walks on Random Lattices 2015 32 / 56
d-Dimensional Insensitive Model
Confined Functionals
Let Q be a sub-partial ordering of threshold crossings, then we seek
ΦQ(u) = E u
A1ρ
1 · · · u
Adρ
d 1Q
For example, let Q = {ν1 = ν2 < ν3} ∩ {ν4 < ν3} in 4D, then we may find
ΦQ(0) = E [1Q] = P (ν1 = ν2 < ν3, ν4 < ν3)
Ryan White Random Walks on Random Lattices 2015 33 / 56
d-Dimensional Insensitive Model
Confined Functionals
For the set P partial orderings satisfying sub-partial ordering Q,
ΦQ(u) = E uAρ
1Q
=
{P ∈P}
E uAρ
1P
=
{P ∈P}
ΦP (u)
For example, let Q = {ν1 = ν2 < ν3} ∩ {ν4 < ν3} in 4D, then
P = {{ν1 = ν2 < ν4 < ν3}, {ν1 = ν2 = ν4 < ν3}, {ν4 < ν1 = ν2 < ν3}}
ΦP =
{P ∈P}
ΦP = Φν1=ν2<ν4<ν3 + Φν1=ν2=ν4<ν3 + Φν4<ν1=ν2<ν3
Ryan White Random Walks on Random Lattices 2015 34 / 56
d-Dimensional Insensitive Model
Arbitrary Confined Functional
Suppose P is an arbitrary partial ordering of d crossings observed upon k times
Fixing jn’s, we derive
where R’s simply depend on u, v, y, and the increment’s joint functional γ
Ryan White Random Walks on Random Lattices 2015 35 / 56
d-Dimensional Insensitive Model
Rj2sj
Rk2sk = E 1 − y
A
p(sk−1+1)
sk
p(sk−1+1)
· · · 1 − y
A
p(d)
sk
p(d)
= 1 − γp 1; yp(sk−1+1), 1 + γp 1; 1, yp(sk−1+2), 1 + ... + γp 1; 1, yp(n)
+ γp 1; yp(sk−1+1), yp(sk−1+2), 1 + ... + γp 1; yp(sk−1+1), 1, yp(d) + ... + γp 1; 1, yp(d−1), yp(d)
+ ... + (−1)rk−rk−1
γp 1; yp(sk−1+1), ..., yp(d)
Ryan White Random Walks on Random Lattices 2015 36 / 56
d-Dimensional Insensitive Model
Code (in Python) is developed that
1 Generates all partial orderings of d indices (d ≤ 10 feasible)
2 Queries the list to prune it to P for any specified Q
The is computationally intense for large d, because we no only have d! partial orderings with all < signs, but
also all partial orderings with =’s
Special case results rely on d transform inversions, so this is sufficient for most purposes
Ryan White Random Walks on Random Lattices 2015 37 / 56
Time Sensitive Analysis
Time Sensitive Analysis: Motivation
Ryan White Random Walks on Random Lattices 2015 38 / 56
Time Sensitive Analysis
New capabilities:
Joint results: E e−uWρ
1{t<τρ} , P (Wρ < s, τρ < t), P (Nρ = n, τρ < t)
Conditional probabilities: P (Nρ = n|τρ > t) =
P (Nρ=n,τρ>t)
P (τρ>t)
Ryan White Random Walks on Random Lattices 2015 39 / 56
Time Sensitive Analysis
The Previous Method Fails!
We would like to expand each functional in stochastic series as before
Hpq
t≥0
e−θt
E e−v1·Aρ−1−v2·Aρ−w·A(t)−h0τρ−1−hδρ
1{t<τρ−1} dt
= Hpq
j>0 k>j t≥0
e−θt
E e−v1·Aj−1−v2·Aj −(...)
1{t<τj−1}1{µ(p)=j,ν(q)=k} dt
However, we cannot simply find the terms to sum since A(t) is involved
Next, we prove a very general result leading to a way to represent these terms
Ryan White Random Walks on Random Lattices 2015 40 / 56
Time Sensitive Analysis
ISI Processes
Consider a Rd
-valued stochastic process A(t) on a filtered probability space (Ω, F, (Ft)t≥0, P) such that
A(t) has independent increments:
For 0 < t1 < ... < tk, the increments A(t1) − A(0), A(t2) − A(t1), ..., A(tk) − A(tk−1) are independent.
i.e., increments on non-overlapping time intervals are independent
A(t) has stationary increments:
For 0 ≤ s < t, the distribution of A(t) − A(s) depends only on t − s
L´evy processes are ISI (e.g. Poisson processes, Wiener processes)
Ryan White Random Walks on Random Lattices 2015 41 / 56
Time Sensitive Analysis
Discrete-valued Dimensions
If a dimension of the mark is discrete-valued, the operator LCp may be replaced with the Dp operator
In addition, terms of the form e−v·An
in the functionals should be replaced with terms of the form
d
j=0 v
Ajn
j (i.e. take vj → −ln vj).
Thus, we lose no generality by assuming the process is continuous-valued in each dimension.
Ryan White Random Walks on Random Lattices 2015 42 / 56
Time Sensitive Analysis
ISI Functionals
Suppose T = {T0, T1, ..., Tm} are random variables with Tn = Tn−1 + ∆n where each ∆n is independent
of ∆0, ∆1, ..., ∆n−1
We do not assume they are identically distributed
For 1 ≤ n ≤ m, we will seek functionals of the form
Fn (t, v0, ..., vm, w, x) = E e− m
j=0 vj ·A(Tj )−w·A(t)−x·∆
1{Tn−1
≤t<Tn} ,
where ∆ = (∆0, ..., ∆m)
Ryan White Random Walks on Random Lattices 2015 43 / 56
Time Sensitive Analysis
Theorem 1
The functional Fn (t, v0, ..., vm, w, x) of the d-dimensional ISI process A(t) on the trace σ-algebra
F ∩ {Tn−1 ≤ t < Tn} where Tn−1 and ∆n are independent of Ft satisfies
F∗
n (θ, v0, ..., vm, w, x)
=
n−1
j=0
γj (bj + w, xj + θ) E e−xn∆n
ψ (bn, bn + w, ∆n)
m
j=n+1
γj (bj, xj)
where
bj =
m
i=j
vi
ϕ (b, s) = E e−b·A(s)
ψ (b, x, α) = e−θ(·)
ϕ (b, ·) ∗ ϕ (x, ·) (α) =
α
0
e−θt
ϕ (b, t) ϕ (x, α − t) dt
γj (a, ϑ) = E e−ϑ∆j
e−a·[A(Tj )−A(Tj−1)] = E e−a·A(∆j )−ϑ∆j
Ryan White Random Walks on Random Lattices 2015 44 / 56
Time Sensitive Analysis
Theorem 1 Proof
A (Tk) =
k
j=0
(A (Tj) − A (Tj−1)) , k = 0, ..., n − 1
A(t) = A(t) − A (Tn−1) +
n−1
j=0
(A (Tj) − A (Tj−1))
A (Tk) =
k
j=0
(A (Tj) − A (Tj−1)) + A(t) − A(t), k = n, ..., m
Let α = (α0, ..., αm) and sn = n
j=0 αj. Writing the expectation F∗
n explicitly,
F∗
n (θ, v0, ..., vm, w, x)
=
t≥0
e−θt
α∈Rm+1
≥0
e−x·α
E e− n−1
j=0 (bj +w)·[A(sj )−A(sj−1)]−(bn+w)·[A(t)−A(sn−1)]
× e−bn·[A(sn)−A(t)]− m
j=n+1 bj ·[A(sj )−A(sj−1)]
× 1{sn−1
≤t<sn−1+αn} dP m
⊗
j=0
∆j
(α0, ..., αm) dt
Ryan White Random Walks on Random Lattices 2015 45 / 56
Time Sensitive Analysis
Theorem 1 Proof (cont.)
By the independent and stationary increment properties,
F∗
n (θ, v0, ..., vm, w, x)
=
t≥0
e−θt
α∈Rm+1
≥0
e−x·α
n−1
j=0
ϕ (bj + w, αj) ϕ (bn + w, t − sn−1) ϕ (bn, sn−1 + αn − t)
×
m
j=n+1
ϕ (bj, αj) 1{sn−1
≤t<sn−1+αn} dP m
⊗
j=0
∆j
(α0, ..., αm) dt
Ryan White Random Walks on Random Lattices 2015 46 / 56
Time Sensitive Analysis
Theorem 1 Proof (cont.)
By the independent and stationary increment properties,
F∗
n (θ, v0, ..., vm, w, x)
=
t≥0
e−θt
α∈Rm+1
≥0
e−x·α
n−1
j=0
ϕ (bj + w, αj) ϕ (bn + w, t − sn−1) ϕ (bn, sn−1 + αn − t)
×
m
j=n+1
ϕ (bj, αj) 1{sn−1
≤t<sn−1+αn} dP m
⊗
j=0
∆j
(α0, ..., αm) dt
By Fubini’s Theorem and the independence of ∆0, ..., ∆m,
=
n−1
j=0
αj ≥0
e−(xj +θ)αj
ϕ (bj + w, αj) dP∆j (αj)
m
j=n+1
αj ≥0
e−xj αj
ϕ (bj, αj) dP∆j (αj)
×
αn≥0
e−xnαn
sn−1+αn
t=sn−1
e−θ(t−sn−1)ϕ (bn + w, t − sn−1) ϕ (bn, sn−1 + αn − t) dt dP∆n (αn)
Ryan White Random Walks on Random Lattices 2015 46 / 56
Time Sensitive Analysis
Theorem 1 Proof (cont.)
By the translation invariance of the Lebesgue measure, taking u = t − sn−1,
F∗
n (θ, v0, ..., vm, w, x)
=
n−1
j=0
γj (bj + w, xj + θ)
m
j=n+1
γj (bj, xj)
×
αn≥0
e−xnαn
αn
u=0
e−θu
ϕ (bn + w, u) ϕ (bn, αn − u) du dP∆n (αn) (1)
=
n−1
j=0
γj (bj + w, xj + θ)
m
j=n+1
γj (bj, xj)
αn≥0
e−xnαn
ψ (bn + w, bn, αn) dP∆n (αn) (2)
=
n−1
j=0
γj (bj + w, xj + θ) E e−xn∆n
ψ (bn + w, bn, ∆n)
m
j=n+1
γj (bj, xj) (3)
Ryan White Random Walks on Random Lattices 2015 47 / 56
Time Sensitive Analysis
Corollary 2
Let A(t) be a d-dimensional marked Poisson process of rate λ and assume T is independent of Ft, then
F∗
n (θ, v0, ..., vm, w, x) =
n−1
j=0
Lj (θ + xj + λ (1 − g (bj + w)))
×
Ln (xn + λ (1 − g (bn))) − Ln (xn + θ + λ (1 − g (bn + w)))
θ + λ (g (bn + w) − g (bn))
×
m
j=n+1
Lj (xj + λ (1 − g (bj)))
where
Lj (z) = E e−z∆j
is the LST of ∆j
g(v) = E e−v·a1
is a joint LST of the marks
i.e. assume the marks are nonnegative real-valued
Ryan White Random Walks on Random Lattices 2015 48 / 56
Time Sensitive Analysis
Returning to the Goal
The goal is to find joint functionals of the form
Φ(1)
(θ, v1, v2, w, h0, h) =
t≥0
e−θt
E e−v1·Aρ−1−v2·Aρ−w·A(t)−h0τρ−1−hδρ
1{t<τρ−1} dt
Φ(2)
(θ, v1, v2, w, h0, h) =
t≥0
e−θt
E e−v1·Aρ−1−v2·Aρ−w·A(t)−h0τρ−1−hδρ
1{τρ−1≤t<τρ} dt
Ryan White Random Walks on Random Lattices 2015 49 / 56
Time Sensitive Analysis
Returning to the Goal
The goal is to find joint functionals of the form
Φ(1)
(θ, v1, v2, w, h0, h) =
t≥0
e−θt
E e−v1·Aρ−1−v2·Aρ−w·A(t)−h0τρ−1−hδρ
1{t<τρ−1} dt
Φ(2)
(θ, v1, v2, w, h0, h) =
t≥0
e−θt
E e−v1·Aρ−1−v2·Aρ−w·A(t)−h0τρ−1−hδρ
1{τρ−1≤t<τρ} dt
τρ−1 and δρ are not independent, so the results are not immediately applicable. Let T0 = 0 and
T1 = τj−1 = δ0 + δ1 + ... + δj−1 T2 = τj = T1 + δj
T3 = τk−1 = T2 + δj+1 + ... + δk−1 T4 = τk = T3 + δk
for fixed j and k so that each ∆n is independent of the prior ∆r’s
Ryan White Random Walks on Random Lattices 2015 49 / 56
Time Sensitive Analysis
Corollary 3
Let A(t) be a 2-dimensional marked Poisson process of rate λ. For the process with m = 4 on the trace
σ-algebra F (Ω) ∩ {t < τj−1}, respectively,
F∗
1jk (θ, v1, v2, v3, v4, w, h0, h0, h)
= Lt E e−v1·Aj−1−v2·Aj −v3·Ak−1−v4·Ak−w·A(t)−h0τj−1−hδj
1{t<τj−1}1{µ=j,ν=k}
=
γ0 (b1, h0) γj−1
(b1, h0) − γ0 (b1 + w, θ + h0) γj−1
(b1 + w, θ + h0)
θ + λ (g (b1 + w) − g (b1))
γ (b2, h) γ (v4, 0) γk−1−j
(b3, 0)
where
An = A(τn)
Xn = An − An−1
γ(v, θ) = E e−v·X1−θδ1
Ryan White Random Walks on Random Lattices 2015 50 / 56
Time Sensitive Analysis
Theorem 4
The joint functional Φ
(1)
µ<ν of the process A(t) on the interval [0, τρ−1) satisfies
Φ
(1)
µ<ν (θ, v1, v2, w, h0, h)
=
t≥0
e−θt
E e−v1·Aµ−1−v2·Aµ−w·A(t)−h0τµ−1−hδµ
1{t<τµ−1}1{µ<ν} dt
= H−1
y1 y2
γ ((v21, v22 + y2) , h) − γ (v2 + y, h)
θ + λ (g (v1 + v2 + y + w) − g (v1 + v2 + y))
×
γ0 (v1 + v2 + y, h0)
1 − γ (v1 + v2 + y, h0)
−
γ0 (v1 + v2 + y + w, θ + h0)
1 − γ (v1 + v2 + y + w, θ + h0)
(M, V )
where
Hpq = LCp ◦ LCq
Ryan White Random Walks on Random Lattices 2015 51 / 56
Time Sensitive Analysis
Theorem 4 Proof
Hpq Φ
(1)
µ(p)<ν(q) (θ, v1, v2, w, h0, h)
= Hpq
j>0 k>j t≥0
e−θt
E e−v1·Aj−1−v2·Aj −(...)
1{t<τj−1}1{µ(p)=j,ν(q)=k} dt
Ryan White Random Walks on Random Lattices 2015 52 / 56
Time Sensitive Analysis
Theorem 4 Proof
Hpq Φ
(1)
µ(p)<ν(q) (θ, v1, v2, w, h0, h)
= Hpq
j>0 k>j t≥0
e−θt
E e−v1·Aj−1−v2·Aj −(...)
1{t<τj−1}1{µ(p)=j,ν(q)=k} dt
Then, by Fubini’s Theorem and since 1{t<τj−1} = 0 if j = 0,
=
j>0 k>j
F∗
1jk (θ, v1 + (y1, 0) , v2, (0, y2) , 0, w, h0, h0, h)
−
j>0 k>j
F∗
1jk (θ, v1, v2 + (y1, 0) , (0, y2) , 0, w, h0, h0, h)
−
j>0 k>j
F∗
1jk (θ, v1 + (y1, 0) , v2, 0, (0, y2) , w, h0, h0, h)
+
j>0 k>j
F∗
1jk (θ, v1, v2 + (y1, 0) , 0, (0, y2) , w, h0, h0, h)
which by Corollary 3 converge to the proper terms assuming γ < 1
Ryan White Random Walks on Random Lattices 2015 52 / 56
Time Sensitive Analysis
5 Similar Functionals
Analogous proofs yield results leading to
Φ(1)
= Φ
(1)
µ<ν + Φ(1)
µ=ν + Φ
(1)
µ>ν
After deriving another corollary to Theorem 2 analogous to Corollary 3 on {τρ−1 ≤ t < τρ}, we also find
similar expressions for
Φ(2)
= Φ
(2)
µ<ν + Φ(2)
µ=ν + Φ
(2)
µ>ν
Ryan White Random Walks on Random Lattices 2015 53 / 56
Time Sensitive Analysis
Deriving a Joint Probability Distribution (1-d Model)
1 Derive a corollary to Theorem 1 with d = 1, m = 2 (as in Corollary 3)
2 Expand in series under Hp (as in Theorem 4)
3 Specify g and l and take the inverse DM−1
y to get
Φ(1)∗
(θ, 1, u, 1, 0, 0) = Lt E uAρ
1{t<τρ−1} (θ)
4 Find the inverse Laplace transform to find
Φ(1)
(θ, 1, u, 1, 0, 0) = E uAρ
1{t<τρ−1}
5 This a restricted PGF, so apply 1
r!
lim
u→0
∂r
∂ur (·) to find
P{Nρ = r, τρ−1 > t}
Ryan White Random Walks on Random Lattices 2015 54 / 56
Time Sensitive Analysis
Joint Distribution of τρ−1 and Aρ (1-d Model)
P {Aρ = r, τρ−1 > t}
=
µ
λ
aµ
µ + λ

