SlideShare a Scribd company logo
1 of 143
1
Team Hullabaloop
May 4, 2016
Hyperloop Pod
System Design Package
Overview
• More detailed intro to
Hyperloop
– Background
– Design Process/Course Objectives
– Video
– Year in Review (Design Weekend,
Qatar etc)
• Old: Design Weekend
Presentation
– Structure
– Levitation
– Propulsion
– Braking
– IEES
– Controls
2
• New Design:
– Structure redesign and
improvements
– Reevaluation of Air
Bearings/Integration into prev.
Design
– Improved EMS system
– Evaluation of Switched Reluctance
Motors
– Piston Brakes, Sled Redesign
– IEES redesign, separation of
function
– Full Dynamic Model of EMS system
– Modeling and sensors for air bearing
sensors
• Closing Remarks and Conclusions
– Design Process takeaways
• Open floor to Questions
Team Description and Members
• Hullabaloop design team is structured under the course ENGR 401/402, a two semester interdisciplinary senior
design class at Texas A&M University specifically geared towards the Hyperloop competition.
• Hullabaloop performed this design as if we were a “Design Company” in charge of designing a “Full Scale Hyperloop
System”, including sizing the tube diameter. This design will be scaled down to be built for the test track.
• Team Advisors:
– Dr. William Schneider, Zachry Professor of Engineering Practice | Senior Engineer at NASA (ret.), 38 years experience
– Dr. Andrea Strzelec, Assistant Professor, Department of Mechanical Engineering
• Team Members:
3
• Michael Alvarez
• Tim Austin
• Justin Benden
• Andrew Bradley
• Matt Campbell
• Will Davis
• Ian de Vlaming
• Christian DeBuys
• Deepak Dhankani
• Giang Do
• JP Elizondo
• Kelsey Fieseler
• Clayton King
• Brandon Kinsey
• Matt Martinez
• Jim McCabe
Team Photo
4
Background
SpaceX design requirements:
– Hold 28 passengers
– Low pressure tube ~ 0.014 psi
– High Speed ~ 760 mph
• 30 - 35 minute trip (350 mi)
5
Year in Review
• Students elected for interdisciplinary Hyperloop
design course over summer
• Broke up into 2 studios with 4 groups to facilitate
ideas from all 8 groups
• Recombined into one, 40 person team
• Work through October to January for Design
Weekend
• Qatar Trip
• Work on advancing design and completing 402
6
Videos
• https://youtu.be/f4EOIUN2HRs
(Hullabaloop Team)
• https://youtu.be/w5UWYO5tN6I (Texas
A&M Hyperloop)
7
8
9
Qatar Trip
10
The Design Process
General Specific More Specific
Need Statement
Need Analysis
Function
Function Structure
Functional Requirements
Performance Requirements
Conceptual Design
Preliminary Design
Final Design
11
Need Statement
There is a need for a high speed transportation pod that
can travel in the low pressure Hyperloop tube. The pod
must have propulsion, stability, navigation, and braking
systems. The structure of the pod must be able to
withstand all loads and vibrations, while also meeting all
design specifications as laid out by SpaceX.
12
Top Level Function Structure
13
Competition Weekend Design
14
# Systems
1 Structure
2 Vertical Support
3 Propulsion
4 Braking
5 Safety - IEES
6 Sensors and Controls
2
1
5
15
System Design Overview
2,3,4
6
732 inches
72 inch Dia.
1.0 Structure
16
1.1 Overall Structure
• Full Size Pod
– Structure Mass: 3,700 lbm
– Width: 78 in
– 6061 Aluminum
– Fiberglass skin
17
• Structure Components
– Pressure Vessel
– Chassis
– Struts
732 in
Front
108 in
1.2 Prime Structure-Pressure Vessel
• Lightweight, aircraft-like structure
• Rings and Stringers
• 10 gauge aluminum shell (0.1 in.)
• Margin of safety of 2.5
• Mass of 1,500 lbm
18
1.3 Prime Structure-Chassis
19
Three Main Components
• Main Chassis Skid
• Struts
• Magnetic Supports
Magnet Module Section View
Struts
Magnetic
Supports Main
Chassis
Skid
1.4 Structure for Aerodynamics
• Skin Fairing
– Lightweight fiberglass
– Minimizes friction and weight, maximizes stiffness
– Provides a path for air to travel around the pod
• Nose/Tail Cone
– Fiberglass skin, reinforced by
aluminum rings and stringers
20
Front
Rear
1.5 Structure for Aerodynamics
21
*Simulated with interior tube
diameter of 16 feet
*Simulated with pod speed of 700 mph
16 ft diameter tube
22
1.6 Interior Structure
• Capacity: 28 seats,14 rows
• Rear facing, aircraft-like seats
• ½ inch honeycomb composite flooring
1.7 Structure Ingress/Egress
• Plug Door at Front of Pod
– Primary entry and exit
– Load bearing (aluminum frame)
– Metal Seal Energizer (MSE) configuration
• Emergency Exit built into primary
door
– Can be operated regardless of pressure
differential
23
2.0 Electromagnetic Suspension (EMS)
24
2.1 Vertical Support Alternatives
25
Concept Pros Cons
Electromagnetic Suspension
(EMS)
∙ Pluralization of function with
propulsion
∙ No added
mass/infrastructure
∙ Lower maintenance costs
∙ Complex feedback loops
required
∙ Stability
Air Bearings via Pressure
Vessel
∙ No need for compressor
∙ Lower power consumption
∙ Decreased performance as
tank is depleted
∙ Significant mass
Electrodynamic Suspension
(EDS)
∙ Stable equilibrium
∙ Pluralization of function with
propulsion
∙ Still in development
∙ Feasibility
Air Bearings via On-board
Compressor
∙ Lesser Kantrowitz effect
∙ Less storage needed
∙ Provides continuous source
of air
∙ Compression ratio not
attainable with current
technology
∙ Heavy
1 2
3
4
2.2 Vertical Support Module Topology
• Electromagnetic Module
– 4 Modules Total
– 1 Pole pair Each
– Pole pairs coupled though
ferromagnetic back-iron
26
# Module Components
1 Pole Shoe
2 Pole Core
3 Back Iron (Yoke)
4 Aluminum Coil (MMF)
5 C-Beam Rail & Stator
Core
5
25.5 in
2.4 Lateral Stability
27
• 20 E-shaped electromagnets utilized
• Mass: 1,175 lbm
• Electrical Requirements: 40 A current, 2.5 kW per magnet
2.61 in.
1.97 in.
0.7 Teslas < Saturation Limit
Lateral Stability MagnetFlux Density Graph
2.5 Battery Systems for Magnets
28
• All batteries connected in series
• 200 cells per pack
• Each rack is installed on rails
• 30 battery packs on each side
• 12,000 total cells
5.5in.
System
Power Required
(kW)
Vertical Support
Magnets 120
Lateral Stability
Magnets 23
Propulsion 4
Interior Systems 3
Total 150
2.6 Battery Power
29
• For 45 min trip – 110 kWh
• Batteries provide 132 kWh
3.0 Propulsion
30
3.1 Propulsion Alternatives
Concept Pros Cons
Turbine
∙ Well-established
∙ Easy to control
∙ Low atmosphere conditions
∙ Exhaust in tube
Electric motor and wheels
∙ Well-established
∙ Easy to control
∙ Trouble reaching desired speed
∙ Feasibility
Steam Catapult
∙ No added mass on pod
∙ High initial acceleration
∙ Inability to maintain speed
∙ Feasibility
Rail Gun
∙ High initial acceleration
∙ No added mass on pod
∙ Significant energy requirements
∙ High temperature and low life
span of system
Magnetic Propulsion (LSM/LIM)
∙ Easy to control
∙ Effective over full speed range
∙ Can be used to brake
∙ Weight from magnets
31
The decision came down to the linear induction motor vs. the linear synchronous motor.
3.2 Linear Induction Motor (LIM) vs. Linear
Synchronous Motor (LSM)
32
Both LIM and LSM were considered. After a formal down-selection process, the
LSM was selected for pod propulsion.
Higher Power Density
Speed is independent
of load
3.3 DC Excited Linear Synchronous Motor
with Active Guideway
• Propulsion
– 3 Phase Power Channeled through
Stator Core Mounted on Underside of
Guideway
– Pod Travels at synchronous speed
created by stator flux
– Projected Cruising Speed = 700 mph
33
Underside of Stator
Rotor or “Mover”
3.4 Kinematic Characteristics
34
*Calculations based on 16’ diameter tube
4.0 Braking
35
4.1 Normal Braking Operation
36
• Primary braking will be performed by using a negative sequence for the
three phase power of the stator
• Multi-tasking the propulsion system allows for mass and cost minimization
as well as design simplicity
• For mass, energy, and motor outputs, refer to the propulsion slides
4.2 Emergency Friction Brakes
37
• Mass of 4 sleds = 1694 lbm
• Material: Aluminum, C/SiC, Teflon
• Wear thickness: t ~ 0.02 inches
• Maximum Temperature Change: ΔT = 500°F
• Stopping Distance: 10.7 miles
*Calculations done at 700 mph
* Dimensions in inches
* Dimensions in inches
5.0 Inflatable Emergency Egress System
38
5.1 Inflatable Emergency Egress System
(IEES)
39
Inflatable Plugs
High Strength
Breakaway Tether
Breathable Environment
* Schematic not to scale
5.2 IEES – Deployment: Tail Cone
(1) Storage Location and Accessibility
40
Plug is stowed within tail
cone, and hatch is opened.
(2) Deployment
Spring pusher plate forces
plug out of compartment and
into tube.
5.3 IEES – Deployment: Tail Cone
• (3) Inflation
– Chemical Reaction is triggered, inflating plug
– Plug is tethered to chassis of pod
41
5.4 IEES – Deployment: Nose Cone
• (1) Storage Location and Accessibility
