SlideShare a Scribd company logo
1 of 29
•WeiChiang Pang, Clemson University
•David Rosowsky, Rensselaer Polytechnic Institute
•John van de Lindt, University of Alabama
•Shiling Pei, South Dakota State University
Quake Summit 2010, NEES & PEER Annual Meeting, Oct-9, San Francisco
2
 Background on Displacement-based Design
 NEESWood Capstone Building
 Design Objectives
 Shear Wall System (Database)
 Design Procedure
 Verification
Nonlinear Time History Analyses (NLTHA)
ATC-63 Collapse Analysis
 Summary
3
Displacement-based Design
 Concept pioneered by Priestley (1998)
Displacement  damage indicator / seismic performance
For concrete and steel buildings
Force-based Design
Elastic fundamental period
Response of woodframe structures is highly nonlinear
Force is not a good damage indictor
No guarantee damage will be manageable
4
Force-based Displacement-Based
x
a tT C h
• period estimate based on building
height and building type
 Approximate elastic fundamental period  Direct period calculation
• Actual mass and stiffness
• Capacity Spectrum Approach
Sa
T
Ta
Location 1
Location 2
eff
TS
TL
Design spectrum
(demand)
Capacity spectrum
Keff
5
R
Force-based Displacement-Based
 Response Modification Factor (R-factor)
A yield point is assumed
 Force is not a good damage indictor
-4 -3 -2 -1 0 1 2 3 4
-15
-10
-5
0
5
10
15
Displacement (in)
Force(kip)
Test M47-01
M-CASHEW Model
-100 -80 -60 -40 -20 0 20 40 60 80 100
-60
-40
-20
0
20
40
60
Displacement (mm)
Force(kN)
 Actual nonlinear backbone curves
• Numerical model or full-scale test
 Displacement is a good damage indictor
6
 Simplified Direct Displacement Design
 Used to design the NEESWood Capstone Building
 Does not require modal analysis (1st mode approximation)
 Can be completed using spreadsheet
 Drift limit NE probability other than 50%
 Objectives:
1) Optimize distribution of story stiffness over the
height of the building
2) Minimize the probability of a weak story

Soft-story

7
 Plan Dimensions: 40x60 ft
 Height: 56ft (6-story wood only)
 23 apartment units
 Weight : ~2734 kips (wood only)
 Shear Wall Design:
Direct Displacement Design (DDD)
 Tested on E-defense (Miki) Shake
Table in July-2009
Photo credit: Courtesy of Simpson Strong-Tie
60 ft 40 ft
9ft
8ft
8ft
8ft
8ft
8ft
55.7 ft
8
 Performance => 1) inter-story drift limit
2) hazard level
3) non-exceedance probability
Level
Seismic Hazard Performance Expectations
Description
Exceedance
Prob.
Inter-Story
Drift Limit
NE Prob.
Level 1 Short Return Period
Earthquake
50%/50yr 1% 50%
Level 2 Design Basis
Earthquake (DBE)
10%/50yr 2% 50%
Level 3 Maximum Credible
Earthquake (MCE)
2%/50yr 4% 80%
Level 4 Near Fault Near Fault 7% 50%
9
0 0.5 1 1.5 2
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
Period, T (s)
SpectralAcceleration,Sa
(g)
Design Response Spectra - ATC-63 High Seismic Hazard Region
44% DBE
DBE
MCE
 Typical Southern California seismic hazard
 Site Class D (Stiff Soil)
5% damping
10
 4 Apartment Units
 Midply walls
 carry high shear
demand
 Reduce torsional
effect
Midply Shearwall
Standard Shearwall
Partition/ non-Shearwall
39.8 ft
59.5 ft
Y
X
Unit 3
Unit 3
Unit 2
Unit 1
Elevator
Shaft
N
Stairway
Stairway
A B D E
1
2
4
6
8
10
11
Midply Wall
Midply Wall
11
406mm
16 in
406mm
16 in
406mm
16 in
Stud Sheathing
Drywall
Standard /Conventional Shear Wall
Nail in Single-shear
406mm
16 in
406mm
16 in
Sheathing
Drywall
Midply Shear Wall Nail in Double-shear
Construction concept developed by Forintek (Varoglu et al. 2007)
12
Hold-down Element
Contact
element
Panel-to-frame nails
End-nail
Gravity Load
Force-Displacement Response
Framing
nails
 M-CASHEW model (Matlab)
 Shear Wall Backbone database for different nail spacings
13
13
14
Drift (%)
Wall
Height
(ft)
Wall Type/
Sheathing
Layer
Edge Nail
Spacing
(in)
Ko
(kip/in
per ft)
Fu
(kip per ft)
Backbone Force at Different Drift
Levels (kip per ft)
Wall Drift
0.5% 1.0% 2.0% 3.0% 4.0%
9
Standard
2 3.95 2.17 1.33 1.83 2.17 1.87 1.57
3 3.24 1.46 0.99 1.29 1.45 1.24 1.02
4 2.76 1.12 0.79 1.00 1.11 0.94 0.77
6 1.98 0.77 0.56 0.69 0.75 0.65 0.54
Midply
2 5.03 4.22 2.04 3.18 4.22 3.64 3.06
3 4.38 2.86 1.63 2.38 2.81 2.43 2.06
4 3.84 2.18 1.35 1.90 2.11 1.83 1.56
6 3.16 1.49 1.02 1.35 1.43 1.25 1.07
GWB 16 1.29 0.14 0.13 0.13 0.09 0.06 0.03
Design drift
Backbone force
Consider only full-height
shear wall segments
15
 ATC-63 , 22 bi-axial ground motions
 MCE Level 3 Ground motion
 Uncertainty ≈ 0.4
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0
1
2
3
4
5
6
Response Spectra
Group Scale Factor = 2.337
Unscaled Median Sa
= 0.607 @ Tn
= 0.63s
Scaled Median Sa
= 1.419 @ Tn
= 0.63s
Period (s)
SpectralAcceleration(g)
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
StandardDeviationofln(Sa)
Median
80%-tile
Design Spectrum
Median
80th %tile
Design Spectrum
Lognormally
Distributed
βEQ ≈ 0.4
0.4
16
0 1 2 3 4 5 6 7 8 9 10
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
CumulativeProbabilityofInter-storyDrift
Peak Inter-story Drift (%)
2.13%
80%
4 % drift
50%
1
exp[ ( ) ]NE t RC NE 
 
 Non-exceedance probability adjustment factor, CNE
Total Uncertainty
βR= √( βEQ
2
+ βDS
2)
=√( 0.42
+ 0.62) ≈ 0.75
1
exp[ (0.8)0.75]
1.88

 

80% NE Level 3
4% drift at 80% NE
Level 3
1.88
17
 Vertical distribution factors (function of displacement)
 Effective height
 Effective seismic weight
j
j
v
j
i
i
o
oi
W
W
C