 µ + λ
aµ
R0r +
M−1
j=1
Rjr

 −
µ
µ + λ

G0R0r +
M−1
j=1
(Gj − Hj−1) Rjr


−
µ
λ
M−1
j=0
M−1−j
i=0
ci
1{r=i+j} − (b + c)
M−2
j=0
M−2−j
i=0
ci
1{r=i+j+1} + bc
M−3
j=0
M−3−j
i=0
ci
1{r=i+j+2}
+
µ
µ + λ
M−1
j=0
Gj
M−1−j
i=0
ci
1{r=i+j} −
M−2
j=0
(bGj + Hj)
M−2−j
i=0
ci
1{r=i+j+1} + b
M−3
j=0
Hj
M−3−j
i=0
ci
1{r=i+j+2}
where
c = F(µ, 1) =
bµ + λ
µ + λ
Rjr =



0, if r < j
1, if r = j
(c − b) cr−j−1, if r > j
Ryan White Random Walks on Random Lattices 2015 55 / 56
Time Sensitive Analysis
An Interesting Generalization
Suppose during the the random time interval Ij = (Tj−1, Tj), then
gj(v) = E e−v·aj1
lj(ϑ) = E e−ϑδj1
γj(v, ϑ) = E e−v·Xj1−ϑδj1
Then it is simple to rework results 2-4 above
This allows the position independence of the marks to be relaxed
Ryan White Random Walks on Random Lattices 2015 56 / 56