– Plug directly mounted to rigid structure
– Nose cone tip decouples from structure
42
5.5 IEES – Deployment: Nose Cone
• (2) Deployment
– Plug is sealed by pressure between nose cone
cage and hemisphere mounting rings.
43
Hemisphere
Ring
Fabric Plug
Rim
Cage Ring
F
5.6 IEES – Fully Deployed
44
* Schematic not to scale
Breathable Environment
5.7 IEES – Application as Emergency Brake
• “Low Pressure” Parachute
• Use Inflatable plug for friction
• Load limiting lanyard provides constant low force
application
45
* Schematic not to scale
6.0 Sensors and Controls
46
6.1 Data Acquisition Sensors and Processors
Bubble Number Device Quantity
1 Pitot Tube 1
2
LS-S50ML Photo
Reflective Sensor
6
3
MicroStrain 3DM-GX4-45
Inertial Measurement
Unit
2
3
On-board processor
2
3
National Instruments
Data Acquisition System
2
4
Fargo Controls 18mm
Photoelectric Proximity
Sensor
18
5 Hall Sensor 4
47
6.2 Sensor Placement Map
48
1
2
4
3
5
6.3 Vertical Support Dynamic Model
49
Vertical Support Magnet Model
Pod
Stator
6.4 Vertical Support: Linear Quadratic
Gaussian Control Simulation
50
Noise Generation
Plant
State Feedback Control
Kalman Filter
6.5 Vertical Support Controller
Simulation
51
Gap Width Response
6.6 Vertical Support Controller
Simulation
52
Gap Acceleration Response
Closing Remarks
• The Hyperloop Project statement was decomposed into necessary sub functions.
• The team designed the subsystems to best satisfy these sub functions.
• At each iterative step the subsystems were integrated into our final Hyperloop
System Design.
• In the remainder of the semester, we plan to continue optimizing the design further.
53
Advanced Design
54
# Systems
1 Structure
2 Vertical Support
3 Propulsion
4 Braking
5 Safety - IEES
6 Sensors and Controls
1
5
55
System Design Overview
2,3,4
4
Air Bearing System MagLev System
3,4
2
1.0 Structure
56
1.1 Structure Overview
• Comparison to Fall Semester
• Aerodynamics
• Pressure Vessel Redesign
• Internal Structure and Seating
• Pressure Vessel Support
• Chassis (Maglev and Air
Bearings)
• Ingress, Egress, Emergency
Exits
1.2 Old vs. New Designs
• Aluminum main structure
• Fiberglass fairing
• Designed to be lightweight,
easily manufactured, and
inexpensive
• Total mass: 3700 lbm
• Carbon Fiber Epoxy skin, fairing,
chassis
• Aluminum rings and connectors
• Fairing is integrated into structure
• Maglev and Air Bearing compatible
• Designed to be ultra lightweight
• Total mass: 1500 lbm
Air Bearing New MaglevOld Maglev
1.3 Structural Design Changes
1.4 Aerodynamics
• Old Design
– Projected area: 6900 in2
– 1400 lbm external fairing
– Overall structure mass:
3700 lbm
• New Design
– Projected area: 6000 in2
– No external fairing
– Overall structure mass:
1200 lbm
60
Previous Design
Current Design
1.5 Aerodynamics
• Drag Force
– Previous Design: 27 lbf
– Current Design: 33 lbf
– Weight reduction justifies
increased drag
Previous Design Aerodynamics
Current Design Aerodynamics
1.6 Integration of Fairing
• Decreases mass by as
much as 750 lbm
• Includes both ends in
calculations
• Assumptions made for
ring
in both cases
1.7 Pressure vessel
63
1.8 Pressure vessel
• Honeycomb Sandwich Composite
– Aluminum Honeycomb (0.65 in.)
– CFRP Skin (0.05 in.)
• Margin of Safety = 1.75
• Composite mass= 975 lbm
• Frame mass= 500 lbm
64
Stress
Minimum
Thickness (in.)
Hoop Stress 0.015 (CFRP)
Axial Stress 0.0075 (CFRP)
Shear Stress 0.0062 (CFRP)
Point Load Stress 0.25 (Al Core)
Pressure Vessel Interior Framework
• Built of carbon fiber tubes with aluminum joints
• Integrates floor and seat framing into one system
• Framework attaches to the pressure vessel rings
UPDATE WITH NEW FULL ASSEMBLY
Pressure Vessel Interior Framework
• Seat framework supports carbon fiber honeycomb floor
• Mass approximately 7.5 lbm per seat/floor unit
• Can withstand 10g deceleration
• Tube wall thickness can be changed to support heavier loads
Seat Specifications
67
Seat FEA Analysis
• Designed for 10G forward load
• Failure point: diagonal side member
• Failure mode: column buckling
1.13 Chassis Redesign
• Maglev and Air Bearing designs
• Design considerations:
• Levitation system
• Pressure vessel weight
• Normal acceleration
• 3g deceleration
• Emergency braking
• Carbon fiber epoxy tubes and
connectors
• Improvements from Aluminum
• Weight reduction
• Increased stiffness
Maglev Chassis
Air Bearing Chassis
1.14 Maglev Chassis
*Dimensions in inches
• Utilizes two C-channel rails
• Design Considerations:
• Mass
• Magnet supporting beams
• Stress distribution
• Storage
• Carbon fiber epoxy
• Mass: 300 lbm
• Battery storage
• Space for life support systems
3 in. Carbon Fiber square tubing
(.085 in. wall thickness)
113
18
81
1.15 Air Bearing Chassis
*Dimensions in inches
• Utilizes two vertical rails
• Design Consideration:
• Weight
• Stress distribution
• Storage
• Mass: 225 lbm
• Similar carbon fiber structure
• Compressed air storage
• Up to six 1 ft. wide by 40 ft.
long tanks
• Uniform stress distribution
3 in. Carbon Fiber square tubing
(.085 in. wall thickness)
18
1.16 Advanced Strut Design Overview
• The advanced strut design
supports the pressure vessel
• This design contains two CFRP
sheets pinned to Mg alloy struts
• The total mass, including both
sides, is 374.44 lbm
• Maximum allowed force due to
buckling is 2530 kips
Advanced
Strut
Design
Advanced
Strut
Design
1.17 Composite Cross Section
• Composite cross section designed
to have high moment of inertia to
prevent buckling
• CFRP sheets are pinned to the Mg
alloy strut because CFRP can not
be attached using traditional
methods such as welding
• CFRP sheets are glued together
on the sides using epoxy
1.18 Advanced Strut Assembly
• Ball and socket joints are used to
eliminate moment reactions at the
joint locations
• The socket contains two ball inputs to
save weight and reduce the number
of parts
• Contains 56 Mg alloy struts per side,
each forming 45o angles w.r.t the top
socket
112 Double Sided
Pins for Both
Sheets
57 (1 inch) Ball and
Socket Joints Per
Side
2 CFRP (486.5x11.75x
0.0625 inch) Sheets
*Strut Specifications
• Designed for:
– 3g max linear acceleration
– Safety factor of 2
• Strut Angles
– Phi=80°
– Theta=63°
• Carbon fiber tubes
– 64 cylindrical shells
– Outer radius of 1 in,
thickness of 0.0005 in
*Carbon Fiber Tube Analysis
• Margins of Safety (Distortion Energy)
– Maximum Stress: 2.45
– Buckling: 1.19
• Total Mass of Tubes (w/o Connectors)
– 0.55 lbm
• Failure Based on Yielding
*Adhesive Cylindrical Lap Connectors
• Internal and External Surfaces
• Epoxy Resin
• Prevents Failure on Tube Ends
• Bolted Connections to Chassis and Pod
• 6061-T6 Aluminium
• More Calculations Required
1.22 Redesigned Primary Door
• Overall design largely unchanged
– Same sealing and opening method
• Composed of carbon fiber and aluminum honeycomb
• Mass reduced to 39 lbm
78
Door 95% Male
Height [in] 63 75
Projected Height [in] 63 67
Width [in] 36 24
63 in.
36 in.
1.23 Primary Door Operation
79
54 in.
36 in.
1.24 Redesigned Emergency Exit
• Two emergency exits
– One within main door at front of pod
– One at back of pod on opposite side of front exit
• Composed of same carbon epoxy honeycomb as pressure vessel
• Mass = 26 lbm
• Pressure differential exerts Fn of 3,750 lbf on each latch
• Bearings (µ = 0.0015) reduce total Ffr to 11 lbf
• Latches released when 15 lbf applied to 5 in. lever
• Hinged at bottom for controlled opening
– Doubles as ramp for easy exit of pod
80
1.25 Emergency Exit Operation
81
(Front View)
Exits Closed Exits Opened
2.0 Air Bearings
82
2.1 Air Bearing Concept
• Flexible skirt
• Advantages
– Reduced complexity
– Reduce weight
– Cooling
83
2.2 Bearing on Pod
84
BearingTanks
Pressure
Vessel
Chassis
2.3 How it works
• Pressure and flow
rate managed with
regulators and
controls
• Flexible material has
inherent stability
85
2.4 Bearing Material
• Flexible, lightweight, low
drag, thin (< 1.5 in), fully
responsive
• Coated with blend of natural
and synthetic rubber
86
2.5 Tanks
87
● 4 total tanks
● 0.27 in. thick CFRP with
aluminum lining
● 11.5 in. ID x 38 ft. long
● Internal pressure: 5000 psi
2.6 Manifold
88
● ¼ in. stainless steel tubing
○ 0.035 in. wall thickness
○ 5100 psi AWP
● 1 in. stainless steel tubing
○ 0.065 in. wall thickness
○ 2400 psi AWP
2.7 Pressure Regulators
• Recommended 3 Cuts
• 5000 - 500 - 15 - 1 psi
• 1301G HP Regulator
– Max inlet: 6000 psi
– Outlet range: 200-500 psi
– 8 lbm
• MR95H
– Max inlet: 1000 psi
– Max outlet: 450 psi
– 22 lbm
• 1098-EGR
– Pilot-operated (Type 61L)
– Max inlet: 400 psi
– Outlet: 0.25-2 psi
– 55 lbm
89
2.8 Pressure Regulators
• Regulators limited by
flow rate
• Flow rate depends on
