SlideShare a Scribd company logo
1 of 10
Engr. M. Usman Saeed
E-III Visbreaking& Gas Concentration Unit
Email:ing.usmansaeed@gmail.com
Pak ArabRefineryLtd| QasbaGujrat MehmoodKot DistrictMuzaffarGarh
DRAFT AND O2 CONTROL IN FIRED HEATER
PAK ARAB REFINERY LTD Department: Process
Visbreaking& Gas ConcentrationUnit Area: 200 (U – 130 & 411)
Engr. Engr. M. Usman Saeed – 5509
CONTENTS
Draft & Excess O2 Control in Furnaces............................................................................................ 1
1 Introduction....................................................................................................................... 1
2 ExcessAir........................................................................................................................... 1
3 Flue Gas Quantity............................................................................................................... 1
4 Stack Effect........................................................................................................................ 2
5 Combustion Air Preheater...................................................................................................2
6 Air Leakage Through Openings............................................................................................ 3
7 Fuel Saving......................................................................................................................... 4
8 CO2 Emissions..................................................................................................................... 4
9 Typical Values of Draft and Excess Air .................................................................................. 5
10 Draft Adjustments...........................................................................................................5
10.1 Excessive Draft— Positive Pressure Created.................................................................5
10.2 Excessive Draft— Negative Pressure Created............................................................... 5
11 Recommendations..........................................................................................................7
11.1 Design Stage............................................................................................................... 7
11.2 Maintenance .............................................................................................................. 7
11.3 ExcessAir Control .......................................................................................................8
PAK ARAB REFINERY LTD Department: Process
Visbreaking& Gas ConcentrationUnit Area: 200 (U – 130 & 411)
Engr. M. Usman Saeed – 5509 1
DRAFT & EXCESS O2 CONTROL IN FURNACES
1 INTRODUCTION
Processheatersare the largestconsumersof energyinmostplants.A refinery,onaverage,burns
approximately2billionBtu/hrof fuel infiredheaters.The total quantityof fuel burned(heatreleased) isso
highthat any improvementwill resultinsignificantfuelsavings. Highenergycostsandtighteremissions
regulationsrequire increasedunderstandingandcontrol of excessair.Anyreductioninexcessairwill raise
the efficiencyof aheaterand reduce total emissions.NOX emissionsare of the highestconcernina fired
heater,althoughexcessaircontrol will alsoreduce refineryCO2 emissions andboostheaterefficiency.
It isrecommendedthatthe flue gastemperature approach(definedasflue gastemperature leaving
convection,minusprocessinlettemperature) be between50°Fand 100°F, dependingonheatertube
material andthe cost of fuel.However,heaterefficiencymaydeclinewiththe degradationof heater
components.The degree of degradationisdependentonthe qualityof the maintenance program
implementedatthe refinery.
2 EXCESS AIR
Excessair isdefinedasthe amountof air above the
stoichiometricairrequirementthatisneededtocompletethe
combustionprocess.Excessoxygen(O2) isthe amountof O2 inthe
incomingairnot usedduringcombustion.Inanoperatingplant,the
airflowrate can be adjustedata fixedabsorbed-heatduty(constantfeed
flowrate andinlet/outletconditions) untilanoptimumfuel-to-airratiois
achieved.Itisimportanttonote that there isa limitonminimum
possible excessO2.Below thislevel,combustiblescanenterthe flue gas,
whichposesa safetyhazard.Heaterandburnermanufacturersestablish
thisminimumlimitduringthe designstage.Operatorsshouldalsokeepa
safe marginfor upsetconditions.
HigherexcessO2 helpsachieve astable flame inthe firebox.At
the same time,itreducesthe efficiencyof the heater.Asageneral rule,
3% O2 influe gas isequivalentto15% excessair.
3 FLUE GAS QUANTITY
Flue gasquantityincreaseswitharise inexcessair,whichlowers
heatand increasesthe fuel requirement.Figure providesacorrelation
betweenfluegasgeneratedduringcombustion,andexcessair.The
followingequationcanbe usedto calculate approximateflue gasquantity
for natural gas: QF = 1 + 0.167 3 (100 + EA)
Where:EA = excessair,%; O2 = vol% of flue gasoxygen(dry); QF =
flue gasquantityinlb/lbof fuel.Asageneral rule,flue gasquantityis
approximately20 timesthe fuel quantity at15% excessair.
PAK ARAB REFINERY LTD Department: Process
Visbreaking& Gas ConcentrationUnit Area: 200 (U – 130 & 411)
Engr. M. Usman Saeed – 5509 2
4 STACK EFFECT
The net draftavailable isthe draftcreatedbythe stack effect,minusfrictional andvelocitylosses.
The net draftshouldbe sufficienttoobtaina negative pressure alongthe heaterfluegaspath.
It isimportantto maintainasafe draft level inafiredheatertoachieve the bestpossible efficiency
and operation.The targetdraftof 0.1 inchWC issetat the heaterarch. A highervalue of draftwill resultin