0.7 total heighteffh 
Weff ≈ 0.8 total weight
w6
o1
o2
o3
o4
hs
F1=Cv1Vb
F2=Cv2Vb
heff
effw4
w3
w2
w1
F3=Cv3Vb
F5=Cv5Vb
Original Multi-story Building
w5
F4=Cv4Vb
F6=Cv6Vb
o5
o6
Vb = Cc
Mo = Ft heff
Ft
eff
Vb = Cc
Weff
Ft = Cc Weff
eff
Keff
Substitute Structure
Mo = Ft heff
heff
effeff
18
 Design base shear coefficient
eff
Cc= 0.98
Design spectrum (5% damping)
Sd, Δ
Sa,
Ft/Weff
TS
TL
Design spectrum (demand) adjusted for damping and
target NE probability of drift limit
Capacity spectrum
Keff
19
0 1 2 3 4 5
0
500
1000
1500
2000
2500
BackboneForce(kN)
0 1 2 3 4 5
0
100
200
300
400
500
600
X-Direction
BackboneForce(kip)
Inter-story Drift (%)
Floor 1
Floor 2
Floor 3
Floor 4
Floor 5
Floor 6
0 1 2 3 4 5
0
500
1000
1500
2000
2500
BackboneForce(kN)
0 1 2 3 4 5
0
100
200
300
400
500
600
X-Direction
BackboneForce(kip)
Inter-story Drift (%)
Floor 1
Floor 2
Floor 3
Floor 4
Floor 5
Floor 6
(a)
 Step 9: Design forces
j
N
b
j i
v
s
is CV V

 
b effcV WC Design base shear coefficient  effective weightBase Shear
Story Shear
 Step 10: Select shear wall
nail spacing
 Assume no torsion
 Direct summation of the wall stiffness
 Full-height shear wall segments
Level 3
Story Shear
Requirements
20
Diaphragm
Nonlinear Spring
 NonlinearTime-historyAnalysis (NLTHA) to verify the design
M-SAWS
21
Model M-SAWS SAPWood Test
Mode Initial Stiffness
Tangent Stiffness
at 0.15% Drift
Initial Stiffness Initial Period
1
2
3
0.38
0.36
0.32
0.54
0.51
0.44
0.40
0.39
0.32
0.42
0.41
-
0
200
400
600
0
200
400
600
800
0
200
400
600
z-axis(Elevation)
Mode 3
T3
= 0.443 s
y-axis
x-axis
0
200
400
600
0
200
x-axis -500 0 500 100
0
200
400
z-axis(Elevati
x-axis
200 400 600 800
Mode 3
T3
= 0.443 s
y-axis
0 500 1000 15
0
200
400
600
800
x-axis
y-axis
Mode 3
T3
= 0.443 s
Base
Diaphragm 1
Diaphragm 2
Diaphragm 3
Diaphragm 4
Diaphragm 5
Diaphragm 6
-200
0
200
400
600
0
200
400
0
200
400
600
z-axis(Elevation)
Mode 1
T1
= 0.537 s
x-axisy-axis
-500 0 500 1000
0
200
400
600
800
Mode 1
T1
= 0.537 s
z-axis(Elevation)
x-axis
-200
0
200
400
600
0
200
400
600
800
0
200
400
600
z-axis(Elevation)
Mode 2
T2
= 0.505 s
y-axis x-axis -200 0 2
0
200
400
600
T
z-axis(Elevation)
200
0
200
400
600
x-axis -200 0 200 400 600 800
0
200
400
600
z-axis(Elevation)
x-axis
400 600
de 2
.505 s
xis
0 200 400 600 800 1000 1200
0
200
400
600
x-axis
y-axis
Mode 2
T2
= 0.505 s
Base
Diaphragm 1
Diaphragm 2
Diaphragm 3
Diaphragm 4
Diaphragm 5
Diaphragm 6
-500 0 500 1000
0
200
400
z-axis(Elev
x-axis
0 500 1000
-200
0
200
400
600
800
x-axis
y-axis
Mode 1
T1
= 0.537 s
Base
Diaphragm 1
Diaphragm 2
Diaphragm 3
Diaphragm 4
Diaphragm 5
Diaphragm 6
Mode 1
T1=0.54s
Mode 2
T2=0.51s
Mode 3
T3=0.44s
0 500 1000
x-axis
0 500 1000
x-axis
Mode 3
T3
= 0.357 s
Base
Diaphragm 1
Diaphragm 2
Diaphragm 3
Diaphragm 4
Diaphragm 5
Diaphragm 6
22
 Levels 1-3: ATC-63 Far Field Ground Motions (22 bi-axial)
 Level 4: CUREE Near-fault Ground Motions
Design Requirement
Level 4
Level 3
Level 2
Level 1
Uniform Drift
Profile
<7%
<4%
<2%
<1%
23
Level
Test Inter-Story
Drift
Design
Limit
1
2
3
~0.75%
~1.30%
3.08% (max)
1%
2%
4%
24
0 1 2 3 4 5 6
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
SMCE
= 1.50 g
SCT
= 2.57 g, Pf
= 0.5
CMR = 1.71
Pf
= 0.04
Median ST
@ Tn (g)
CollapseProbability
Unadjusted Collapse Fragility Curve for NEESWood Capstone Building (6-story Woodframe)
ATC-63 Far-field Ground Motions
Model: M-SAWS
 = 5%
CollapseProbability
Median Sa @ Tn (g)
 Adjusted CMR = SSF x CMR = 2.09 > 1.88 (passed ATC-63
requirement)
 Unadjusted collapse margin ratio (CMR) is 2.57/1.50 = 1.71
 Spectral Shape Factor (SSF) = 1.22
 Collapse fragility curve
 Incremental Dynamic Analysis
25
 Simplified direct displacement design (DDD)
 Optimize distribution of story stiffness (avoid week story)
 Focus on “performance” (i.e. control the drifts)
 NLTHA not needed (optional)
 Can consider multiple performance requirements
 DDD procedure
 A viable design method for tall woodframe buildings
 Confirmed by NLTHA and full-scale shake table test
 The collapse margin ratio of the Capstone Building passed the ATC-63
requirement
 Next Step:
 1) Include rotation/torsional effects
 2) Modified for retrofitting purpose (pre-1970s buildings)
Summary
26
Thank you
Contact Information:
Weichiang Pang
wpang@clemson.edu
27
 M-CASHEW model (Matlab)
 11.9mm (15/32”) OSB, 2x6 studs
 10d common nails (3.76mm dia.), nail spacing
 12.7mm (½”) Gypsum wallboard
 31.75mm long #6 drywall screws 406mm (16”) o.c.
u
Fb()
Displacement, 
Force, Fb( )
r2Ko
r1Ko
Ko
Fo
Fu
DesignVariable
28
 Step 8: Design base shear coefficient
 
2
1
2 2
1.88 1.5
1.65
1.71
min
9.81 1.88 0.9
1.70.
0.9
4
1
14 247
8
eff
NE XS
NE X
c
C S
B
C Sg
C
B

 

 

 
    
         
ef
C
c
Design spectrum at 5% damping
Sd, Δ
Sa,
Ft/Weff
TS
T
L
Design spectrum (demand) adjusted for
damping and target NE probability of drift
limit
Capacity spectrum
Keff
Level 3 (MCE)
29
 Step 7: Damping reduction factor
4
5.6 ln(10 )
.71
0
1
eff
B

 

ASCE/SEI- 41
int 26%5% 21%hysteff      
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
Ks
/Ko
hyst
Hysteretic Damping Model
(FPI) Standard S34
(FPI) Midply M47-01
(FPI) Midply M46-01
(CUREE) Task 1.4.4 12A
(APA) T2003-22 Wall 7
(APA) T2004-14 Wall 8dcom
0.32exp( 1.38 )hyst s ok k  
0.21
Ks/Ko
Effective damping = Intrinsic + Hysteretic damping

More Related Content

What's hot

CE 72.32 (January 2016 Semester) Lecture 5 - Preliminary Design and Sizing
CE 72.32 (January 2016 Semester) Lecture 5 - Preliminary Design and SizingCE 72.32 (January 2016 Semester) Lecture 5 - Preliminary Design and Sizing
CE 72.32 (January 2016 Semester) Lecture 5 - Preliminary Design and SizingFawad Najam
 