pod weight
90
*regulator schematic for 18,000 lbm pod
Flow
Rate
Number of PR’s
Required Total
Mass
1310G
MR95
H
1098-
EGR
0.39
lbm/s
15 5 3 395 lbm
*based on pod mass of 18,000 lbm
2.9 Wheel Contingency
• 8 wheels to support structural bending
• Protects skirt when idle, ensure mobility upon bearing
failure
91
Drag bar in
tension
3.0 Magnets
92
93
3.1 Lateral stability Magnets
Resize stability magnets using
new pod weight
- New mass of stability
system: 411 lbm
- 60% mass reduction
- 1.8 kW per magnet
- 112 lbf (500 N) per magnet
- 10 magnets on each side of
pod
- Serves as DC Excitation in
Air Bearings design
3.77in
1.57in 10.06in
3.2 Banking
94
95
3.3 Levitation Magnets
Units?
96
3.4 ANSYS
3.5 Updated Dimensions
Quantity
Original Values Updated Values
(mm) (in.) (mm) (in.)
Pole Pitch 626 25 626 25
Pole Shoe Length 417 16 417 16
Module Width 376 15 376 15
Back Iron Length 1630 64 1626 64
Cylinder Core Radius 76 3.0 40 1.57
Cylinder Core Height 152 6.0 80 3.2
Back Iron Depth 112 4.4 25 1.0
Pole Shoe Depth 50 2.0 25 1.0
Module Weight 622 kg 1371 lbm 154 kg 340 lbm
System Weight 2488 kg 5485 lbm 615 kg 1356 lbm
75% decrease in system weight
3.6 Batteries
System Power Required (kW)
Lateral Stability Magnets 18
Levitation Magnets 5
Interior Systems 3
Total 26
*3.7 Displacement FEA: Normal
Operation [Do we want these]
(Structure?)
*3.8 Displacement: 3g
Acceleration(Structure?)
101
3.9 Magnetic Circuit
DC Excitation (On
Pod)
Air gap
Stator (On
Guideway)
3.10 Magnetic Circuit
Reluctance of module 61.58 H-1 Module flux (f) 0.3895 T
Reluctance of air gap 3.38 MH-1 Air gap flux (g) 0.3571 T
Reluctance of single tooth 15.65 H-1 Leakage flux for air
gap (lg)
0.0036 T
Reluctance of stator core per
pole pitch
1.32 kH-1 Leakage flux for
module (lm)
0.0324 T
Reluctance of module per pole
pitch
2.50 kH-1 Flux linked with
stator winding
0.3535 T
Reluctance for magnet
leakage flux
0.95 MH-1
Reluctance of air gap leakage
flux
3.38 MH-1
4.0 Braking
103
4.1 Normal Braking Operation
104
• Primary braking will be performed by using a negative sequence for the
three phase power of the stator
• Multi-tasking the propulsion system allows for mass and cost minimization
as well as design simplicity
• For mass, energy, and motor outputs, refer to the Propulsion section
4.2 Emergency Friction Brakes – Placement
105
EMS Design
Air Bearing Design
•Can blow air over the
sleds to cool them
Sleds
Sleds
4.3 Emergency Friction Brakes – Sled Design
• Sleds used in both designs (EMS and Air Bearings)
• Air channel for cooling using pressurized air
• Dimensions: 9.8 in. wide x 2.95 in. tall x 480 in. long
• Mass: 920 lbm
• Stopping distance: 10.3 mi. at max speed (700 mph)
106
C/SiC
Al
4.4 Emergency Friction Brakes – Design Idea
• Spring-actuated pistons to increase stopping force
• Greatly increased heat generation
• Not used in final design
107
*All dimensions in Inches
4.5 Inflatable Friction Plug Emergency Brake
• Use inflatable plug for friction
against tube
• Acts similar to a parachute,
but operates without air
resistance
• Load limiting lanyard
provides constant low force
application
108
A
A
Pod Velocity Constant Force
4.6 Plug Brake with Circumferential Ribbing
• Slowing at 3 g's from 550 mph would
result in an average temperature rise
of roughly 400 °F in the plug fabric with
no ribbing
• C/SiC pads installed around the
circumference of the plug in the
contact region
– Better thermal properties
– Tougher material
– Higher coefficient of friction
– Allows for airflow convection
109
16 ft. Dia.
5.0 Inflatable Emergency Egress System
110
5.1 Inflatable Emergency Egress System
(IEES)
111
Inflatable Plugs
Breathable Environment
5.2 Toroidal Inflatable Specs
• Interior circle of torus
mounts to pressure vessel
ring
• Smaller cross section on
bottom than top, in order to
conform with tube
• Mounted to pressure vessel
rings
112
17ft
6ft
3.5ft
7.5ft
5.3 – IEES Operation and Evacuation Plan
1. Pod comes to halt, deflated
tori wrapped and strapped
around cones
1. Tori are inflated using Sodium
azide Reaction
1. Area surrounding pod is
pressurized with onboard air
tank.
1. Emergency exit doors open in
front and back
1. 28 Passengers exit pod into
pressurized region of tube and
move towards emergency
exits.
113
(t = 0s)
(t = 5s)
(t = 45s)
(t = 50s)
(t = 90s)
Velocity = 0 mph
Reaction triggered,
pressurization begins
6.1.0 Electromagnetic Dynamics
114
6.1.1 Center of Mass (COM) Dynamics
• Purpose: Examine passenger ride comfort
• Allows for coupling of the 4 levitation modules
• Determines legitimacy of not including suspension
115
6.1.2 Extension to COM
116
● Full rotational dynamics are unnecessary and computationally expensive
● Small Angle Assumption and Gap width vs. Pod Kinematic Constraints
(Θ, Φ, & Ψ=0)
● COM dynamics can be estimated using one magnet (as done originally),
but more accurate through potential and kinetic energy averaging
● Unique seeds were used to create different input noise for each magnet
New Pod Dynamics
6.1.3 COM Simulation Modification
117
Plant Modification
Function
Output
Individual Magnet Simulation
Unique Seeding
6.1.4 COM Simulation Modification Contd.
118
COM Acceleration
COM Position
6.1.5 COM Position
119
6.1.6 COM Filtered Position
120
6.1.7 COM Acceleration
121
6.1.8 COM Filtered Acceleration
122
6.2.0 Air Bearings Controls
123
6.2.1 Air Bearing System Characteristics
• System assumptions similar to electromagnets:
– Small angle assumption is still valid
– Only Degree of Freedom (DOF) is vertical motion
• Cushion Pressure: ~3200 Pa
• Environmental Pressure: 100 Pa
• Expected Hover Height : 1mm (English unit)
• Expected Mass Flow Rate: 0.195 kg/s
124
6.2.2 Defining Exit Flow
•
125
6.2.3 Air Bearing Equations
•
126
6.2.4 Air Bearing Dynamic Solution
127
6.2.5 Air Bearing Sensors
• Pressure transducers
– 0 to 2.5 psi range
– 0.08% accuracy
– Measure skirt and cushion pressure
• Distance Sensors
– New mounting fixtures away from ground
– Measure ~1mm gap height
128
Closing Remarks Slide***
• Wrap up Advanced Design
• Design Process
– Blank Sheet of Paper to Full Design
• Summary of Year in Review
– Teams of 4
– Two large teams of 16 and 25
– Final team of 41
– SpaceX Competition Design Weekend
– Trip to Doha, Qatar, and work with TAMUQ Hyperloop
team
– Final Design Package today
129
QUESTIONS?
130
Friction Brake Specifications
131
C/SiC Al 6061 Teflon
Friction Coeff. w/ steel
(kinetic)
0.29 --- 0.05
Wear Factor [Pa-1] 1.0*10-12 --- 5.04*10-4
Density [kg/m3] 2450 2700 2160
Hardness 25 GPa 1.0 GPa 50 Shore D
Specific Heat Capacity
[kJ/kgK]
0.80 0.90 1.01
2.3 Vertical Support Module Capabilities
• Electromagnetic Module
– Suspends Pod through
electromagnetic attractive force
– Max Suspension Force = 54,963 lbf
– Also provides the DC Excitation
necessary for propulsion
132
NCR18650 Specs
http://industrial.panasonic.com/lecs/www-data/pdf2/ACA4000/ACA4000CE417.pdf
Diagrams● 30 battery packs each side
● Connected in series
● 200 cells per pack
Battery Pack
+
-
-
200
cells
200
cells
200
cells
... 200
cells
60
Packs
+
+ -
Battery, DC-DC Converter, Battery Management System (BMS), and Battery Cooling System housed in 2 enclosures along length of
pod
1.5 Structure for Aerodynamics
Tube
Diameter (ft)
Drag Coefficient
Drag
Force (lbf)
12 2.19 125.9
16 0.89 50.9
20 0.61 35.1
136
Speed
Drag
Force (lbf)
Maximum Air
Velocity (mph)
500 27.8 704.4
550 33.2 769.1
600 38.7 838.9
650 44.8 914.2
700 50.9 974.9
*Interior tube diameter of 16 feet
IEES Extra Slides
137
Flow Rate Calculations
Abearing
Blue is
pbearing
Back Up Pictures
Chassis Weight/Strength Comparison
(Backup)
140
13 lb CF truss supports 3000 lbs
Carbon Fiber Epoxy Specs (Backup)
• The CF tubes of choice are:
• 50% VF CF Epoxy
• [±45,0,90]s
• Tensile, Compressive Strength: 320,270 KSI
141
Loading conditions:
10,000 lb PV
3g deceleration
1g turn
Supplemental Slide XX: Unhinged vs. Bottom
Hinged
142
Design Advantages Disadvantages
Unhinged • Lightweight design • Complex, heavy opening
mechanism
• Possible safety hazard from
uncontrolled door ejection
Bottom Hinged • Relatively controlled
opening motion
• Exit aid
• Simplified latch
mechanism possible
• Added weight from ramp
• Added weight from damper
(if included)
Supplemental Slide XX: Emergency Exit
Operation (Update after simplifying)
• Latch mechanism is double rack and a pinion
– Rotation in central gear produces linear motion in side latches
• Must overcome friction from pressure-induced normal force on latches
– Fn = 14,930 lbf
• Ball bearing bushings used in latch holders to reduce friction (µ = 0.0015)
– Ffr = 22.4 lbf
• 15 lbf applied to 7.5 in.
turnstile lever opens door
143
7.5 in.
15 lbf

