SlideShare a Scribd company logo
1 of 24
Download to read offline
4/28/2020 Duality and Sensitivity Analysis
Compiled by Tsegay Berhe [ MSc in production engineering & Management ]
MEKELLE UNVERISTY
COMPILED BY TSEGAY BERHE [ MSC IN PRODUCTION ENGINEERING & MANAGEMENT ] 1
Contents
4. Duality and Sensitivity Analysis .............................................................................................. 2
4.1. Primal-dual relationship;................................................................................................. 2
4.2. Rules for Constructing the Dual Problem........................................................................ 3
4.3. Economic interpretation of duality .................................................................................. 4
4.4. Simple way of solving dual problems [optimal Dual solution]........................................ 6
4.5. Post-optimal [Simplex method sensitivity Analysis] ........................................................ 8
COMPILED BY TSEGAY BERHE [ MSC IN PRODUCTION ENGINEERING & MANAGEMENT ] 2
4. Duality and Sensitivity Analysis
The dual problem is defined systematically from the primal (or original) LP model. The two
problems are closely related, in the sense that the optimal solution of one problem automatically
provides the optimal solution to the other. As such, it may be advantageous computationally in
some cases to determine the primal solution by solving the dual.
The term 'Duality' implies that every linear programming problem, whether of maximization or
minimization, is associated with another linear programming problem based on the same data
which is called dual.
The primal problem is dealing with determining the number of units of the products, time etc.
While the dual problem deals with determining the unit worth (price) of the resource.
When taking the dual of a given LP, we refer to the given LP as the primal. If the primal is a max
problem, then the dual will be a min problem, and vice versa. For convenience, we define the
variables for the max problem to be Z, X1, X2, ..., Xn and the variables for the min problem to be
W, Y1, Y2, . . ., YM.
To find the dual to a max problem in which all the variables are required to be nonnegative and
all the constraints are โ‰ค constraints (called normal max problem) the problem may be written as:
4.1. Primal-dual relationship;
Primal Dual problem
๐‘‚๐‘๐‘ก๐‘–๐‘š๐‘–๐‘ง๐‘’(๐‘€๐‘Ž๐‘ฅ ๐‘œ๐‘Ÿ ๐‘€๐‘–๐‘›), ๐‘ = โˆ‘ ๐ถ๐‘– โˆ— ๐‘‹๐‘–
๐‘›
๐‘–
๐‘‚๐‘๐‘ก๐‘–๐‘š๐‘–๐‘ง๐‘’(๐‘€๐‘–๐‘›๐‘– ๐‘œ๐‘Ÿ ๐‘€๐‘Ž๐‘ฅ), ๐‘Š = โˆ‘ ๐‘๐‘– โˆ— ๐‘ฆ๐‘–
๐‘›
๐‘–
๐‘†. ๐‘ก
{
๐‘Ž11๐‘‹1 + ๐‘Ž12๐‘‹2 + . . . + ๐‘Ž1๐‘›๐‘‹๐‘› (โ‰ค, =, โ‰ฅ)๐‘1
๐‘Ž21๐‘‹1 + ๐‘Ž22๐‘‹2 + . . . + ๐‘Ž2๐‘›๐‘‹๐‘› (โ‰ค, =, โ‰ฅ)๐‘2
๐‘Ž31๐‘‹1 + ๐‘Ž32๐‘‹2 + . . . + ๐‘Ž3๐‘›๐‘‹๐‘› (โ‰ค, =, โ‰ฅ)๐‘3
.
.
.
.
๐‘Ž๐‘š1๐‘‹1 + ๐‘Ž๐‘š2๐‘‹2 + . . . + ๐‘Ž๐‘š๐‘›๐‘‹๐‘› (โ‰ค, =, โ‰ฅ)๐‘๐‘š
๐‘†. ๐‘ก
{
๐‘Ž11๐‘Œ1 + ๐‘Ž21๐‘Œ2 + . . . + ๐‘Ž๐‘š1๐‘Œ๐‘š (โ‰ฅ, =, โ‰ค)๐ถ1
๐‘Ž12๐‘Œ1 + ๐‘Ž22๐‘Œ2 + . . . + ๐‘Ž๐‘š๐‘›๐‘Œ๐‘š (โ‰ฅ, =, โ‰ค)๐ถ2
๐‘Ž13๐‘Œ1 + ๐‘Ž23๐‘‹2 + . . . + ๐‘Ž๐‘š๐‘›๐‘‹๐‘› (โ‰ฅ, =, โ‰ค)๐ถ3
.
.
.
.
๐‘Ž1๐‘›๐‘Œ1 + ๐‘Ž2๐‘›๐‘Œ2 + . . . + ๐‘Ž๐‘š๐‘›๐‘Œ๐‘› (โ‰ฅ, =, โ‰ค)๐ถ๐‘š
The following is a summary of how the dual is constructed from the (equation form) primal:
I. A dual variable is assigned to each primal (equation) constraint and a dual constraint is
assigned to each primal variable.
II. The right-hand sides of the primal constraints provide the coefficients of the dual objective
function.
Table 4.1
COMPILED BY TSEGAY BERHE [ MSC IN PRODUCTION ENGINEERING & MANAGEMENT ] 3
Rules for constructing the dual problem
Primal problem objective
Dual problem
objective Constraint type Variable sign
Maximization Minimization โ‰ฅ Unrestricted
Minimization Maximization โ‰ค Unrestricted
โœ“ All primal constraints are equations with nonnegative right-hand sides, and all the
variables are nonnegative.
โœ“ A convenient way to remember the constraint type (โ‰ค or โ‰ฅ) in the dual is that if the dual
objective is a โ€œpointing-downโ€ minimization, then all the constraints are โ€œpointing-upโ€
(โ‰ฅ) inequalities. The opposite applies when the dual objective is maximization.
III. The dual constraint corresponding to a primal variable is constructed by transposing the
primal variable column into a row with;
a. the primal objective coefficient becoming the dual right-hand side and
b. the remaining constraint coefficients comprising the dual left-hand side
coefficients.
IV. The sense of optimization, direction of inequalities, and the signs of the variables in the
dual are governed by the rules in Table 4.1
4.2. Rules for Constructing the Dual Problem
Maximization Problem Minimization Problem
constraints Variables
โ‰ฅ โ‰ค
โ‰ค โ‰ฅ
= Unrestricted
Variables constraints
โ‰ฅ โ‰ฅ
โ‰ค โ‰ค
Unrestricted =
Primal Dual
Objective is minimization Objective is maximization & vice versa
โ‰ฅ type constraints โ‰ค type constraints
Number of columns Number of rows
Number of rows Number of columns
Number of decision variables Number of constraints
Number of constraints Number of decision variables
Coefficient of objective function RHS value
RHS values Coefficient of objective function
COMPILED BY TSEGAY BERHE [ MSC IN PRODUCTION ENGINEERING & MANAGEMENT ] 4
Example
Finding the Dual of a Normal Max /Min
Primal Dual
1. ๐‘€๐‘Ž๐‘ฅ ๐‘ = 60๐‘‹1 + 30๐‘‹2 + 20๐‘‹3
๐‘†. ๐‘ก {
8๐‘‹1 + 6๐‘‹2 + ๐‘‹3 โ‰ค 48
4๐‘‹1 + 2๐‘‹2 + 1.5๐‘‹3 โ‰ค 20
2๐‘‹1 + 1.5๐‘‹2 + 0.5๐‘‹3 โ‰ค 8
๐‘‹๐‘– โ‰ฅ 0
๐‘€๐‘–๐‘› ๐‘Š = 48๐‘Œ1 + 20๐‘Œ2 + 8๐‘Œ3
๐‘†. ๐‘ก {
8๐‘Œ1 + 4๐‘Œ2 + 2๐‘Œ3 โ‰ฅ 60
6๐‘Œ1 + 2๐‘Œ2 + 1.5๐‘Œ3 โ‰ฅ 30
๐‘Œ1 + 1.5๐‘Œ2 + 0.5๐‘Œ3 โ‰ฅ 20
๐‘Œ๐‘– โ‰ฅ 0
2. ๐‘€๐‘Ž๐‘ฅ ๐‘ = 5๐‘‹1 + 6๐‘‹2
๐‘†. ๐‘ก {
3๐‘‹1 + 2๐‘‹2 โ‰ค 120
4๐‘‹1 + 6๐‘‹2 โ‰ค 260
๐‘‹1, ๐‘‹2 โ‰ฅ 0
๐‘€๐‘–๐‘› ๐‘ค = 120๐‘Œ1 + 260๐‘Œ2
๐‘†. ๐‘ก {
3๐‘Œ1 + 4๐‘Œ2 โ‰ฅ 4
2๐‘Œ1 + 6๐‘Œ2 โ‰ฅ 6
๐‘Œ1, ๐‘Œ2 โ‰ฅ 0
3. ๐‘€๐‘Ž๐‘ฅ ๐‘ = ๐‘‹1 โˆ’ 2๐‘‹2+3๐‘‹3
๐‘†. ๐‘ก {
โˆ’2๐‘‹1 + ๐‘‹2 + 3๐‘‹3 = 2
2๐‘‹1 + 3๐‘‹2 + 4๐‘‹2 = 1
๐‘‹๐‘– โ‰ฅ 0
๐‘€๐‘–๐‘› ๐‘ค = 2๐‘Œ1 + ๐‘Œ2
๐‘†. ๐‘ก {
โˆ’2๐‘Œ1 + 2๐‘Œ2 โ‰ฅ 1
๐‘Œ1 + 3๐‘Œ2 โ‰ฅ โˆ’2
3๐‘Œ1 + 4๐‘Œ2 โ‰ฅ 3
๐‘Œ1, ๐‘Œ2 ๐‘Ž๐‘Ÿ๐‘’ ๐‘ข๐‘›๐‘Ÿ๐‘’๐‘ ๐‘ก๐‘Ÿ๐‘–๐‘๐‘ก๐‘’๐‘‘ ๐‘–๐‘› ๐‘ ๐‘–๐‘”๐‘›
4. ๐‘€๐‘–๐‘› ๐‘ค = ๐‘‹1 โˆ’ 3๐‘‹2 โˆ’ 2๐‘‹3
๐‘†. ๐‘ก {
3๐‘‹1 โˆ’ ๐‘‹2 + 2๐‘‹3 โ‰ค 7
2๐‘‹1 โˆ’ 4๐‘‹2 โ‰ฅ 12
โˆ’4๐‘‹1 + 3๐‘‹2 + 8๐‘‹3 = 10
๐‘‹1, ๐‘‹2 โ‰ฅ 0 ๐‘Ž๐‘›๐‘‘ ๐‘‹3 = ๐‘ข๐‘›๐‘Ÿ๐‘’๐‘ ๐‘ก๐‘Ÿ๐‘–๐‘๐‘ก๐‘’๐‘‘ ๐‘–๐‘› ๐‘ ๐‘–๐‘”๐‘›
๐‘€๐‘Ž๐‘ฅ ๐‘ = 7๐‘Œ1 + 12๐‘Œ2 + 10๐‘Œ3
๐‘†. ๐‘ก {
3๐‘Œ1 + 2๐‘Œ2 โˆ’ 4๐‘Œ3 โ‰ฅ 2
โˆ’๐‘Œ1 โˆ’ 4๐‘Œ2 + 3๐‘Œ3 โ‰ค 1
2๐‘Œ1 + 8๐‘Œ3 = 2
๐‘Œ๐‘– โ‰ฅ 0
4.3. Economic interpretation of duality
Example: A Dakota work shop want to produce desk, table, and chair with the available resource of:
Timber, finishing hours and carpenter hours as revised in the table below. The selling price and
available resources are also revised in the table. Formulate this problem as Primal and Dual Problem?
[ Amare Matebu Kassa (Dr.-Ing)]
Resource Desk Table Chair Availability
Timber 8 board ft 6 board ft 1 board ft 48 boards fit
Finishing 4 hours 2 hours 1.5hours 20 hours
Carpentry 2hours 1.5hours 0.5 hours 8 hours
Selling price $60 $30 $20
COMPILED BY TSEGAY BERHE [ MSC IN PRODUCTION ENGINEERING & MANAGEMENT ] 5
Interpreting the Dual of the Dakota (Max) Problem;
The primal;
๐‘€๐‘Ž๐‘ฅ ๐‘ = 60๐‘‹1 + 30๐‘‹2 + 20๐‘‹3
8๐‘‹1 + 6๐‘‹2 + ๐‘‹3 โ‰ค 48 (Timber constriants)
4๐‘‹1 + 2๐‘‹2 + 1.5๐‘‹3 โ‰ค 20(Finishing constriants)
2๐‘‹1 + 1.5๐‘‹2 + 0.5๐‘‹3 โ‰ค 8 (Carpentry constriants)
๐‘‹1, ๐‘‹2, ๐‘‹3 โ‰ฅ 0
The dual;
Min w = 48Y1 + 20Y2 + 8Y3
8Y1 + 6Y2 + 2Y3 โ‰ฅ 60 (Desk constriants)
6Y1 + 2Y2 + 1.5Y3 โ‰ฅ 30(Table constriants)
Y1 + 1.5Y2 + 0.5Y3 โ‰ฅ 8 (Chair constriants)
Y1, Y2, Y3 โ‰ฅ 0
The first dual constraint is associated with desks, the second with tables, and the third with chairs.