CE72.52 - Lecture1 - Introduction
CE72.52 - Lecture1 - IntroductionCE72.52 - Lecture1 - Introduction
CE72.52 - Lecture1 - IntroductionFawad Najam
 
CE 72.52 - Lecture 8a - Retrofitting of RC Members
CE 72.52 - Lecture 8a - Retrofitting of RC MembersCE 72.52 - Lecture 8a - Retrofitting of RC Members
CE 72.52 - Lecture 8a - Retrofitting of RC MembersFawad Najam
 
3.4 pushover analysis
3.4 pushover analysis3.4 pushover analysis
3.4 pushover analysisNASRIN AFROZ
 
SEISMIC EVALUATION
SEISMIC EVALUATIONSEISMIC EVALUATION
SEISMIC EVALUATIONJKIB93
 
AITC Shear Wall Design Procedure (20151106)
AITC Shear Wall Design Procedure (20151106)AITC Shear Wall Design Procedure (20151106)
AITC Shear Wall Design Procedure (20151106)Fawad Najam
 
Integrated Performance Based Design of Tall Buildings for Wind and Earthquake...
Integrated Performance Based Design of Tall Buildings for Wind and Earthquake...Integrated Performance Based Design of Tall Buildings for Wind and Earthquake...
Integrated Performance Based Design of Tall Buildings for Wind and Earthquake...AIT Solutions
 
Comparision of Design Codes ACI 318-11, IS 456 2000 and Eurocode II
Comparision of Design Codes ACI 318-11, IS 456 2000 and Eurocode IIComparision of Design Codes ACI 318-11, IS 456 2000 and Eurocode II
Comparision of Design Codes ACI 318-11, IS 456 2000 and Eurocode IIijtsrd
 
CE72.52 - Lecture 3a - Section Behavior - Flexure
CE72.52 - Lecture 3a - Section Behavior - FlexureCE72.52 - Lecture 3a - Section Behavior - Flexure
CE72.52 - Lecture 3a - Section Behavior - FlexureFawad Najam
 
CE 72.32 (January 2016 Semester) Lecture 3 - Design Criteria
CE 72.32 (January 2016 Semester) Lecture 3 - Design Criteria CE 72.32 (January 2016 Semester) Lecture 3 - Design Criteria
CE 72.32 (January 2016 Semester) Lecture 3 - Design Criteria Fawad Najam
 
CE 72.32 (January 2016 Semester) Lecture 2 - Design Philosophy
CE 72.32 (January 2016 Semester) Lecture 2 - Design PhilosophyCE 72.32 (January 2016 Semester) Lecture 2 - Design Philosophy
CE 72.32 (January 2016 Semester) Lecture 2 - Design PhilosophyFawad Najam
 
Chapter 1-types of structures and loads
Chapter 1-types of structures and loadsChapter 1-types of structures and loads
Chapter 1-types of structures and loadsISET NABEUL
 
1223989 static pushover analysis
1223989 static pushover analysis1223989 static pushover analysis
1223989 static pushover analysismansoor_yakhchalian
 
M.Tech Structural Engineering Project of Voided and Cellular Deck slab Bridge
M.Tech Structural Engineering Project of Voided and Cellular Deck slab Bridge M.Tech Structural Engineering Project of Voided and Cellular Deck slab Bridge
M.Tech Structural Engineering Project of Voided and Cellular Deck slab Bridge vaignan
 
Progression of Structural Design Approaches by Dr. Naveed Anwar
Progression of Structural Design Approaches by Dr. Naveed AnwarProgression of Structural Design Approaches by Dr. Naveed Anwar
Progression of Structural Design Approaches by Dr. Naveed AnwarAIT Solutions
 
The Pushover Analysis from basics - Rahul Leslie
The Pushover Analysis from basics - Rahul LeslieThe Pushover Analysis from basics - Rahul Leslie
The Pushover Analysis from basics - Rahul LeslieRahul Leslie
 
Non linear static pushover analysis
Non linear static pushover analysisNon linear static pushover analysis
Non linear static pushover analysisjeyanthi4
 

What's hot (20)

CE 72.32 (January 2016 Semester) Lecture 5 - Preliminary Design and Sizing
CE 72.32 (January 2016 Semester) Lecture 5 - Preliminary Design and SizingCE 72.32 (January 2016 Semester) Lecture 5 - Preliminary Design and Sizing
CE 72.32 (January 2016 Semester) Lecture 5 - Preliminary Design and Sizing
 
CE72.52 - Lecture1 - Introduction
CE72.52 - Lecture1 - IntroductionCE72.52 - Lecture1 - Introduction
CE72.52 - Lecture1 - Introduction
 
CE 72.52 - Lecture 8a - Retrofitting of RC Members
CE 72.52 - Lecture 8a - Retrofitting of RC MembersCE 72.52 - Lecture 8a - Retrofitting of RC Members
CE 72.52 - Lecture 8a - Retrofitting of RC Members
 
3.4 pushover analysis
3.4 pushover analysis3.4 pushover analysis
3.4 pushover analysis
 
SEISMIC EVALUATION
SEISMIC EVALUATIONSEISMIC EVALUATION
SEISMIC EVALUATION
 
Design notes for seismic design of building accordance to Eurocode 8
Design notes for seismic design of building accordance to Eurocode 8 Design notes for seismic design of building accordance to Eurocode 8
Design notes for seismic design of building accordance to Eurocode 8
 
AITC Shear Wall Design Procedure (20151106)
AITC Shear Wall Design Procedure (20151106)AITC Shear Wall Design Procedure (20151106)
AITC Shear Wall Design Procedure (20151106)
 
Integrated Performance Based Design of Tall Buildings for Wind and Earthquake...
Integrated Performance Based Design of Tall Buildings for Wind and Earthquake...Integrated Performance Based Design of Tall Buildings for Wind and Earthquake...
Integrated Performance Based Design of Tall Buildings for Wind and Earthquake...
 
Comparision of Design Codes ACI 318-11, IS 456 2000 and Eurocode II
Comparision of Design Codes ACI 318-11, IS 456 2000 and Eurocode IIComparision of Design Codes ACI 318-11, IS 456 2000 and Eurocode II
Comparision of Design Codes ACI 318-11, IS 456 2000 and Eurocode II
 
CE72.52 - Lecture 3a - Section Behavior - Flexure
CE72.52 - Lecture 3a - Section Behavior - FlexureCE72.52 - Lecture 3a - Section Behavior - Flexure
CE72.52 - Lecture 3a - Section Behavior - Flexure
 
CE 72.32 (January 2016 Semester) Lecture 3 - Design Criteria
CE 72.32 (January 2016 Semester) Lecture 3 - Design Criteria CE 72.32 (January 2016 Semester) Lecture 3 - Design Criteria
CE 72.32 (January 2016 Semester) Lecture 3 - Design Criteria
 
CE 72.32 (January 2016 Semester) Lecture 2 - Design Philosophy
CE 72.32 (January 2016 Semester) Lecture 2 - Design PhilosophyCE 72.32 (January 2016 Semester) Lecture 2 - Design Philosophy
CE 72.32 (January 2016 Semester) Lecture 2 - Design Philosophy
 
Chapter 1-types of structures and loads
Chapter 1-types of structures and loadsChapter 1-types of structures and loads
Chapter 1-types of structures and loads
 