More Related Content

What's hot

Railway wagon braking system ppt
Railway wagon braking system pptRailway wagon braking system ppt
Railway wagon braking system pptSalim Malik
 
Engineering plant facilities 05 mechanics vertical transportation
Engineering plant facilities 05 mechanics vertical transportationEngineering plant facilities 05 mechanics vertical transportation
Engineering plant facilities 05 mechanics vertical transportationLuis Cabrera
 
Brakes and its Application in Trains
Brakes and its Application in TrainsBrakes and its Application in Trains
Brakes and its Application in TrainsGnana Deepa Choudary
 
Electro Pneaumatic Breaking system
Electro Pneaumatic Breaking systemElectro Pneaumatic Breaking system
Electro Pneaumatic Breaking systemGnana Deepa Choudary
 
Geometrical Analysis and Design of Tension-Actuated Ackermann Steering System...
Geometrical Analysis and Design of Tension-Actuated Ackermann Steering System...Geometrical Analysis and Design of Tension-Actuated Ackermann Steering System...
Geometrical Analysis and Design of Tension-Actuated Ackermann Steering System...Scientific Review SR
 
Railway wagon braking system pdf by salim malik
Railway wagon braking system pdf by salim malikRailway wagon braking system pdf by salim malik
Railway wagon braking system pdf by salim malikSalim Malik
 
MMF_Thesis_100210012_Huseyin_Eren_Meseli
MMF_Thesis_100210012_Huseyin_Eren_MeseliMMF_Thesis_100210012_Huseyin_Eren_Meseli
MMF_Thesis_100210012_Huseyin_Eren_MeseliHüseyin Eren Meşeli
 
Landing Gear Project Final Report
Landing Gear Project Final ReportLanding Gear Project Final Report
Landing Gear Project Final ReportKevin Osman
 
Rear wheel steering system ppt
Rear wheel steering system pptRear wheel steering system ppt
Rear wheel steering system pptK.SATHISH KUMAR
 
Automobile module i
Automobile module iAutomobile module i
Automobile module iANOOP P
 

What's hot (20)

Railway wagon braking system ppt
Railway wagon braking system pptRailway wagon braking system ppt
Railway wagon braking system ppt
 
railway wagon breaking system
railway wagon breaking systemrailway wagon breaking system
railway wagon breaking system
 
Engineering plant facilities 05 mechanics vertical transportation
Engineering plant facilities 05 mechanics vertical transportationEngineering plant facilities 05 mechanics vertical transportation
Engineering plant facilities 05 mechanics vertical transportation
 
Brakes and its Application in Trains
Brakes and its Application in TrainsBrakes and its Application in Trains
Brakes and its Application in Trains
 
Electro Pneaumatic Breaking system
Electro Pneaumatic Breaking systemElectro Pneaumatic Breaking system
Electro Pneaumatic Breaking system
 
Geometrical Analysis and Design of Tension-Actuated Ackermann Steering System...
Geometrical Analysis and Design of Tension-Actuated Ackermann Steering System...Geometrical Analysis and Design of Tension-Actuated Ackermann Steering System...
Geometrical Analysis and Design of Tension-Actuated Ackermann Steering System...
 
Final report SMV
Final report SMVFinal report SMV
Final report SMV
 
Railway wagon braking system pdf by salim malik
Railway wagon braking system pdf by salim malikRailway wagon braking system pdf by salim malik
Railway wagon braking system pdf by salim malik
 
MMF_Thesis_100210012_Huseyin_Eren_Meseli
MMF_Thesis_100210012_Huseyin_Eren_MeseliMMF_Thesis_100210012_Huseyin_Eren_Meseli
MMF_Thesis_100210012_Huseyin_Eren_Meseli
 
Landing Gear Project Final Report
Landing Gear Project Final ReportLanding Gear Project Final Report
Landing Gear Project Final Report
 
Rear wheel steering system ppt
Rear wheel steering system pptRear wheel steering system ppt
Rear wheel steering system ppt
 
SMV Design Report - Final
SMV Design Report - FinalSMV Design Report - Final
SMV Design Report - Final
 
Automobile module i
Automobile module iAutomobile module i
Automobile module i
 
E-Roadster
E-RoadsterE-Roadster
E-Roadster
 
Seminar Report on free piston engine
Seminar Report on free piston engineSeminar Report on free piston engine
Seminar Report on free piston engine
 
Power steering system
Power steering systemPower steering system
Power steering system
 
All-Wheeled Steering System
All-Wheeled Steering SystemAll-Wheeled Steering System
All-Wheeled Steering System
 
Br
BrBr
Br
 
Presentation
PresentationPresentation
Presentation
 
Power steering
Power steeringPower steering
Power steering
 

Viewers also liked

Hyperloop Presentation - Babbitt
Hyperloop Presentation - BabbittHyperloop Presentation - Babbitt
Hyperloop Presentation - BabbittTess Audley Babbitt
 
Hyperloop VTU Seminar Report
Hyperloop VTU Seminar ReportHyperloop VTU Seminar Report
Hyperloop VTU Seminar ReportUmar Ahmed
 
The Hyperloop - Fancy Commute at 800 MPH?
The Hyperloop - Fancy Commute at 800 MPH?The Hyperloop - Fancy Commute at 800 MPH?
The Hyperloop - Fancy Commute at 800 MPH?Stinson
 

Viewers also liked (6)

Hyperloop
HyperloopHyperloop
Hyperloop
 
Hyperloop Presentation - Babbitt
Hyperloop Presentation - BabbittHyperloop Presentation - Babbitt
Hyperloop Presentation - Babbitt
 
Hyperloop transportation system
Hyperloop  transportation systemHyperloop  transportation system
Hyperloop transportation system
 
Hyperloop VTU Seminar Report
Hyperloop VTU Seminar ReportHyperloop VTU Seminar Report
Hyperloop VTU Seminar Report
 
Hyperloop
HyperloopHyperloop
Hyperloop
 
The Hyperloop - Fancy Commute at 800 MPH?
The Hyperloop - Fancy Commute at 800 MPH?The Hyperloop - Fancy Commute at 800 MPH?
The Hyperloop - Fancy Commute at 800 MPH?
 