More Related Content

What's hot

Simplified Runtime Analysis of Estimation of Distribution Algorithms
Simplified Runtime Analysis of Estimation of Distribution AlgorithmsSimplified Runtime Analysis of Estimation of Distribution Algorithms
Simplified Runtime Analysis of Estimation of Distribution AlgorithmsPK Lehre
 
An application of the hyperfunction theory to numerical integration
An application of the hyperfunction theory to numerical integrationAn application of the hyperfunction theory to numerical integration
An application of the hyperfunction theory to numerical integrationHidenoriOgata
 
深層生成モデルを用いたマルチモーダルデータの半教師あり学習
深層生成モデルを用いたマルチモーダルデータの半教師あり学習深層生成モデルを用いたマルチモーダルデータの半教師あり学習
深層生成モデルを用いたマルチモーダルデータの半教師あり学習Masahiro Suzuki
 
Computer Controlled Systems (solutions manual). Astrom. 3rd edition 1997
Computer Controlled Systems (solutions manual). Astrom. 3rd edition 1997Computer Controlled Systems (solutions manual). Astrom. 3rd edition 1997
Computer Controlled Systems (solutions manual). Astrom. 3rd edition 1997JOAQUIN REA
 
Subgradient Methods for Huge-Scale Optimization Problems - Юрий Нестеров, Cat...
Subgradient Methods for Huge-Scale Optimization Problems - Юрий Нестеров, Cat...Subgradient Methods for Huge-Scale Optimization Problems - Юрий Нестеров, Cat...
Subgradient Methods for Huge-Scale Optimization Problems - Юрий Нестеров, Cat...Yandex
 
Zap Q-Learning - ISMP 2018
Zap Q-Learning - ISMP 2018Zap Q-Learning - ISMP 2018
Zap Q-Learning - ISMP 2018Sean Meyn
 
Modeling the Dynamics of SGD by Stochastic Differential Equation
Modeling the Dynamics of SGD by Stochastic Differential EquationModeling the Dynamics of SGD by Stochastic Differential Equation
Modeling the Dynamics of SGD by Stochastic Differential EquationMark Chang
 
Modeling the Dynamics of SGD by Stochastic Differential Equation
Modeling the Dynamics of SGD by Stochastic Differential EquationModeling the Dynamics of SGD by Stochastic Differential Equation
Modeling the Dynamics of SGD by Stochastic Differential EquationMark Chang
 
Formulation of model likelihood functions
Formulation of model likelihood functionsFormulation of model likelihood functions
Formulation of model likelihood functionsAndreas Scheidegger
 
Control of Uncertain Nonlinear Systems Using Ellipsoidal Reachability Calculus
Control of Uncertain Nonlinear Systems Using Ellipsoidal Reachability CalculusControl of Uncertain Nonlinear Systems Using Ellipsoidal Reachability Calculus
Control of Uncertain Nonlinear Systems Using Ellipsoidal Reachability CalculusLeo Asselborn
 
Quantitative norm convergence of some ergodic averages
Quantitative norm convergence of some ergodic averagesQuantitative norm convergence of some ergodic averages
Quantitative norm convergence of some ergodic averagesVjekoslavKovac1
 
Some recent developments in the traffic flow variational formulation
Some recent developments in the traffic flow variational formulationSome recent developments in the traffic flow variational formulation
Some recent developments in the traffic flow variational formulationGuillaume Costeseque
 
Linear Machine Learning Models with L2 Regularization and Kernel Tricks
Linear Machine Learning Models with L2 Regularization and Kernel TricksLinear Machine Learning Models with L2 Regularization and Kernel Tricks
Linear Machine Learning Models with L2 Regularization and Kernel TricksFengtao Wu
 
GonzalezGinestetResearchDay2016
GonzalezGinestetResearchDay2016GonzalezGinestetResearchDay2016
GonzalezGinestetResearchDay2016Pablo Ginestet
 
Information in the Weights
Information in the WeightsInformation in the Weights
Information in the WeightsMark Chang
 
Model Selection with Piecewise Regular Gauges
Model Selection with Piecewise Regular GaugesModel Selection with Piecewise Regular Gauges
Model Selection with Piecewise Regular GaugesGabriel Peyré
 

What's hot (20)

Simplified Runtime Analysis of Estimation of Distribution Algorithms
Simplified Runtime Analysis of Estimation of Distribution AlgorithmsSimplified Runtime Analysis of Estimation of Distribution Algorithms
Simplified Runtime Analysis of Estimation of Distribution Algorithms
 
2018 MUMS Fall Course - Sampling-based techniques for uncertainty propagation...
2018 MUMS Fall Course - Sampling-based techniques for uncertainty propagation...2018 MUMS Fall Course - Sampling-based techniques for uncertainty propagation...
2018 MUMS Fall Course - Sampling-based techniques for uncertainty propagation...
 
2018 MUMS Fall Course - Mathematical surrogate and reduced-order models - Ral...
2018 MUMS Fall Course - Mathematical surrogate and reduced-order models - Ral...2018 MUMS Fall Course - Mathematical surrogate and reduced-order models - Ral...
2018 MUMS Fall Course - Mathematical surrogate and reduced-order models - Ral...
 
An application of the hyperfunction theory to numerical integration
An application of the hyperfunction theory to numerical integrationAn application of the hyperfunction theory to numerical integration
An application of the hyperfunction theory to numerical integration
 
深層生成モデルを用いたマルチモーダルデータの半教師あり学習
深層生成モデルを用いたマルチモーダルデータの半教師あり学習深層生成モデルを用いたマルチモーダルデータの半教師あり学習
深層生成モデルを用いたマルチモーダルデータの半教師あり学習
 
Computer Controlled Systems (solutions manual). Astrom. 3rd edition 1997
Computer Controlled Systems (solutions manual). Astrom. 3rd edition 1997Computer Controlled Systems (solutions manual). Astrom. 3rd edition 1997
Computer Controlled Systems (solutions manual). Astrom. 3rd edition 1997
 
Subgradient Methods for Huge-Scale Optimization Problems - Юрий Нестеров, Cat...
Subgradient Methods for Huge-Scale Optimization Problems - Юрий Нестеров, Cat...Subgradient Methods for Huge-Scale Optimization Problems - Юрий Нестеров, Cat...
Subgradient Methods for Huge-Scale Optimization Problems - Юрий Нестеров, Cat...
 
Zap Q-Learning - ISMP 2018
Zap Q-Learning - ISMP 2018Zap Q-Learning - ISMP 2018
Zap Q-Learning - ISMP 2018
 
Modeling the Dynamics of SGD by Stochastic Differential Equation
Modeling the Dynamics of SGD by Stochastic Differential EquationModeling the Dynamics of SGD by Stochastic Differential Equation
Modeling the Dynamics of SGD by Stochastic Differential Equation
 
Modeling the Dynamics of SGD by Stochastic Differential Equation
Modeling the Dynamics of SGD by Stochastic Differential EquationModeling the Dynamics of SGD by Stochastic Differential Equation
Modeling the Dynamics of SGD by Stochastic Differential Equation
 
Formulation of model likelihood functions
Formulation of model likelihood functionsFormulation of model likelihood functions
Formulation of model likelihood functions
 
talk MCMC & SMC 2004
talk MCMC & SMC 2004talk MCMC & SMC 2004
talk MCMC & SMC 2004
 
Control of Uncertain Nonlinear Systems Using Ellipsoidal Reachability Calculus
Control of Uncertain Nonlinear Systems Using Ellipsoidal Reachability CalculusControl of Uncertain Nonlinear Systems Using Ellipsoidal Reachability Calculus
Control of Uncertain Nonlinear Systems Using Ellipsoidal Reachability Calculus
 
Quantitative norm convergence of some ergodic averages
Quantitative norm convergence of some ergodic averagesQuantitative norm convergence of some ergodic averages
Quantitative norm convergence of some ergodic averages
 
Some recent developments in the traffic flow variational formulation
Some recent developments in the traffic flow variational formulationSome recent developments in the traffic flow variational formulation
Some recent developments in the traffic flow variational formulation
 
Linear Machine Learning Models with L2 Regularization and Kernel Tricks
Linear Machine Learning Models with L2 Regularization and Kernel TricksLinear Machine Learning Models with L2 Regularization and Kernel Tricks
Linear Machine Learning Models with L2 Regularization and Kernel Tricks
 
GonzalezGinestetResearchDay2016
GonzalezGinestetResearchDay2016GonzalezGinestetResearchDay2016
GonzalezGinestetResearchDay2016
 
Information in the Weights
Information in the WeightsInformation in the Weights
Information in the Weights
 
Model Selection with Piecewise Regular Gauges
Model Selection with Piecewise Regular GaugesModel Selection with Piecewise Regular Gauges
Model Selection with Piecewise Regular Gauges
 
QMC: Operator Splitting Workshop, Boundedness of the Sequence if Iterates Gen...
QMC: Operator Splitting Workshop, Boundedness of the Sequence if Iterates Gen...QMC: Operator Splitting Workshop, Boundedness of the Sequence if Iterates Gen...
QMC: Operator Splitting Workshop, Boundedness of the Sequence if Iterates Gen...
 