1223989 static pushover analysis
1223989 static pushover analysis1223989 static pushover analysis
1223989 static pushover analysis
 
Bridges Functionality and Aesthetics
Bridges Functionality and AestheticsBridges Functionality and Aesthetics
Bridges Functionality and Aesthetics
 
M.Tech Structural Engineering Project of Voided and Cellular Deck slab Bridge
M.Tech Structural Engineering Project of Voided and Cellular Deck slab Bridge M.Tech Structural Engineering Project of Voided and Cellular Deck slab Bridge
M.Tech Structural Engineering Project of Voided and Cellular Deck slab Bridge
 
Progression of Structural Design Approaches by Dr. Naveed Anwar
Progression of Structural Design Approaches by Dr. Naveed AnwarProgression of Structural Design Approaches by Dr. Naveed Anwar
Progression of Structural Design Approaches by Dr. Naveed Anwar
 
Shore pile
Shore pileShore pile
Shore pile
 
The Pushover Analysis from basics - Rahul Leslie
The Pushover Analysis from basics - Rahul LeslieThe Pushover Analysis from basics - Rahul Leslie
The Pushover Analysis from basics - Rahul Leslie
 
Non linear static pushover analysis
Non linear static pushover analysisNon linear static pushover analysis
Non linear static pushover analysis
 

Viewers also liked

A comparative study on force based design and direct displacement based desig...
A comparative study on force based design and direct displacement based desig...A comparative study on force based design and direct displacement based desig...
A comparative study on force based design and direct displacement based desig...eSAT Journals
 
Parametric study on displacement based design method procedures for rc struct...
Parametric study on displacement based design method procedures for rc struct...Parametric study on displacement based design method procedures for rc struct...
Parametric study on displacement based design method procedures for rc struct...Yoppy Soleman
 
Performance Based Design Presentation By Deepak Bashetty
Performance Based Design Presentation By Deepak BashettyPerformance Based Design Presentation By Deepak Bashetty
Performance Based Design Presentation By Deepak BashettyDeepak Bashetty
 
Underwater construction
Underwater construction Underwater construction
Underwater construction Pranay Kumar
 
Earthquake resistant structure
Earthquake resistant structureEarthquake resistant structure
Earthquake resistant structurevikskyn
 

Viewers also liked (6)

A comparative study on force based design and direct displacement based desig...
A comparative study on force based design and direct displacement based desig...A comparative study on force based design and direct displacement based desig...
A comparative study on force based design and direct displacement based desig...
 
Parametric study on displacement based design method procedures for rc struct...
Parametric study on displacement based design method procedures for rc struct...Parametric study on displacement based design method procedures for rc struct...
Parametric study on displacement based design method procedures for rc struct...
 
2831
28312831
2831
 
Performance Based Design Presentation By Deepak Bashetty
Performance Based Design Presentation By Deepak BashettyPerformance Based Design Presentation By Deepak Bashetty
Performance Based Design Presentation By Deepak Bashetty
 
Underwater construction
Underwater construction Underwater construction
Underwater construction
 
Earthquake resistant structure
Earthquake resistant structureEarthquake resistant structure
Earthquake resistant structure
 

Similar to Direct displacement design_methodology_for_woodframe_buildings_

Advanced seismic analysis of building-م.54-مبادرة#تواصل_تطوير-أ.د.ناجى أبو شادى
Advanced seismic analysis of building-م.54-مبادرة#تواصل_تطوير-أ.د.ناجى أبو شادىAdvanced seismic analysis of building-م.54-مبادرة#تواصل_تطوير-أ.د.ناجى أبو شادى
Advanced seismic analysis of building-م.54-مبادرة#تواصل_تطوير-أ.د.ناجى أبو شادىEgyptian Engineers Association
 
CASE STUDY: PERFORMANCE-BASED SEISMIC DESIGN OF REINFORCED CONCRETE DUAL SYST...
CASE STUDY: PERFORMANCE-BASED SEISMIC DESIGN OF REINFORCED CONCRETE DUAL SYST...CASE STUDY: PERFORMANCE-BASED SEISMIC DESIGN OF REINFORCED CONCRETE DUAL SYST...
CASE STUDY: PERFORMANCE-BASED SEISMIC DESIGN OF REINFORCED CONCRETE DUAL SYST...AIT Solutions
 
Comparative Analysis of Equivalent Static Method & Dynamic Analysis Method Fo...
Comparative Analysis of Equivalent Static Method & Dynamic Analysis Method Fo...Comparative Analysis of Equivalent Static Method & Dynamic Analysis Method Fo...
Comparative Analysis of Equivalent Static Method & Dynamic Analysis Method Fo...Chandan Kushwaha
 
Assessing the Collapse Hazard of Base Isolated Buildings Considering Pounding...
Assessing the Collapse Hazard of Base Isolated Buildings Considering Pounding...Assessing the Collapse Hazard of Base Isolated Buildings Considering Pounding...
Assessing the Collapse Hazard of Base Isolated Buildings Considering Pounding...EERI
 
MINOR PROJECT P JFDSL SHEAR WALL FINAL.pptx
MINOR PROJECT P JFDSL SHEAR WALL FINAL.pptxMINOR PROJECT P JFDSL SHEAR WALL FINAL.pptx
MINOR PROJECT P JFDSL SHEAR WALL FINAL.pptxshivams1ug20ce
 
Seismic Analysis of Elevated Water Tank
Seismic Analysis of Elevated Water TankSeismic Analysis of Elevated Water Tank
Seismic Analysis of Elevated Water TankKalaivanan Murthy
 
Seismic Assessment of Existing Bridge Using OPENSEES
Seismic Assessment of Existing Bridge Using OPENSEESSeismic Assessment of Existing Bridge Using OPENSEES
Seismic Assessment of Existing Bridge Using OPENSEESIJMER
 
Changes in IS 1893 and IS 13920.pdf
Changes in IS 1893 and IS 13920.pdfChanges in IS 1893 and IS 13920.pdf
Changes in IS 1893 and IS 13920.pdfMaharshiSalvi1
 
02_waman_mcvay SOIL.pdf
02_waman_mcvay SOIL.pdf02_waman_mcvay SOIL.pdf
02_waman_mcvay SOIL.pdfsunilghosh11
 
Analysis of Confined Masonry part 1
Analysis of Confined Masonry part 1Analysis of Confined Masonry part 1
Analysis of Confined Masonry part 1EERI
 
Design of lifts & escalators
Design of lifts & escalatorsDesign of lifts & escalators
Design of lifts & escalatorsShubham Arora
 
Lecture 4 5 Urm Shear Walls
Lecture 4 5 Urm Shear WallsLecture 4 5 Urm Shear Walls
Lecture 4 5 Urm Shear WallsTeja Ande
 
pt slab for high rise building peer am 2009
 pt slab for high rise building   peer am 2009 pt slab for high rise building   peer am 2009
pt slab for high rise building peer am 2009Mai Kawayapanik
 
Seismic Design Of Structures Project
Seismic Design Of Structures ProjectSeismic Design Of Structures Project
Seismic Design Of Structures ProjectGunjan Shetye
 
Example314b taskgroupb-c-120730160543-phpapp01
Example314b taskgroupb-c-120730160543-phpapp01Example314b taskgroupb-c-120730160543-phpapp01
Example314b taskgroupb-c-120730160543-phpapp01Ramil Artates
 
Động lực học công trình
Động lực học công trìnhĐộng lực học công trình
Động lực học công trìnhTung Nguyen Xuan
 

Similar to Direct displacement design_methodology_for_woodframe_buildings_ (20)

Advanced seismic analysis of building-م.54-مبادرة#تواصل_تطوير-أ.د.ناجى أبو شادى
Advanced seismic analysis of building-م.54-مبادرة#تواصل_تطوير-أ.د.ناجى أبو شادىAdvanced seismic analysis of building-م.54-مبادرة#تواصل_تطوير-أ.د.ناجى أبو شادى
Advanced seismic analysis of building-م.54-مبادرة#تواصل_تطوير-أ.د.ناجى أبو شادى
 
CASE STUDY: PERFORMANCE-BASED SEISMIC DESIGN OF REINFORCED CONCRETE DUAL SYST...
CASE STUDY: PERFORMANCE-BASED SEISMIC DESIGN OF REINFORCED CONCRETE DUAL SYST...CASE STUDY: PERFORMANCE-BASED SEISMIC DESIGN OF REINFORCED CONCRETE DUAL SYST...
CASE STUDY: PERFORMANCE-BASED SEISMIC DESIGN OF REINFORCED CONCRETE DUAL SYST...
 