Similar to ENGR 402 Final Presentation.pptx

Final Design Presentation (1) (1)
Final Design Presentation (1) (1)Final Design Presentation (1) (1)
Final Design Presentation (1) (1)Craig Medlin
 
Team rhythmdesignathon
Team rhythmdesignathonTeam rhythmdesignathon
Team rhythmdesignathonMaazKhan273
 
VIVA VOCE NORZILA NOH 0008908 - 10122021.pptx
VIVA VOCE NORZILA NOH 0008908 - 10122021.pptxVIVA VOCE NORZILA NOH 0008908 - 10122021.pptx
VIVA VOCE NORZILA NOH 0008908 - 10122021.pptxnorzilanoh1
 
Skidded helicopter tug design calculation
Skidded helicopter tug design calculationSkidded helicopter tug design calculation
Skidded helicopter tug design calculationLahiru Dilshan
 
Hybrid Rocket Final Presentation
Hybrid Rocket Final PresentationHybrid Rocket Final Presentation
Hybrid Rocket Final PresentationNigel Swehla
 
Artificial-Lift-System-N production engineering.pdf
Artificial-Lift-System-N production engineering.pdfArtificial-Lift-System-N production engineering.pdf
Artificial-Lift-System-N production engineering.pdfIsmailKatun1
 
Akshay_Mahajan B.E Project
Akshay_Mahajan B.E Project Akshay_Mahajan B.E Project
Akshay_Mahajan B.E Project Akshay Mahajan
 
ace088_subramanian_2013_o
ace088_subramanian_2013_oace088_subramanian_2013_o
ace088_subramanian_2013_oSwami Nathan
 
3 Robot Actuators systems.pptx
3 Robot Actuators systems.pptx3 Robot Actuators systems.pptx
3 Robot Actuators systems.pptxnachiketkale5
 
Tushar Prabhakar
Tushar PrabhakarTushar Prabhakar
Tushar Prabhakartprabhakar
 
CHALLENGES OF AN ICONIC PEDESTRIAN BRIDGE
CHALLENGES OF AN ICONIC PEDESTRIAN BRIDGE  CHALLENGES OF AN ICONIC PEDESTRIAN BRIDGE
CHALLENGES OF AN ICONIC PEDESTRIAN BRIDGE AIT Solutions
 
Space Propulsion Innovation Award
Space Propulsion Innovation AwardSpace Propulsion Innovation Award
Space Propulsion Innovation AwardA. Rocketeer
 
Essentials slide in bridge construction a guide for bridge designers
Essentials slide in bridge construction a guide for bridge designersEssentials slide in bridge construction a guide for bridge designers
Essentials slide in bridge construction a guide for bridge designersjose bonifacio de souza leite cuadros
 
Seimic Qualification of Transformers - Pradeep ProSIM
Seimic Qualification of Transformers - Pradeep ProSIMSeimic Qualification of Transformers - Pradeep ProSIM
Seimic Qualification of Transformers - Pradeep ProSIMProSIM R & D Pvt. Ltd.
 

Similar to ENGR 402 Final Presentation.pptx (20)

Final Design Presentation (1) (1)
Final Design Presentation (1) (1)Final Design Presentation (1) (1)
Final Design Presentation (1) (1)
 
Team rhythmdesignathon
Team rhythmdesignathonTeam rhythmdesignathon
Team rhythmdesignathon
 
VIVA VOCE NORZILA NOH 0008908 - 10122021.pptx
VIVA VOCE NORZILA NOH 0008908 - 10122021.pptxVIVA VOCE NORZILA NOH 0008908 - 10122021.pptx
VIVA VOCE NORZILA NOH 0008908 - 10122021.pptx
 
Skidded helicopter tug design calculation
Skidded helicopter tug design calculationSkidded helicopter tug design calculation
Skidded helicopter tug design calculation
 
HYBRIDROCKET
HYBRIDROCKETHYBRIDROCKET
HYBRIDROCKET
 
Hybrid Rocket Final Presentation
Hybrid Rocket Final PresentationHybrid Rocket Final Presentation
Hybrid Rocket Final Presentation
 
Artificial-Lift-System-N production engineering.pdf
Artificial-Lift-System-N production engineering.pdfArtificial-Lift-System-N production engineering.pdf
Artificial-Lift-System-N production engineering.pdf
 
Akshay_Mahajan B.E Project
Akshay_Mahajan B.E Project Akshay_Mahajan B.E Project
Akshay_Mahajan B.E Project
 
Hyperloop
HyperloopHyperloop
Hyperloop
 
Shakerpresentation
ShakerpresentationShakerpresentation
Shakerpresentation
 
ace088_subramanian_2013_o
ace088_subramanian_2013_oace088_subramanian_2013_o
ace088_subramanian_2013_o
 
3 Robot Actuators systems.pptx
3 Robot Actuators systems.pptx3 Robot Actuators systems.pptx
3 Robot Actuators systems.pptx
 
1159 voronka[1]
1159 voronka[1]1159 voronka[1]
1159 voronka[1]
 
Project review
Project reviewProject review
Project review
 
CCTVHeadquarters.pdf
CCTVHeadquarters.pdfCCTVHeadquarters.pdf
CCTVHeadquarters.pdf
 
Tushar Prabhakar
Tushar PrabhakarTushar Prabhakar
Tushar Prabhakar
 
CHALLENGES OF AN ICONIC PEDESTRIAN BRIDGE
CHALLENGES OF AN ICONIC PEDESTRIAN BRIDGE  CHALLENGES OF AN ICONIC PEDESTRIAN BRIDGE
CHALLENGES OF AN ICONIC PEDESTRIAN BRIDGE
 
Space Propulsion Innovation Award
Space Propulsion Innovation AwardSpace Propulsion Innovation Award
Space Propulsion Innovation Award
 
Essentials slide in bridge construction a guide for bridge designers
Essentials slide in bridge construction a guide for bridge designersEssentials slide in bridge construction a guide for bridge designers
Essentials slide in bridge construction a guide for bridge designers
 
Seimic Qualification of Transformers - Pradeep ProSIM
Seimic Qualification of Transformers - Pradeep ProSIMSeimic Qualification of Transformers - Pradeep ProSIM
Seimic Qualification of Transformers - Pradeep ProSIM
 