Viewers also liked

WFP Project Presentation - Dereck Deutz
WFP Project Presentation - Dereck DeutzWFP Project Presentation - Dereck Deutz
WFP Project Presentation - Dereck DeutzDereck Deutz
 
My Photographs
My PhotographsMy Photographs
My PhotographsGeogiaW
 
Feasibility evaluation of two solar cooling systems applied to a cuban
Feasibility evaluation of two solar cooling systems applied to a cubanFeasibility evaluation of two solar cooling systems applied to a cuban
Feasibility evaluation of two solar cooling systems applied to a cubanyamile diaz torres
 
Paper beats plastic brochure
Paper beats plastic brochurePaper beats plastic brochure
Paper beats plastic brochuremariyamnadirova
 
коллор паспорт 5
коллор паспорт 5коллор паспорт 5
коллор паспорт 5Likaya_N
 
Textualanalysis
TextualanalysisTextualanalysis
TextualanalysisGeogiaW
 
Connell_David_PPP_Final_1509
Connell_David_PPP_Final_1509Connell_David_PPP_Final_1509
Connell_David_PPP_Final_1509David Connell
 
APD MAROC : PROGRAMME 2016
APD MAROC : PROGRAMME 2016APD MAROC : PROGRAMME 2016
APD MAROC : PROGRAMME 2016APD MAROC
 
Budget Analysis 2015-16
Budget Analysis 2015-16Budget Analysis 2015-16
Budget Analysis 2015-16JOYDEEP BAKSHI
 
La tipicidad (1)
La tipicidad (1)La tipicidad (1)
La tipicidad (1)cindy17cast
 
Presentació moises
Presentació moisesPresentació moises
Presentació moisescc97
 

Viewers also liked (19)

WFP Project Presentation - Dereck Deutz
WFP Project Presentation - Dereck DeutzWFP Project Presentation - Dereck Deutz
WFP Project Presentation - Dereck Deutz
 
My Photographs
My PhotographsMy Photographs
My Photographs
 
Brochure
Brochure Brochure
Brochure
 
2015DirectoryCoverV2
2015DirectoryCoverV22015DirectoryCoverV2
2015DirectoryCoverV2
 
Feasibility evaluation of two solar cooling systems applied to a cuban
Feasibility evaluation of two solar cooling systems applied to a cubanFeasibility evaluation of two solar cooling systems applied to a cuban
Feasibility evaluation of two solar cooling systems applied to a cuban
 
Elementosdetransmisindepotenciamecnica 111005130145-phpapp02
Elementosdetransmisindepotenciamecnica 111005130145-phpapp02Elementosdetransmisindepotenciamecnica 111005130145-phpapp02
Elementosdetransmisindepotenciamecnica 111005130145-phpapp02
 
Paper beats plastic brochure
Paper beats plastic brochurePaper beats plastic brochure
Paper beats plastic brochure
 
коллор паспорт 5
коллор паспорт 5коллор паспорт 5
коллор паспорт 5
 
How To Fix Some Common Laptop Problems
How To Fix Some Common Laptop ProblemsHow To Fix Some Common Laptop Problems
How To Fix Some Common Laptop Problems
 
Textualanalysis
TextualanalysisTextualanalysis
Textualanalysis
 
Tugas mtk gesti.pdf
Tugas mtk gesti.pdfTugas mtk gesti.pdf
Tugas mtk gesti.pdf
 
Tratamiento de un ojo morado (je) .
Tratamiento de un ojo morado (je) .  Tratamiento de un ojo morado (je) .
Tratamiento de un ojo morado (je) .
 
Brochure
Brochure Brochure
Brochure
 
Connell_David_PPP_Final_1509
Connell_David_PPP_Final_1509Connell_David_PPP_Final_1509
Connell_David_PPP_Final_1509
 
HISTORY OF ANGOLA
HISTORY  OF ANGOLAHISTORY  OF ANGOLA
HISTORY OF ANGOLA
 
APD MAROC : PROGRAMME 2016
APD MAROC : PROGRAMME 2016APD MAROC : PROGRAMME 2016
APD MAROC : PROGRAMME 2016
 
Budget Analysis 2015-16
Budget Analysis 2015-16Budget Analysis 2015-16
Budget Analysis 2015-16
 
La tipicidad (1)
La tipicidad (1)La tipicidad (1)
La tipicidad (1)
 
Presentació moises
Presentació moisesPresentació moises
Presentació moises
 

Similar to DissertationSlides169

SIAM SEAS Talk Slides
SIAM SEAS Talk SlidesSIAM SEAS Talk Slides
SIAM SEAS Talk SlidesRyan White
 
MVPA with SpaceNet: sparse structured priors
MVPA with SpaceNet: sparse structured priorsMVPA with SpaceNet: sparse structured priors
MVPA with SpaceNet: sparse structured priorsElvis DOHMATOB
 
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...Chiheb Ben Hammouda
 
Simplified Runtime Analysis of Estimation of Distribution Algorithms
Simplified Runtime Analysis of Estimation of Distribution AlgorithmsSimplified Runtime Analysis of Estimation of Distribution Algorithms
Simplified Runtime Analysis of Estimation of Distribution AlgorithmsPer Kristian Lehre
 
Monte Carlo Statistical Methods
Monte Carlo Statistical MethodsMonte Carlo Statistical Methods
Monte Carlo Statistical MethodsChristian Robert
 
Distributed solution of stochastic optimal control problem on GPUs
Distributed solution of stochastic optimal control problem on GPUsDistributed solution of stochastic optimal control problem on GPUs
Distributed solution of stochastic optimal control problem on GPUsPantelis Sopasakis
 
Delayed acceptance for Metropolis-Hastings algorithms
Delayed acceptance for Metropolis-Hastings algorithmsDelayed acceptance for Metropolis-Hastings algorithms
Delayed acceptance for Metropolis-Hastings algorithmsChristian Robert
 
Scattering theory analogues of several classical estimates in Fourier analysis
Scattering theory analogues of several classical estimates in Fourier analysisScattering theory analogues of several classical estimates in Fourier analysis
Scattering theory analogues of several classical estimates in Fourier analysisVjekoslavKovac1
 
Introduction to modern Variational Inference.
Introduction to modern Variational Inference.Introduction to modern Variational Inference.
Introduction to modern Variational Inference.Tomasz Kusmierczyk
 
A Proof of the Generalized Riemann Hypothesis
A Proof of the Generalized Riemann HypothesisA Proof of the Generalized Riemann Hypothesis
A Proof of the Generalized Riemann HypothesisCharaf Ech-Chatbi
 
A Proof of the Generalized Riemann Hypothesis
A Proof of the Generalized Riemann HypothesisA Proof of the Generalized Riemann Hypothesis
A Proof of the Generalized Riemann HypothesisCharaf Ech-Chatbi
 
Probabilistic Control of Switched Linear Systems with Chance Constraints
Probabilistic Control of Switched Linear Systems with Chance ConstraintsProbabilistic Control of Switched Linear Systems with Chance Constraints
Probabilistic Control of Switched Linear Systems with Chance ConstraintsLeo Asselborn
 
Rao-Blackwellisation schemes for accelerating Metropolis-Hastings algorithms
Rao-Blackwellisation schemes for accelerating Metropolis-Hastings algorithmsRao-Blackwellisation schemes for accelerating Metropolis-Hastings algorithms
Rao-Blackwellisation schemes for accelerating Metropolis-Hastings algorithmsChristian Robert
 
ch9.pdf
ch9.pdfch9.pdf
ch9.pdfKavS14
 
Phase Retrieval: Motivation and Techniques
Phase Retrieval: Motivation and TechniquesPhase Retrieval: Motivation and Techniques
Phase Retrieval: Motivation and TechniquesVaibhav Dixit
 

Similar to DissertationSlides169 (20)

SIAM SEAS Talk Slides
SIAM SEAS Talk SlidesSIAM SEAS Talk Slides
SIAM SEAS Talk Slides
 
MVPA with SpaceNet: sparse structured priors
MVPA with SpaceNet: sparse structured priorsMVPA with SpaceNet: sparse structured priors
MVPA with SpaceNet: sparse structured priors
 
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...
 
Nested sampling
Nested samplingNested sampling
Nested sampling
 
Mcqmc talk
Mcqmc talkMcqmc talk
Mcqmc talk
 
Simplified Runtime Analysis of Estimation of Distribution Algorithms
Simplified Runtime Analysis of Estimation of Distribution AlgorithmsSimplified Runtime Analysis of Estimation of Distribution Algorithms
Simplified Runtime Analysis of Estimation of Distribution Algorithms
 
Monte Carlo Statistical Methods
Monte Carlo Statistical MethodsMonte Carlo Statistical Methods
Monte Carlo Statistical Methods
 
5.n nmodels i
5.n nmodels i5.n nmodels i
5.n nmodels i
 
Distributed solution of stochastic optimal control problem on GPUs
Distributed solution of stochastic optimal control problem on GPUsDistributed solution of stochastic optimal control problem on GPUs
Distributed solution of stochastic optimal control problem on GPUs
 
Delayed acceptance for Metropolis-Hastings algorithms
Delayed acceptance for Metropolis-Hastings algorithmsDelayed acceptance for Metropolis-Hastings algorithms
Delayed acceptance for Metropolis-Hastings algorithms
 
Scattering theory analogues of several classical estimates in Fourier analysis
Scattering theory analogues of several classical estimates in Fourier analysisScattering theory analogues of several classical estimates in Fourier analysis
Scattering theory analogues of several classical estimates in Fourier analysis
 
Introduction to modern Variational Inference.
Introduction to modern Variational Inference.Introduction to modern Variational Inference.
Introduction to modern Variational Inference.
 
sada_pres
sada_pressada_pres
sada_pres
 
A Proof of the Generalized Riemann Hypothesis
A Proof of the Generalized Riemann HypothesisA Proof of the Generalized Riemann Hypothesis
A Proof of the Generalized Riemann Hypothesis
 