Comparative Analysis of Equivalent Static Method & Dynamic Analysis Method Fo...
Comparative Analysis of Equivalent Static Method & Dynamic Analysis Method Fo...Comparative Analysis of Equivalent Static Method & Dynamic Analysis Method Fo...
Comparative Analysis of Equivalent Static Method & Dynamic Analysis Method Fo...
 
Assessing the Collapse Hazard of Base Isolated Buildings Considering Pounding...
Assessing the Collapse Hazard of Base Isolated Buildings Considering Pounding...Assessing the Collapse Hazard of Base Isolated Buildings Considering Pounding...
Assessing the Collapse Hazard of Base Isolated Buildings Considering Pounding...
 
MINOR PROJECT P JFDSL SHEAR WALL FINAL.pptx
MINOR PROJECT P JFDSL SHEAR WALL FINAL.pptxMINOR PROJECT P JFDSL SHEAR WALL FINAL.pptx
MINOR PROJECT P JFDSL SHEAR WALL FINAL.pptx
 
Seismic Analysis of Elevated Water Tank
Seismic Analysis of Elevated Water TankSeismic Analysis of Elevated Water Tank
Seismic Analysis of Elevated Water Tank
 
Seismic Assessment of Existing Bridge Using OPENSEES
Seismic Assessment of Existing Bridge Using OPENSEESSeismic Assessment of Existing Bridge Using OPENSEES
Seismic Assessment of Existing Bridge Using OPENSEES
 
Changes in IS 1893 and IS 13920.pdf
Changes in IS 1893 and IS 13920.pdfChanges in IS 1893 and IS 13920.pdf
Changes in IS 1893 and IS 13920.pdf
 
Two-Way Floor Slab
Two-Way Floor SlabTwo-Way Floor Slab
Two-Way Floor Slab
 
02_waman_mcvay SOIL.pdf
02_waman_mcvay SOIL.pdf02_waman_mcvay SOIL.pdf
02_waman_mcvay SOIL.pdf
 
Analysis of Confined Masonry part 1
Analysis of Confined Masonry part 1Analysis of Confined Masonry part 1
Analysis of Confined Masonry part 1
 
Design of lifts & escalators
Design of lifts & escalatorsDesign of lifts & escalators
Design of lifts & escalators
 
Lecture 4 5 Urm Shear Walls
Lecture 4 5 Urm Shear WallsLecture 4 5 Urm Shear Walls
Lecture 4 5 Urm Shear Walls
 
ICDE2006, Singapore
ICDE2006, SingaporeICDE2006, Singapore
ICDE2006, Singapore
 
P01254123131
P01254123131P01254123131
P01254123131
 
pt slab for high rise building peer am 2009
 pt slab for high rise building   peer am 2009 pt slab for high rise building   peer am 2009
pt slab for high rise building peer am 2009
 
Seismic Design Of Structures Project
Seismic Design Of Structures ProjectSeismic Design Of Structures Project
Seismic Design Of Structures Project
 
Example314b taskgroupb-c-120730160543-phpapp01
Example314b taskgroupb-c-120730160543-phpapp01Example314b taskgroupb-c-120730160543-phpapp01
Example314b taskgroupb-c-120730160543-phpapp01
 
Large_Column_Presentation
Large_Column_PresentationLarge_Column_Presentation
Large_Column_Presentation
 
Động lực học công trình
Động lực học công trìnhĐộng lực học công trình
Động lực học công trình
 

Recently uploaded

VIP Call Girls Service Kukatpally Hyderabad Call +91-8250192130
VIP Call Girls Service Kukatpally Hyderabad Call +91-8250192130VIP Call Girls Service Kukatpally Hyderabad Call +91-8250192130
VIP Call Girls Service Kukatpally Hyderabad Call +91-8250192130Suhani Kapoor
 
定制(RMIT毕业证书)澳洲墨尔本皇家理工大学毕业证成绩单原版一比一
定制(RMIT毕业证书)澳洲墨尔本皇家理工大学毕业证成绩单原版一比一定制(RMIT毕业证书)澳洲墨尔本皇家理工大学毕业证成绩单原版一比一
定制(RMIT毕业证书)澳洲墨尔本皇家理工大学毕业证成绩单原版一比一lvtagr7
 
Cosumer Willingness to Pay for Sustainable Bricks
Cosumer Willingness to Pay for Sustainable BricksCosumer Willingness to Pay for Sustainable Bricks
Cosumer Willingness to Pay for Sustainable Bricksabhishekparmar618
 
PORTFOLIO DE ARQUITECTURA CRISTOBAL HERAUD 2024
PORTFOLIO DE ARQUITECTURA CRISTOBAL HERAUD 2024PORTFOLIO DE ARQUITECTURA CRISTOBAL HERAUD 2024
PORTFOLIO DE ARQUITECTURA CRISTOBAL HERAUD 2024CristobalHeraud
 
Call Girls Satellite 7397865700 Ridhima Hire Me Full Night
Call Girls Satellite 7397865700 Ridhima Hire Me Full NightCall Girls Satellite 7397865700 Ridhima Hire Me Full Night
Call Girls Satellite 7397865700 Ridhima Hire Me Full Nightssuser7cb4ff
 
NATA 2024 SYLLABUS, full syllabus explained in detail
NATA 2024 SYLLABUS, full syllabus explained in detailNATA 2024 SYLLABUS, full syllabus explained in detail
NATA 2024 SYLLABUS, full syllabus explained in detailDesigntroIntroducing
 
办理学位证(SFU证书)西蒙菲莎大学毕业证成绩单原版一比一
办理学位证(SFU证书)西蒙菲莎大学毕业证成绩单原版一比一办理学位证(SFU证书)西蒙菲莎大学毕业证成绩单原版一比一
办理学位证(SFU证书)西蒙菲莎大学毕业证成绩单原版一比一F dds
 
(办理学位证)埃迪斯科文大学毕业证成绩单原版一比一
(办理学位证)埃迪斯科文大学毕业证成绩单原版一比一(办理学位证)埃迪斯科文大学毕业证成绩单原版一比一
(办理学位证)埃迪斯科文大学毕业证成绩单原版一比一Fi sss
 
Passbook project document_april_21__.pdf
Passbook project document_april_21__.pdfPassbook project document_april_21__.pdf
Passbook project document_april_21__.pdfvaibhavkanaujia
 