Decision variable y1 is associated with Timber, y2 with finishing hours, and y3 with carpentry
hours. Suppose an entrepreneur wants to purchase all of Dakotaโ€™s resources. The entrepreneur
must determine the price he or she is willing to pay for a unit of each of Dakotaโ€™s resources.
To determine these prices, we define:
โ€ข y1 = price paid for 1 boards ft of lumber
โ€ข y2 = price paid for 1 finishing hour
โ€ข y3 = price paid for 1 carpentry hour
The resource prices y1, y2, and y3 should be determined by solving the Dakota dual.
The total price that should be paid for these resources is 48 y1 + 20y2 + 8y3. Since the cost of
purchasing the resources is to minimized:
Min w = 48y1 + 20y2 + 8y3 is the objective function for Dakota dual.
In setting resource prices, the prices must be high enough to induce Dakota to sell.
For example, the entrepreneur must offer Dakota at least $60 for a combination of resources
that includes 8 board feet of timber, 4 finishing hours, and 2 carpentry hours because Dakota
could, if it wished, use the resources to produce a desk that could be sold for $60. Since the
entrepreneur is offering 8y1 + 4y2 + 2y3 for the resources used to produce a desk, he or she must
choose y1, y2, and y3 to satisfy: 8y1 + 4y2 + 2y3 โ‰ฅ 60. Similar reasoning shows that at least $30
must be paid for the resources used to produce a table.
Thus y1, y2, and y3 must satisfy: 6y1 + 2y2 + 1.5y3 โ‰ฅ 30
Likewise, at least $20 must be paid for the combination of resources used to produce one chair.
Thus y1, y2, and y3 must satisfy: y1 + 1.5y2 + 0.5y3 โ‰ฅ 20. The solution to the Dakota dual yields
prices for timber, finishing hours, and carpentry hours.
COMPILED BY TSEGAY BERHE [ MSC IN PRODUCTION ENGINEERING & MANAGEMENT ] 6
4.4. Simple way of solving dual problems [optimal Dual solution]
The primal and dual solutions are closely related, in the sense that the optimal solution of either
problem directly yields the optimal solution to the other, as is explained subsequently. Thus, in an
LP model in which the number of variables is considerably smaller than the number of constraints,
computational savings may be realized by solving the dual because the amount of computations
associated with determining the inverse matrix primarily increases with the number of constraints.
Notice that the rule addresses only the amount of computations in each iteration but says nothing
about the total number of iterations needed to solve each problem.
This section provides two methods for determining the dual values.
Method 1.
(
๐‘‚๐‘๐‘ก๐‘–๐‘š๐‘Ž๐‘™ ๐‘ฃ๐‘Ž๐‘™๐‘ข๐‘’ ๐‘œ๐‘“ ๐‘‘๐‘ข๐‘Ž๐‘™
๐‘ฃ๐‘Ž๐‘Ÿ๐‘Ž๐‘–๐‘๐‘™๐‘’ ๐‘Œ๐‘–
) = (
๐‘‚๐‘๐‘ก๐‘–๐‘š๐‘Ž๐‘™ ๐‘๐‘Ÿ๐‘–๐‘š๐‘Ž๐‘™ ๐‘ ๐‘๐‘œ๐‘’๐‘“๐‘“๐‘–๐‘๐‘–๐‘’๐‘›๐‘ก ๐‘œ๐‘“ ๐‘ ๐‘ก๐‘Ž๐‘Ÿ๐‘ก๐‘–๐‘›๐‘” ๐‘๐‘Ž๐‘ ๐‘–๐‘ ๐‘ฃ๐‘Ž๐‘Ÿ๐‘–๐‘Ž๐‘๐‘™๐‘’ ๐‘‹๐‘–
+
๐‘œ๐‘Ÿ๐‘”๐‘–๐‘›๐‘Ž๐‘™ ๐‘œ๐‘๐‘—๐‘’๐‘๐‘ก๐‘–๐‘ฃ๐‘’ ๐‘๐‘œ๐‘’๐‘“๐‘“๐‘–๐‘๐‘–๐‘’๐‘›๐‘ก ๐‘œ๐‘“ ๐‘‹๐‘–
)
Example 1
๐‘€๐‘Ž๐‘ฅ ๐‘ = 2๐‘‹1 + 2๐‘‹2 + 5๐‘‹3 + 4๐‘‹4
S. t
๐‘‹1 + 3๐‘‹2 + 4๐‘‹3 + 3๐‘‹4 โ‰ค 10
4๐‘‹1 + 2๐‘‹2 + 6๐‘‹3 + 8๐‘‹4 โ‰ค 25
(
๐‘‚๐‘๐‘ก๐‘–๐‘š๐‘Ž๐‘™ ๐‘ฃ๐‘Ž๐‘™๐‘ข๐‘’ ๐‘œ๐‘“ ๐‘‘๐‘ข๐‘Ž๐‘™
๐‘ฃ๐‘Ž๐‘Ÿ๐‘Ž๐‘–๐‘๐‘™๐‘’ ๐‘Œ1
) = (
4
5
+ 0 ) =
4
5
(
๐‘‚๐‘๐‘ก๐‘–๐‘š๐‘Ž๐‘™ ๐‘ฃ๐‘Ž๐‘™๐‘ข๐‘’ ๐‘œ๐‘“ ๐‘‘๐‘ข๐‘Ž๐‘™
๐‘ฃ๐‘Ž๐‘Ÿ๐‘Ž๐‘–๐‘๐‘™๐‘’ ๐‘Œ2
) =
3
10
+ 0 =
3
10
Method 2
(
๐‘œ๐‘๐‘ก๐‘–๐‘š๐‘Ž๐‘™ ๐‘ฃ๐‘Ž๐‘™๐‘ข๐‘’ ๐‘œ๐‘“
๐‘‘๐‘ข๐‘Ž๐‘™ ๐‘ฃ๐‘Ž๐‘Ÿ๐‘–๐‘Ž๐‘๐‘™๐‘’๐‘ 
) = (
๐‘…๐‘œ๐‘ค ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ ๐‘œ๐‘“
๐‘œ๐‘Ÿ๐‘”๐‘–๐‘›๐‘Ž๐‘™ ๐‘œ๐‘๐‘—๐‘’๐‘๐‘ก๐‘–๐‘ฃ๐‘’ ๐‘๐‘œ๐‘’๐‘“๐‘“๐‘–๐‘๐‘–๐‘’๐‘›๐‘ก๐‘ 
๐‘œ๐‘“ ๐‘œ๐‘๐‘ก๐‘–๐‘š๐‘Ž๐‘™ ๐‘๐‘Ÿ๐‘–๐‘š๐‘Ž๐‘™ ๐‘๐‘Ž๐‘ ๐‘–๐‘ ๐‘ฃ๐‘Ž๐‘Ÿ๐‘–๐‘Ž๐‘๐‘™๐‘’๐‘ 
) โˆ— (
๐‘œ๐‘๐‘ก๐‘–๐‘š๐‘Ž๐‘™ ๐‘๐‘Ÿ๐‘–๐‘š๐‘Ž๐‘™
๐‘–๐‘›๐‘ฃ๐‘’๐‘Ÿ๐‘ ๐‘’
)
Cj 2 2 5 4 0 0
C.B.V B.V X1 X2 X3 X4 S1 S2 solution
5 X3 0 1 1 2/5 2/5 - 1/10 1.5
2 X1 1 -1 0 1.4 - 3/5 2/5 4
Zj 2 3 5 24/5 4/5 3/10
Zj-Cj 0 1 0 4/5 4/5 3/10
Optimal table B
-1
COMPILED BY TSEGAY BERHE [ MSC IN PRODUCTION ENGINEERING & MANAGEMENT ] 7
(๐‘Œ1 ๐‘Œ2) = (5 2) โˆ— (
2
5
โˆ’
1
10
โˆ’
3
5
2
5
) = (5 โˆ—
2
5
โˆ’
3
5
โˆ— 2 5 โˆ— (โˆ’
1
10
) +
2
5
โˆ— 2) = (
4
5
3
10
)
๐‘€๐‘Ž๐‘ฅ ๐‘ = ๐‘€๐‘–๐‘› ๐‘ค
2๐‘‹1 + 2๐‘‹2 + 5๐‘‹3 + 4๐‘‹4 = 10๐‘Œ1 + 25๐‘Œ2
2 โˆ— 4 + 2 โˆ— 0 + 5 โˆ— 1.5 + 4 โˆ— 0 = 10 โˆ— 0.9 + 25 โˆ— 0.3 = ๐Ÿ๐Ÿ“. ๐Ÿ“
Example 2
Maximize
22X1 + 6X2 + 2X3
Subject to:
10X1 + 2X2 + X3 โ‰ค 100
7X1 + 3X2 + 2X3 โ‰ค 72
2X1 + 4X2 + X3 โ‰ค 80
X1, X2, X3 โ‰ฅ 0
Max Z=22X1 + 6X2 + 2X3+0S1+0S2+0S3
Subject to:
10X1 + 2X2 + X3 + S1= 100
7X1 + 3X2 + 2X3+ S2= 72
2X1 + 4X2 + X3+ S3 = 80
X1, X2, X3, S1, S2, S3 โ‰ฅ 0
Optimal table
Cj 22 6 2 0 0 0
CBV
Basic
Variable
X1 X2 X3 S1 S2 S3
Basic
solution
Min
Ratio
22 X1 1 0 -0.06 0.19 -0.13 0 9.75
6 X2 0 1 0.81 -0.44 0.63 0 1.25
0 S3 0 0 -2.13 1.38 -2.25 1 55.5
Zj 22 6 3.5 1.5 1 0 222
Cj-Zj 0 0 -1.5 -1.5 -1 0
(
๐‘‚๐‘๐‘ก๐‘–๐‘š๐‘Ž๐‘™ ๐‘ฃ๐‘Ž๐‘™๐‘ข๐‘’ ๐‘œ๐‘“ ๐‘‘๐‘ข๐‘Ž๐‘™
๐‘ฃ๐‘Ž๐‘Ÿ๐‘Ž๐‘–๐‘๐‘™๐‘’ ๐‘Œ1
) = (1.54 + 0 ) = 1.5
COMPILED BY TSEGAY BERHE [ MSC IN PRODUCTION ENGINEERING & MANAGEMENT ] 8
(
๐‘‚๐‘๐‘ก๐‘–๐‘š๐‘Ž๐‘™ ๐‘ฃ๐‘Ž๐‘™๐‘ข๐‘’ ๐‘œ๐‘“ ๐‘‘๐‘ข๐‘Ž๐‘™
๐‘ฃ๐‘Ž๐‘Ÿ๐‘Ž๐‘–๐‘๐‘™๐‘’ ๐‘Œ2
) = 1 + 0 = 1
(
๐‘‚๐‘๐‘ก๐‘–๐‘š๐‘Ž๐‘™ ๐‘ฃ๐‘Ž๐‘™๐‘ข๐‘’ ๐‘œ๐‘“ ๐‘‘๐‘ข๐‘Ž๐‘™
๐‘ฃ๐‘Ž๐‘Ÿ๐‘Ž๐‘–๐‘๐‘™๐‘’ ๐‘Œ3
) = 0 + 0 = 0
Method 2;
(
๐‘œ๐‘๐‘ก๐‘–๐‘š๐‘Ž๐‘™ ๐‘ฃ๐‘Ž๐‘™๐‘ข๐‘’ ๐‘œ๐‘“
๐‘‘๐‘ข๐‘Ž๐‘™ ๐‘ฃ๐‘Ž๐‘Ÿ๐‘–๐‘Ž๐‘๐‘™๐‘’๐‘ 
) = (
๐‘…๐‘œ๐‘ค ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ ๐‘œ๐‘“
๐‘œ๐‘Ÿ๐‘”๐‘–๐‘›๐‘Ž๐‘™ ๐‘œ๐‘๐‘—๐‘’๐‘๐‘ก๐‘–๐‘ฃ๐‘’ ๐‘๐‘œ๐‘’๐‘“๐‘“๐‘–๐‘๐‘–๐‘’๐‘›๐‘ก๐‘ 
๐‘œ๐‘“ ๐‘œ๐‘๐‘ก๐‘–๐‘š๐‘Ž๐‘™ ๐‘๐‘Ÿ๐‘–๐‘š๐‘Ž๐‘™ ๐‘๐‘Ž๐‘ ๐‘–๐‘ ๐‘ฃ๐‘Ž๐‘Ÿ๐‘–๐‘Ž๐‘๐‘™๐‘’๐‘ 
) โˆ— (
๐‘œ๐‘๐‘ก๐‘–๐‘š๐‘Ž๐‘™ ๐‘๐‘Ÿ๐‘–๐‘š๐‘Ž๐‘™
๐‘–๐‘›๐‘ฃ๐‘’๐‘Ÿ๐‘ ๐‘’
)
(๐‘Œ1 ๐‘Œ2 ๐‘Œ3) = (๐‘‹1 ๐‘‹2 ๐‘†3) โˆ— (
0.19 โˆ’0.13 0
โˆ’0.44 0.63 0
1.38 โˆ’2.25 1
)
(๐‘Œ1 ๐‘Œ2 ๐‘Œ3) = (22 6 0) โˆ— (
0.19 โˆ’0.13 0
โˆ’0.44 0.63 0
1.38 โˆ’2.25 1
)
(๐‘Œ1 ๐‘Œ2 ๐‘Œ3) = (1.5 1 0)
Max z=Min W
222=100*1.5+72*1+0*80
222=222
4.5. Post-optimal [Simplex method sensitivity Analysis]
While solving a linear programming problem for optimal solution, we assume that:
a. Technology is fixed,
b. Fixed prices,
c. Fixed levels of resources or requirements,
d. The coefficients of variables in structural constraints (i.e. time required by a product
on a particular resource) are fixed,
e. profit contribution of the product will not vary during the planning period.