ENGR 402 Final Presentation.pptx

  • 1. 1 Team Hullabaloop May 4, 2016 Hyperloop Pod System Design Package
  • 2. Overview • More detailed intro to Hyperloop – Background – Design Process/Course Objectives – Video – Year in Review (Design Weekend, Qatar etc) • Old: Design Weekend Presentation – Structure – Levitation – Propulsion – Braking – IEES – Controls 2 • New Design: – Structure redesign and improvements – Reevaluation of Air Bearings/Integration into prev. Design – Improved EMS system – Evaluation of Switched Reluctance Motors – Piston Brakes, Sled Redesign – IEES redesign, separation of function – Full Dynamic Model of EMS system – Modeling and sensors for air bearing sensors • Closing Remarks and Conclusions – Design Process takeaways • Open floor to Questions
  • 3. Team Description and Members • Hullabaloop design team is structured under the course ENGR 401/402, a two semester interdisciplinary senior design class at Texas A&M University specifically geared towards the Hyperloop competition. • Hullabaloop performed this design as if we were a “Design Company” in charge of designing a “Full Scale Hyperloop System”, including sizing the tube diameter. This design will be scaled down to be built for the test track. • Team Advisors: – Dr. William Schneider, Zachry Professor of Engineering Practice | Senior Engineer at NASA (ret.), 38 years experience – Dr. Andrea Strzelec, Assistant Professor, Department of Mechanical Engineering • Team Members: 3 • Michael Alvarez • Tim Austin • Justin Benden • Andrew Bradley • Matt Campbell • Will Davis • Ian de Vlaming • Christian DeBuys • Deepak Dhankani • Giang Do • JP Elizondo • Kelsey Fieseler • Clayton King • Brandon Kinsey • Matt Martinez • Jim McCabe
  • 5. Background SpaceX design requirements: – Hold 28 passengers – Low pressure tube ~ 0.014 psi – High Speed ~ 760 mph • 30 - 35 minute trip (350 mi) 5
  • 6. Year in Review • Students elected for interdisciplinary Hyperloop design course over summer • Broke up into 2 studios with 4 groups to facilitate ideas from all 8 groups • Recombined into one, 40 person team • Work through October to January for Design Weekend • Qatar Trip • Work on advancing design and completing 402 6
  • 7. Videos • https://youtu.be/f4EOIUN2HRs (Hullabaloop Team) • https://youtu.be/w5UWYO5tN6I (Texas A&M Hyperloop) 7
  • 8. 8
  • 9. 9
  • 11. The Design Process General Specific More Specific Need Statement Need Analysis Function Function Structure Functional Requirements Performance Requirements Conceptual Design Preliminary Design Final Design 11
  • 12. Need Statement There is a need for a high speed transportation pod that can travel in the low pressure Hyperloop tube. The pod must have propulsion, stability, navigation, and braking systems. The structure of the pod must be able to withstand all loads and vibrations, while also meeting all design specifications as laid out by SpaceX. 12
  • 13. Top Level Function Structure 13
  • 15. # Systems 1 Structure 2 Vertical Support 3 Propulsion 4 Braking 5 Safety - IEES 6 Sensors and Controls 2 1 5 15 System Design Overview 2,3,4 6 732 inches 72 inch Dia.
  • 17. 1.1 Overall Structure • Full Size Pod – Structure Mass: 3,700 lbm – Width: 78 in – 6061 Aluminum – Fiberglass skin 17 • Structure Components – Pressure Vessel – Chassis – Struts 732 in Front 108 in
  • 18. 1.2 Prime Structure-Pressure Vessel • Lightweight, aircraft-like structure • Rings and Stringers • 10 gauge aluminum shell (0.1 in.) • Margin of safety of 2.5 • Mass of 1,500 lbm 18
  • 19. 1.3 Prime Structure-Chassis 19 Three Main Components • Main Chassis Skid • Struts • Magnetic Supports Magnet Module Section View Struts Magnetic Supports Main Chassis Skid
  • 20. 1.4 Structure for Aerodynamics • Skin Fairing – Lightweight fiberglass – Minimizes friction and weight, maximizes stiffness – Provides a path for air to travel around the pod • Nose/Tail Cone – Fiberglass skin, reinforced by aluminum rings and stringers 20 Front Rear
  • 21. 1.5 Structure for Aerodynamics 21 *Simulated with interior tube diameter of 16 feet *Simulated with pod speed of 700 mph 16 ft diameter tube
  • 22. 22 1.6 Interior Structure • Capacity: 28 seats,14 rows • Rear facing, aircraft-like seats • ½ inch honeycomb composite flooring
  • 23. 1.7 Structure Ingress/Egress • Plug Door at Front of Pod – Primary entry and exit – Load bearing (aluminum frame) – Metal Seal Energizer (MSE) configuration • Emergency Exit built into primary door – Can be operated regardless of pressure differential 23
  • 25. 2.1 Vertical Support Alternatives 25 Concept Pros Cons Electromagnetic Suspension (EMS) ∙ Pluralization of function with propulsion ∙ No added mass/infrastructure ∙ Lower maintenance costs ∙ Complex feedback loops required ∙ Stability Air Bearings via Pressure Vessel ∙ No need for compressor ∙ Lower power consumption ∙ Decreased performance as tank is depleted ∙ Significant mass Electrodynamic Suspension (EDS) ∙ Stable equilibrium ∙ Pluralization of function with propulsion ∙ Still in development ∙ Feasibility Air Bearings via On-board Compressor ∙ Lesser Kantrowitz effect ∙ Less storage needed ∙ Provides continuous source of air ∙ Compression ratio not attainable with current technology ∙ Heavy
  • 26. 1 2 3 4 2.2 Vertical Support Module Topology • Electromagnetic Module – 4 Modules Total – 1 Pole pair Each – Pole pairs coupled though ferromagnetic back-iron 26 # Module Components 1 Pole Shoe 2 Pole Core 3 Back Iron (Yoke) 4 Aluminum Coil (MMF) 5 C-Beam Rail & Stator Core 5 25.5 in
  • 27. 2.4 Lateral Stability 27 • 20 E-shaped electromagnets utilized • Mass: 1,175 lbm • Electrical Requirements: 40 A current, 2.5 kW per magnet 2.61 in. 1.97 in. 0.7 Teslas < Saturation Limit Lateral Stability MagnetFlux Density Graph
  • 28. 2.5 Battery Systems for Magnets 28 • All batteries connected in series • 200 cells per pack • Each rack is installed on rails • 30 battery packs on each side • 12,000 total cells 5.5in.
  • 29. System Power Required (kW) Vertical Support Magnets 120 Lateral Stability Magnets 23 Propulsion 4 Interior Systems 3 Total 150 2.6 Battery Power 29 • For 45 min trip – 110 kWh • Batteries provide 132 kWh
  • 31. 3.1 Propulsion Alternatives Concept Pros Cons Turbine ∙ Well-established ∙ Easy to control ∙ Low atmosphere conditions ∙ Exhaust in tube Electric motor and wheels ∙ Well-established ∙ Easy to control ∙ Trouble reaching desired speed ∙ Feasibility Steam Catapult ∙ No added mass on pod ∙ High initial acceleration ∙ Inability to maintain speed ∙ Feasibility Rail Gun ∙ High initial acceleration ∙ No added mass on pod ∙ Significant energy requirements ∙ High temperature and low life span of system Magnetic Propulsion (LSM/LIM) ∙ Easy to control ∙ Effective over full speed range ∙ Can be used to brake ∙ Weight from magnets 31 The decision came down to the linear induction motor vs. the linear synchronous motor.
  • 32. 3.2 Linear Induction Motor (LIM) vs. Linear Synchronous Motor (LSM) 32 Both LIM and LSM were considered. After a formal down-selection process, the LSM was selected for pod propulsion. Higher Power Density Speed is independent of load
  • 33. 3.3 DC Excited Linear Synchronous Motor with Active Guideway • Propulsion – 3 Phase Power Channeled through Stator Core Mounted on Underside of Guideway – Pod Travels at synchronous speed created by stator flux – Projected Cruising Speed = 700 mph 33 Underside of Stator Rotor or “Mover”
  • 34. 3.4 Kinematic Characteristics 34 *Calculations based on 16’ diameter tube
  • 36. 4.1 Normal Braking Operation 36 • Primary braking will be performed by using a negative sequence for the three phase power of the stator • Multi-tasking the propulsion system allows for mass and cost minimization as well as design simplicity • For mass, energy, and motor outputs, refer to the propulsion slides
  • 37. 4.2 Emergency Friction Brakes 37 • Mass of 4 sleds = 1694 lbm • Material: Aluminum, C/SiC, Teflon • Wear thickness: t ~ 0.02 inches • Maximum Temperature Change: ΔT = 500°F • Stopping Distance: 10.7 miles *Calculations done at 700 mph * Dimensions in inches * Dimensions in inches
  • 38. 5.0 Inflatable Emergency Egress System 38
  • 39. 5.1 Inflatable Emergency Egress System (IEES) 39 Inflatable Plugs High Strength Breakaway Tether Breathable Environment * Schematic not to scale
  • 40. 5.2 IEES – Deployment: Tail Cone (1) Storage Location and Accessibility 40 Plug is stowed within tail cone, and hatch is opened. (2) Deployment Spring pusher plate forces plug out of compartment and into tube.
  • 41. 5.3 IEES – Deployment: Tail Cone • (3) Inflation – Chemical Reaction is triggered, inflating plug – Plug is tethered to chassis of pod 41