A Proof of the Generalized Riemann Hypothesis
A Proof of the Generalized Riemann HypothesisA Proof of the Generalized Riemann Hypothesis
A Proof of the Generalized Riemann Hypothesis
 
Probabilistic Control of Switched Linear Systems with Chance Constraints
Probabilistic Control of Switched Linear Systems with Chance ConstraintsProbabilistic Control of Switched Linear Systems with Chance Constraints
Probabilistic Control of Switched Linear Systems with Chance Constraints
 
Rao-Blackwellisation schemes for accelerating Metropolis-Hastings algorithms
Rao-Blackwellisation schemes for accelerating Metropolis-Hastings algorithmsRao-Blackwellisation schemes for accelerating Metropolis-Hastings algorithms
Rao-Blackwellisation schemes for accelerating Metropolis-Hastings algorithms
 
KAUST_talk_short.pdf
KAUST_talk_short.pdfKAUST_talk_short.pdf
KAUST_talk_short.pdf
 
ch9.pdf
ch9.pdfch9.pdf
ch9.pdf
 
Phase Retrieval: Motivation and Techniques
Phase Retrieval: Motivation and TechniquesPhase Retrieval: Motivation and Techniques
Phase Retrieval: Motivation and Techniques
 

DissertationSlides169

  • 1. Random Walks on Random Lattices and Their Applications Ryan White Dissertation Defense April 24, 2015 Ryan White Random Walks on Random Lattices 2015 1 / 56
  • 2. Motivation and Models Random Walks on Random Lattices (a) Random Walk (b) Random Lattice Ryan White Random Walks on Random Lattices 2015 2 / 56
  • 3. Motivation and Models Stochastic Cumulative Loss Model Suppose (nk, wk) are iid random vectors valued in N × R≥0 with mutually dependent components Consider η, a Poisson random measure of rate λ: i.e. for a Poisson point process 0 < t1 < t2 < ... a.s. and E ∈ B(R≥0), η(E) = ∞ k=1 (nk, wk)εtk (E) where εtk is the Dirac (point mass) measure, εtk (E) = 1, if tk ∈ E 0, else Ryan White Random Walks on Random Lattices 2015 3 / 56
  • 4. Motivation and Models Stochastic Cumulative Loss Process (cont.) η([0, t]) is a monotone increasing process measuring the cumulative losses up to time t, Ryan White Random Walks on Random Lattices 2015 4 / 56
  • 5. Motivation and Models Delayed Observation The process is observed upon a delayed renewal process T = ∞ n=0 ετn δk = τk − τk−1 are iid with LST l(θ), k ∈ N τ0 = δ0 is independent of δk, k ≥ 1 The process of interest is the embedded process Z = ∞ n=0 η((τn−1, τn])ετn = ∞ n=0 (Xn, Yn)ετn (Nn, Wn) = Z([0, τn]), the value of the process at τn Ryan White Random Walks on Random Lattices 2015 5 / 56
  • 6. Motivation and Models Model Summary: 4 Random Parts 1 The arrival process t1 < t2 < ... 2 The nodes lost per attack 3 The weight per node 4 The observation process τ0 < τ1 < τ2 < ... Ryan White Random Walks on Random Lattices 2015 6 / 56
  • 7. Motivation and Models Delayed Observation as an Embedded Process We consider the (green) embedded process moving on a random lattice Ryan White Random Walks on Random Lattices 2015 7 / 56
  • 8. Motivation and Models Observed Threshold Crossings ρ = min{n : Nn > M or Wn > V } The first observed passage time (FOPT) is τρ Ryan White Random Walks on Random Lattices 2015 8 / 56
  • 9. Motivation and Models Simulations of the Observed Process Ryan White Random Walks on Random Lattices 2015 9 / 56
  • 10. Motivation and Models General Trajectory of the Upcoming Material 1 Analysis of the process upon τρ−1 and τρ (time insensitive analysis) J. H. Dshalalow and R. White. Neural, Parallel, and Scientific Computations, 21 (2013). 2 Strategy 1 for a refined analysis (auxiliary thresholds) J. H. Dshalalow and R. White. Stochastic Analysis and Applications, 32:3 (2014). 3 d-dimensional time insensitive analysis (to be written as an additional paper) 4 Strategy 2 for refined analysis (time sensitive analysis) J.H. Dshalalow and R. White. Time Sensitive Analysis of Independent and Stationary Increment Processes (2015 submitted paper). R. White and J. H. Dshalalow. Random Walks on Random Lattices with Applications (2015 submitted paper). Ryan White Random Walks on Random Lattices 2015 10 / 56
  • 11. Time Insensitive Analysis Functional of Interest We seek a joint functional of the of the process upon τρ−1 and τρ, Φ(α0, α, β0, β, h0, h) = E α0 Nρ−1 αNρ e−β0Wρ−1−βWρ e−h0τρ−1−hτρ Φ leads to marginal PGFs/LSTs, Φ(1, α, 0, 0, 0, 0) = E αNρ Φ(1, 1, β0, 0, 0, 0) = E e−β0Wρ−1 Φ(1, 1, 0, 0, 0, h) = E e−hτρ which lead to moments and distributions of components of the process upon τρ−1 and τρ Ryan White Random Walks on Random Lattices 2015 11 / 56
  • 12. Time Insensitive Analysis Goal and Operational Calculus Strategy The goal is to derive Φ in an analytically or numerically tractable form Strategy to derive Φ, Φ H −→ Ψ Assumptions −−−−−−→ Ψ (convenient form) H−1 −−−→ Φ (tractable) for an operator H introduced next Ryan White Random Walks on Random Lattices 2015 12 / 56
  • 13. Time Insensitive Analysis Hpq and H−1 xy Operators Hpq = LCq ◦ Dp LCq(g(q))(y) = yLq(g(q)) = y ∞ q=0 g(q)e−qy dq Dp{f(p)}(x) = (1 − x) ∞ p=0 xp f(p), x < 1 Dp’s inverse restores a sequence f, Dk x (·) = limx→0 1 k! ∂k ∂xk 1 1−x (·) , k ∈ N Dk x (Dp{f(p)}(x)) = f(k) H−1 xy (Ψ(x, y)) (p, q) = L−1 y 1 y Dp x (Ψ(x, y)) (q) Ryan White Random Walks on Random Lattices 2015 13 / 56
  • 14. Time Insensitive Analysis Decomposition of Φ Let µ = inf{n : Nn > M}, ν = inf{n : Wn > V } Decompose Φ as Φ = E α0 Nρ−1 αNρ e−β0Wρ−1−βWρ e−h0τρ−1−hτρ = E α Nµ−1 0 αNµ e−β0Wµ−1−βWµ−h0τµ−1−hτµ 1{µ<ν} + E α Nµ−1 0 αNµ e−β0Wµ−1−βWµ−h0τµ−1−hτµ 1{µ=ν} + E α Nν−1 0 αNν e−β0Wν−1−βWν −h0τν−1−hτν 1{µ>ν} = Φµ<ν + Φµ=ν + Φµ>ν We will derive Φµ<ν of the confined process on the trace σ-algebra F ∩ {µ < ν} Ryan White Random Walks on Random Lattices 2015 14 / 56
  • 15. Time Insensitive Analysis Decomposing Further, Applying Hpq Introduce µ(p) = inf{j : Nj > p}, ν(q) = inf{k : Wk > q} Φµ(p)<ν(q) = j≥0 k>j E α Nj−1 0 αNj e−β0Wj−1−βWj −h0τj−1−hτj 1{µ(p)=j, ν(q)=k} Ryan White Random Walks on Random Lattices 2015 15 / 56
  • 16. Time Insensitive Analysis Decomposing Further, Applying Hpq Introduce µ(p) = inf{j : Nj > p}, ν(q) = inf{k : Wk > q} Φµ(p)<ν(q) = j≥0 k>j E α Nj−1 0 αNj e−β0Wj−1−βWj −h0τj−1−hτj 1{µ(p)=j, ν(q)=k} By Fubini’s Theorem, Hpq can be interchanged with the two series and expectation Using the memoryless property of the Poisson process and independent increments, Hpq Φµ(p)<ν(q) (x, y) = j≥0 E (α0αx)Nj−1 e−(β0+β+y)Wj−1−(h0+h)τj−1 × E αXj 1 − xXj e−(β+y)Yj −hδj × k>j E e−y(Yj+1+...+Yk−1) E 1 − e−yYk Ryan White Random Walks on Random Lattices 2015 15 / 56