The condition in the real world however, might be different from those that are assumed by the
model. It is, therefore, desirable to determine how sensitive the optimal solution is to different
types of changes in the problem data and parameters.
Why we use sensitivity analysis?
(a) Sensitivity analysis allow us to determine how "sensitive" the optimal solution is to
changes in data values.
(b) Sensitivity analysis is important to the manager who must operate in a dynamic
environment with imprecise estimates of the coefficients.
(c) Sensitivity analysis is used to determine how the optimal solution is affected by changes,
within specified ranges, in:
i. the objective function coefficients (cj ), which include:
โ– Coefficients of basic variables.
COMPILED BY TSEGAY BERHE [ MSC IN PRODUCTION ENGINEERING & MANAGEMENT ] 9
โ– Coefficients of non-basic variables.
ii. the right-hand side (RHS) values (bi ), (i.e. resource or requirement levels).
iii. Change in the consumption rate (Technological coefficients)
The above changes may result in one of the following three cases
Case I. The optimal solution remains unchanged, that is the basic variables and
their values remain essentially unchanged.
Case II. The basic variables remain the same but their values are changed.
(d)
Case III. The basic solution changes completely.
๐‘‚๐‘๐‘—๐‘’๐‘๐‘ก๐‘–๐‘ฃ๐‘’ ๐‘“๐‘ข๐‘›๐‘๐‘ก๐‘–๐‘œ๐‘›(๐‘€๐‘Ž๐‘ฅ๐‘–๐‘š๐‘–๐‘ง๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘Ÿ ๐‘€๐‘–๐‘›๐‘–๐‘š๐‘–๐‘ง๐‘Ž๐‘ก๐‘–๐‘œ๐‘›), ๐‘ = ๐ถ1๐‘‹1+๐ถ2๐‘‹2+ . . . . . . . . +๐ถ๐‘›๐‘‹๐‘›
๐‘†. ๐‘ก
{
๐‘Ž11๐‘‹1 + ๐‘Ž12๐‘‹2 + . . . + ๐‘Ž1๐‘›๐‘‹๐‘› (โ‰ค, =, โ‰ฅ)๐‘1
๐‘Ž21๐‘‹1 + ๐‘Ž22๐‘‹2 + . . . + ๐‘Ž2๐‘›๐‘‹๐‘› (โ‰ค, =, โ‰ฅ)๐‘2
๐‘Ž31๐‘‹1 + ๐‘Ž32๐‘‹2 + . . . + ๐‘Ž3๐‘›๐‘‹๐‘› (โ‰ค, =, โ‰ฅ)๐‘3
.
.
.
๐‘Ž๐‘š1๐‘‹1 + ๐‘Ž๐‘š2๐‘‹2 + . . . + ๐‘Ž๐‘š๐‘›๐‘‹๐‘› (โ‰ค, =, โ‰ฅ)๐‘๐‘š
๐‘‹1, ๐‘‹2, , , ๐‘‹๐‘› โ‰ฅ 0
โžข Sensitivity of the optimal solution to the changes in the available resources, (i.e. the right
hand side RHS of the constraints bij)
โžข Sensitivity of the optimal solution to the changes in the unit profit or unit cost, (i.e. the
coefficient of the objective function Cij)
โžข Change in the consumption rate (Technological coefficients)
The right hand side of the constraint denotes present level of availability of resources (or
requirement in minimization problems). When this is increased or decreased, it will have effect
on the objective function and it may also change the basic variable in the optimal solution.
Example 1
๐‘€๐‘Ž๐‘ฅ ๐‘ = 2๐‘‹1 + 2๐‘‹2 + 5๐‘‹3 + 4๐‘‹4
S. t
๐‘‹1 + 3๐‘‹2 + 4๐‘‹3 + 3๐‘‹4 โ‰ค 10, ๐‘€๐‘Ž๐‘› โˆ’ โ„Ž๐‘œ๐‘ข๐‘Ÿ๐‘  ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ÿ๐‘Ž๐‘–๐‘›๐‘ก๐‘ 
4๐‘‹1 + 2๐‘‹2 + 6๐‘‹3 + 8๐‘‹4 โ‰ค 25, ๐‘€๐‘Ž๐‘โ„Ž๐‘–๐‘›๐‘’ โ„Ž๐‘œ๐‘ข๐‘Ÿ๐‘ 
๐‘‹ij โ‰ฅ 0
COMPILED BY TSEGAY BERHE [ MSC IN PRODUCTION ENGINEERING & MANAGEMENT ] 10
Optimal table
Cj 2 2 5 4 0 0
C.B.V B.V X1 X2 X3 X4 S1 S2 solution
5 X3 0 1 1 2/5 2/5 - 1/10 3/2
2 X1 1 -1 0 7/5 - 3/5 2/5 4
Zj 2 3 5 24/5 4/5 3/10
Zj-Cj 0 1 0 4/5 4/5 3/10
N.B. From this optimal table
โžข {X1, X3} are Basic variables (B.V) because there are in the solution
โžข {X2, X3} are Non Basic variables (N.B.V) because there are not in the solution
Solution X1 = 4; X2 = 0; X3 = 1.5; S1 = 0; S2 = 0; ) Z = 15.5
โžข Man-hours are completely utilized hence S1 = 0.
Machine hours are completely utilized, hence S2 = 0
I. The shadow price of the man-hours resource is $4/5. Hence it means to say that as we go
on increasing one hour of man-hour resource, the objective function will go on increasing
by $4/5 per hour.
II. Similarly, the shadow price per unit of machine hour is $3/10. Similar reasoning can be
given, that is every unit increase in machine hour resource will increase the objective
function by $3/10.
If the management want to increase the capacity of both man-hours and machine-hours, which
one should receive priority?
โ€ข The answer is man-hours, since it is shadow price is greater than the shadow price of
machine-hours.
If the management considers to increase man-hours by 10 hours i.e., from 10 hours to 20 hours
and machine hours by 20 hours i.e., 25 hours to 45 hours will the optimal solution remain
unchanged?
Use example 1 for more illustration
1. Change in the coefficient of objective function (Ci)
Case 1;Change in the coefficient of objective Non basic variable(N.B.V)
ฮ” Coeff of
Objective.
Function
Case 2;Change in the coefficient of objective basic variable(B.V)
Case 1; Change in the coefficient of objective Non basic variable (N.B.V)
a. Change in the coefficient of objective of X2 [C2]
COMPILED BY TSEGAY BERHE [ MSC IN PRODUCTION ENGINEERING & MANAGEMENT ] 11
2+ฮ”2
C2
2-ฮ”2
If the coefficient of X2 is changed then only Z2-C2 will change be changed and the other Zj-Cj along
the column are still constant. In addition, in order to do the sensitivity analysis, the current optimal
table should be optimal. So the optimal table is still optimal if Z2-C2 โ‰ฅ0.
Case 1: Then if C2 =2+ฮ”2 [Maximum Increment]
then
๐‘2 โˆ’ ๐ถ2 โ‰ฅ 0
๐Ÿ‘ โˆ’ [๐Ÿ + ๐›ฅ2] โ‰ฅ 0
๐Ÿ โˆ’ ๐›ฅ2 โ‰ฅ 0
๐œŸ๐Ÿ = ๐Ÿ
๐‘–๐‘“ ๐›ฅ2 โ‰ฅ 1, ๐‘กโ„Ž๐‘’๐‘› ๐‘2 โˆ’ ๐ถ2 ๐‘ค๐‘–๐‘™๐‘™ ๐‘๐‘’ ๐‘›๐‘’๐‘”๐‘Ž๐‘ก๐‘–๐‘ฃ๐‘’, ๐‘กโ„Ž๐‘–๐‘  ๐‘–๐‘›๐‘‘๐‘–๐‘๐‘Ž๐‘ก๐‘’๐‘  ๐‘กโ„Ž๐‘’ ๐‘“๐‘–๐‘›๐‘Ž๐‘™ ๐‘ก๐‘Ž๐‘๐‘™๐‘’ ๐‘–๐‘  ๐‘›๐‘œ๐‘ก ๐‘œ๐‘๐‘ก๐‘–๐‘š๐‘Ž๐‘™
๐ถ2 = ๐Ÿ + ๐›ฅ2 = 2 + 1 = 3 , ๐‘กโ„Ž๐‘–๐‘  ๐‘–๐‘  ๐‘กโ„Ž๐‘’ ๐‘š๐‘Ž๐‘ฅ๐‘–๐‘š๐‘ข๐‘š ๐‘–๐‘›๐‘๐‘Ÿ๐‘’๐‘š๐‘’๐‘›๐‘ก
Case 2: Then if C2 =2-ฮ”2
๐‘2 โˆ’ ๐ถ2 โ‰ฅ 0
๐Ÿ‘ โˆ’ [๐Ÿ โˆ’ ๐›ฅ2] โ‰ฅ 0
๐Ÿ + ๐›ฅ2 โ‰ฅ 0
๐›ฅ2 โ‰ฅ โˆ’1,
๐ผ๐‘› ๐‘œ๐‘Ÿ๐‘‘๐‘’๐‘Ÿ ๐‘ก๐‘œ ๐‘‘๐‘œ ๐‘กโ„Ž๐‘’ ๐‘ ๐‘’๐‘›๐‘ ๐‘ก๐‘–๐‘ฃ๐‘–๐‘ก๐‘ฆ ๐‘Ž๐‘›๐‘Ž๐‘™๐‘ฆ๐‘ ๐‘–๐‘  ๐‘กโ„Ž๐‘’ ๐‘œ๐‘๐‘ก๐‘–๐‘š๐‘Ž๐‘™ ๐‘ก๐‘Ž๐‘๐‘™๐‘’ ๐‘ โ„Ž๐‘œ๐‘ข๐‘™๐‘‘ ๐‘๐‘’ ๐‘Ÿ๐‘’๐‘š๐‘Ž๐‘–๐‘› ๐‘œ๐‘๐‘ก๐‘–๐‘š๐‘Ž๐‘™, ๐‘กโ„Ž๐‘’๐‘›
๐›ฅ2 = โˆž
Then
๐‘ช๐Ÿ = ๐Ÿ โˆ’ โˆž = โˆ’โˆž
Then the range of optimality for the coefficient of non-basic variable X2 which is C2.