  • 42. 5.4 IEES – Deployment: Nose Cone • (1) Storage Location and Accessibility – Plug directly mounted to rigid structure – Nose cone tip decouples from structure 42
  • 43. 5.5 IEES – Deployment: Nose Cone • (2) Deployment – Plug is sealed by pressure between nose cone cage and hemisphere mounting rings. 43 Hemisphere Ring Fabric Plug Rim Cage Ring F
  • 44. 5.6 IEES – Fully Deployed 44 * Schematic not to scale Breathable Environment
  • 45. 5.7 IEES – Application as Emergency Brake • “Low Pressure” Parachute • Use Inflatable plug for friction • Load limiting lanyard provides constant low force application 45 * Schematic not to scale
  • 46. 6.0 Sensors and Controls 46
  • 47. 6.1 Data Acquisition Sensors and Processors Bubble Number Device Quantity 1 Pitot Tube 1 2 LS-S50ML Photo Reflective Sensor 6 3 MicroStrain 3DM-GX4-45 Inertial Measurement Unit 2 3 On-board processor 2 3 National Instruments Data Acquisition System 2 4 Fargo Controls 18mm Photoelectric Proximity Sensor 18 5 Hall Sensor 4 47
  • 48. 6.2 Sensor Placement Map 48 1 2 4 3 5
  • 49. 6.3 Vertical Support Dynamic Model 49 Vertical Support Magnet Model Pod Stator
  • 50. 6.4 Vertical Support: Linear Quadratic Gaussian Control Simulation 50 Noise Generation Plant State Feedback Control Kalman Filter
  • 51. 6.5 Vertical Support Controller Simulation 51 Gap Width Response
  • 52. 6.6 Vertical Support Controller Simulation 52 Gap Acceleration Response
  • 53. Closing Remarks • The Hyperloop Project statement was decomposed into necessary sub functions. • The team designed the subsystems to best satisfy these sub functions. • At each iterative step the subsystems were integrated into our final Hyperloop System Design. • In the remainder of the semester, we plan to continue optimizing the design further. 53
  • 55. # Systems 1 Structure 2 Vertical Support 3 Propulsion 4 Braking 5 Safety - IEES 6 Sensors and Controls 1 5 55 System Design Overview 2,3,4 4 Air Bearing System MagLev System 3,4 2
  • 57. 1.1 Structure Overview • Comparison to Fall Semester • Aerodynamics • Pressure Vessel Redesign • Internal Structure and Seating • Pressure Vessel Support • Chassis (Maglev and Air Bearings) • Ingress, Egress, Emergency Exits
  • 58. 1.2 Old vs. New Designs • Aluminum main structure • Fiberglass fairing • Designed to be lightweight, easily manufactured, and inexpensive • Total mass: 3700 lbm • Carbon Fiber Epoxy skin, fairing, chassis • Aluminum rings and connectors • Fairing is integrated into structure • Maglev and Air Bearing compatible • Designed to be ultra lightweight • Total mass: 1500 lbm
  • 59. Air Bearing New MaglevOld Maglev 1.3 Structural Design Changes
  • 60. 1.4 Aerodynamics • Old Design – Projected area: 6900 in2 – 1400 lbm external fairing – Overall structure mass: 3700 lbm • New Design – Projected area: 6000 in2 – No external fairing – Overall structure mass: 1200 lbm 60 Previous Design Current Design
  • 61. 1.5 Aerodynamics • Drag Force – Previous Design: 27 lbf – Current Design: 33 lbf – Weight reduction justifies increased drag Previous Design Aerodynamics Current Design Aerodynamics
  • 62. 1.6 Integration of Fairing • Decreases mass by as much as 750 lbm • Includes both ends in calculations • Assumptions made for ring in both cases
  • 64. 1.8 Pressure vessel • Honeycomb Sandwich Composite – Aluminum Honeycomb (0.65 in.) – CFRP Skin (0.05 in.) • Margin of Safety = 1.75 • Composite mass= 975 lbm • Frame mass= 500 lbm 64 Stress Minimum Thickness (in.) Hoop Stress 0.015 (CFRP) Axial Stress 0.0075 (CFRP) Shear Stress 0.0062 (CFRP) Point Load Stress 0.25 (Al Core)
  • 65. Pressure Vessel Interior Framework • Built of carbon fiber tubes with aluminum joints • Integrates floor and seat framing into one system • Framework attaches to the pressure vessel rings UPDATE WITH NEW FULL ASSEMBLY
  • 66. Pressure Vessel Interior Framework • Seat framework supports carbon fiber honeycomb floor • Mass approximately 7.5 lbm per seat/floor unit • Can withstand 10g deceleration • Tube wall thickness can be changed to support heavier loads
  • 68. Seat FEA Analysis • Designed for 10G forward load • Failure point: diagonal side member • Failure mode: column buckling
  • 69. 1.13 Chassis Redesign • Maglev and Air Bearing designs • Design considerations: • Levitation system • Pressure vessel weight • Normal acceleration • 3g deceleration • Emergency braking • Carbon fiber epoxy tubes and connectors • Improvements from Aluminum • Weight reduction • Increased stiffness Maglev Chassis Air Bearing Chassis
  • 70. 1.14 Maglev Chassis *Dimensions in inches • Utilizes two C-channel rails • Design Considerations: • Mass • Magnet supporting beams • Stress distribution • Storage • Carbon fiber epoxy • Mass: 300 lbm • Battery storage • Space for life support systems 3 in. Carbon Fiber square tubing (.085 in. wall thickness) 113 18
  • 71. 81 1.15 Air Bearing Chassis *Dimensions in inches • Utilizes two vertical rails • Design Consideration: • Weight • Stress distribution • Storage • Mass: 225 lbm • Similar carbon fiber structure • Compressed air storage • Up to six 1 ft. wide by 40 ft. long tanks • Uniform stress distribution 3 in. Carbon Fiber square tubing (.085 in. wall thickness) 18
  • 72. 1.16 Advanced Strut Design Overview • The advanced strut design supports the pressure vessel • This design contains two CFRP sheets pinned to Mg alloy struts • The total mass, including both sides, is 374.44 lbm • Maximum allowed force due to buckling is 2530 kips Advanced Strut Design Advanced Strut Design
  • 73. 1.17 Composite Cross Section • Composite cross section designed to have high moment of inertia to prevent buckling • CFRP sheets are pinned to the Mg alloy strut because CFRP can not be attached using traditional methods such as welding • CFRP sheets are glued together on the sides using epoxy
  • 74. 1.18 Advanced Strut Assembly • Ball and socket joints are used to eliminate moment reactions at the joint locations • The socket contains two ball inputs to save weight and reduce the number of parts • Contains 56 Mg alloy struts per side, each forming 45o angles w.r.t the top socket 112 Double Sided Pins for Both Sheets 57 (1 inch) Ball and Socket Joints Per Side 2 CFRP (486.5x11.75x 0.0625 inch) Sheets
  • 75. *Strut Specifications • Designed for: – 3g max linear acceleration – Safety factor of 2 • Strut Angles – Phi=80° – Theta=63° • Carbon fiber tubes – 64 cylindrical shells – Outer radius of 1 in, thickness of 0.0005 in
  • 76. *Carbon Fiber Tube Analysis • Margins of Safety (Distortion Energy) – Maximum Stress: 2.45 – Buckling: 1.19 • Total Mass of Tubes (w/o Connectors) – 0.55 lbm • Failure Based on Yielding
  • 77. *Adhesive Cylindrical Lap Connectors • Internal and External Surfaces • Epoxy Resin • Prevents Failure on Tube Ends • Bolted Connections to Chassis and Pod • 6061-T6 Aluminium • More Calculations Required
  • 78. 1.22 Redesigned Primary Door • Overall design largely unchanged – Same sealing and opening method • Composed of carbon fiber and aluminum honeycomb • Mass reduced to 39 lbm 78 Door 95% Male Height [in] 63 75 Projected Height [in] 63 67 Width [in] 36 24 63 in. 36 in.
  • 79. 1.23 Primary Door Operation 79
  • 80. 54 in. 36 in. 1.24 Redesigned Emergency Exit • Two emergency exits – One within main door at front of pod – One at back of pod on opposite side of front exit • Composed of same carbon epoxy honeycomb as pressure vessel • Mass = 26 lbm • Pressure differential exerts Fn of 3,750 lbf on each latch • Bearings (µ = 0.0015) reduce total Ffr to 11 lbf • Latches released when 15 lbf applied to 5 in. lever • Hinged at bottom for controlled opening – Doubles as ramp for easy exit of pod 80
  • 81. 1.25 Emergency Exit Operation 81 (Front View) Exits Closed Exits Opened
  • 83. 2.1 Air Bearing Concept • Flexible skirt • Advantages – Reduced complexity – Reduce weight – Cooling 83
  • 84. 2.2 Bearing on Pod 84 BearingTanks Pressure Vessel Chassis
  • 85. 2.3 How it works • Pressure and flow rate managed with regulators and controls • Flexible material has inherent stability 85
  • 86. 2.4 Bearing Material • Flexible, lightweight, low drag, thin (< 1.5 in), fully responsive • Coated with blend of natural and synthetic rubber 86
  • 87. 2.5 Tanks 87 ● 4 total tanks ● 0.27 in. thick CFRP with aluminum lining ● 11.5 in. ID x 38 ft. long ● Internal pressure: 5000 psi
  • 88. 2.6 Manifold 88 ● ¼ in. stainless steel tubing ○ 0.035 in. wall thickness ○ 5100 psi AWP ● 1 in. stainless steel tubing ○ 0.065 in. wall thickness ○ 2400 psi AWP
  • 89. 2.7 Pressure Regulators • Recommended 3 Cuts • 5000 - 500 - 15 - 1 psi • 1301G HP Regulator – Max inlet: 6000 psi – Outlet range: 200-500 psi – 8 lbm • MR95H – Max inlet: 1000 psi – Max outlet: 450 psi – 22 lbm • 1098-EGR – Pilot-operated (Type 61L) – Max inlet: 400 psi – Outlet: 0.25-2 psi – 55 lbm 89