How to Be Famous in your Field just visit our Site
How to Be Famous in your Field just visit our SiteHow to Be Famous in your Field just visit our Site
How to Be Famous in your Field just visit our Sitegalleryaagency
 
Call Us ✡️97111⇛47426⇛Call In girls Vasant Vihar༒(Delhi)
Call Us ✡️97111⇛47426⇛Call In girls Vasant Vihar༒(Delhi)Call Us ✡️97111⇛47426⇛Call In girls Vasant Vihar༒(Delhi)
Call Us ✡️97111⇛47426⇛Call In girls Vasant Vihar༒(Delhi)jennyeacort
 
ARt app | UX Case Study
ARt app | UX Case StudyARt app | UX Case Study
ARt app | UX Case StudySophia Viganò
 
WAEC Carpentry and Joinery Past Questions
WAEC Carpentry and Joinery Past QuestionsWAEC Carpentry and Joinery Past Questions
WAEC Carpentry and Joinery Past QuestionsCharles Obaleagbon
 
Call Girls Meghani Nagar 7397865700 Independent Call Girls
Call Girls Meghani Nagar 7397865700  Independent Call GirlsCall Girls Meghani Nagar 7397865700  Independent Call Girls
Call Girls Meghani Nagar 7397865700 Independent Call Girlsssuser7cb4ff
 
SCRIP Lua HTTP PROGRACMACION PLC WECON CA
SCRIP Lua HTTP PROGRACMACION PLC  WECON CASCRIP Lua HTTP PROGRACMACION PLC  WECON CA
SCRIP Lua HTTP PROGRACMACION PLC WECON CANestorGamez6
 
Kindergarten Assessment Questions Via LessonUp
Kindergarten Assessment Questions Via LessonUpKindergarten Assessment Questions Via LessonUp
Kindergarten Assessment Questions Via LessonUpmainac1
 
NO1 Famous Amil Baba In Karachi Kala Jadu In Karachi Amil baba In Karachi Add...
NO1 Famous Amil Baba In Karachi Kala Jadu In Karachi Amil baba In Karachi Add...NO1 Famous Amil Baba In Karachi Kala Jadu In Karachi Amil baba In Karachi Add...
NO1 Famous Amil Baba In Karachi Kala Jadu In Karachi Amil baba In Karachi Add...Amil baba
 
办理学位证(TheAuckland证书)新西兰奥克兰大学毕业证成绩单原版一比一
办理学位证(TheAuckland证书)新西兰奥克兰大学毕业证成绩单原版一比一办理学位证(TheAuckland证书)新西兰奥克兰大学毕业证成绩单原版一比一
办理学位证(TheAuckland证书)新西兰奥克兰大学毕业证成绩单原版一比一Fi L
 

Recently uploaded (20)

VIP Call Girls Service Kukatpally Hyderabad Call +91-8250192130
VIP Call Girls Service Kukatpally Hyderabad Call +91-8250192130VIP Call Girls Service Kukatpally Hyderabad Call +91-8250192130
VIP Call Girls Service Kukatpally Hyderabad Call +91-8250192130
 
定制(RMIT毕业证书)澳洲墨尔本皇家理工大学毕业证成绩单原版一比一
定制(RMIT毕业证书)澳洲墨尔本皇家理工大学毕业证成绩单原版一比一定制(RMIT毕业证书)澳洲墨尔本皇家理工大学毕业证成绩单原版一比一
定制(RMIT毕业证书)澳洲墨尔本皇家理工大学毕业证成绩单原版一比一
 
Cosumer Willingness to Pay for Sustainable Bricks
Cosumer Willingness to Pay for Sustainable BricksCosumer Willingness to Pay for Sustainable Bricks
Cosumer Willingness to Pay for Sustainable Bricks
 
PORTFOLIO DE ARQUITECTURA CRISTOBAL HERAUD 2024
PORTFOLIO DE ARQUITECTURA CRISTOBAL HERAUD 2024PORTFOLIO DE ARQUITECTURA CRISTOBAL HERAUD 2024
PORTFOLIO DE ARQUITECTURA CRISTOBAL HERAUD 2024
 
Call Girls Satellite 7397865700 Ridhima Hire Me Full Night
Call Girls Satellite 7397865700 Ridhima Hire Me Full NightCall Girls Satellite 7397865700 Ridhima Hire Me Full Night
Call Girls Satellite 7397865700 Ridhima Hire Me Full Night
 
NATA 2024 SYLLABUS, full syllabus explained in detail
NATA 2024 SYLLABUS, full syllabus explained in detailNATA 2024 SYLLABUS, full syllabus explained in detail
NATA 2024 SYLLABUS, full syllabus explained in detail
 
办理学位证(SFU证书)西蒙菲莎大学毕业证成绩单原版一比一
办理学位证(SFU证书)西蒙菲莎大学毕业证成绩单原版一比一办理学位证(SFU证书)西蒙菲莎大学毕业证成绩单原版一比一
办理学位证(SFU证书)西蒙菲莎大学毕业证成绩单原版一比一
 
(办理学位证)埃迪斯科文大学毕业证成绩单原版一比一
(办理学位证)埃迪斯科文大学毕业证成绩单原版一比一(办理学位证)埃迪斯科文大学毕业证成绩单原版一比一
(办理学位证)埃迪斯科文大学毕业证成绩单原版一比一
 
Passbook project document_april_21__.pdf
Passbook project document_april_21__.pdfPassbook project document_april_21__.pdf
Passbook project document_april_21__.pdf
 
How to Be Famous in your Field just visit our Site
How to Be Famous in your Field just visit our SiteHow to Be Famous in your Field just visit our Site
How to Be Famous in your Field just visit our Site
 
Call Us ✡️97111⇛47426⇛Call In girls Vasant Vihar༒(Delhi)
Call Us ✡️97111⇛47426⇛Call In girls Vasant Vihar༒(Delhi)Call Us ✡️97111⇛47426⇛Call In girls Vasant Vihar༒(Delhi)
Call Us ✡️97111⇛47426⇛Call In girls Vasant Vihar༒(Delhi)
 
ARt app | UX Case Study
ARt app | UX Case StudyARt app | UX Case Study
ARt app | UX Case Study
 
Cheap Rate ➥8448380779 ▻Call Girls In Iffco Chowk Gurgaon
Cheap Rate ➥8448380779 ▻Call Girls In Iffco Chowk GurgaonCheap Rate ➥8448380779 ▻Call Girls In Iffco Chowk Gurgaon
Cheap Rate ➥8448380779 ▻Call Girls In Iffco Chowk Gurgaon
 
WAEC Carpentry and Joinery Past Questions
WAEC Carpentry and Joinery Past QuestionsWAEC Carpentry and Joinery Past Questions
WAEC Carpentry and Joinery Past Questions
 
Call Girls Meghani Nagar 7397865700 Independent Call Girls
Call Girls Meghani Nagar 7397865700  Independent Call GirlsCall Girls Meghani Nagar 7397865700  Independent Call Girls
Call Girls Meghani Nagar 7397865700 Independent Call Girls
 
young call girls in Pandav nagar 🔝 9953056974 🔝 Delhi escort Service
young call girls in Pandav nagar 🔝 9953056974 🔝 Delhi escort Serviceyoung call girls in Pandav nagar 🔝 9953056974 🔝 Delhi escort Service
young call girls in Pandav nagar 🔝 9953056974 🔝 Delhi escort Service
 
SCRIP Lua HTTP PROGRACMACION PLC WECON CA
SCRIP Lua HTTP PROGRACMACION PLC  WECON CASCRIP Lua HTTP PROGRACMACION PLC  WECON CA
SCRIP Lua HTTP PROGRACMACION PLC WECON CA
 
Kindergarten Assessment Questions Via LessonUp
Kindergarten Assessment Questions Via LessonUpKindergarten Assessment Questions Via LessonUp
Kindergarten Assessment Questions Via LessonUp
 
NO1 Famous Amil Baba In Karachi Kala Jadu In Karachi Amil baba In Karachi Add...
NO1 Famous Amil Baba In Karachi Kala Jadu In Karachi Amil baba In Karachi Add...NO1 Famous Amil Baba In Karachi Kala Jadu In Karachi Amil baba In Karachi Add...
NO1 Famous Amil Baba In Karachi Kala Jadu In Karachi Amil baba In Karachi Add...
 