โˆ’โˆž โ‰ค ๐‘ช๐Ÿ โ‰ค ๐Ÿ‘
b. Change in the coefficient of objective of X4 [C4]
4+ฮ”4
C4
4-ฮ”4
Case 1: Then if C2 =4+ฮ”4 [Maximum Increment]
COMPILED BY TSEGAY BERHE [ MSC IN PRODUCTION ENGINEERING & MANAGEMENT ] 12
then
๐‘4 โˆ’ ๐ถ4 โ‰ฅ 0
๐Ÿ๐Ÿ’
๐Ÿ“
โˆ’ [๐Ÿ’ + ๐›ฅ4] โ‰ฅ 0
๐Ÿ’
๐Ÿ“
โˆ’ ๐›ฅ4 โ‰ฅ 0
๐œŸ๐Ÿ’ =
๐Ÿ’
๐Ÿ“
๐‘–๐‘“ ๐›ฅ24 โ‰ฅ
4
5
, ๐‘กโ„Ž๐‘’๐‘› ๐‘4 โˆ’ ๐ถ4 ๐‘ค๐‘–๐‘™๐‘™ ๐‘๐‘’ ๐‘›๐‘’๐‘”๐‘Ž๐‘ก๐‘–๐‘ฃ๐‘’, ๐‘กโ„Ž๐‘–๐‘  ๐‘–๐‘›๐‘‘๐‘–๐‘๐‘Ž๐‘ก๐‘’๐‘  ๐‘กโ„Ž๐‘’ ๐‘“๐‘–๐‘›๐‘Ž๐‘™ ๐‘ก๐‘Ž๐‘๐‘™๐‘’ ๐‘–๐‘  ๐‘›๐‘œ๐‘ก ๐‘œ๐‘๐‘ก๐‘–๐‘š๐‘Ž๐‘™
๐‘ช๐Ÿ’ = ๐Ÿ’ +
๐Ÿ’
๐Ÿ“
=
๐Ÿ๐Ÿ’
๐Ÿ“
, ๐’•๐’‰๐’Š๐’” ๐’Š๐’” ๐’•๐’‰๐’† ๐’Ž๐’‚๐’™๐’Š๐’Ž๐’–๐’Ž ๐’Š๐’๐’„๐’“๐’†๐’Ž๐’†๐’๐’•
Case 2: Then if C4 =4-ฮ”4
๐‘4 โˆ’ ๐ถ4 โ‰ฅ 0
24
5
โˆ’ [4 โˆ’ ๐›ฅ2] โ‰ฅ 0
4
5
+ ๐›ฅ4 โ‰ฅ 0
๐œŸ๐Ÿ โ‰ฅ โˆ’
๐Ÿ’
๐Ÿ“
,
๐ผ๐‘› ๐‘œ๐‘Ÿ๐‘‘๐‘’๐‘Ÿ ๐‘ก๐‘œ ๐‘‘๐‘œ ๐‘กโ„Ž๐‘’ ๐‘ ๐‘’๐‘›๐‘ ๐‘ก๐‘–๐‘ฃ๐‘–๐‘ก๐‘ฆ ๐‘Ž๐‘›๐‘Ž๐‘™๐‘ฆ๐‘ ๐‘–๐‘  ๐‘กโ„Ž๐‘’ ๐‘œ๐‘๐‘ก๐‘–๐‘š๐‘Ž๐‘™ ๐‘ก๐‘Ž๐‘๐‘™๐‘’ ๐‘ โ„Ž๐‘œ๐‘ข๐‘™๐‘‘ ๐‘๐‘’ ๐‘Ÿ๐‘’๐‘š๐‘Ž๐‘–๐‘› ๐‘œ๐‘๐‘ก๐‘–๐‘š๐‘Ž๐‘™, ๐‘กโ„Ž๐‘’๐‘›
๐›ฅ4 = โˆž
Then
๐‘ช๐Ÿ’ = ๐Ÿ’ โˆ’ โˆž = โˆ’โˆž
Then the range of optimality for the coefficient of non-basic variable X4 which is C4;
โˆ’โˆž โ‰ค ๐‘ช๐Ÿ’ โ‰ค
๐Ÿ๐Ÿ’
๐Ÿ“
Case 2; Change in the coefficient of objective basic variable (B.V)
From the above optimal table, the basic variables are X1, X3, because these variables are within
the solution with the value of 4,3/2 respectively.
a. Change in the coefficient of X1,
2+ฮ”1
C1
2-ฮ”1
N.B. if the coefficient of the basic variable is changed, then the whole Zj-Cj value will be also
changed. Though a new value of Zj-Cj should be determined using the current optimal table.
COMPILED BY TSEGAY BERHE [ MSC IN PRODUCTION ENGINEERING & MANAGEMENT ] 13
Case (a.1) when the coefficient of X1 which is C1 is changed to 2+ฮ”1
Then the new values of Zj-Cj respective to each variable along the column are;
๐‘1 = (5 โˆ— 0) + (2 + ๐›ฅ1) โˆ— 1 = 2 + ๐›ฅ1
๐‘2 = 5 โˆ’ (2 + ๐›ฅ1) = 3 โˆ’ ๐›ฅ1
๐‘3 = 5 โˆ’ (2 + ๐›ฅ1) โˆ— 0 = 5
๐‘4 = 2 +
7
5
โˆ— (2 + ๐›ฅ1) =
24
5
+
7
5
๐›ฅ1
๐‘5 = 2 โˆ’
3
5
(2 + ๐›ฅ1) =
4
5
โˆ’
3
5
๐›ฅ1
๐‘6 = โˆ’
1
2
+
2
5
(2 + ๐›ฅ1) =
3
10
+
2
5
๐›ฅ1
The determine Zj-Cj
๐‘1 โˆ’ ๐ถ1 โ‰ฅ 0
[๐Ÿ โˆ’ ๐›ฅ1] โˆ’ [๐Ÿ โˆ’ ๐›ฅ1]
๐ŸŽ = 0
๐›ฅ1 = โˆž
๐‘2 โˆ’ ๐ถ2 โ‰ฅ 0
[3 โˆ’ ๐›ฅ1] โˆ’ 2 โ‰ฅ 0
1 โˆ’ ๐›ฅ1 โ‰ฅ 0
๐œŸ๐Ÿ = ๐Ÿ
๐‘3 โˆ’ ๐ถ3 โ‰ฅ 0
5 โˆ’ 5 โ‰ฅ 0
0 โ‰ฅ 0
๐›ฅ1 = โˆž
๐‘4 โˆ’ ๐ถ4 โ‰ฅ 0
[
24
5
+
7
5
๐›ฅ1] โˆ’ 4 โ‰ฅ 0
4
5
+
7
5
๐›ฅ1 โ‰ฅ 0
๐›ฅ1 = โˆž
๐‘5 โˆ’ ๐ถ5 โ‰ฅ 0
COMPILED BY TSEGAY BERHE [ MSC IN PRODUCTION ENGINEERING & MANAGEMENT ] 14
[
4
5
โˆ’
3
5
๐›ฅ1] โˆ’ 0 โ‰ฅ 0
4
5
โˆ’
3
5
๐›ฅ1 โ‰ฅ 0
๐›ฅ1 = 4/3
๐‘6 โˆ’ ๐ถ6 โ‰ฅ 0
[
3
10
+
2
5
๐›ฅ1] โˆ’ 0 โ‰ฅ 0
3
10
+
2
5
๐›ฅ1 โ‰ฅ 0
๐›ฅ1 = โˆž
Then the next step is selecting the value of ฮ”1
max ๐‘–๐‘›๐‘๐‘Ÿ๐‘’๐‘š๐‘’๐‘›๐‘ก ๐‘œ๐‘“ ๐›ฅ1 = ๐‘€๐‘–๐‘› {โˆž, 1, โˆž, โˆž,
4
3
, โˆž} = 1
๐›ฅ1 = 1
Then ๐ถ1 = 2 + ๐›ฅ1 = 2 + 1 = 3
Case (a.2) when the coefficient of X1 which is C1 is changed to 2-ฮ”1
Performing the same analysis as case (a.1) then;
๐‘1 โˆ’ ๐ถ1 โ‰ฅ 0
5 โˆ’ 5 โ‰ฅ 0
0 โ‰ฅ 0
๐›ฅ1 = โˆž
๐‘2 โˆ’ ๐ถ2 โ‰ฅ 0
[5 โˆ’ (โˆ’1 โˆ— (2 โˆ’ ๐›ฅ1)] โˆ’ 2 โ‰ฅ 0
1 + ๐›ฅ1 โ‰ฅ 0
๐›ฅ1 = โˆž
๐‘3 โˆ’ ๐ถ3 โ‰ฅ 0
5 โˆ’ 5 โ‰ฅ 0
๐œŸ๐Ÿ = โˆž
๐‘4 โˆ’ ๐ถ4 โ‰ฅ 0
[[
10
5
+
7
5
(2 โˆ’ ๐›ฅ1)] โˆ’ 4 โ‰ฅ 0
4
5
โˆ’
7
5
๐›ฅ1 โ‰ฅ 0
๐œŸ๐Ÿ =
๐Ÿ’
๐Ÿ•
๐‘5 โˆ’ ๐ถ5 โ‰ฅ 0
[[
10
5
โˆ’
3
5
(2 โˆ’ ๐›ฅ1)] โˆ’ 0 โ‰ฅ 0
COMPILED BY TSEGAY BERHE [ MSC IN PRODUCTION ENGINEERING & MANAGEMENT ] 15
4
5
+
3
5
๐›ฅ1 โ‰ฅ 0
๐›ฅ1 = โˆž
๐‘6 โˆ’ ๐ถ6 โ‰ฅ 0
[[
โˆ’5
10
+
2
5
(2 โˆ’ ๐›ฅ1)] โˆ’ 0 โ‰ฅ 0
3
10
โˆ’
2
5
๐›ฅ1 โ‰ฅ 0
๐œŸ๐Ÿ =
๐Ÿ‘
๐Ÿ’
Then for determining the maximum decrement
๐‘ด๐’‚๐’™ ๐’…๐’†๐’„๐’“๐’†๐’‚๐’Ž๐’†๐’๐’•๐œŸ๐Ÿ = ๐‘ด๐’Š๐’{โˆž, โˆž, โˆž,
๐Ÿ’
๐Ÿ•
, โˆž,
๐Ÿ‘
๐Ÿ’
}
๐œŸ๐Ÿ =
๐Ÿ’
๐Ÿ•
๐‘ช๐Ÿ = ๐Ÿ โˆ’
๐Ÿ’
๐Ÿ•
= ๐Ÿ๐ŸŽ/๐Ÿ•
Therefor the range of optimality for C1 is;
๐Ÿ๐ŸŽ
๐Ÿ•
โ‰ค ๐‘ช๐Ÿ โ‰ค ๐Ÿ‘
2. Change in the RHS of constraints
โœ“ Let the initial RHS is a column matrix represented byโ€ bโ€
โœ“ Let B is m by m matrix of optimal basic variable in the initial table (according their order)
โœ“ B-1
is the inverse matrix of B in which B* B-1
=I
โœ“ In the optimal simplex table B-1
is the matrix of slack and surplus variables coefficients.
Then the simplex iteration has the following important formula.