ingressof “tramp air” intothe heater.Trampair takesheat from the
combustionprocessandexitsthe stack,reducingheaterefficiency.The
flue gassample takenfromthe stack doesnotrepresentthe actual
volume of O2available forcombustion.Itisthe sumof unusedO2 from
the firebox (actual excessO2) andO2 fromtramp air.
A positive draftvalue will resultinthe leakage of hotflue gases
throughopeningsinthe heater.Thisisa hazardousoperationthatcan
overheatthe steel structure,refractoryandheatersupports,and,
consequently,shortenheaterlife.
Figure providesthe value of draftgeneratedinthe heaterfor
flue gastemperature andambientairtemperature.Itshouldbe noted
that stack effectdecreaseswithanincrease insite altitude.The
calculateddraftshouldbe amendedusingthe correction factorforsite
altitude.The followingequationcanbe usedtocalculate the draft generatedinaheater:
Where:H = Height,ft;PATM = Atmosphericpressure,psia; TAMB = Ambientairtemperature,°R; TFG =
Flue gastemperature,°R.Asa general rule,forevery10 ft of firebox height,the draftincreasesby0.1
inchWC:Draft at burner(inchWC) ≈ 0.1 + HFB ÷ 100 where:HFB = Firebox height,ft.
5 COMBUSTION AIR PREHEATER
The typical combustionairpreheater(APH) will increase the
heaterefficiencyby approximately10%.Fuel gasgenerallycontains
H2S or sulfur,whichconvertintoSO2 andthenintoSO3.The APH’s
heat-transfersurface issubjecttocold-endcorrosioncausedby
condensationof sulfurtrioxide(SO3),whichresultsinAPHleakage.Air
preheaterleakage isone of the mostcommonAPHoperating
problems,andanysuch leakage resultsinareductioninthe overall
efficiencyof the heater.
In APHoperation,the flue gasisgenerallyatnegativepressure,
and the air isat positive pressure.Therefore,leakageoccursfromair to
the flue gasside.Thisreducesthe quantityof airavailable for
combustion,anditincreasesthe quantityof flue gasleavingthe APH.
Thisleakage canbe detectedbymeasuringthe fluegasO2 contentat the APHinletandoutlet.Any
leakage will resultinhigherfluegasO2 at the APHexit,comparedtothe APH inlet.Generally,the APHisnot
PAK ARAB REFINERY LTD Department: Process
Visbreaking& Gas ConcentrationUnit Area: 200 (U – 130 & 411)
Engr. M. Usman Saeed – 5509 3
equippedwithaflue gasO2 analyzeratthe inletandthe outlet;however,the inclusionof 2-in.connections
at the APH’sinletandoutletwillenable operatorstomeasure O2 levelsusingaportable analyzer.
(M 3 CP ∆T)FLUE GAS = (M 3 CP ∆T)AIR
For a typical fuel gasat 15% excessair: MFLUE GAS ≈ 1.05 3 MAIR ; PFLUE GAS ≈ 1.15 3 CPAIR (7)
∆TAIR ≈ 1.2 3 ∆TFLUE GAS
Where:M = Flowrate CP = Specificheat∆T = Temperature difference acrossthe APH.
Anyleakage inthe APHwill reduce the ratioof ∆TAIR to ∆TFLUE GAS. For example,fora10% leakage in
the APH,the ratioof temperature differencewillbe around1.1.
Figure indicatesthe percentage of airleakage basedonthe ratioof ∆TAIR to ∆TFLUE GAS fora typical
natural gas firing.
6 AIR LEAKAGE THROUGH OPENINGS
A firedheaterisnota 100% sealedunit;
there are alwaysopeningsthroughwhichairingress
(trampair) can move. The volume of trampair
dependsonthe openingsize andthe draftat the
locationof the opening.Afterthe draftatthe
openinglocationisestimated,the followingequation
can be usedtoestimate the airleakage throughan
opening:
∆P = C 3 0.003 3 ρ 3 V2
Thisequationcanbe simplifiedforthe
leakage calculationpurposebasedonthe following
data:
Molecularweight(MW) of air = 28.96;
Atmosphericpressure(psia)=14.7; Velocityhead(C)
= 1
where:ΔP = Draft at openinglocation,inchWC;ρ =Density of air at ambienttemperature,lb/ft3
;V =
Velocityof airthroughopening,ft/s; C = Velocityhead;QL = Airleakage,lbperft2
/s;T = Ambientair
temperature,°R.
Figure providesthe quantityof airleakage perft2
of openingsize.Thisfigureisbasedonanambient
air temperature of 60°F.Once the openingsize isknown,the amountof airleakage canbe estimated.The
estimatedaircanbe translatedintothe additionalfiringrate required.
PAK ARAB REFINERY LTD Department: Process
Visbreaking& Gas ConcentrationUnit Area: 200 (U – 130 & 411)
Engr. M. Usman Saeed – 5509 4
7 FUEL SAVING
The absorbedheatdutyof the firedheateris
constant.Anyincrease inthe O2level will reduce the
efficiency,resultinginahigherfiringrate.Thisincrease in
the firingrate will leadtoa rise instack temperature,
whichresultsinanotherreductioninefficiency.This
reduction,inturn,demandsafurtherincrease inthe firing
rate.
The methodof efficiencycalculationforoff-design
operatingconditionspresentedinAPI-560Appendix Gcan
be usedto estimate the stacktemperature whenexcessair
ispresent.Thismethodcanbe simplifiedforexcessairas
follows:
Where:TS = Flue gasstack temperature,°R; EA =
Excessair,%; TF = Feedinlettemperature,°R(TF1 = TF2)
Φ = Excessair correctionfactor
Once the newflue gasstack temperature atexcessairisknown,thenthe heaterefficiencycanbe
estimated. Figure showsthe estimatedfuel savingsforareductioninthe O2 level to3%. Thisgraph isbased
on a fuel price of $6/MMBtu. The designflue gastemperaturelinesindicate the baseline stacktemperature
(i.e.,the flue gasstack temperature at3% O2).
8 CO2 EMISSIONS
The volume of CO2 emissionsgeneratedinafired
heaterisdirectlyproportional tothe firingrate.In
combustionprocesses,fuel carbonconvertsintoCO2.
Therefore,excessairreductionwill lowerCO2emissions.
Figure providesestimateddecreasesinCO2 emissions
througha reductioninthe O2 level to3%.
PAK ARAB REFINERY LTD Department: Process
Visbreaking& Gas ConcentrationUnit Area: 200 (U – 130 & 411)
Engr. M. Usman Saeed – 5509 5
9 TYPICAL VALUES OF DRAFT AND EXCESS AIR
Draft referstothe flowof gasesthrough the heatgenerating
equipment,beginningwiththe introductionof airat the back of the burner.