  • 17. Time Insensitive Analysis Deriving Φµ<ν Denote the joint transform of each observed increment γ(z, v, ϑ) = E zX1 e−vY1−ϑδ1 The j and k series (assuming γ < 1) become Γ1 0 − Γ0 + (Γ1 − Γ)γ0 j≥1 γj−1 = Γ1 0 − Γ0 + γ0 Γ1 − Γ 1 − γ (1 − γ(1, y, 0)) k>j γk−1−j (1, y, 0) = 1 Then Φµ<ν = H−1 xy Γ1 0 − Γ0 + γ0 1−γ Γ1 − Γ (M, V ), where γ = γ (α0αx, β0 + β + y, h0 + h) Γ = γ (αx, β + y, h) ζ1 = γ(αx, β, h) Ryan White Random Walks on Random Lattices 2015 16 / 56
  • 18. Time Insensitive Analysis Result for Φ Solving for Φµ=ν and Φµ>ν analogously and adding to Φµ<ν , Φ = H−1 xy ζ1 0 − Γ0 + γ0 1 − γ ζ1 − Γ (M, V ) where γ = γ (α0αx, β0 + β + y, h0 + h) Γ = γ (αx, β + y, h) ζ1 = γ(αx, β, h) Ryan White Random Walks on Random Lattices 2015 17 / 56
  • 19. Time Insensitive Analysis Results for a Special Case To demonstrate that tractable results can be derived from this, we will consider a special case where δk ∈ [Exponential(µ)] =⇒ L(θ) = µ µ+θ nk ∈ [Geometric(a)] =⇒ g(z) = az 1−bz , (b = 1 − a) wjk ∈ [Exponential(ξ)] =⇒ l(u) = ξ ξ+u (N0, W0) = (0, 0) Ryan White Random Walks on Random Lattices 2015 18 / 56
  • 20. Time Insensitive Analysis Theorem 1 Φ (1, z, 0, v, 0, θ) = E zNρ e−vWρ e−θτρ = 1 − 1 − µ µ + θ + λ v + ξ(1 − bz) v + ξ(1 − c2z) 1 + bµ λ + bθ + aλµ (λ + bθ) (λ + θ) φ (z, v, θ) , φ(z, v, θ) = v + ξ v + ξ(1 − c1z) − c1zξ Q(M − 1, c1zξV ) e−(v+ξ(1−c1z))V v + ξ(1 − c1z) − (c1zξ)M P(M − 1, (ξ + v)V ) (v + ξ(1 − c1z))(ξ + v)M−1 , c1 = λ + bθ λ + θ , c2 = λ + b(µ + θ) λ + µ + θ , and Q(x, y) = Γ(x,y) Γ(x) is the lower regularized gamma function. Ryan White Random Walks on Random Lattices 2015 19 / 56
  • 21. Time Insensitive Analysis Corollaries: Marginal Transforms Φ(1, z, 0, 0, 0, 0) = E zNρ = zQ(M − 1, zξV )e−ξ(1−z)V + zM P(M − 1, ξV ) µ + λ − (λ + bµ)z Φ(1, 1, 0, v, 0, 0) = E e−vWρ = λv + bµv + aξµφ(1, v, 0) aξµ + (λ + µ)v Φ(1, 1, 0, 0, 0, θ) = E e−θτρ = 1 − θ µ + θ 1 + bµ λ + bθ + aλµφ(1, 0, θ) (λ + bθ)(λ + θ) Ryan White Random Walks on Random Lattices 2015 20 / 56
  • 22. Time Insensitive Analysis Useful Results: CDF of First Observed Passage Time, τρ Fτρ (ϑ) = P (τρ < ϑ) = λP(M − 1, ξV ) M−1 j=0 cjφj(ϑ) + λe−ξλ M−2 k=0 (ξV )k k! k j=0 djφj(ϑ) where cj = M − 1 j (aλ)j bM−1−j dj = k j (aλ)j bk−j φj(ϑ) = 1 λj+1 P(j + 1, λϑ) − e−µϑ (λ − µ)j+1 P(j + 1, (λ − µ)ϑ) Ryan White Random Walks on Random Lattices 2015 21 / 56
  • 23. Time Insensitive Analysis Useful Results: Means at τρ E [Nρ] = λ + bµ aµ + M − (M − 1)Q(M − 1, ξV ) + ξV Q(M − 2, ξV ) E [Wρ] = E [Nρ] ξ = E [Nρ] E[w11] 1,000 realizations of the process under each of the some sets of parameters (λ, µ, a, ξ, M, V ) were simulated and sample means recorded: Parameters E [Nρ] S. Mean A. Error E [Wρ] S. Mean A. Error (1) 989.08 988.82 0.26 989.08 990.06 0.98 (2) 990.63 990.39 0.24 990.63 990.27 0.36 (3) 989.28 989.92 0.64 989.28 988.97 0.31 (4) 989.08 989.08 0.00 989.08 989.68 0.31 (5) 503.00 502.73 0.27 1006.00 1005.04 0.96 (6) 1002.00 1001.57 0.43 501.00 500.91 0.09 (7) 803.00 802.68 0.32 803.00 802.67 0.33 (8) 752.00 752.10 0.10 752.00 751.68 0.32 (9) 493.57 493.46 0.11 987.14 986.59 0.55 J. H. Dshalalow and R. White. Neural, Parallel, and Scientific Computations, 21 (2013). Ryan White Random Walks on Random Lattices 2015 22 / 56
  • 24. Auxiliary Threshold Models Auxiliary Threshold Model We introduce another threshold M1 < M with µ1 = min{n : Nn > M1}. Ryan White Random Walks on Random Lattices 2015 23 / 56
  • 25. Auxiliary Threshold Models Functional of Interest Our functional of interest will be similar to before, but containing terms associated with the auxiliary crossing at µ1 Φµ1<ρ = Φµ1<ρ (z0, z, α0, α, v0, v, β0, β, θ0, θ, h0, h) = E z Nµ1−1 0 zNµ1 α Nρ−1 0 αNρ e−v0Wµ1−1−vWµ1 e−β0Wρ−1−βWρ e−θ0τµ1−1−θτµ1 e−h0τρ−1−hτρ 1{µ1<ρ} = Φµ1<µ<ν + Φµ1<µ=ν + Φµ1<ν<µ =   j≥0 k>j n>k   +   j≥0 n=k>j   +   j≥0 n>j k>n   (µ1 = j, µ = k, ν = n) We use an operator Hpqs = LCs ◦ Dq ◦ Dp adaped to work with the additional discrete threshold, but the path to results remains the same Φµ1<ρ Hpqs −−−→ Ψµ1<ρ Assumptions −−−−−−→ Ψµ1<ρ (convenient) H−1 xyw −−−−→ Φµ1<ρ (tractable) Ryan White Random Walks on Random Lattices 2015 24 / 56
  • 26. Auxiliary Threshold Models Results for Φµ1<ρ Φµ1<ρ = H−1 xyw φ1 0 − φ0 + ϕ0 1 − ϕ (φ1 − φ) ξ1 − χ 1 − ψ (M1, M, V ) where ϕ = γ (u0uα0αxy, v0 + v + β0 + β + w, θ0 + θ + h0 + h) φ = γ (uα0αxy, v + β0 + β + w, θ + h0 + h) φ1 = γ (uα0αy, v + β0 + β + w, θ + h0 + h) ψ = γ (α0αy, β0 + β + w, h0 + h) χ = γ (αy, β + w, h) ξ1 = γ (α, β, h) Ryan White Random Walks on Random Lattices 2015 25 / 56
  • 27. Auxiliary Threshold Models Results for a Special Case Suppose δk = c a.s. nk with arbitrary finite distribution (p1, p2, ..., pm) wjk ∈ [Gamma(α, ξ)] Ryan White Random Walks on Random Lattices 2015 26 / 56
  • 28. Auxiliary Threshold Models Theorem Φµ1<ρ(1, z, 1, 1, 0, v, 0, 0, 0, θ, 0, 0) = E zNµ1 e−vWµ1 e−θτµ1 1{µ1<ρ} = M1−1 k=0 zk Fk M−1−k m=0 zm Em ξ v + ξ α(k+m) P(α(k + m), (v + ξ)V ) − M1−1 k=0 zk ξ v + ξ αk P(αk, (v + ξ)V ) k n=0 EnFk−n e−c(θ+λ) Fj = R−1 R j r=0 (cλ)j−r Li−(j−r) e−c(θ+λ) β 1=j [R]·β=r+j pβ1 1 · · · pβR R β1! · · · βR! , Ej = R−1 R j r=0 (cλ)j−r β 1=j [R]·β=r+j pβ1 1 · · · pβR R β1! · · · βR! Ryan White Random Walks on Random Lattices 2015 27 / 56
  • 29. Auxiliary Threshold Models A Computational Difficulty β 1=j [R]·β=r+j pβ1 1 · · · pβR R β1! · · · βR! , Model 1 is general and useful, but it requires calculation of all integer solutions in {0, 1, ..., R}R of the linear system β1 + β2 + ... + βR = j β1 + 2β2 + ... + RβR = r + j for each j = 0, 1, ..., M − 1 and r = 0, 1, ..., R−1 R j . Other special cases: nk geometric, nk = n a.s., Ryan White Random Walks on Random Lattices 2015 28 / 56
  • 30. Auxiliary Threshold Models Results and Simulation We find Φµ1<ρ(1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0) = E 1{µ1<ρ} = P{µ1 < ρ} and compare to simulated results for a range of M1 values J. H. Dshalalow and R. White. Stochastic Analysis and Applications, 32:3 (2014). Ryan White Random Walks on Random Lattices 2015 29 / 56
  • 31. Auxiliary Threshold Models Simulation for an Alternate Model We did the same under the assumptions δ1 ∈ [Exponential(µ)], n1 ∈ [Geometric(a)], w11 ∈ [Exponential(ξ)]. J. H. Dshalalow and R. White. Stochastic Analysis and Applications, 32:3 (2014). Ryan White Random Walks on Random Lattices 2015 30 / 56