办理学位证(TheAuckland证书)新西兰奥克兰大学毕业证成绩单原版一比一
办理学位证(TheAuckland证书)新西兰奥克兰大学毕业证成绩单原版一比一办理学位证(TheAuckland证书)新西兰奥克兰大学毕业证成绩单原版一比一
办理学位证(TheAuckland证书)新西兰奥克兰大学毕业证成绩单原版一比一
 

Direct displacement design_methodology_for_woodframe_buildings_

  • 1. •WeiChiang Pang, Clemson University •David Rosowsky, Rensselaer Polytechnic Institute •John van de Lindt, University of Alabama •Shiling Pei, South Dakota State University Quake Summit 2010, NEES & PEER Annual Meeting, Oct-9, San Francisco
  • 2. 2  Background on Displacement-based Design  NEESWood Capstone Building  Design Objectives  Shear Wall System (Database)  Design Procedure  Verification Nonlinear Time History Analyses (NLTHA) ATC-63 Collapse Analysis  Summary
  • 3. 3 Displacement-based Design  Concept pioneered by Priestley (1998) Displacement  damage indicator / seismic performance For concrete and steel buildings Force-based Design Elastic fundamental period Response of woodframe structures is highly nonlinear Force is not a good damage indictor No guarantee damage will be manageable
  • 4. 4 Force-based Displacement-Based x a tT C h • period estimate based on building height and building type  Approximate elastic fundamental period  Direct period calculation • Actual mass and stiffness • Capacity Spectrum Approach Sa T Ta Location 1 Location 2 eff TS TL Design spectrum (demand) Capacity spectrum Keff
  • 5. 5 R Force-based Displacement-Based  Response Modification Factor (R-factor) A yield point is assumed  Force is not a good damage indictor -4 -3 -2 -1 0 1 2 3 4 -15 -10 -5 0 5 10 15 Displacement (in) Force(kip) Test M47-01 M-CASHEW Model -100 -80 -60 -40 -20 0 20 40 60 80 100 -60 -40 -20 0 20 40 60 Displacement (mm) Force(kN)  Actual nonlinear backbone curves • Numerical model or full-scale test  Displacement is a good damage indictor
  • 6. 6  Simplified Direct Displacement Design  Used to design the NEESWood Capstone Building  Does not require modal analysis (1st mode approximation)  Can be completed using spreadsheet  Drift limit NE probability other than 50%  Objectives: 1) Optimize distribution of story stiffness over the height of the building 2) Minimize the probability of a weak story  Soft-story 
  • 7. 7  Plan Dimensions: 40x60 ft  Height: 56ft (6-story wood only)  23 apartment units  Weight : ~2734 kips (wood only)  Shear Wall Design: Direct Displacement Design (DDD)  Tested on E-defense (Miki) Shake Table in July-2009 Photo credit: Courtesy of Simpson Strong-Tie 60 ft 40 ft 9ft 8ft 8ft 8ft 8ft 8ft 55.7 ft
  • 8. 8  Performance => 1) inter-story drift limit 2) hazard level 3) non-exceedance probability Level Seismic Hazard Performance Expectations Description Exceedance Prob. Inter-Story Drift Limit NE Prob. Level 1 Short Return Period Earthquake 50%/50yr 1% 50% Level 2 Design Basis Earthquake (DBE) 10%/50yr 2% 50% Level 3 Maximum Credible Earthquake (MCE) 2%/50yr 4% 80% Level 4 Near Fault Near Fault 7% 50%
  • 9. 9 0 0.5 1 1.5 2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 Period, T (s) SpectralAcceleration,Sa (g) Design Response Spectra - ATC-63 High Seismic Hazard Region 44% DBE DBE MCE  Typical Southern California seismic hazard  Site Class D (Stiff Soil) 5% damping
  • 10. 10  4 Apartment Units  Midply walls  carry high shear demand  Reduce torsional effect Midply Shearwall Standard Shearwall Partition/ non-Shearwall 39.8 ft 59.5 ft Y X Unit 3 Unit 3 Unit 2 Unit 1 Elevator Shaft N Stairway Stairway A B D E 1 2 4 6 8 10 11 Midply Wall Midply Wall
  • 11. 11 406mm 16 in 406mm 16 in 406mm 16 in Stud Sheathing Drywall Standard /Conventional Shear Wall Nail in Single-shear 406mm 16 in 406mm 16 in Sheathing Drywall Midply Shear Wall Nail in Double-shear Construction concept developed by Forintek (Varoglu et al. 2007)
  • 12. 12 Hold-down Element Contact element Panel-to-frame nails End-nail Gravity Load Force-Displacement Response Framing nails  M-CASHEW model (Matlab)  Shear Wall Backbone database for different nail spacings
  • 13. 13 13
  • 14. 14 Drift (%) Wall Height (ft) Wall Type/ Sheathing Layer Edge Nail Spacing (in) Ko (kip/in per ft) Fu (kip per ft) Backbone Force at Different Drift Levels (kip per ft) Wall Drift 0.5% 1.0% 2.0% 3.0% 4.0% 9 Standard 2 3.95 2.17 1.33 1.83 2.17 1.87 1.57 3 3.24 1.46 0.99 1.29 1.45 1.24 1.02 4 2.76 1.12 0.79 1.00 1.11 0.94 0.77 6 1.98 0.77 0.56 0.69 0.75 0.65 0.54 Midply 2 5.03 4.22 2.04 3.18 4.22 3.64 3.06 3 4.38 2.86 1.63 2.38 2.81 2.43 2.06 4 3.84 2.18 1.35 1.90 2.11 1.83 1.56 6 3.16 1.49 1.02 1.35 1.43 1.25 1.07 GWB 16 1.29 0.14 0.13 0.13 0.09 0.06 0.03 Design drift Backbone force Consider only full-height shear wall segments
  • 15. 15  ATC-63 , 22 bi-axial ground motions  MCE Level 3 Ground motion  Uncertainty ≈ 0.4 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0 1 2 3 4 5 6 Response Spectra Group Scale Factor = 2.337 Unscaled Median Sa = 0.607 @ Tn = 0.63s Scaled Median Sa = 1.419 @ Tn = 0.63s Period (s) SpectralAcceleration(g) 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 StandardDeviationofln(Sa) Median 80%-tile Design Spectrum Median 80th %tile Design Spectrum Lognormally Distributed βEQ ≈ 0.4 0.4
  • 16. 16 0 1 2 3 4 5 6 7 8 9 10 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 CumulativeProbabilityofInter-storyDrift Peak Inter-story Drift (%) 2.13% 80% 4 % drift 50% 1 exp[ ( ) ]NE t RC NE     Non-exceedance probability adjustment factor, CNE Total Uncertainty βR= √( βEQ 2 + βDS 2) =√( 0.42 + 0.62) ≈ 0.75 1 exp[ (0.8)0.75] 1.88     80% NE Level 3 4% drift at 80% NE Level 3 1.88