Once combustionoccurs,the heatedgasleavesthe combustionchamber,
passesheatexchangersandexitsthe exhauststack.
5 - 10% for natural gas, 5 - 20% for fuel oil, 15- 60% for coal
Carbondioxide - CO2 - is a productof the combustionandthe content
inthe flue gasisan importantindicationof the combustionefficiency.An
optimal contentof carbondioxide - CO2 - aftercombustionis
approximately 10% for natural gas and approximately 13% forlighteroils.
10 DRAFT ADJUSTMENTS
Stack dampersandsecondaryair registersaffectthe draftandboth
adjustmentsare related.The hotgaspushessothat the pressure isalways
greatestat the firewall.The stackdraftpullsandwhencorrectlybalanced
the pressure at the bridgewallshouldbe close tozeroorveryslightly
negative.A processheateroperatingproperlywill alsohave azero,or
slightlynegative draft,atthe shieldsection.The firebox will be slightly
positive (+0.5to +2.0 “watercolumn(wc)) andthe stack will have arange of
-0.5 to -1.0” wc. Excessive draft,eitherpositive pressure ornegative
pressure,canleadto severe problemsinthe convectionsection.
10.1 EXCESSIVE DRAFT — POSITIVE PRESSURE CREATED
In Figure 4, the air registersare wide openandthe dampermostlyclosed.Thisgeneratesapositive
pressure whichforcesflue gasesoutwardthroughleaksinthe convectionsectionleadingtoserious
structure damage,as well asheatloss.
10.2 EXCESSIVE DRAFT — NEGATIVE PRESSURE CREATED
In Figure 5, the air registersare mostlyclosedandthe stackdamperiswide openleadingtoahigh
negative pressure inthe convectionsection.Coldambientairissuckedinthroughleaksinthe convection
sectionleadingtoerroneousoxygenreadings,aswell asheatloss.Inadditionthe excessive draftcausestall
flameswhichcanreach the tubesresultinginseriousdamage.
PAK ARAB REFINERY LTD Department: Process
Visbreaking& Gas ConcentrationUnit Area: 200 (U – 130 & 411)
Engr. M. Usman Saeed – 5509 6
PAK ARAB REFINERY LTD Department: Process
Visbreaking& Gas ConcentrationUnit Area: 200 (U – 130 & 411)
Engr. M. Usman Saeed – 5509 7
11 RECOMMENDATIONS
Heaterexcessaircontrol starts at the designstage.Well-designedheatershave low trampair.There
are three stagesof excessaircontrol:
 Designstage
 Maintenance
 Control
11.1 DESIGN STAGE
A heaterhasmany potential leakpointsforairingress:
 Clearance aroundthe bottomcoil guide (spigots)
 Sightdoorsand peepholes
 Headerboxes,manholesandotheropeningsforviewingandaccess
 Modules andduct splice joints
 Terminalsandcrossovertubes
 Weldjointsonthe heatercasing
 Soot-blowersleeves
 The APH.
These leakpointsmustbe designedforthe lowestpossibleleakage.Suggestionsfordesigningalow-
leakage heaterincludethe following:
 Seal the clearance space aroundthe bottom tube guidesbyusingafloorsleeve withanend
cap, or seal boots
 Use sightdoors,withsafetyglass,thatare equippedwithaninterlockcoverorflapper
 Use a self-closingpeepholecoverinthe heaterfloor
 Ensure that headerbox panelsandotheropeningsare airtight,anduse gasketsbetweenthe
gaps
 Seal-weldall splice jointsbetweenmodulesfromthe inside,oruse high-temperature
sealant;also,use closer-boltspacing(6in.fromcenterto center)
 Seal all terminalsandcrossoveropeningswithflexible seals
 Ensure that all headerbox drainpointsare plugged
 Ensure that no leakage isoccurringthroughinstrumentmountings
 Limitleakage throughthe APHduringthe designstage,andperformanair-leakage testin
the shop.
11.2 MAINTENANCE
Routine maintenanceof the heatersisessential,since corrosiveagentscanbe presentinflue gases.
Deteriorationfromsulfuroxidesoccursmostlyoncoldsectionsof the steel casing.Climateconditionscan
alsoleadto rustingon exposedsurfacesof the heatercasing.Suggestedinspectionand
maintenance methodsincludethe following:
 Checkfor heatercasingcorrosion;if anyleaksare discovered,theyshouldbe sealedtostop
air ingress
 Ensure that observationdoors(generally locatedinthe bottomsectionof the radiantbox)
are closedaftertechniciansinspectthe heaterflame
PAK ARAB REFINERY LTD Department: Process
Visbreaking& Gas ConcentrationUnit Area: 200 (U – 130 & 411)
Engr. M. Usman Saeed – 5509 8
 Checkpeepholes,accessdoors,etc.,forproperclosing
 Checkflue gasO2 contentinthe convectionsectionandonthe APH; if there isany increase
inO2contentacross the flue gaspath,it indicatesleakage
 Use a smoke testduringheatershutdowntodetectleakage
 Use infraredscanning,while the heaterisinoperation,topinpointlocationswithair
leakage;these will have localized,lowerheatercasingtemperatures
 To reduce leakage inburners,keepall burnersinoperation,evenduringloweroperating
loads;and close the airregisterwhenaburneris takenoutof service.
11.3 EXCESS AIR CONTROL
Knowingthe targetflue gasO2 contentisthe firststepin excessaircontrol.Each heaterisunique in
itsdesign.The O2 level requiredtoachieve ideal combustionmaybe anywhere from1%–4% or higher,
dependingonthe designandoperatingcharacteristicsof the heater.
The followingtwoinstrumentsare necessarytocontrol excessair:
 Flue gas O2 analyzer. Thisis the mostimportantinstrumentonthe heater.Itis
recommendedtoinstall anO2 analyzeratthe radiantsectionarch.
 Draft gauge.A draft gauge shouldbe installedatthe heaterarch. The arch isthe pointof the
highestflue gaspressure inthe heater.
HeaterO2 and draftat the radiantarch shouldbe checkedand,if necessary,adjustedatleastonce
pershiftand wheneverthere isachange in processload.All operatorsshouldbe familiarwiththe heater
controls.Often,heaterswithairregistersandstackdampersbecome jammedsimplybecause theyare not
used. Figprovidestacticsforcontrollingexcessairina natural draft heater.Forcontrollingexcessairinother
typesof heaters, Table 1 andTable 2.