  • 90. 2.8 Pressure Regulators • Regulators limited by flow rate • Flow rate depends on pod weight 90 *regulator schematic for 18,000 lbm pod Flow Rate Number of PR’s Required Total Mass 1310G MR95 H 1098- EGR 0.39 lbm/s 15 5 3 395 lbm *based on pod mass of 18,000 lbm
  • 91. 2.9 Wheel Contingency • 8 wheels to support structural bending • Protects skirt when idle, ensure mobility upon bearing failure 91 Drag bar in tension
  • 93. 93 3.1 Lateral stability Magnets Resize stability magnets using new pod weight - New mass of stability system: 411 lbm - 60% mass reduction - 1.8 kW per magnet - 112 lbf (500 N) per magnet - 10 magnets on each side of pod - Serves as DC Excitation in Air Bearings design 3.77in 1.57in 10.06in
  • 97. 3.5 Updated Dimensions Quantity Original Values Updated Values (mm) (in.) (mm) (in.) Pole Pitch 626 25 626 25 Pole Shoe Length 417 16 417 16 Module Width 376 15 376 15 Back Iron Length 1630 64 1626 64 Cylinder Core Radius 76 3.0 40 1.57 Cylinder Core Height 152 6.0 80 3.2 Back Iron Depth 112 4.4 25 1.0 Pole Shoe Depth 50 2.0 25 1.0 Module Weight 622 kg 1371 lbm 154 kg 340 lbm System Weight 2488 kg 5485 lbm 615 kg 1356 lbm 75% decrease in system weight
  • 98. 3.6 Batteries System Power Required (kW) Lateral Stability Magnets 18 Levitation Magnets 5 Interior Systems 3 Total 26
  • 99. *3.7 Displacement FEA: Normal Operation [Do we want these] (Structure?)
  • 101. 101 3.9 Magnetic Circuit DC Excitation (On Pod) Air gap Stator (On Guideway)
  • 102. 3.10 Magnetic Circuit Reluctance of module 61.58 H-1 Module flux (f) 0.3895 T Reluctance of air gap 3.38 MH-1 Air gap flux (g) 0.3571 T Reluctance of single tooth 15.65 H-1 Leakage flux for air gap (lg) 0.0036 T Reluctance of stator core per pole pitch 1.32 kH-1 Leakage flux for module (lm) 0.0324 T Reluctance of module per pole pitch 2.50 kH-1 Flux linked with stator winding 0.3535 T Reluctance for magnet leakage flux 0.95 MH-1 Reluctance of air gap leakage flux 3.38 MH-1
  • 104. 4.1 Normal Braking Operation 104 • Primary braking will be performed by using a negative sequence for the three phase power of the stator • Multi-tasking the propulsion system allows for mass and cost minimization as well as design simplicity • For mass, energy, and motor outputs, refer to the Propulsion section
  • 105. 4.2 Emergency Friction Brakes – Placement 105 EMS Design Air Bearing Design •Can blow air over the sleds to cool them Sleds Sleds
  • 106. 4.3 Emergency Friction Brakes – Sled Design • Sleds used in both designs (EMS and Air Bearings) • Air channel for cooling using pressurized air • Dimensions: 9.8 in. wide x 2.95 in. tall x 480 in. long • Mass: 920 lbm • Stopping distance: 10.3 mi. at max speed (700 mph) 106 C/SiC Al
  • 107. 4.4 Emergency Friction Brakes – Design Idea • Spring-actuated pistons to increase stopping force • Greatly increased heat generation • Not used in final design 107 *All dimensions in Inches
  • 108. 4.5 Inflatable Friction Plug Emergency Brake • Use inflatable plug for friction against tube • Acts similar to a parachute, but operates without air resistance • Load limiting lanyard provides constant low force application 108 A A Pod Velocity Constant Force
  • 109. 4.6 Plug Brake with Circumferential Ribbing • Slowing at 3 g's from 550 mph would result in an average temperature rise of roughly 400 °F in the plug fabric with no ribbing • C/SiC pads installed around the circumference of the plug in the contact region – Better thermal properties – Tougher material – Higher coefficient of friction – Allows for airflow convection 109 16 ft. Dia.
  • 110. 5.0 Inflatable Emergency Egress System 110
  • 111. 5.1 Inflatable Emergency Egress System (IEES) 111 Inflatable Plugs Breathable Environment
  • 112. 5.2 Toroidal Inflatable Specs • Interior circle of torus mounts to pressure vessel ring • Smaller cross section on bottom than top, in order to conform with tube • Mounted to pressure vessel rings 112 17ft 6ft 3.5ft 7.5ft
  • 113. 5.3 – IEES Operation and Evacuation Plan 1. Pod comes to halt, deflated tori wrapped and strapped around cones 1. Tori are inflated using Sodium azide Reaction 1. Area surrounding pod is pressurized with onboard air tank. 1. Emergency exit doors open in front and back 1. 28 Passengers exit pod into pressurized region of tube and move towards emergency exits. 113 (t = 0s) (t = 5s) (t = 45s) (t = 50s) (t = 90s) Velocity = 0 mph Reaction triggered, pressurization begins
  • 115. 6.1.1 Center of Mass (COM) Dynamics • Purpose: Examine passenger ride comfort • Allows for coupling of the 4 levitation modules • Determines legitimacy of not including suspension 115
  • 116. 6.1.2 Extension to COM 116 ● Full rotational dynamics are unnecessary and computationally expensive ● Small Angle Assumption and Gap width vs. Pod Kinematic Constraints (Θ, Φ, & Ψ=0) ● COM dynamics can be estimated using one magnet (as done originally), but more accurate through potential and kinetic energy averaging ● Unique seeds were used to create different input noise for each magnet New Pod Dynamics
  • 117. 6.1.3 COM Simulation Modification 117 Plant Modification Function Output Individual Magnet Simulation Unique Seeding
  • 118. 6.1.4 COM Simulation Modification Contd. 118 COM Acceleration COM Position
  • 120. 6.1.6 COM Filtered Position 120
  • 122. 6.1.8 COM Filtered Acceleration 122
  • 123. 6.2.0 Air Bearings Controls 123
  • 124. 6.2.1 Air Bearing System Characteristics • System assumptions similar to electromagnets: – Small angle assumption is still valid – Only Degree of Freedom (DOF) is vertical motion • Cushion Pressure: ~3200 Pa • Environmental Pressure: 100 Pa • Expected Hover Height : 1mm (English unit) • Expected Mass Flow Rate: 0.195 kg/s 124
  • 125. 6.2.2 Defining Exit Flow • 125
  • 126. 6.2.3 Air Bearing Equations • 126
  • 127. 6.2.4 Air Bearing Dynamic Solution 127
  • 128. 6.2.5 Air Bearing Sensors • Pressure transducers – 0 to 2.5 psi range – 0.08% accuracy – Measure skirt and cushion pressure • Distance Sensors – New mounting fixtures away from ground – Measure ~1mm gap height 128
  • 129. Closing Remarks Slide*** • Wrap up Advanced Design • Design Process – Blank Sheet of Paper to Full Design • Summary of Year in Review – Teams of 4 – Two large teams of 16 and 25 – Final team of 41 – SpaceX Competition Design Weekend – Trip to Doha, Qatar, and work with TAMUQ Hyperloop team – Final Design Package today 129
  • 131. Friction Brake Specifications 131 C/SiC Al 6061 Teflon Friction Coeff. w/ steel (kinetic) 0.29 --- 0.05 Wear Factor [Pa-1] 1.0*10-12 --- 5.04*10-4 Density [kg/m3] 2450 2700 2160 Hardness 25 GPa 1.0 GPa 50 Shore D Specific Heat Capacity [kJ/kgK] 0.80 0.90 1.01
  • 132. 2.3 Vertical Support Module Capabilities • Electromagnetic Module – Suspends Pod through electromagnetic attractive force – Max Suspension Force = 54,963 lbf – Also provides the DC Excitation necessary for propulsion 132
  • 134. Diagrams● 30 battery packs each side ● Connected in series ● 200 cells per pack Battery Pack + - - 200 cells 200 cells 200 cells ... 200 cells 60 Packs + + -
  • 135. Battery, DC-DC Converter, Battery Management System (BMS), and Battery Cooling System housed in 2 enclosures along length of pod
  • 136. 1.5 Structure for Aerodynamics Tube Diameter (ft) Drag Coefficient Drag Force (lbf) 12 2.19 125.9 16 0.89 50.9 20 0.61 35.1 136 Speed Drag Force (lbf) Maximum Air Velocity (mph) 500 27.8 704.4 550 33.2 769.1 600 38.7 838.9 650 44.8 914.2 700 50.9 974.9 *Interior tube diameter of 16 feet
  • 140. Chassis Weight/Strength Comparison (Backup) 140 13 lb CF truss supports 3000 lbs
  • 141. Carbon Fiber Epoxy Specs (Backup) • The CF tubes of choice are: • 50% VF CF Epoxy • [±45,0,90]s • Tensile, Compressive Strength: 320,270 KSI 141 Loading conditions: 10,000 lb PV 3g deceleration 1g turn
  • 142. Supplemental Slide XX: Unhinged vs. Bottom Hinged 142 Design Advantages Disadvantages Unhinged • Lightweight design • Complex, heavy opening mechanism • Possible safety hazard from uncontrolled door ejection Bottom Hinged • Relatively controlled opening motion • Exit aid • Simplified latch mechanism possible • Added weight from ramp • Added weight from damper (if included)
  • 143. Supplemental Slide XX: Emergency Exit Operation (Update after simplifying) • Latch mechanism is double rack and a pinion – Rotation in central gear produces linear motion in side latches • Must overcome friction from pressure-induced normal force on latches – Fn = 14,930 lbf • Ball bearing bushings used in latch holders to reduce friction (µ = 0.0015) – Ffr = 22.4 lbf • 15 lbf applied to 7.5 in. turnstile lever opens door 143 7.5 in. 15 lbf