๐‘ฉ๐’‚๐’”๐’Š๐’„ ๐’”๐’๐’๐’–๐’•๐’Š๐’๐’[๐‘ฉ. ๐’”](๐’๐’‘๐’•๐’Š๐’Ž๐’‚๐’) = ๐‘ฉโˆ’๐Ÿ
โˆ— ๐’ƒ
๐‘ฉ๐’‚๐’”๐’Š๐’„ ๐’”๐’๐’๐’–๐’•๐’Š๐’๐’[๐‘ฉ. ๐’”](๐’๐’‘๐’•๐’Š๐’Ž๐’‚๐’) = (
๐Ÿ
๐Ÿ“
โˆ’
๐Ÿ
๐Ÿ๐ŸŽ
โˆ’
๐Ÿ‘
๐Ÿ“
๐Ÿ
๐Ÿ“
) โˆ— [
๐Ÿ๐ŸŽ
๐Ÿ๐Ÿ“
] โ‰ฅ 0
Cj 2 2 5 4 0 0
C.B.V B.V X1 X2 X3 X4 S1 S2 solution
5 X3 0 1 1 2/5 2/5 - 1/10 1.5
2 X1 1 -1 0 1.4 - 3/5 2/5 4
Zj 2 3 5 24/5 4/5 3/10
Zj-Cj 0 1 0 4/5 4/5 3/10
Optimal table B
-1
COMPILED BY TSEGAY BERHE [ MSC IN PRODUCTION ENGINEERING & MANAGEMENT ] 16
๐‘‹3 =
2
5
โˆ— 10 โˆ’
1
10
โˆ— 25 =
3
2
= ๐Ÿ. ๐Ÿ“
๐‘‹1 = โˆ’
3
5
โˆ— 10 +
2
5
โˆ— 25 = ๐Ÿ’
Case
Case 1;Change in the R.H.S of constraints 1
Change in
RHS
Case 2;Change in the R.H.S of constraints 2
A. Change in the R.H.S of constraints 1
Let the RHS constraint one be changed by ๐œŸ๐Ÿ,Then ;
โœ“ ๐ถ๐‘Ž๐‘ ๐‘’ ๐ด. 1; ๐’ƒ๐Ÿ = ๐Ÿ๐ŸŽ + ๐œŸ๐Ÿ
โœ“ ๐ถ๐‘Ž๐‘ ๐‘’ ๐ด. 2; ๐’ƒ๐Ÿ = ๐Ÿ๐ŸŽ โˆ’ ๐œŸ๐Ÿ
๐ถ๐‘Ž๐‘ ๐‘’ ๐ด. 1; ๐’ƒ๐Ÿ = ๐Ÿ๐ŸŽ + ๐œŸ๐Ÿ,then
๐โˆ’๐Ÿ
โˆ— ๐› = (
๐Ÿ
๐Ÿ“
โˆ’
๐Ÿ
๐Ÿ๐ŸŽ
โˆ’
๐Ÿ‘
๐Ÿ“
๐Ÿ
๐Ÿ“
) โˆ— [
๐Ÿ๐ŸŽ + ๐šซ๐Ÿ
๐Ÿ๐Ÿ“
] โ‰ฅ ๐ŸŽ
2
5
โˆ— (10 + ๐›ฅ1) โˆ’
1
10
โˆ— (25) โ‰ฅ 0
15
10
+
2
5
๐›ฅ1 โ‰ฅ 0
๐œŸ๐Ÿ = โˆž
โˆ’3
5
โˆ— (10 + ๐›ฅ1) +
2
5
โˆ— (25) โ‰ฅ 0
20
5
โˆ’
3
5
๐›ฅ1 โ‰ฅ 0
๐œŸ๐Ÿ =
๐Ÿ๐ŸŽ
๐Ÿ“
๐œŸ๐Ÿ = ๐’Ž๐’Š๐’ {โˆž,
๐Ÿ๐ŸŽ
๐Ÿ‘
} =
๐Ÿ๐ŸŽ
๐Ÿ‘
๐’ƒ๐Ÿ = ๐Ÿ๐ŸŽ + ๐œŸ๐Ÿ = ๐Ÿ๐ŸŽ +
๐Ÿ๐ŸŽ
๐Ÿ‘
= ๐Ÿ“๐ŸŽ/๐Ÿ‘
COMPILED BY TSEGAY BERHE [ MSC IN PRODUCTION ENGINEERING & MANAGEMENT ] 17
๐ถ๐‘Ž๐‘ ๐‘’ ๐ด. 2; ๐’ƒ๐Ÿ = ๐Ÿ๐ŸŽ โˆ’ ๐œŸ๐Ÿ
๐โˆ’๐Ÿ
โˆ— ๐› = (
๐Ÿ
๐Ÿ“
โˆ’
๐Ÿ
๐Ÿ๐ŸŽ
โˆ’
๐Ÿ‘
๐Ÿ“
๐Ÿ
๐Ÿ“
) โˆ— [
๐Ÿ๐ŸŽ โˆ’ ๐šซ๐Ÿ
๐Ÿ๐Ÿ“
] โ‰ฅ ๐ŸŽ
2
5
โˆ— (10 โˆ’ ๐›ฅ1) โˆ’
1
10
โˆ— (25) โ‰ฅ 0
15
10
โˆ’
2
5
๐›ฅ1 โ‰ฅ 0
๐œŸ๐Ÿ =
๐Ÿ๐Ÿ“
๐Ÿ’
โˆ’3
5
โˆ— (10 โˆ’ ๐›ฅ1) +
2
5
โˆ— (25) โ‰ฅ 0
20
5
+
3
5
๐›ฅ1 โ‰ฅ 0
๐œŸ๐Ÿ = โˆž
๐›ฅ1 = ๐‘š๐‘–๐‘› {โˆž,
15
4
} =
15
4
๐‘1 = 10 โˆ’ ๐›ฅ1 = 10 โˆ’
15
4
=
25
4
๐Ÿ๐Ÿ“
๐Ÿ’
โ‰ค ๐’ƒ๐Ÿ โ‰ค
๐Ÿ“๐ŸŽ
๐Ÿ‘
, ๐’“๐’‚๐’๐’ˆ๐’† ๐’๐’‡ ๐’‡๐’†๐’‚๐’”๐’Š๐’ƒ๐’๐’Š๐’•๐’š ๐’‡๐’๐’“ ๐’„๐’๐’๐’”๐’•๐’“๐’‚๐’Š๐’๐’• ๐’๐’๐’†
N.B. then we can increase constraint 1 up to 50/3 and we can decrease up to 25/4
B. Change in the R.H.S of constraints 2
Let the RHS constraint one be changed by ๐œŸ๐Ÿ,Then ;
โœ“ ๐ถ๐‘Ž๐‘ ๐‘’ ๐ต. 1; ๐’ƒ๐Ÿ = ๐Ÿ๐Ÿ“ + ๐œŸ๐Ÿ
โœ“ ๐ถ๐‘Ž๐‘ ๐‘’ ๐ต. 2; ๐’ƒ๐Ÿ = ๐Ÿ๐Ÿ“ โˆ’ ๐œŸ๐Ÿ
๐ถ๐‘Ž๐‘ ๐‘’ ๐ด. 2; ๐’ƒ๐Ÿ = ๐Ÿ๐Ÿ“ + ๐œŸ๐Ÿ
COMPILED BY TSEGAY BERHE [ MSC IN PRODUCTION ENGINEERING & MANAGEMENT ] 18
๐โˆ’๐Ÿ
โˆ— ๐› = (
๐Ÿ
๐Ÿ“
โˆ’
๐Ÿ
๐Ÿ๐ŸŽ
โˆ’
๐Ÿ‘
๐Ÿ“
๐Ÿ
๐Ÿ“
) โˆ— [
๐Ÿ๐ŸŽ
๐Ÿ๐Ÿ“ + ๐šซ๐Ÿ
] โ‰ฅ ๐ŸŽ
2
5
โˆ— (10) โˆ’
1
10
โˆ— (25 + ๐œŸ๐Ÿ) โ‰ฅ 0
15
10
โˆ’
1
10
๐›ฅ2 โ‰ฅ 0
๐œŸ๐Ÿ = ๐Ÿ๐Ÿ“
โˆ’3
5
โˆ— (10) โˆ’
2
5
โˆ— (25 + ๐œŸ๐Ÿ) โ‰ฅ 0
โˆ’30
5
+
50
5
+
2
5
๐›ฅ2 โ‰ฅ 0
๐œŸ๐Ÿ = โˆž
๐œŸ๐Ÿ = ๐’Ž๐’‚๐’™ ๐’Š๐’๐’„๐’“๐’†๐’‚๐’Ž๐’†๐’๐’• = ๐’Ž๐’Š๐’{๐Ÿ๐Ÿ“, โˆž} = ๐Ÿ๐Ÿ“, ๐’•๐’‰๐’†๐’
๐’ƒ๐Ÿ = ๐Ÿ๐Ÿ“ + ๐Ÿ๐Ÿ“ = ๐Ÿ’๐ŸŽ
๐ถ๐‘Ž๐‘ ๐‘’ ๐ต. 2; ๐’ƒ๐Ÿ = ๐Ÿ๐Ÿ“ โˆ’ ๐œŸ๐Ÿ
๐โˆ’๐Ÿ
โˆ— ๐› = (
๐Ÿ
๐Ÿ“
โˆ’
๐Ÿ
๐Ÿ๐ŸŽ
โˆ’
๐Ÿ‘
๐Ÿ“
๐Ÿ
๐Ÿ“
) โˆ— [
๐Ÿ๐ŸŽ
๐Ÿ๐Ÿ“ โˆ’ ๐šซ๐Ÿ
] โ‰ฅ ๐ŸŽ
2
5
โˆ— (10) โˆ’
1
10
โˆ— (25 โˆ’ ๐œŸ๐Ÿ) โ‰ฅ 0
15
10
+
1
10
๐›ฅ2 โ‰ฅ 0
๐œŸ๐Ÿ = โˆž
โˆ’3
5
โˆ— (10) โˆ’
2
5
โˆ— (25 โˆ’ ๐œŸ๐Ÿ) โ‰ฅ 0
COMPILED BY TSEGAY BERHE [ MSC IN PRODUCTION ENGINEERING & MANAGEMENT ] 19
20
5
โˆ’
2
5
(๐œŸ๐Ÿ) โ‰ฅ 0
๐œŸ๐Ÿ=10
๐œŸ๐Ÿ = ๐’Ž๐’Š๐’{โˆž, ๐Ÿ๐ŸŽ} = ๐Ÿ๐ŸŽ
๐’ƒ๐Ÿ = ๐Ÿ๐Ÿ“ โˆ’ ๐Ÿ๐ŸŽ = ๐Ÿ๐Ÿ“ then range of feasibility for constraint two;
๐Ÿ๐Ÿ“ โ‰ค ๐’ƒ๐Ÿ โ‰ค ๐Ÿ’๐ŸŽ
3. Change in the technological coeffiecnt [Consumption rate]
โœ“ Let Xi is initial column matrix of variables
โœ“ Xj is the optimal column matrix of variables
๐‘ฟ๐’‹
โƒ—โƒ—โƒ—โƒ— = ๐โˆ’๐Ÿ
โˆ— ๐‘ฟ๐’Š
๐‘‹1 = [
๐Ÿ
๐Ÿ’
]
๐‘‹1 = [
1 + ๐›ฅ1
4
] = ๐‘š๐‘Ž๐‘ฅ๐‘–๐‘š๐‘ข๐‘š ๐‘–๐‘›๐‘๐‘Ÿ๐‘’๐‘Ž๐‘š๐‘’๐‘›๐‘ก ๐‘œ๐‘“ ๐‘๐‘œ๐‘’๐‘“๐‘“. ๐‘œ๐‘“ ๐‘‹1 ๐‘œ๐‘› ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ÿ๐‘Ž๐‘–๐‘›๐‘ก 1
๐‘‹1 = [
1 โˆ’ ๐›ฅ1
4
] = ๐‘š๐‘Ž๐‘ฅ๐‘–๐‘š๐‘ข๐‘š ๐‘‘๐‘’๐‘๐‘Ÿ๐‘’๐‘Ž๐‘š๐‘’๐‘›๐‘ก ๐‘œ๐‘“ ๐‘๐‘œ๐‘’๐‘“๐‘“. ๐‘œ๐‘“ ๐‘‹1 ๐‘œ๐‘› ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ÿ๐‘Ž๐‘–๐‘›๐‘ก 1
๐‘‹1 = [
1
4 + ๐›ฅ1
] = ๐‘š๐‘Ž๐‘ฅ๐‘–๐‘š๐‘ข๐‘š ๐‘–๐‘›๐‘๐‘Ÿ๐‘’๐‘Ž๐‘š๐‘’๐‘›๐‘ก ๐‘œ๐‘“ ๐‘๐‘œ๐‘’๐‘“๐‘“. ๐‘œ๐‘“ ๐‘‹1 ๐‘œ๐‘› ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ÿ๐‘Ž๐‘–๐‘›๐‘ก 2
๐‘‹1 = [
1
4 โˆ’ ๐›ฅ1
] = ๐‘š๐‘Ž๐‘ฅ๐‘–๐‘š๐‘ข๐‘š ๐‘‘๐‘’๐‘๐‘Ÿ๐‘’๐‘Ž๐‘š๐‘’๐‘›๐‘ก ๐‘œ๐‘“ ๐‘๐‘œ๐‘’๐‘“๐‘“. ๐‘œ๐‘“ ๐‘‹1 ๐‘œ๐‘› ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ÿ๐‘Ž๐‘–๐‘›๐‘ก 2
Let coefficient of X1 in the first constraint changed by ฮ”1; Then
๐ถ๐‘Ž๐‘ ๐‘’1; ๐‘Ž11๐‘โ„Ž๐‘Ž๐‘›๐‘”๐‘’๐‘‘ ๐‘ก๐‘œ ๐‘Ž11 + ๐›ฅ1 = 1 + ๐›ฅ1
๐ถ๐‘Ž๐‘ ๐‘’2; ๐‘Ž11๐‘โ„Ž๐‘Ž๐‘›๐‘”๐‘’๐‘‘ ๐‘ก๐‘œ ๐‘Ž11 โˆ’ ๐›ฅ1 = 1 โˆ’ ๐›ฅ1
๐‘ช๐’‚๐’”๐’†๐Ÿ; ๐’‚๐Ÿ๐Ÿ๐’„๐’‰๐’‚๐’๐’ˆ๐’†๐’… ๐’•๐’ ๐’‚๐Ÿ๐Ÿ + ๐œŸ๐Ÿ = ๐Ÿ + ๐œŸ๐Ÿ
๐‘ฟ๐’‹
โƒ—โƒ—โƒ—โƒ— = ๐โˆ’๐Ÿ
โˆ— ๐‘ฟ๐’Š
COMPILED BY TSEGAY BERHE [ MSC IN PRODUCTION ENGINEERING & MANAGEMENT ] 20
๐‘ฟ๐Ÿ
โƒ—โƒ—โƒ—โƒ—โƒ— = (
๐Ÿ
๐Ÿ“
โˆ’
๐Ÿ
๐Ÿ๐ŸŽ
โˆ’
๐Ÿ‘
๐Ÿ“
๐Ÿ
๐Ÿ“
) โˆ— [
๐Ÿ + ๐œŸ๐Ÿ
๐Ÿ’
]
2
5
+
2
5
๐›ฅ1 โˆ’
4
10
=
๐Ÿ
๐Ÿ“
๐œŸ๐Ÿ
โˆ’
3
5
โˆ’
3
5
๐›ฅ1 +
2
5
โˆ— 4 = ๐Ÿ โˆ’
๐Ÿ‘
๐Ÿ“
๐œŸ๐Ÿ
๐‘‹1
โƒ—โƒ—โƒ—โƒ— = (
2
5
โˆ’
1
10
โˆ’
3
5
2
5
) โˆ— [
1 + ๐›ฅ1
4
] = (
๐Ÿ
๐Ÿ“
๐œŸ๐Ÿ
๐Ÿ โˆ’
๐Ÿ‘
๐Ÿ“
๐œŸ๐Ÿ
)
If ๐‘ฟ๐Ÿ
โƒ—โƒ—โƒ—โƒ—โƒ— will changed then Zj-Cj will also change
Z1-C1 โ‰ฅ 0
5 โˆ—
2
5
๐›ฅ1 + 2 โˆ— (1 โˆ’
3
5
๐›ฅ1) โˆ’ 2 โ‰ฅ 0
4
5
๐›ฅ1 + 2 โˆ’ 2 โ‰ฅ 0
๐›ฅ1 = โˆž
๐‘Ž11 + ๐›ฅ1 = 1 + โˆž = โˆž
๐‘ช๐’‚๐’”๐’†๐Ÿ;๐’‚๐Ÿ๐Ÿ๐’„๐’‰๐’‚๐’๐’ˆ๐’†๐’… ๐’•๐’ ๐’‚๐Ÿ๐Ÿ โˆ’ ๐œŸ๐Ÿ = ๐Ÿ โˆ’ ๐œŸ๐Ÿ
๐‘‹1
โƒ—โƒ—โƒ—โƒ— = (
2
5
โˆ’
1
10
โˆ’
3
5
2
5
) โˆ— [
1 โˆ’ ๐›ฅ1
4
]
2
5
โˆ’
2
5
๐›ฅ1 โˆ’
4
10
= โˆ’
๐Ÿ
๐Ÿ“
๐œŸ๐Ÿ
โˆ’
3
5
+
3
5
๐›ฅ1 +
2
5
โˆ— 4 = ๐Ÿ +
๐Ÿ‘
๐Ÿ“
๐œŸ๐Ÿ
โ– ๐‘‹1
โƒ—โƒ—โƒ—โƒ— = (
2
5
โˆ’
1
10
โˆ’
3
5
2
5
) โˆ— [
1 + ๐›ฅ1
4
] = (
โˆ’
๐Ÿ
๐Ÿ“
๐œŸ๐Ÿ
๐Ÿ +
๐Ÿ‘
๐Ÿ“
๐œŸ๐Ÿ
)
If ๐‘ฟ๐Ÿ
โƒ—โƒ—โƒ—โƒ—โƒ— will changed then Zj-Cj will also change
COMPILED BY TSEGAY BERHE [ MSC IN PRODUCTION ENGINEERING & MANAGEMENT ] 21
Z1-C1 โ‰ฅ 0
5 โˆ— (โˆ’
2
5
๐›ฅ1) + 2 โˆ— (1 +
3
5
๐›ฅ1) โˆ’ 2 โ‰ฅ 0
โˆ’
4
5
๐›ฅ1 + 2 โˆ’ 2 โ‰ฅ 0
โˆ’
4
5
๐›ฅ1+โ‰ฅ 0
๐›ฅ1 = 0
๐’‚๐Ÿ๐Ÿ = ๐Ÿ โˆ’ ๐›ฅ1 = 1
๐Ÿ โ‰ค ๐’‚๐Ÿ๐Ÿ โ‰ค โˆž, ๐’„๐’๐’๐’”๐’–๐’‘๐’•๐’Š๐’๐’ ๐’“๐’‚๐’๐’ˆ๐’† ๐’๐’‡ ๐‘ฟ๐Ÿ ๐’๐’ ๐’„๐’๐’๐’”๐’•๐’“๐’‚๐’Š๐’๐’• ๐Ÿ
Let coefficient of X2 in the first constraint is changed by ฮ”2;
๐ถ๐‘Ž๐‘ ๐‘’1; ๐‘Ž12๐‘โ„Ž๐‘Ž๐‘›๐‘”๐‘’๐‘‘ ๐‘ก๐‘œ ๐‘Ž12 + ๐›ฅ2 = 3 + ๐›ฅ2