More Related Content

What's hot

Technical and organizational optimization of the product freezing in a meat p...
Technical and organizational optimization of the product freezing in a meat p...Technical and organizational optimization of the product freezing in a meat p...
Technical and organizational optimization of the product freezing in a meat p...Enrique Cabrera Cano
 
Energy Efficiency of Industrial Utilities
Energy Efficiency of Industrial UtilitiesEnergy Efficiency of Industrial Utilities
Energy Efficiency of Industrial UtilitiesPratap Jung Rai
 
To Study the Performance of Oxygen Enriched Diesel Engine by Varying Compress...
To Study the Performance of Oxygen Enriched Diesel Engine by Varying Compress...To Study the Performance of Oxygen Enriched Diesel Engine by Varying Compress...
To Study the Performance of Oxygen Enriched Diesel Engine by Varying Compress...IRJET Journal
 
412 Final Report
412 Final Report412 Final Report
412 Final ReportKevin Qi
 
Assessment of boiler performance
Assessment of boiler performanceAssessment of boiler performance
Assessment of boiler performanceAshish Kumar Jain
 
Aspen HYSYS - Petroleum Assays and Oil Characterization (Slideshare)
Aspen HYSYS - Petroleum Assays and Oil Characterization (Slideshare)Aspen HYSYS - Petroleum Assays and Oil Characterization (Slideshare)
Aspen HYSYS - Petroleum Assays and Oil Characterization (Slideshare)Chemical Engineering Guy
 
SAS Global Coal-Fired Power Diagnostic Testing and Combustion Tuning
SAS Global Coal-Fired Power Diagnostic Testing and Combustion TuningSAS Global Coal-Fired Power Diagnostic Testing and Combustion Tuning
SAS Global Coal-Fired Power Diagnostic Testing and Combustion TuningJustin Bennett
 
Power Cycle Components/Processes and Compressible Flow Analysis Webinar
Power Cycle Components/Processes and Compressible Flow Analysis WebinarPower Cycle Components/Processes and Compressible Flow Analysis Webinar
Power Cycle Components/Processes and Compressible Flow Analysis WebinarEngineering Software
 
Episode 60 : Pinch Diagram and Heat Integration
Episode 60 :  Pinch Diagram and Heat IntegrationEpisode 60 :  Pinch Diagram and Heat Integration
Episode 60 : Pinch Diagram and Heat IntegrationSAJJAD KHUDHUR ABBAS
 
Cold transient emissions optimisation for di diesel engine on high dynamic te...
Cold transient emissions optimisation for di diesel engine on high dynamic te...Cold transient emissions optimisation for di diesel engine on high dynamic te...
Cold transient emissions optimisation for di diesel engine on high dynamic te...Thierry Dalon
 
Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)IJERD Editor
 
2007 tinga jegtp (2)
2007 tinga jegtp (2)2007 tinga jegtp (2)
2007 tinga jegtp (2)muhammad azam
 
OPTIMIZATION OF A TURBINE USED IN COAL FIRED THERMAL POWER PLANTS BASED ON IN...
OPTIMIZATION OF A TURBINE USED IN COAL FIRED THERMAL POWER PLANTS BASED ON IN...OPTIMIZATION OF A TURBINE USED IN COAL FIRED THERMAL POWER PLANTS BASED ON IN...
OPTIMIZATION OF A TURBINE USED IN COAL FIRED THERMAL POWER PLANTS BASED ON IN...ijmech
 

What's hot (20)

Heat exchangers
Heat exchangersHeat exchangers
Heat exchangers
 
Technical and organizational optimization of the product freezing in a meat p...
Technical and organizational optimization of the product freezing in a meat p...Technical and organizational optimization of the product freezing in a meat p...
Technical and organizational optimization of the product freezing in a meat p...
 
Energy Efficiency of Industrial Utilities
Energy Efficiency of Industrial UtilitiesEnergy Efficiency of Industrial Utilities
Energy Efficiency of Industrial Utilities
 
To Study the Performance of Oxygen Enriched Diesel Engine by Varying Compress...
To Study the Performance of Oxygen Enriched Diesel Engine by Varying Compress...To Study the Performance of Oxygen Enriched Diesel Engine by Varying Compress...
To Study the Performance of Oxygen Enriched Diesel Engine by Varying Compress...
 
F012272329
F012272329F012272329
F012272329
 
4 ch1
4 ch14 ch1
4 ch1
 
412 Final Report
412 Final Report412 Final Report
412 Final Report
 
Assessment of boiler performance
Assessment of boiler performanceAssessment of boiler performance
Assessment of boiler performance
 
Aspen HYSYS - Petroleum Assays and Oil Characterization (Slideshare)
Aspen HYSYS - Petroleum Assays and Oil Characterization (Slideshare)Aspen HYSYS - Petroleum Assays and Oil Characterization (Slideshare)
Aspen HYSYS - Petroleum Assays and Oil Characterization (Slideshare)
 
SAS Global Coal-Fired Power Diagnostic Testing and Combustion Tuning
SAS Global Coal-Fired Power Diagnostic Testing and Combustion TuningSAS Global Coal-Fired Power Diagnostic Testing and Combustion Tuning
SAS Global Coal-Fired Power Diagnostic Testing and Combustion Tuning
 
Power Cycle Components/Processes and Compressible Flow Analysis Webinar
Power Cycle Components/Processes and Compressible Flow Analysis WebinarPower Cycle Components/Processes and Compressible Flow Analysis Webinar
Power Cycle Components/Processes and Compressible Flow Analysis Webinar
 
180 brijesh
180 brijesh180 brijesh
180 brijesh
 
Power Cycle Components/Processes
Power Cycle Components/ProcessesPower Cycle Components/Processes
Power Cycle Components/Processes
 
Episode 60 : Pinch Diagram and Heat Integration
Episode 60 :  Pinch Diagram and Heat IntegrationEpisode 60 :  Pinch Diagram and Heat Integration
Episode 60 : Pinch Diagram and Heat Integration
 
Cold transient emissions optimisation for di diesel engine on high dynamic te...
Cold transient emissions optimisation for di diesel engine on high dynamic te...Cold transient emissions optimisation for di diesel engine on high dynamic te...
Cold transient emissions optimisation for di diesel engine on high dynamic te...
 
India study i g c c
India study i g c cIndia study i g c c
India study i g c c
 
Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)
 
Measurement units and conversion factors
Measurement units and conversion factorsMeasurement units and conversion factors
Measurement units and conversion factors
 
2007 tinga jegtp (2)
2007 tinga jegtp (2)2007 tinga jegtp (2)
2007 tinga jegtp (2)
 
OPTIMIZATION OF A TURBINE USED IN COAL FIRED THERMAL POWER PLANTS BASED ON IN...
OPTIMIZATION OF A TURBINE USED IN COAL FIRED THERMAL POWER PLANTS BASED ON IN...OPTIMIZATION OF A TURBINE USED IN COAL FIRED THERMAL POWER PLANTS BASED ON IN...
OPTIMIZATION OF A TURBINE USED IN COAL FIRED THERMAL POWER PLANTS BASED ON IN...
 