  • 32. Auxiliary Threshold Models Continuous and Dual Auxiliary Threshold Models Figure: Continuous Auxiliary Model, ν1 = min{n : Wn > V1} Figure: Dual Auxiliary Model, ρ1 = max{µ1, ν1} Ryan White Random Walks on Random Lattices 2015 31 / 56
  • 33. d-Dimensional Insensitive Model d-dimensional Model Suppose A(t) is a d-dimensional process similar to the models above, with observed crossing indices {ν1, ..., νd} and ρ = min{ν1, ..., νd}. We investigate Φ(u) = E u A1ρ 1 · · · u Adρ d If a dimension of the mark is continuous-valued, the operator Dp may be replaced with LCp In addition, terms of the form u Ajρ j in the functionals should be replaced with terms of the form e−uj Ajρ i.e. take uj → e−uj Thus, we lose no generality by assuming the process is discrete-valued Ryan White Random Walks on Random Lattices 2015 32 / 56
  • 34. d-Dimensional Insensitive Model Confined Functionals Let Q be a sub-partial ordering of threshold crossings, then we seek ΦQ(u) = E u A1ρ 1 · · · u Adρ d 1Q For example, let Q = {ν1 = ν2 < ν3} ∩ {ν4 < ν3} in 4D, then we may find ΦQ(0) = E [1Q] = P (ν1 = ν2 < ν3, ν4 < ν3) Ryan White Random Walks on Random Lattices 2015 33 / 56
  • 35. d-Dimensional Insensitive Model Confined Functionals For the set P partial orderings satisfying sub-partial ordering Q, ΦQ(u) = E uAρ 1Q = {P ∈P} E uAρ 1P = {P ∈P} ΦP (u) For example, let Q = {ν1 = ν2 < ν3} ∩ {ν4 < ν3} in 4D, then P = {{ν1 = ν2 < ν4 < ν3}, {ν1 = ν2 = ν4 < ν3}, {ν4 < ν1 = ν2 < ν3}} ΦP = {P ∈P} ΦP = Φν1=ν2<ν4<ν3 + Φν1=ν2=ν4<ν3 + Φν4<ν1=ν2<ν3 Ryan White Random Walks on Random Lattices 2015 34 / 56
  • 36. d-Dimensional Insensitive Model Arbitrary Confined Functional Suppose P is an arbitrary partial ordering of d crossings observed upon k times Fixing jn’s, we derive where R’s simply depend on u, v, y, and the increment’s joint functional γ Ryan White Random Walks on Random Lattices 2015 35 / 56
  • 37. d-Dimensional Insensitive Model Rj2sj Rk2sk = E 1 − y A p(sk−1+1) sk p(sk−1+1) · · · 1 − y A p(d) sk p(d) = 1 − γp 1; yp(sk−1+1), 1 + γp 1; 1, yp(sk−1+2), 1 + ... + γp 1; 1, yp(n) + γp 1; yp(sk−1+1), yp(sk−1+2), 1 + ... + γp 1; yp(sk−1+1), 1, yp(d) + ... + γp 1; 1, yp(d−1), yp(d) + ... + (−1)rk−rk−1 γp 1; yp(sk−1+1), ..., yp(d) Ryan White Random Walks on Random Lattices 2015 36 / 56
  • 38. d-Dimensional Insensitive Model Code (in Python) is developed that 1 Generates all partial orderings of d indices (d ≤ 10 feasible) 2 Queries the list to prune it to P for any specified Q The is computationally intense for large d, because we no only have d! partial orderings with all < signs, but also all partial orderings with =’s Special case results rely on d transform inversions, so this is sufficient for most purposes Ryan White Random Walks on Random Lattices 2015 37 / 56
  • 39. Time Sensitive Analysis Time Sensitive Analysis: Motivation Ryan White Random Walks on Random Lattices 2015 38 / 56
  • 40. Time Sensitive Analysis New capabilities: Joint results: E e−uWρ 1{t<τρ} , P (Wρ < s, τρ < t), P (Nρ = n, τρ < t) Conditional probabilities: P (Nρ = n|τρ > t) = P (Nρ=n,τρ>t) P (τρ>t) Ryan White Random Walks on Random Lattices 2015 39 / 56
  • 41. Time Sensitive Analysis The Previous Method Fails! We would like to expand each functional in stochastic series as before Hpq t≥0 e−θt E e−v1·Aρ−1−v2·Aρ−w·A(t)−h0τρ−1−hδρ 1{t<τρ−1} dt = Hpq j>0 k>j t≥0 e−θt E e−v1·Aj−1−v2·Aj −(...) 1{t<τj−1}1{µ(p)=j,ν(q)=k} dt However, we cannot simply find the terms to sum since A(t) is involved Next, we prove a very general result leading to a way to represent these terms Ryan White Random Walks on Random Lattices 2015 40 / 56
  • 42. Time Sensitive Analysis ISI Processes Consider a Rd -valued stochastic process A(t) on a filtered probability space (Ω, F, (Ft)t≥0, P) such that A(t) has independent increments: For 0 < t1 < ... < tk, the increments A(t1) − A(0), A(t2) − A(t1), ..., A(tk) − A(tk−1) are independent. i.e., increments on non-overlapping time intervals are independent A(t) has stationary increments: For 0 ≤ s < t, the distribution of A(t) − A(s) depends only on t − s L´evy processes are ISI (e.g. Poisson processes, Wiener processes) Ryan White Random Walks on Random Lattices 2015 41 / 56
  • 43. Time Sensitive Analysis Discrete-valued Dimensions If a dimension of the mark is discrete-valued, the operator LCp may be replaced with the Dp operator In addition, terms of the form e−v·An in the functionals should be replaced with terms of the form d j=0 v Ajn j (i.e. take vj → −ln vj). Thus, we lose no generality by assuming the process is continuous-valued in each dimension. Ryan White Random Walks on Random Lattices 2015 42 / 56
  • 44. Time Sensitive Analysis ISI Functionals Suppose T = {T0, T1, ..., Tm} are random variables with Tn = Tn−1 + ∆n where each ∆n is independent of ∆0, ∆1, ..., ∆n−1 We do not assume they are identically distributed For 1 ≤ n ≤ m, we will seek functionals of the form Fn (t, v0, ..., vm, w, x) = E e− m j=0 vj ·A(Tj )−w·A(t)−x·∆ 1{Tn−1 ≤t<Tn} , where ∆ = (∆0, ..., ∆m) Ryan White Random Walks on Random Lattices 2015 43 / 56
  • 45. Time Sensitive Analysis Theorem 1 The functional Fn (t, v0, ..., vm, w, x) of the d-dimensional ISI process A(t) on the trace σ-algebra F ∩ {Tn−1 ≤ t < Tn} where Tn−1 and ∆n are independent of Ft satisfies F∗ n (θ, v0, ..., vm, w, x) = n−1 j=0 γj (bj + w, xj + θ) E e−xn∆n ψ (bn, bn + w, ∆n) m j=n+1 γj (bj, xj) where bj = m i=j vi ϕ (b, s) = E e−b·A(s) ψ (b, x, α) = e−θ(·) ϕ (b, ·) ∗ ϕ (x, ·) (α) = α 0 e−θt ϕ (b, t) ϕ (x, α − t) dt γj (a, ϑ) = E e−ϑ∆j e−a·[A(Tj )−A(Tj−1)] = E e−a·A(∆j )−ϑ∆j Ryan White Random Walks on Random Lattices 2015 44 / 56
  • 46. Time Sensitive Analysis Theorem 1 Proof A (Tk) = k j=0 (A (Tj) − A (Tj−1)) , k = 0, ..., n − 1 A(t) = A(t) − A (Tn−1) + n−1 j=0 (A (Tj) − A (Tj−1)) A (Tk) = k j=0 (A (Tj) − A (Tj−1)) + A(t) − A(t), k = n, ..., m Let α = (α0, ..., αm) and sn = n j=0 αj. Writing the expectation F∗ n explicitly, F∗ n (θ, v0, ..., vm, w, x) = t≥0 e−θt α∈Rm+1 ≥0 e−x·α E e− n−1 j=0 (bj +w)·[A(sj )−A(sj−1)]−(bn+w)·[A(t)−A(sn−1)] × e−bn·[A(sn)−A(t)]− m j=n+1 bj ·[A(sj )−A(sj−1)] × 1{sn−1 ≤t<sn−1+αn} dP m ⊗ j=0 ∆j (α0, ..., αm) dt Ryan White Random Walks on Random Lattices 2015 45 / 56
  • 47. Time Sensitive Analysis Theorem 1 Proof (cont.) By the independent and stationary increment properties, F∗ n (θ, v0, ..., vm, w, x) = t≥0 e−θt α∈Rm+1 ≥0 e−x·α n−1 j=0 ϕ (bj + w, αj) ϕ (bn + w, t − sn−1) ϕ (bn, sn−1 + αn − t) × m j=n+1 ϕ (bj, αj) 1{sn−1 ≤t<sn−1+αn} dP m ⊗ j=0 ∆j (α0, ..., αm) dt Ryan White Random Walks on Random Lattices 2015 46 / 56