๐ถ๐‘Ž๐‘ ๐‘’2; ๐‘Ž12๐‘โ„Ž๐‘Ž๐‘›๐‘”๐‘’๐‘‘ ๐‘ก๐‘œ ๐‘Ž12 โˆ’ ๐›ฅ2 = 3 โˆ’ ๐›ฅ2
๐‘ช๐’‚๐’”๐’†๐Ÿ; ๐’‚๐Ÿ๐Ÿ๐’„๐’‰๐’‚๐’๐’ˆ๐’†๐’… ๐’•๐’ ๐’‚๐Ÿ๐Ÿ + ๐œŸ๐Ÿ = ๐Ÿ‘ + ๐œŸ๐Ÿ
๐‘‹2
โƒ—โƒ—โƒ—โƒ— = (
2
5
โˆ’
1
10
โˆ’
3
5
2
5
) โˆ— [
3 + ๐›ฅ2
2
] = (
1 +
2
5
๐œŸ๐Ÿ
โˆ’1 โˆ’
3
5
๐œŸ๐Ÿ
)
Z2-C2 โ‰ฅ 0
5 โˆ— (1 +
2
5
๐›ฅ2) + 2 โˆ— (โˆ’1 โˆ’
3
5
๐›ฅ2) โˆ’ 2 โ‰ฅ 0
3 +
4
5
๐›ฅ2 โ‰ฅ 0
๐›ฅ2 = โˆž
๐‘Ž12 + ๐›ฅ2 = 3 + โˆž = โˆž
๐‘ช๐’‚๐’”๐’†๐Ÿ; ๐’‚๐Ÿ๐Ÿ๐’„๐’‰๐’‚๐’๐’ˆ๐’†๐’… ๐’•๐’ ๐’‚๐Ÿ๐Ÿ โˆ’ ๐œŸ๐Ÿ = ๐Ÿ‘ โˆ’ ๐œŸ๐Ÿ
๐‘‹2
โƒ—โƒ—โƒ—โƒ— = (
2
5
โˆ’
1
10
โˆ’
3
5
2
5
) โˆ— [
3 โˆ’ ๐›ฅ2
2
] = (
1 โˆ’
2
5
๐œŸ๐Ÿ
โˆ’1 +
3
5
๐œŸ๐Ÿ
)
Z2-C2 โ‰ฅ 0
5 โˆ— (1 โˆ’
2
5
๐›ฅ2) + 2 โˆ— (โˆ’1 +
3
5
๐›ฅ2) โˆ’ 2 โ‰ฅ 0
1 โˆ’
4
5
๐›ฅ2 โ‰ฅ 0
COMPILED BY TSEGAY BERHE [ MSC IN PRODUCTION ENGINEERING & MANAGEMENT ] 22
๐›ฅ2 =
5
4
๐‘Ž12 โˆ’ ๐›ฅ2 = 3 โˆ’
5
4
=
7
4
๐Ÿ•
๐Ÿ’
โ‰ค ๐’‚๐Ÿ๐Ÿ โ‰ค โˆž, ๐‘๐‘œ๐‘›๐‘ ๐‘ข๐‘š๐‘๐‘ก๐‘–๐‘œ๐‘› ๐‘Ÿ๐‘Ž๐‘›๐‘”๐‘’ ๐‘œ๐‘“ ๐‘‹2๐‘œ๐‘› ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ÿ๐‘–๐‘Ž๐‘›๐‘ก 1
COMPILED BY TSEGAY BERHE [ MSC IN PRODUCTION ENGINEERING & MANAGEMENT ] 23
Exercise
๐‘€๐‘Ž๐‘ฅ ๐‘ = 12๐‘‹1 + 3๐‘‹2 + ๐‘‹3
S. t
10๐‘‹1 + 2๐‘‹2 + ๐‘‹3+โ‰ค 100
7๐‘‹1 + 3๐‘‹2 + 2๐‘‹3 โ‰ค 77
2๐‘‹1 + 4๐‘‹2 + ๐‘‹3 โ‰ค 80
๐‘‹1, ๐‘‹2, ๐‘‹3 โ‰ฅ 0
Optimal table
Cj 12 3 1 0 0 0
C.B. V B. V X1 X2 X3 S1 S2 S3 SOLUTION
12 X1 1 0 - 1/16 3/16 - 1/8 0 73/8
3 X2 0 1 13/16 - 7/16 5/8 0 35/8
0 S3 0 0 -2 11/8 -9/4 1 177/4
Zj 12 3 27/16 15/16 3/8 0
Zj-Cj 0 0 18/16 15/16 3/8 0
i. Determine the dual values
ii. Determine the range of optimality of C1, C2 and C3 (change in the objective function
coefficient)
iii. Determine the range of feasibility b1 (change in the RHS constraints)
iv. Determine the range of optimality of the consumption rate (a11)

More Related Content

Similar to Chapter 4 Duality & sensitivity analysis hand out last .pdf

Linear Programming Quiz Solution
Linear Programming Quiz SolutionLinear Programming Quiz Solution
Linear Programming Quiz SolutionEd Dansereau
ย 
MLU_DTE_Lecture_2.pptx
MLU_DTE_Lecture_2.pptxMLU_DTE_Lecture_2.pptx
MLU_DTE_Lecture_2.pptxRahulChaudhry15
ย 
1.6 Other Types of Equations
1.6 Other Types of Equations1.6 Other Types of Equations
1.6 Other Types of Equationssmiller5
ย 
Chapter 1 review topic in algebra 1
Chapter 1 review topic in algebra 1Chapter 1 review topic in algebra 1
Chapter 1 review topic in algebra 1jennytuazon01630
ย 
MATRICES AND CALCULUS.pptx
MATRICES AND CALCULUS.pptxMATRICES AND CALCULUS.pptx
MATRICES AND CALCULUS.pptxmassm99m
ย 
Expansion and Factorisation of Algebraic Expressions 2.pptx
Expansion and Factorisation of Algebraic Expressions  2.pptxExpansion and Factorisation of Algebraic Expressions  2.pptx
Expansion and Factorisation of Algebraic Expressions 2.pptxMitaDurenSawit
ย 
Intro to Quant Trading Strategies (Lecture 5 of 10)
Intro to Quant Trading Strategies (Lecture 5 of 10)Intro to Quant Trading Strategies (Lecture 5 of 10)
Intro to Quant Trading Strategies (Lecture 5 of 10)Adrian Aley
ย 
Student manual
Student manualStudent manual
Student manualec931657
ย 
ู…ู„ุฒู…ุฉ ุงู„ุฑูŠุงุถูŠุงุช ู„ู„ุตู ุงู„ุณุงุฏุณ ุงู„ุชุทุจูŠู‚ูŠ ุงู„ูุตู„ ุงู„ุงูˆู„ ุงู„ุงุนุฏุงุฏ ุงู„ู…ุฑูƒุจุฉ 2022
 ู…ู„ุฒู…ุฉ ุงู„ุฑูŠุงุถูŠุงุช ู„ู„ุตู ุงู„ุณุงุฏุณ ุงู„ุชุทุจูŠู‚ูŠ ุงู„ูุตู„ ุงู„ุงูˆู„ ุงู„ุงุนุฏุงุฏ ุงู„ู…ุฑูƒุจุฉ 2022 ู…ู„ุฒู…ุฉ ุงู„ุฑูŠุงุถูŠุงุช ู„ู„ุตู ุงู„ุณุงุฏุณ ุงู„ุชุทุจูŠู‚ูŠ ุงู„ูุตู„ ุงู„ุงูˆู„ ุงู„ุงุนุฏุงุฏ ุงู„ู…ุฑูƒุจุฉ 2022
ู…ู„ุฒู…ุฉ ุงู„ุฑูŠุงุถูŠุงุช ู„ู„ุตู ุงู„ุณุงุฏุณ ุงู„ุชุทุจูŠู‚ูŠ ุงู„ูุตู„ ุงู„ุงูˆู„ ุงู„ุงุนุฏุงุฏ ุงู„ู…ุฑูƒุจุฉ 2022anasKhalaf4
ย 
Duality.ppt
Duality.pptDuality.ppt
Duality.pptairhossein
ย 
ู…ู„ุฒู…ุฉ ุงู„ุฑูŠุงุถูŠุงุช ู„ู„ุตู ุงู„ุณุงุฏุณ ุงู„ุงุญูŠุงุฆูŠ ุงู„ูุตู„ ุงู„ุงูˆู„
ู…ู„ุฒู…ุฉ ุงู„ุฑูŠุงุถูŠุงุช ู„ู„ุตู ุงู„ุณุงุฏุณ ุงู„ุงุญูŠุงุฆูŠ ุงู„ูุตู„ ุงู„ุงูˆู„ู…ู„ุฒู…ุฉ ุงู„ุฑูŠุงุถูŠุงุช ู„ู„ุตู ุงู„ุณุงุฏุณ ุงู„ุงุญูŠุงุฆูŠ ุงู„ูุตู„ ุงู„ุงูˆู„
ู…ู„ุฒู…ุฉ ุงู„ุฑูŠุงุถูŠุงุช ู„ู„ุตู ุงู„ุณุงุฏุณ ุงู„ุงุญูŠุงุฆูŠ ุงู„ูุตู„ ุงู„ุงูˆู„anasKhalaf4
ย 
Lesson 22: Polynomial Long Division
Lesson 22: Polynomial Long DivisionLesson 22: Polynomial Long Division
Lesson 22: Polynomial Long DivisionKevin Johnson
ย 
A geometrical approach in Linear Programming Problems
A geometrical approach in Linear Programming ProblemsA geometrical approach in Linear Programming Problems
A geometrical approach in Linear Programming ProblemsRaja Agrawal
ย 
Math 8-Lessslayyyyyyyyurrrrrrrrrron 1.pdf
Math 8-Lessslayyyyyyyyurrrrrrrrrron 1.pdfMath 8-Lessslayyyyyyyyurrrrrrrrrron 1.pdf
Math 8-Lessslayyyyyyyyurrrrrrrrrron 1.pdfaflores17
ย 
Daa chapter 3
Daa chapter 3Daa chapter 3
Daa chapter 3B.Kirron Reddi
ย 
1.6 Rational and Radical Equations
1.6 Rational and Radical Equations1.6 Rational and Radical Equations
1.6 Rational and Radical Equationssmiller5
ย 
Lesson 3: Problem Set 4
Lesson 3: Problem Set 4Lesson 3: Problem Set 4
Lesson 3: Problem Set 4Kevin Johnson
ย 

Similar to Chapter 4 Duality & sensitivity analysis hand out last .pdf (20)

Linear Programming Quiz Solution
Linear Programming Quiz SolutionLinear Programming Quiz Solution
Linear Programming Quiz Solution
ย 
MLU_DTE_Lecture_2.pptx
MLU_DTE_Lecture_2.pptxMLU_DTE_Lecture_2.pptx
MLU_DTE_Lecture_2.pptx
ย 
1.6 Other Types of Equations
1.6 Other Types of Equations1.6 Other Types of Equations
1.6 Other Types of Equations
ย 
Chapter 1 review topic in algebra 1
Chapter 1 review topic in algebra 1Chapter 1 review topic in algebra 1
Chapter 1 review topic in algebra 1
ย 
Graphical method
Graphical methodGraphical method
Graphical method
ย 
Chapter 2
Chapter  2Chapter  2
Chapter 2
ย 
MATRICES AND CALCULUS.pptx
MATRICES AND CALCULUS.pptxMATRICES AND CALCULUS.pptx
MATRICES AND CALCULUS.pptx
ย 
Expansion and Factorisation of Algebraic Expressions 2.pptx
Expansion and Factorisation of Algebraic Expressions  2.pptxExpansion and Factorisation of Algebraic Expressions  2.pptx
Expansion and Factorisation of Algebraic Expressions 2.pptx