Similar to Draft & O2

Max AFR and Output and Relevant OH&S Concerns
Max AFR and Output and Relevant OH&S ConcernsMax AFR and Output and Relevant OH&S Concerns
Max AFR and Output and Relevant OH&S ConcernsTom Lowes
 
Use of nitrogen purge in flare and vent systems
Use of nitrogen purge in flare and vent systemsUse of nitrogen purge in flare and vent systems
Use of nitrogen purge in flare and vent systemsLanphuong Pham
 
Simulation of the effects of turbine exhaust recirculation
Simulation of the effects of turbine exhaust recirculationSimulation of the effects of turbine exhaust recirculation
Simulation of the effects of turbine exhaust recirculationZin Eddine Dadach
 
Training presentation
Training presentation Training presentation
Training presentation Keyur Patel
 
Nox reduction by reburn and sncr
Nox reduction by reburn and sncrNox reduction by reburn and sncr
Nox reduction by reburn and sncrTom Lowes
 
SIMULATION, EXERGY EFFICIENCY AND ENVIRONMENTAL IMPACT OF ELECTRICITY OF A 62...
SIMULATION, EXERGY EFFICIENCY AND ENVIRONMENTAL IMPACT OF ELECTRICITY OF A 62...SIMULATION, EXERGY EFFICIENCY AND ENVIRONMENTAL IMPACT OF ELECTRICITY OF A 62...
SIMULATION, EXERGY EFFICIENCY AND ENVIRONMENTAL IMPACT OF ELECTRICITY OF A 62...Zin Eddine Dadach
 
IRJET- CFD Analysis and Optimization of Heat Transfer Basket Element Profiles...
IRJET- CFD Analysis and Optimization of Heat Transfer Basket Element Profiles...IRJET- CFD Analysis and Optimization of Heat Transfer Basket Element Profiles...
IRJET- CFD Analysis and Optimization of Heat Transfer Basket Element Profiles...IRJET Journal
 
AICHE Senior Design Project
AICHE Senior Design ProjectAICHE Senior Design Project
AICHE Senior Design ProjectJonathan Sherwin
 
Packed Bed Reactor for Catalytic Cracking of Plasma Pyrolyzed Gas
Packed Bed Reactor for Catalytic Cracking of Plasma Pyrolyzed GasPacked Bed Reactor for Catalytic Cracking of Plasma Pyrolyzed Gas
Packed Bed Reactor for Catalytic Cracking of Plasma Pyrolyzed Gasijsrd.com
 
96924703 performance-monitoring-for-gas-turbine
96924703 performance-monitoring-for-gas-turbine96924703 performance-monitoring-for-gas-turbine
96924703 performance-monitoring-for-gas-turbinemanojg1990
 
Energy Auditing of Thermal Power plant
Energy Auditing of Thermal Power plantEnergy Auditing of Thermal Power plant
Energy Auditing of Thermal Power plantIRJET Journal
 
OPTIMIZATION OF COMPRESSED AIR IN THERMAL POWER PLANT-A NOVEL STUDY
OPTIMIZATION OF COMPRESSED AIR IN THERMAL POWER PLANT-A NOVEL STUDYOPTIMIZATION OF COMPRESSED AIR IN THERMAL POWER PLANT-A NOVEL STUDY
OPTIMIZATION OF COMPRESSED AIR IN THERMAL POWER PLANT-A NOVEL STUDYvishal laddha
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentIJERD Editor
 
Design and Development of Small Scale VAR System by Using Exhaust Gas of IC E...
Design and Development of Small Scale VAR System by Using Exhaust Gas of IC E...Design and Development of Small Scale VAR System by Using Exhaust Gas of IC E...
Design and Development of Small Scale VAR System by Using Exhaust Gas of IC E...IRJET Journal
 

Similar to Draft & O2 (20)

Paper 11 icaer_2013modified
Paper 11 icaer_2013modifiedPaper 11 icaer_2013modified
Paper 11 icaer_2013modified
 
TV029 Problem
TV029 ProblemTV029 Problem
TV029 Problem
 
Experimental Analysis of an Regenerative Air Preheater In Boiler TPS- 1 Expan...
Experimental Analysis of an Regenerative Air Preheater In Boiler TPS- 1 Expan...Experimental Analysis of an Regenerative Air Preheater In Boiler TPS- 1 Expan...
Experimental Analysis of an Regenerative Air Preheater In Boiler TPS- 1 Expan...
 
Max AFR and Output and Relevant OH&S Concerns
Max AFR and Output and Relevant OH&S ConcernsMax AFR and Output and Relevant OH&S Concerns
Max AFR and Output and Relevant OH&S Concerns
 
Use of nitrogen purge in flare and vent systems
Use of nitrogen purge in flare and vent systemsUse of nitrogen purge in flare and vent systems
Use of nitrogen purge in flare and vent systems
 
I0354062068
I0354062068I0354062068
I0354062068
 
Simulation of the effects of turbine exhaust recirculation
Simulation of the effects of turbine exhaust recirculationSimulation of the effects of turbine exhaust recirculation
Simulation of the effects of turbine exhaust recirculation
 
I05325969
I05325969I05325969
I05325969
 
Training presentation
Training presentation Training presentation
Training presentation
 
Nox reduction by reburn and sncr
Nox reduction by reburn and sncrNox reduction by reburn and sncr
Nox reduction by reburn and sncr
 
SIMULATION, EXERGY EFFICIENCY AND ENVIRONMENTAL IMPACT OF ELECTRICITY OF A 62...
SIMULATION, EXERGY EFFICIENCY AND ENVIRONMENTAL IMPACT OF ELECTRICITY OF A 62...SIMULATION, EXERGY EFFICIENCY AND ENVIRONMENTAL IMPACT OF ELECTRICITY OF A 62...
SIMULATION, EXERGY EFFICIENCY AND ENVIRONMENTAL IMPACT OF ELECTRICITY OF A 62...
 
IRJET- CFD Analysis and Optimization of Heat Transfer Basket Element Profiles...
IRJET- CFD Analysis and Optimization of Heat Transfer Basket Element Profiles...IRJET- CFD Analysis and Optimization of Heat Transfer Basket Element Profiles...
IRJET- CFD Analysis and Optimization of Heat Transfer Basket Element Profiles...
 