  • 17. 17  Vertical distribution factors (function of displacement)  Effective height  Effective seismic weight j j v j i i o oi W W C    0.7 total heighteffh  Weff ≈ 0.8 total weight w6 o1 o2 o3 o4 hs F1=Cv1Vb F2=Cv2Vb heff effw4 w3 w2 w1 F3=Cv3Vb F5=Cv5Vb Original Multi-story Building w5 F4=Cv4Vb F6=Cv6Vb o5 o6 Vb = Cc Mo = Ft heff Ft eff Vb = Cc Weff Ft = Cc Weff eff Keff Substitute Structure Mo = Ft heff heff effeff
  • 18. 18  Design base shear coefficient eff Cc= 0.98 Design spectrum (5% damping) Sd, Δ Sa, Ft/Weff TS TL Design spectrum (demand) adjusted for damping and target NE probability of drift limit Capacity spectrum Keff
  • 19. 19 0 1 2 3 4 5 0 500 1000 1500 2000 2500 BackboneForce(kN) 0 1 2 3 4 5 0 100 200 300 400 500 600 X-Direction BackboneForce(kip) Inter-story Drift (%) Floor 1 Floor 2 Floor 3 Floor 4 Floor 5 Floor 6 0 1 2 3 4 5 0 500 1000 1500 2000 2500 BackboneForce(kN) 0 1 2 3 4 5 0 100 200 300 400 500 600 X-Direction BackboneForce(kip) Inter-story Drift (%) Floor 1 Floor 2 Floor 3 Floor 4 Floor 5 Floor 6 (a)  Step 9: Design forces j N b j i v s is CV V    b effcV WC Design base shear coefficient  effective weightBase Shear Story Shear  Step 10: Select shear wall nail spacing  Assume no torsion  Direct summation of the wall stiffness  Full-height shear wall segments Level 3 Story Shear Requirements
  • 21. 21 Model M-SAWS SAPWood Test Mode Initial Stiffness Tangent Stiffness at 0.15% Drift Initial Stiffness Initial Period 1 2 3 0.38 0.36 0.32 0.54 0.51 0.44 0.40 0.39 0.32 0.42 0.41 - 0 200 400 600 0 200 400 600 800 0 200 400 600 z-axis(Elevation) Mode 3 T3 = 0.443 s y-axis x-axis 0 200 400 600 0 200 x-axis -500 0 500 100 0 200 400 z-axis(Elevati x-axis 200 400 600 800 Mode 3 T3 = 0.443 s y-axis 0 500 1000 15 0 200 400 600 800 x-axis y-axis Mode 3 T3 = 0.443 s Base Diaphragm 1 Diaphragm 2 Diaphragm 3 Diaphragm 4 Diaphragm 5 Diaphragm 6 -200 0 200 400 600 0 200 400 0 200 400 600 z-axis(Elevation) Mode 1 T1 = 0.537 s x-axisy-axis -500 0 500 1000 0 200 400 600 800 Mode 1 T1 = 0.537 s z-axis(Elevation) x-axis -200 0 200 400 600 0 200 400 600 800 0 200 400 600 z-axis(Elevation) Mode 2 T2 = 0.505 s y-axis x-axis -200 0 2 0 200 400 600 T z-axis(Elevation) 200 0 200 400 600 x-axis -200 0 200 400 600 800 0 200 400 600 z-axis(Elevation) x-axis 400 600 de 2 .505 s xis 0 200 400 600 800 1000 1200 0 200 400 600 x-axis y-axis Mode 2 T2 = 0.505 s Base Diaphragm 1 Diaphragm 2 Diaphragm 3 Diaphragm 4 Diaphragm 5 Diaphragm 6 -500 0 500 1000 0 200 400 z-axis(Elev x-axis 0 500 1000 -200 0 200 400 600 800 x-axis y-axis Mode 1 T1 = 0.537 s Base Diaphragm 1 Diaphragm 2 Diaphragm 3 Diaphragm 4 Diaphragm 5 Diaphragm 6 Mode 1 T1=0.54s Mode 2 T2=0.51s Mode 3 T3=0.44s 0 500 1000 x-axis 0 500 1000 x-axis Mode 3 T3 = 0.357 s Base Diaphragm 1 Diaphragm 2 Diaphragm 3 Diaphragm 4 Diaphragm 5 Diaphragm 6
  • 22. 22  Levels 1-3: ATC-63 Far Field Ground Motions (22 bi-axial)  Level 4: CUREE Near-fault Ground Motions Design Requirement Level 4 Level 3 Level 2 Level 1 Uniform Drift Profile <7% <4% <2% <1%
  • 24. 24 0 1 2 3 4 5 6 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 SMCE = 1.50 g SCT = 2.57 g, Pf = 0.5 CMR = 1.71 Pf = 0.04 Median ST @ Tn (g) CollapseProbability Unadjusted Collapse Fragility Curve for NEESWood Capstone Building (6-story Woodframe) ATC-63 Far-field Ground Motions Model: M-SAWS  = 5% CollapseProbability Median Sa @ Tn (g)  Adjusted CMR = SSF x CMR = 2.09 > 1.88 (passed ATC-63 requirement)  Unadjusted collapse margin ratio (CMR) is 2.57/1.50 = 1.71  Spectral Shape Factor (SSF) = 1.22  Collapse fragility curve  Incremental Dynamic Analysis
  • 25. 25  Simplified direct displacement design (DDD)  Optimize distribution of story stiffness (avoid week story)  Focus on “performance” (i.e. control the drifts)  NLTHA not needed (optional)  Can consider multiple performance requirements  DDD procedure  A viable design method for tall woodframe buildings  Confirmed by NLTHA and full-scale shake table test  The collapse margin ratio of the Capstone Building passed the ATC-63 requirement  Next Step:  1) Include rotation/torsional effects  2) Modified for retrofitting purpose (pre-1970s buildings) Summary
  • 27. 27  M-CASHEW model (Matlab)  11.9mm (15/32”) OSB, 2x6 studs  10d common nails (3.76mm dia.), nail spacing  12.7mm (½”) Gypsum wallboard  31.75mm long #6 drywall screws 406mm (16”) o.c. u Fb() Displacement,  Force, Fb( ) r2Ko r1Ko Ko Fo Fu DesignVariable
  • 28. 28  Step 8: Design base shear coefficient   2 1 2 2 1.88 1.5 1.65 1.71 min 9.81 1.88 0.9 1.70. 0.9 4 1 14 247 8 eff NE XS NE X c C S B C Sg C B                         ef C c Design spectrum at 5% damping Sd, Δ Sa, Ft/Weff TS T L Design spectrum (demand) adjusted for damping and target NE probability of drift limit Capacity spectrum Keff Level 3 (MCE)
  • 29. 29  Step 7: Damping reduction factor 4 5.6 ln(10 ) .71 0 1 eff B     ASCE/SEI- 41 int 26%5% 21%hysteff       0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 Ks /Ko hyst Hysteretic Damping Model (FPI) Standard S34 (FPI) Midply M47-01 (FPI) Midply M46-01 (CUREE) Task 1.4.4 12A (APA) T2003-22 Wall 7 (APA) T2004-14 Wall 8dcom 0.32exp( 1.38 )hyst s ok k   0.21 Ks/Ko Effective damping = Intrinsic + Hysteretic damping