ย 
Intro to Quant Trading Strategies (Lecture 5 of 10)
Intro to Quant Trading Strategies (Lecture 5 of 10)Intro to Quant Trading Strategies (Lecture 5 of 10)
Intro to Quant Trading Strategies (Lecture 5 of 10)
ย 
Student manual
Student manualStudent manual
Student manual
ย 
ู…ู„ุฒู…ุฉ ุงู„ุฑูŠุงุถูŠุงุช ู„ู„ุตู ุงู„ุณุงุฏุณ ุงู„ุชุทุจูŠู‚ูŠ ุงู„ูุตู„ ุงู„ุงูˆู„ ุงู„ุงุนุฏุงุฏ ุงู„ู…ุฑูƒุจุฉ 2022
 ู…ู„ุฒู…ุฉ ุงู„ุฑูŠุงุถูŠุงุช ู„ู„ุตู ุงู„ุณุงุฏุณ ุงู„ุชุทุจูŠู‚ูŠ ุงู„ูุตู„ ุงู„ุงูˆู„ ุงู„ุงุนุฏุงุฏ ุงู„ู…ุฑูƒุจุฉ 2022 ู…ู„ุฒู…ุฉ ุงู„ุฑูŠุงุถูŠุงุช ู„ู„ุตู ุงู„ุณุงุฏุณ ุงู„ุชุทุจูŠู‚ูŠ ุงู„ูุตู„ ุงู„ุงูˆู„ ุงู„ุงุนุฏุงุฏ ุงู„ู…ุฑูƒุจุฉ 2022
ู…ู„ุฒู…ุฉ ุงู„ุฑูŠุงุถูŠุงุช ู„ู„ุตู ุงู„ุณุงุฏุณ ุงู„ุชุทุจูŠู‚ูŠ ุงู„ูุตู„ ุงู„ุงูˆู„ ุงู„ุงุนุฏุงุฏ ุงู„ู…ุฑูƒุจุฉ 2022
ย 
Em01 ba
Em01 baEm01 ba
Em01 ba
ย 
Duality.ppt
Duality.pptDuality.ppt
Duality.ppt
ย 
ู…ู„ุฒู…ุฉ ุงู„ุฑูŠุงุถูŠุงุช ู„ู„ุตู ุงู„ุณุงุฏุณ ุงู„ุงุญูŠุงุฆูŠ ุงู„ูุตู„ ุงู„ุงูˆู„
ู…ู„ุฒู…ุฉ ุงู„ุฑูŠุงุถูŠุงุช ู„ู„ุตู ุงู„ุณุงุฏุณ ุงู„ุงุญูŠุงุฆูŠ ุงู„ูุตู„ ุงู„ุงูˆู„ู…ู„ุฒู…ุฉ ุงู„ุฑูŠุงุถูŠุงุช ู„ู„ุตู ุงู„ุณุงุฏุณ ุงู„ุงุญูŠุงุฆูŠ ุงู„ูุตู„ ุงู„ุงูˆู„
ู…ู„ุฒู…ุฉ ุงู„ุฑูŠุงุถูŠุงุช ู„ู„ุตู ุงู„ุณุงุฏุณ ุงู„ุงุญูŠุงุฆูŠ ุงู„ูุตู„ ุงู„ุงูˆู„
ย 
Lesson 22: Polynomial Long Division
Lesson 22: Polynomial Long DivisionLesson 22: Polynomial Long Division
Lesson 22: Polynomial Long Division
ย 
A geometrical approach in Linear Programming Problems
A geometrical approach in Linear Programming ProblemsA geometrical approach in Linear Programming Problems
A geometrical approach in Linear Programming Problems
ย 
Math 8-Lessslayyyyyyyyurrrrrrrrrron 1.pdf
Math 8-Lessslayyyyyyyyurrrrrrrrrron 1.pdfMath 8-Lessslayyyyyyyyurrrrrrrrrron 1.pdf
Math 8-Lessslayyyyyyyyurrrrrrrrrron 1.pdf
ย 
Daa chapter 3
Daa chapter 3Daa chapter 3
Daa chapter 3
ย 
1.6 Rational and Radical Equations
1.6 Rational and Radical Equations1.6 Rational and Radical Equations
1.6 Rational and Radical Equations
ย 
Lesson 3: Problem Set 4
Lesson 3: Problem Set 4Lesson 3: Problem Set 4
Lesson 3: Problem Set 4
ย 

Recently uploaded

Top Rated Pune Call Girls Budhwar Peth โŸŸ 6297143586 โŸŸ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth โŸŸ 6297143586 โŸŸ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth โŸŸ 6297143586 โŸŸ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth โŸŸ 6297143586 โŸŸ Call Me For Genuine Se...Call Girls in Nagpur High Profile
ย 
Generative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTGenerative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTbhaskargani46
ย 
Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . pptDineshKumar4165
ย 
Call Girls In Bangalore โ˜Ž 7737669865 ๐Ÿฅต Book Your One night Stand
Call Girls In Bangalore โ˜Ž 7737669865 ๐Ÿฅต Book Your One night StandCall Girls In Bangalore โ˜Ž 7737669865 ๐Ÿฅต Book Your One night Stand
Call Girls In Bangalore โ˜Ž 7737669865 ๐Ÿฅต Book Your One night Standamitlee9823
ย 
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Christo Ananth
ย 
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...ranjana rawat
ย 
Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)simmis5
ย 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfJiananWang21
ย 
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7Call Girls in Nagpur High Profile Call Girls
ย 
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Bookingroncy bisnoi
ย 
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfKamal Acharya
ย 
NFPA 5000 2024 standard .
NFPA 5000 2024 standard                                  .NFPA 5000 2024 standard                                  .
NFPA 5000 2024 standard .DerechoLaboralIndivi
ย 
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...SUHANI PANDEY
ย 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdfankushspencer015
ย 
Online banking management system project.pdf
Online banking management system project.pdfOnline banking management system project.pdf
Online banking management system project.pdfKamal Acharya
ย 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...roncy bisnoi
ย 
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptxBSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptxfenichawla
ย 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptDineshKumar4165
ย 
PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELL
PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELLPVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELL
PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELLManishPatel169454
ย 

Recently uploaded (20)

Top Rated Pune Call Girls Budhwar Peth โŸŸ 6297143586 โŸŸ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth โŸŸ 6297143586 โŸŸ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth โŸŸ 6297143586 โŸŸ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth โŸŸ 6297143586 โŸŸ Call Me For Genuine Se...
ย 
Generative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTGenerative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPT
ย 
Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . ppt
ย 
Call Girls In Bangalore โ˜Ž 7737669865 ๐Ÿฅต Book Your One night Stand
Call Girls In Bangalore โ˜Ž 7737669865 ๐Ÿฅต Book Your One night StandCall Girls In Bangalore โ˜Ž 7737669865 ๐Ÿฅต Book Your One night Stand
Call Girls In Bangalore โ˜Ž 7737669865 ๐Ÿฅต Book Your One night Stand
ย 
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
ย 
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
ย 
Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)
ย 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdf
ย 
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
ย 
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
ย 
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ย 
NFPA 5000 2024 standard .
NFPA 5000 2024 standard                                  .NFPA 5000 2024 standard                                  .
NFPA 5000 2024 standard .