Egr
EgrEgr
Egr
 
AICHE Senior Design Project
AICHE Senior Design ProjectAICHE Senior Design Project
AICHE Senior Design Project
 
Packed Bed Reactor for Catalytic Cracking of Plasma Pyrolyzed Gas
Packed Bed Reactor for Catalytic Cracking of Plasma Pyrolyzed GasPacked Bed Reactor for Catalytic Cracking of Plasma Pyrolyzed Gas
Packed Bed Reactor for Catalytic Cracking of Plasma Pyrolyzed Gas
 
96924703 performance-monitoring-for-gas-turbine
96924703 performance-monitoring-for-gas-turbine96924703 performance-monitoring-for-gas-turbine
96924703 performance-monitoring-for-gas-turbine
 
Energy Auditing of Thermal Power plant
Energy Auditing of Thermal Power plantEnergy Auditing of Thermal Power plant
Energy Auditing of Thermal Power plant
 
OPTIMIZATION OF COMPRESSED AIR IN THERMAL POWER PLANT-A NOVEL STUDY
OPTIMIZATION OF COMPRESSED AIR IN THERMAL POWER PLANT-A NOVEL STUDYOPTIMIZATION OF COMPRESSED AIR IN THERMAL POWER PLANT-A NOVEL STUDY
OPTIMIZATION OF COMPRESSED AIR IN THERMAL POWER PLANT-A NOVEL STUDY
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and Development
 
Design and Development of Small Scale VAR System by Using Exhaust Gas of IC E...
Design and Development of Small Scale VAR System by Using Exhaust Gas of IC E...Design and Development of Small Scale VAR System by Using Exhaust Gas of IC E...
Design and Development of Small Scale VAR System by Using Exhaust Gas of IC E...
 