  • 48. Time Sensitive Analysis Theorem 1 Proof (cont.) By the independent and stationary increment properties, F∗ n (θ, v0, ..., vm, w, x) = t≥0 e−θt α∈Rm+1 ≥0 e−x·α n−1 j=0 ϕ (bj + w, αj) ϕ (bn + w, t − sn−1) ϕ (bn, sn−1 + αn − t) × m j=n+1 ϕ (bj, αj) 1{sn−1 ≤t<sn−1+αn} dP m ⊗ j=0 ∆j (α0, ..., αm) dt By Fubini’s Theorem and the independence of ∆0, ..., ∆m, = n−1 j=0 αj ≥0 e−(xj +θ)αj ϕ (bj + w, αj) dP∆j (αj) m j=n+1 αj ≥0 e−xj αj ϕ (bj, αj) dP∆j (αj) × αn≥0 e−xnαn sn−1+αn t=sn−1 e−θ(t−sn−1)ϕ (bn + w, t − sn−1) ϕ (bn, sn−1 + αn − t) dt dP∆n (αn) Ryan White Random Walks on Random Lattices 2015 46 / 56
  • 49. Time Sensitive Analysis Theorem 1 Proof (cont.) By the translation invariance of the Lebesgue measure, taking u = t − sn−1, F∗ n (θ, v0, ..., vm, w, x) = n−1 j=0 γj (bj + w, xj + θ) m j=n+1 γj (bj, xj) × αn≥0 e−xnαn αn u=0 e−θu ϕ (bn + w, u) ϕ (bn, αn − u) du dP∆n (αn) (1) = n−1 j=0 γj (bj + w, xj + θ) m j=n+1 γj (bj, xj) αn≥0 e−xnαn ψ (bn + w, bn, αn) dP∆n (αn) (2) = n−1 j=0 γj (bj + w, xj + θ) E e−xn∆n ψ (bn + w, bn, ∆n) m j=n+1 γj (bj, xj) (3) Ryan White Random Walks on Random Lattices 2015 47 / 56
  • 50. Time Sensitive Analysis Corollary 2 Let A(t) be a d-dimensional marked Poisson process of rate λ and assume T is independent of Ft, then F∗ n (θ, v0, ..., vm, w, x) = n−1 j=0 Lj (θ + xj + λ (1 − g (bj + w))) × Ln (xn + λ (1 − g (bn))) − Ln (xn + θ + λ (1 − g (bn + w))) θ + λ (g (bn + w) − g (bn)) × m j=n+1 Lj (xj + λ (1 − g (bj))) where Lj (z) = E e−z∆j is the LST of ∆j g(v) = E e−v·a1 is a joint LST of the marks i.e. assume the marks are nonnegative real-valued Ryan White Random Walks on Random Lattices 2015 48 / 56
  • 51. Time Sensitive Analysis Returning to the Goal The goal is to find joint functionals of the form Φ(1) (θ, v1, v2, w, h0, h) = t≥0 e−θt E e−v1·Aρ−1−v2·Aρ−w·A(t)−h0τρ−1−hδρ 1{t<τρ−1} dt Φ(2) (θ, v1, v2, w, h0, h) = t≥0 e−θt E e−v1·Aρ−1−v2·Aρ−w·A(t)−h0τρ−1−hδρ 1{τρ−1≤t<τρ} dt Ryan White Random Walks on Random Lattices 2015 49 / 56
  • 52. Time Sensitive Analysis Returning to the Goal The goal is to find joint functionals of the form Φ(1) (θ, v1, v2, w, h0, h) = t≥0 e−θt E e−v1·Aρ−1−v2·Aρ−w·A(t)−h0τρ−1−hδρ 1{t<τρ−1} dt Φ(2) (θ, v1, v2, w, h0, h) = t≥0 e−θt E e−v1·Aρ−1−v2·Aρ−w·A(t)−h0τρ−1−hδρ 1{τρ−1≤t<τρ} dt τρ−1 and δρ are not independent, so the results are not immediately applicable. Let T0 = 0 and T1 = τj−1 = δ0 + δ1 + ... + δj−1 T2 = τj = T1 + δj T3 = τk−1 = T2 + δj+1 + ... + δk−1 T4 = τk = T3 + δk for fixed j and k so that each ∆n is independent of the prior ∆r’s Ryan White Random Walks on Random Lattices 2015 49 / 56
  • 53. Time Sensitive Analysis Corollary 3 Let A(t) be a 2-dimensional marked Poisson process of rate λ. For the process with m = 4 on the trace σ-algebra F (Ω) ∩ {t < τj−1}, respectively, F∗ 1jk (θ, v1, v2, v3, v4, w, h0, h0, h) = Lt E e−v1·Aj−1−v2·Aj −v3·Ak−1−v4·Ak−w·A(t)−h0τj−1−hδj 1{t<τj−1}1{µ=j,ν=k} = γ0 (b1, h0) γj−1 (b1, h0) − γ0 (b1 + w, θ + h0) γj−1 (b1 + w, θ + h0) θ + λ (g (b1 + w) − g (b1)) γ (b2, h) γ (v4, 0) γk−1−j (b3, 0) where An = A(τn) Xn = An − An−1 γ(v, θ) = E e−v·X1−θδ1 Ryan White Random Walks on Random Lattices 2015 50 / 56
  • 54. Time Sensitive Analysis Theorem 4 The joint functional Φ (1) µ<ν of the process A(t) on the interval [0, τρ−1) satisfies Φ (1) µ<ν (θ, v1, v2, w, h0, h) = t≥0 e−θt E e−v1·Aµ−1−v2·Aµ−w·A(t)−h0τµ−1−hδµ 1{t<τµ−1}1{µ<ν} dt = H−1 y1 y2 γ ((v21, v22 + y2) , h) − γ (v2 + y, h) θ + λ (g (v1 + v2 + y + w) − g (v1 + v2 + y)) × γ0 (v1 + v2 + y, h0) 1 − γ (v1 + v2 + y, h0) − γ0 (v1 + v2 + y + w, θ + h0) 1 − γ (v1 + v2 + y + w, θ + h0) (M, V ) where Hpq = LCp ◦ LCq Ryan White Random Walks on Random Lattices 2015 51 / 56
  • 55. Time Sensitive Analysis Theorem 4 Proof Hpq Φ (1) µ(p)<ν(q) (θ, v1, v2, w, h0, h) = Hpq j>0 k>j t≥0 e−θt E e−v1·Aj−1−v2·Aj −(...) 1{t<τj−1}1{µ(p)=j,ν(q)=k} dt Ryan White Random Walks on Random Lattices 2015 52 / 56
  • 56. Time Sensitive Analysis Theorem 4 Proof Hpq Φ (1) µ(p)<ν(q) (θ, v1, v2, w, h0, h) = Hpq j>0 k>j t≥0 e−θt E e−v1·Aj−1−v2·Aj −(...) 1{t<τj−1}1{µ(p)=j,ν(q)=k} dt Then, by Fubini’s Theorem and since 1{t<τj−1} = 0 if j = 0, = j>0 k>j F∗ 1jk (θ, v1 + (y1, 0) , v2, (0, y2) , 0, w, h0, h0, h) − j>0 k>j F∗ 1jk (θ, v1, v2 + (y1, 0) , (0, y2) , 0, w, h0, h0, h) − j>0 k>j F∗ 1jk (θ, v1 + (y1, 0) , v2, 0, (0, y2) , w, h0, h0, h) + j>0 k>j F∗ 1jk (θ, v1, v2 + (y1, 0) , 0, (0, y2) , w, h0, h0, h) which by Corollary 3 converge to the proper terms assuming γ < 1 Ryan White Random Walks on Random Lattices 2015 52 / 56
  • 57. Time Sensitive Analysis 5 Similar Functionals Analogous proofs yield results leading to Φ(1) = Φ (1) µ<ν + Φ(1) µ=ν + Φ (1) µ>ν After deriving another corollary to Theorem 2 analogous to Corollary 3 on {τρ−1 ≤ t < τρ}, we also find similar expressions for Φ(2) = Φ (2) µ<ν + Φ(2) µ=ν + Φ (2) µ>ν Ryan White Random Walks on Random Lattices 2015 53 / 56
  • 58. Time Sensitive Analysis Deriving a Joint Probability Distribution (1-d Model) 1 Derive a corollary to Theorem 1 with d = 1, m = 2 (as in Corollary 3) 2 Expand in series under Hp (as in Theorem 4) 3 Specify g and l and take the inverse DM−1 y to get Φ(1)∗ (θ, 1, u, 1, 0, 0) = Lt E uAρ 1{t<τρ−1} (θ) 4 Find the inverse Laplace transform to find Φ(1) (θ, 1, u, 1, 0, 0) = E uAρ 1{t<τρ−1} 5 This a restricted PGF, so apply 1 r! lim u→0 ∂r ∂ur (·) to find P{Nρ = r, τρ−1 > t} Ryan White Random Walks on Random Lattices 2015 54 / 56
  • 59. Time Sensitive Analysis Joint Distribution of τρ−1 and Aρ (1-d Model) P {Aρ = r, τρ−1 > t} = µ λ aµ µ + λ   µ + λ aµ R0r + M−1 j=1 Rjr   − µ µ + λ  G0R0r + M−1 j=1 (Gj − Hj−1) Rjr   − µ λ M−1 j=0 M−1−j i=0 ci 1{r=i+j} − (b + c) M−2 j=0 M−2−j i=0 ci 1{r=i+j+1} + bc M−3 j=0 M−3−j i=0 ci 1{r=i+j+2} + µ µ + λ M−1 j=0 Gj M−1−j i=0 ci 1{r=i+j} − M−2 j=0 (bGj + Hj) M−2−j i=0 ci 1{r=i+j+1} + b M−3 j=0 Hj M−3−j i=0 ci 1{r=i+j+2} where c = F(µ, 1) = bµ + λ µ + λ Rjr =    0, if r < j 1, if r = j (c − b) cr−j−1, if r > j Ryan White Random Walks on Random Lattices 2015 55 / 56
  • 60. Time Sensitive Analysis An Interesting Generalization Suppose during the the random time interval Ij = (Tj−1, Tj), then gj(v) = E e−v·aj1 lj(ϑ) = E e−ϑδj1 γj(v, ϑ) = E e−v·Xj1−ϑδj1 Then it is simple to rework results 2-4 above This allows the position independence of the marks to be relaxed Ryan White Random Walks on Random Lattices 2015 56 / 56