Draft & O2

  • 1. Engr. M. Usman Saeed E-III Visbreaking& Gas Concentration Unit Email:ing.usmansaeed@gmail.com Pak ArabRefineryLtd| QasbaGujrat MehmoodKot DistrictMuzaffarGarh DRAFT AND O2 CONTROL IN FIRED HEATER
  • 2. PAK ARAB REFINERY LTD Department: Process Visbreaking& Gas ConcentrationUnit Area: 200 (U – 130 & 411) Engr. Engr. M. Usman Saeed – 5509 CONTENTS Draft & Excess O2 Control in Furnaces............................................................................................ 1 1 Introduction....................................................................................................................... 1 2 ExcessAir........................................................................................................................... 1 3 Flue Gas Quantity............................................................................................................... 1 4 Stack Effect........................................................................................................................ 2 5 Combustion Air Preheater...................................................................................................2 6 Air Leakage Through Openings............................................................................................ 3 7 Fuel Saving......................................................................................................................... 4 8 CO2 Emissions..................................................................................................................... 4 9 Typical Values of Draft and Excess Air .................................................................................. 5 10 Draft Adjustments...........................................................................................................5 10.1 Excessive Draft— Positive Pressure Created.................................................................5 10.2 Excessive Draft— Negative Pressure Created............................................................... 5 11 Recommendations..........................................................................................................7 11.1 Design Stage............................................................................................................... 7 11.2 Maintenance .............................................................................................................. 7 11.3 ExcessAir Control .......................................................................................................8
  • 3. PAK ARAB REFINERY LTD Department: Process Visbreaking& Gas ConcentrationUnit Area: 200 (U – 130 & 411) Engr. M. Usman Saeed – 5509 1 DRAFT & EXCESS O2 CONTROL IN FURNACES 1 INTRODUCTION Processheatersare the largestconsumersof energyinmostplants.A refinery,onaverage,burns approximately2billionBtu/hrof fuel infiredheaters.The total quantityof fuel burned(heatreleased) isso highthat any improvementwill resultinsignificantfuelsavings. Highenergycostsandtighteremissions regulationsrequire increasedunderstandingandcontrol of excessair.Anyreductioninexcessairwill raise the efficiencyof aheaterand reduce total emissions.NOX emissionsare of the highestconcernina fired heater,althoughexcessaircontrol will alsoreduce refineryCO2 emissions andboostheaterefficiency. It isrecommendedthatthe flue gastemperature approach(definedasflue gastemperature leaving convection,minusprocessinlettemperature) be between50°Fand 100°F, dependingonheatertube material andthe cost of fuel.However,heaterefficiencymaydeclinewiththe degradationof heater components.The degree of degradationisdependentonthe qualityof the maintenance program implementedatthe refinery. 2 EXCESS AIR Excessair isdefinedasthe amountof air above the stoichiometricairrequirementthatisneededtocompletethe combustionprocess.Excessoxygen(O2) isthe amountof O2 inthe incomingairnot usedduringcombustion.Inanoperatingplant,the airflowrate can be adjustedata fixedabsorbed-heatduty(constantfeed flowrate andinlet/outletconditions) untilanoptimumfuel-to-airratiois achieved.Itisimportanttonote that there isa limitonminimum possible excessO2.Below thislevel,combustiblescanenterthe flue gas, whichposesa safetyhazard.Heaterandburnermanufacturersestablish thisminimumlimitduringthe designstage.Operatorsshouldalsokeepa safe marginfor upsetconditions. HigherexcessO2 helpsachieve astable flame inthe firebox.At the same time,itreducesthe efficiencyof the heater.Asageneral rule, 3% O2 influe gas isequivalentto15% excessair. 3 FLUE GAS QUANTITY Flue gasquantityincreaseswitharise inexcessair,whichlowers heatand increasesthe fuel requirement.Figure providesacorrelation betweenfluegasgeneratedduringcombustion,andexcessair.The followingequationcanbe usedto calculate approximateflue gasquantity for natural gas: QF = 1 + 0.167 3 (100 + EA) Where:EA = excessair,%; O2 = vol% of flue gasoxygen(dry); QF = flue gasquantityinlb/lbof fuel.Asageneral rule,flue gasquantityis approximately20 timesthe fuel quantity at15% excessair.
  • 4. PAK ARAB REFINERY LTD Department: Process Visbreaking& Gas ConcentrationUnit Area: 200 (U – 130 & 411) Engr. M. Usman Saeed – 5509 2 4 STACK EFFECT The net draftavailable isthe draftcreatedbythe stack effect,minusfrictional andvelocitylosses. The net draftshouldbe sufficienttoobtaina negative pressure alongthe heaterfluegaspath. It isimportantto maintainasafe draft level inafiredheatertoachieve the bestpossible efficiency and operation.The targetdraftof 0.1 inchWC issetat the heaterarch. A highervalue of draftwill resultin ingressof “tramp air” intothe heater.Trampair takesheat from the combustionprocessandexitsthe stack,reducingheaterefficiency.The flue gassample takenfromthe stack doesnotrepresentthe actual volume of O2available forcombustion.Itisthe sumof unusedO2 from the firebox (actual excessO2) andO2 fromtramp air. A positive draftvalue will resultinthe leakage of hotflue gases throughopeningsinthe heater.Thisisa hazardousoperationthatcan overheatthe steel structure,refractoryandheatersupports,and, consequently,shortenheaterlife. Figure providesthe value of draftgeneratedinthe heaterfor flue gastemperature andambientairtemperature.Itshouldbe noted that stack effectdecreaseswithanincrease insite altitude.The calculateddraftshouldbe amendedusingthe correction factorforsite altitude.The followingequationcanbe usedtocalculate the draft generatedinaheater: Where:H = Height,ft;PATM = Atmosphericpressure,psia; TAMB = Ambientairtemperature,°R; TFG = Flue gastemperature,°R.Asa general rule,forevery10 ft of firebox height,the draftincreasesby0.1 inchWC:Draft at burner(inchWC) ≈ 0.1 + HFB ÷ 100 where:HFB = Firebox height,ft. 5 COMBUSTION AIR PREHEATER The typical combustionairpreheater(APH) will increase the heaterefficiencyby approximately10%.Fuel gasgenerallycontains H2S or sulfur,whichconvertintoSO2 andthenintoSO3.The APH’s heat-transfersurface issubjecttocold-endcorrosioncausedby condensationof sulfurtrioxide(SO3),whichresultsinAPHleakage.Air preheaterleakage isone of the mostcommonAPHoperating problems,andanysuch leakage resultsinareductioninthe overall efficiencyof the heater. In APHoperation,the flue gasisgenerallyatnegativepressure, and the air isat positive pressure.Therefore,leakageoccursfromair to the flue gasside.Thisreducesthe quantityof airavailable for combustion,anditincreasesthe quantityof flue gasleavingthe APH. Thisleakage canbe detectedbymeasuringthe fluegasO2 contentat the APHinletandoutlet.Any leakage will resultinhigherfluegasO2 at the APHexit,comparedtothe APH inlet.Generally,the APHisnot
  • 5. PAK ARAB REFINERY LTD Department: Process Visbreaking& Gas ConcentrationUnit Area: 200 (U – 130 & 411) Engr. M. Usman Saeed – 5509 3 equippedwithaflue gasO2 analyzeratthe inletandthe outlet;however,the inclusionof 2-in.connections at the APH’sinletandoutletwillenable operatorstomeasure O2 levelsusingaportable analyzer. (M 3 CP ∆T)FLUE GAS = (M 3 CP ∆T)AIR For a typical fuel gasat 15% excessair: MFLUE GAS ≈ 1.05 3 MAIR ; PFLUE GAS ≈ 1.15 3 CPAIR (7) ∆TAIR ≈ 1.2 3 ∆TFLUE GAS Where:M = Flowrate CP = Specificheat∆T = Temperature difference acrossthe APH. Anyleakage inthe APHwill reduce the ratioof ∆TAIR to ∆TFLUE GAS. For example,fora10% leakage in the APH,the ratioof temperature differencewillbe around1.1. Figure indicatesthe percentage of airleakage basedonthe ratioof ∆TAIR to ∆TFLUE GAS fora typical natural gas firing. 6 AIR LEAKAGE THROUGH OPENINGS A firedheaterisnota 100% sealedunit; there are alwaysopeningsthroughwhichairingress (trampair) can move. The volume of trampair dependsonthe openingsize andthe draftat the locationof the opening.Afterthe draftatthe openinglocationisestimated,the followingequation can be usedtoestimate the airleakage throughan opening: ∆P = C 3 0.003 3 ρ 3 V2 Thisequationcanbe simplifiedforthe leakage calculationpurposebasedonthe following data: Molecularweight(MW) of air = 28.96; Atmosphericpressure(psia)=14.7; Velocityhead(C) = 1 where:ΔP = Draft at openinglocation,inchWC;ρ =Density of air at ambienttemperature,lb/ft3 ;V = Velocityof airthroughopening,ft/s; C = Velocityhead;QL = Airleakage,lbperft2 /s;T = Ambientair temperature,°R. Figure providesthe quantityof airleakage perft2 of openingsize.Thisfigureisbasedonanambient air temperature of 60°F.Once the openingsize isknown,the amountof airleakage canbe estimated.The estimatedaircanbe translatedintothe additionalfiringrate required.
  • 6. PAK ARAB REFINERY LTD Department: Process Visbreaking& Gas ConcentrationUnit Area: 200 (U – 130 & 411) Engr. M. Usman Saeed – 5509 4 7 FUEL SAVING The absorbedheatdutyof the firedheateris constant.Anyincrease inthe O2level will reduce the efficiency,resultinginahigherfiringrate.Thisincrease in the firingrate will leadtoa rise instack temperature, whichresultsinanotherreductioninefficiency.This reduction,inturn,demandsafurtherincrease inthe firing rate. The methodof efficiencycalculationforoff-design operatingconditionspresentedinAPI-560Appendix Gcan be usedto estimate the stacktemperature whenexcessair ispresent.Thismethodcanbe simplifiedforexcessairas follows: Where:TS = Flue gasstack temperature,°R; EA = Excessair,%; TF = Feedinlettemperature,°R(TF1 = TF2) Φ = Excessair correctionfactor Once the newflue gasstack temperature atexcessairisknown,thenthe heaterefficiencycanbe estimated. Figure showsthe estimatedfuel savingsforareductioninthe O2 level to3%. Thisgraph isbased on a fuel price of $6/MMBtu. The designflue gastemperaturelinesindicate the baseline stacktemperature (i.e.,the flue gasstack temperature at3% O2). 8 CO2 EMISSIONS The volume of CO2 emissionsgeneratedinafired heaterisdirectlyproportional tothe firingrate.In combustionprocesses,fuel carbonconvertsintoCO2. Therefore,excessairreductionwill lowerCO2emissions. Figure providesestimateddecreasesinCO2 emissions througha reductioninthe O2 level to3%.
  • 7. PAK ARAB REFINERY LTD Department: Process Visbreaking& Gas ConcentrationUnit Area: 200 (U – 130 & 411) Engr. M. Usman Saeed – 5509 5 9 TYPICAL VALUES OF DRAFT AND EXCESS AIR Draft referstothe flowof gasesthrough the heatgenerating equipment,beginningwiththe introductionof airat the back of the burner. Once combustionoccurs,the heatedgasleavesthe combustionchamber, passesheatexchangersandexitsthe exhauststack. 5 - 10% for natural gas, 5 - 20% for fuel oil, 15- 60% for coal Carbondioxide - CO2 - is a productof the combustionandthe content inthe flue gasisan importantindicationof the combustionefficiency.An optimal contentof carbondioxide - CO2 - aftercombustionis approximately 10% for natural gas and approximately 13% forlighteroils. 10 DRAFT ADJUSTMENTS Stack dampersandsecondaryair registersaffectthe draftandboth adjustmentsare related.The hotgaspushessothat the pressure isalways greatestat the firewall.The stackdraftpullsandwhencorrectlybalanced the pressure at the bridgewallshouldbe close tozeroorveryslightly negative.A processheateroperatingproperlywill alsohave azero,or slightlynegative draft,atthe shieldsection.The firebox will be slightly positive (+0.5to +2.0 “watercolumn(wc)) andthe stack will have arange of -0.5 to -1.0” wc. Excessive draft,eitherpositive pressure ornegative pressure,canleadto severe problemsinthe convectionsection. 10.1 EXCESSIVE DRAFT — POSITIVE PRESSURE CREATED In Figure 4, the air registersare wide openandthe dampermostlyclosed.Thisgeneratesapositive pressure whichforcesflue gasesoutwardthroughleaksinthe convectionsectionleadingtoserious structure damage,as well asheatloss. 10.2 EXCESSIVE DRAFT — NEGATIVE PRESSURE CREATED In Figure 5, the air registersare mostlyclosedandthe stackdamperiswide openleadingtoahigh negative pressure inthe convectionsection.Coldambientairissuckedinthroughleaksinthe convection sectionleadingtoerroneousoxygenreadings,aswell asheatloss.Inadditionthe excessive draftcausestall flameswhichcanreach the tubesresultinginseriousdamage.
  • 8. PAK ARAB REFINERY LTD Department: Process Visbreaking& Gas ConcentrationUnit Area: 200 (U – 130 & 411) Engr. M. Usman Saeed – 5509 6
  • 9. PAK ARAB REFINERY LTD Department: Process Visbreaking& Gas ConcentrationUnit Area: 200 (U – 130 & 411) Engr. M. Usman Saeed – 5509 7 11 RECOMMENDATIONS Heaterexcessaircontrol starts at the designstage.Well-designedheatershave low trampair.There are three stagesof excessaircontrol:  Designstage  Maintenance  Control 11.1 DESIGN STAGE A heaterhasmany potential leakpointsforairingress:  Clearance aroundthe bottomcoil guide (spigots)  Sightdoorsand peepholes  Headerboxes,manholesandotheropeningsforviewingandaccess  Modules andduct splice joints  Terminalsandcrossovertubes  Weldjointsonthe heatercasing  Soot-blowersleeves  The APH. These leakpointsmustbe designedforthe lowestpossibleleakage.Suggestionsfordesigningalow- leakage heaterincludethe following:  Seal the clearance space aroundthe bottom tube guidesbyusingafloorsleeve withanend cap, or seal boots  Use sightdoors,withsafetyglass,thatare equippedwithaninterlockcoverorflapper  Use a self-closingpeepholecoverinthe heaterfloor  Ensure that headerbox panelsandotheropeningsare airtight,anduse gasketsbetweenthe gaps  Seal-weldall splice jointsbetweenmodulesfromthe inside,oruse high-temperature sealant;also,use closer-boltspacing(6in.fromcenterto center)  Seal all terminalsandcrossoveropeningswithflexible seals  Ensure that all headerbox drainpointsare plugged  Ensure that no leakage isoccurringthroughinstrumentmountings  Limitleakage throughthe APHduringthe designstage,andperformanair-leakage testin the shop. 11.2 MAINTENANCE Routine maintenanceof the heatersisessential,since corrosiveagentscanbe presentinflue gases. Deteriorationfromsulfuroxidesoccursmostlyoncoldsectionsof the steel casing.Climateconditionscan alsoleadto rustingon exposedsurfacesof the heatercasing.Suggestedinspectionand maintenance methodsincludethe following:  Checkfor heatercasingcorrosion;if anyleaksare discovered,theyshouldbe sealedtostop air ingress  Ensure that observationdoors(generally locatedinthe bottomsectionof the radiantbox) are closedaftertechniciansinspectthe heaterflame
  • 10. PAK ARAB REFINERY LTD Department: Process Visbreaking& Gas ConcentrationUnit Area: 200 (U – 130 & 411) Engr. M. Usman Saeed – 5509 8  Checkpeepholes,accessdoors,etc.,forproperclosing  Checkflue gasO2 contentinthe convectionsectionandonthe APH; if there isany increase inO2contentacross the flue gaspath,it indicatesleakage  Use a smoke testduringheatershutdowntodetectleakage  Use infraredscanning,while the heaterisinoperation,topinpointlocationswithair leakage;these will have localized,lowerheatercasingtemperatures  To reduce leakage inburners,keepall burnersinoperation,evenduringloweroperating loads;and close the airregisterwhenaburneris takenoutof service. 11.3 EXCESS AIR CONTROL Knowingthe targetflue gasO2 contentisthe firststepin excessaircontrol.Each heaterisunique in itsdesign.The O2 level requiredtoachieve ideal combustionmaybe anywhere from1%–4% or higher, dependingonthe designandoperatingcharacteristicsof the heater. The followingtwoinstrumentsare necessarytocontrol excessair:  Flue gas O2 analyzer. Thisis the mostimportantinstrumentonthe heater.Itis recommendedtoinstall anO2 analyzeratthe radiantsectionarch.  Draft gauge.A draft gauge shouldbe installedatthe heaterarch. The arch isthe pointof the highestflue gaspressure inthe heater. HeaterO2 and draftat the radiantarch shouldbe checkedand,if necessary,adjustedatleastonce pershiftand wheneverthere isachange in processload.All operatorsshouldbe familiarwiththe heater controls.Often,heaterswithairregistersandstackdampersbecome jammedsimplybecause theyare not used. Figprovidestacticsforcontrollingexcessairina natural draft heater.Forcontrollingexcessairinother typesof heaters, Table 1 andTable 2.