ย 
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
ย 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdf
ย 
Roadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and RoutesRoadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and Routes
ย 
Online banking management system project.pdf
Online banking management system project.pdfOnline banking management system project.pdf
Online banking management system project.pdf
ย 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
ย 
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptxBSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
ย 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.ppt
ย 
PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELL
PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELLPVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELL
PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELL
ย 

Chapter 4 Duality & sensitivity analysis hand out last .pdf

  • 1. 4/28/2020 Duality and Sensitivity Analysis Compiled by Tsegay Berhe [ MSc in production engineering & Management ] MEKELLE UNVERISTY
  • 2. COMPILED BY TSEGAY BERHE [ MSC IN PRODUCTION ENGINEERING & MANAGEMENT ] 1 Contents 4. Duality and Sensitivity Analysis .............................................................................................. 2 4.1. Primal-dual relationship;................................................................................................. 2 4.2. Rules for Constructing the Dual Problem........................................................................ 3 4.3. Economic interpretation of duality .................................................................................. 4 4.4. Simple way of solving dual problems [optimal Dual solution]........................................ 6 4.5. Post-optimal [Simplex method sensitivity Analysis] ........................................................ 8
  • 3. COMPILED BY TSEGAY BERHE [ MSC IN PRODUCTION ENGINEERING & MANAGEMENT ] 2 4. Duality and Sensitivity Analysis The dual problem is defined systematically from the primal (or original) LP model. The two problems are closely related, in the sense that the optimal solution of one problem automatically provides the optimal solution to the other. As such, it may be advantageous computationally in some cases to determine the primal solution by solving the dual. The term 'Duality' implies that every linear programming problem, whether of maximization or minimization, is associated with another linear programming problem based on the same data which is called dual. The primal problem is dealing with determining the number of units of the products, time etc. While the dual problem deals with determining the unit worth (price) of the resource. When taking the dual of a given LP, we refer to the given LP as the primal. If the primal is a max problem, then the dual will be a min problem, and vice versa. For convenience, we define the variables for the max problem to be Z, X1, X2, ..., Xn and the variables for the min problem to be W, Y1, Y2, . . ., YM. To find the dual to a max problem in which all the variables are required to be nonnegative and all the constraints are โ‰ค constraints (called normal max problem) the problem may be written as: 4.1. Primal-dual relationship; Primal Dual problem ๐‘‚๐‘๐‘ก๐‘–๐‘š๐‘–๐‘ง๐‘’(๐‘€๐‘Ž๐‘ฅ ๐‘œ๐‘Ÿ ๐‘€๐‘–๐‘›), ๐‘ = โˆ‘ ๐ถ๐‘– โˆ— ๐‘‹๐‘– ๐‘› ๐‘– ๐‘‚๐‘๐‘ก๐‘–๐‘š๐‘–๐‘ง๐‘’(๐‘€๐‘–๐‘›๐‘– ๐‘œ๐‘Ÿ ๐‘€๐‘Ž๐‘ฅ), ๐‘Š = โˆ‘ ๐‘๐‘– โˆ— ๐‘ฆ๐‘– ๐‘› ๐‘– ๐‘†. ๐‘ก { ๐‘Ž11๐‘‹1 + ๐‘Ž12๐‘‹2 + . . . + ๐‘Ž1๐‘›๐‘‹๐‘› (โ‰ค, =, โ‰ฅ)๐‘1 ๐‘Ž21๐‘‹1 + ๐‘Ž22๐‘‹2 + . . . + ๐‘Ž2๐‘›๐‘‹๐‘› (โ‰ค, =, โ‰ฅ)๐‘2 ๐‘Ž31๐‘‹1 + ๐‘Ž32๐‘‹2 + . . . + ๐‘Ž3๐‘›๐‘‹๐‘› (โ‰ค, =, โ‰ฅ)๐‘3 . . . . ๐‘Ž๐‘š1๐‘‹1 + ๐‘Ž๐‘š2๐‘‹2 + . . . + ๐‘Ž๐‘š๐‘›๐‘‹๐‘› (โ‰ค, =, โ‰ฅ)๐‘๐‘š ๐‘†. ๐‘ก { ๐‘Ž11๐‘Œ1 + ๐‘Ž21๐‘Œ2 + . . . + ๐‘Ž๐‘š1๐‘Œ๐‘š (โ‰ฅ, =, โ‰ค)๐ถ1 ๐‘Ž12๐‘Œ1 + ๐‘Ž22๐‘Œ2 + . . . + ๐‘Ž๐‘š๐‘›๐‘Œ๐‘š (โ‰ฅ, =, โ‰ค)๐ถ2 ๐‘Ž13๐‘Œ1 + ๐‘Ž23๐‘‹2 + . . . + ๐‘Ž๐‘š๐‘›๐‘‹๐‘› (โ‰ฅ, =, โ‰ค)๐ถ3 . . . . ๐‘Ž1๐‘›๐‘Œ1 + ๐‘Ž2๐‘›๐‘Œ2 + . . . + ๐‘Ž๐‘š๐‘›๐‘Œ๐‘› (โ‰ฅ, =, โ‰ค)๐ถ๐‘š The following is a summary of how the dual is constructed from the (equation form) primal: I. A dual variable is assigned to each primal (equation) constraint and a dual constraint is assigned to each primal variable. II. The right-hand sides of the primal constraints provide the coefficients of the dual objective function. Table 4.1
  • 4. COMPILED BY TSEGAY BERHE [ MSC IN PRODUCTION ENGINEERING & MANAGEMENT ] 3 Rules for constructing the dual problem Primal problem objective Dual problem objective Constraint type Variable sign Maximization Minimization โ‰ฅ Unrestricted Minimization Maximization โ‰ค Unrestricted โœ“ All primal constraints are equations with nonnegative right-hand sides, and all the variables are nonnegative. โœ“ A convenient way to remember the constraint type (โ‰ค or โ‰ฅ) in the dual is that if the dual objective is a โ€œpointing-downโ€ minimization, then all the constraints are โ€œpointing-upโ€ (โ‰ฅ) inequalities. The opposite applies when the dual objective is maximization. III. The dual constraint corresponding to a primal variable is constructed by transposing the primal variable column into a row with; a. the primal objective coefficient becoming the dual right-hand side and b. the remaining constraint coefficients comprising the dual left-hand side coefficients. IV. The sense of optimization, direction of inequalities, and the signs of the variables in the dual are governed by the rules in Table 4.1 4.2. Rules for Constructing the Dual Problem Maximization Problem Minimization Problem constraints Variables โ‰ฅ โ‰ค โ‰ค โ‰ฅ = Unrestricted Variables constraints โ‰ฅ โ‰ฅ โ‰ค โ‰ค Unrestricted = Primal Dual Objective is minimization Objective is maximization & vice versa โ‰ฅ type constraints โ‰ค type constraints Number of columns Number of rows Number of rows Number of columns Number of decision variables Number of constraints Number of constraints Number of decision variables Coefficient of objective function RHS value RHS values Coefficient of objective function
  • 5. COMPILED BY TSEGAY BERHE [ MSC IN PRODUCTION ENGINEERING & MANAGEMENT ] 4 Example Finding the Dual of a Normal Max /Min Primal Dual 1. ๐‘€๐‘Ž๐‘ฅ ๐‘ = 60๐‘‹1 + 30๐‘‹2 + 20๐‘‹3 ๐‘†. ๐‘ก { 8๐‘‹1 + 6๐‘‹2 + ๐‘‹3 โ‰ค 48 4๐‘‹1 + 2๐‘‹2 + 1.5๐‘‹3 โ‰ค 20 2๐‘‹1 + 1.5๐‘‹2 + 0.5๐‘‹3 โ‰ค 8 ๐‘‹๐‘– โ‰ฅ 0 ๐‘€๐‘–๐‘› ๐‘Š = 48๐‘Œ1 + 20๐‘Œ2 + 8๐‘Œ3 ๐‘†. ๐‘ก { 8๐‘Œ1 + 4๐‘Œ2 + 2๐‘Œ3 โ‰ฅ 60 6๐‘Œ1 + 2๐‘Œ2 + 1.5๐‘Œ3 โ‰ฅ 30 ๐‘Œ1 + 1.5๐‘Œ2 + 0.5๐‘Œ3 โ‰ฅ 20 ๐‘Œ๐‘– โ‰ฅ 0 2. ๐‘€๐‘Ž๐‘ฅ ๐‘ = 5๐‘‹1 + 6๐‘‹2 ๐‘†. ๐‘ก { 3๐‘‹1 + 2๐‘‹2 โ‰ค 120 4๐‘‹1 + 6๐‘‹2 โ‰ค 260 ๐‘‹1, ๐‘‹2 โ‰ฅ 0 ๐‘€๐‘–๐‘› ๐‘ค = 120๐‘Œ1 + 260๐‘Œ2 ๐‘†. ๐‘ก { 3๐‘Œ1 + 4๐‘Œ2 โ‰ฅ 4 2๐‘Œ1 + 6๐‘Œ2 โ‰ฅ 6 ๐‘Œ1, ๐‘Œ2 โ‰ฅ 0 3. ๐‘€๐‘Ž๐‘ฅ ๐‘ = ๐‘‹1 โˆ’ 2๐‘‹2+3๐‘‹3 ๐‘†. ๐‘ก { โˆ’2๐‘‹1 + ๐‘‹2 + 3๐‘‹3 = 2 2๐‘‹1 + 3๐‘‹2 + 4๐‘‹2 = 1 ๐‘‹๐‘– โ‰ฅ 0 ๐‘€๐‘–๐‘› ๐‘ค = 2๐‘Œ1 + ๐‘Œ2 ๐‘†. ๐‘ก { โˆ’2๐‘Œ1 + 2๐‘Œ2 โ‰ฅ 1 ๐‘Œ1 + 3๐‘Œ2 โ‰ฅ โˆ’2 3๐‘Œ1 + 4๐‘Œ2 โ‰ฅ 3 ๐‘Œ1, ๐‘Œ2 ๐‘Ž๐‘Ÿ๐‘’ ๐‘ข๐‘›๐‘Ÿ๐‘’๐‘ ๐‘ก๐‘Ÿ๐‘–๐‘๐‘ก๐‘’๐‘‘ ๐‘–๐‘› ๐‘ ๐‘–๐‘”๐‘› 4. ๐‘€๐‘–๐‘› ๐‘ค = ๐‘‹1 โˆ’ 3๐‘‹2 โˆ’ 2๐‘‹3 ๐‘†. ๐‘ก { 3๐‘‹1 โˆ’ ๐‘‹2 + 2๐‘‹3 โ‰ค 7 2๐‘‹1 โˆ’ 4๐‘‹2 โ‰ฅ 12 โˆ’4๐‘‹1 + 3๐‘‹2 + 8๐‘‹3 = 10 ๐‘‹1, ๐‘‹2 โ‰ฅ 0 ๐‘Ž๐‘›๐‘‘ ๐‘‹3 = ๐‘ข๐‘›๐‘Ÿ๐‘’๐‘ ๐‘ก๐‘Ÿ๐‘–๐‘๐‘ก๐‘’๐‘‘ ๐‘–๐‘› ๐‘ ๐‘–๐‘”๐‘› ๐‘€๐‘Ž๐‘ฅ ๐‘ = 7๐‘Œ1 + 12๐‘Œ2 + 10๐‘Œ3 ๐‘†. ๐‘ก { 3๐‘Œ1 + 2๐‘Œ2 โˆ’ 4๐‘Œ3 โ‰ฅ 2 โˆ’๐‘Œ1 โˆ’ 4๐‘Œ2 + 3๐‘Œ3 โ‰ค 1 2๐‘Œ1 + 8๐‘Œ3 = 2 ๐‘Œ๐‘– โ‰ฅ 0 4.3. Economic interpretation of duality Example: A Dakota work shop want to produce desk, table, and chair with the available resource of: Timber, finishing hours and carpenter hours as revised in the table below. The selling price and available resources are also revised in the table. Formulate this problem as Primal and Dual Problem? [ Amare Matebu Kassa (Dr.-Ing)] Resource Desk Table Chair Availability Timber 8 board ft 6 board ft 1 board ft 48 boards fit Finishing 4 hours 2 hours 1.5hours 20 hours Carpentry 2hours 1.5hours 0.5 hours 8 hours Selling price $60 $30 $20
  • 6. COMPILED BY TSEGAY BERHE [ MSC IN PRODUCTION ENGINEERING & MANAGEMENT ] 5 Interpreting the Dual of the Dakota (Max) Problem; The primal; ๐‘€๐‘Ž๐‘ฅ ๐‘ = 60๐‘‹1 + 30๐‘‹2 + 20๐‘‹3 8๐‘‹1 + 6๐‘‹2 + ๐‘‹3 โ‰ค 48 (Timber constriants) 4๐‘‹1 + 2๐‘‹2 + 1.5๐‘‹3 โ‰ค 20(Finishing constriants) 2๐‘‹1 + 1.5๐‘‹2 + 0.5๐‘‹3 โ‰ค 8 (Carpentry constriants) ๐‘‹1, ๐‘‹2, ๐‘‹3 โ‰ฅ 0 The dual; Min w = 48Y1 + 20Y2 + 8Y3 8Y1 + 6Y2 + 2Y3 โ‰ฅ 60 (Desk constriants) 6Y1 + 2Y2 + 1.5Y3 โ‰ฅ 30(Table constriants) Y1 + 1.5Y2 + 0.5Y3 โ‰ฅ 8 (Chair constriants) Y1, Y2, Y3 โ‰ฅ 0 The first dual constraint is associated with desks, the second with tables, and the third with chairs. Decision variable y1 is associated with Timber, y2 with finishing hours, and y3 with carpentry hours. Suppose an entrepreneur wants to purchase all of Dakotaโ€™s resources. The entrepreneur must determine the price he or she is willing to pay for a unit of each of Dakotaโ€™s resources. To determine these prices, we define: โ€ข y1 = price paid for 1 boards ft of lumber โ€ข y2 = price paid for 1 finishing hour โ€ข y3 = price paid for 1 carpentry hour The resource prices y1, y2, and y3 should be determined by solving the Dakota dual. The total price that should be paid for these resources is 48 y1 + 20y2 + 8y3. Since the cost of purchasing the resources is to minimized: Min w = 48y1 + 20y2 + 8y3 is the objective function for Dakota dual. In setting resource prices, the prices must be high enough to induce Dakota to sell. For example, the entrepreneur must offer Dakota at least $60 for a combination of resources that includes 8 board feet of timber, 4 finishing hours, and 2 carpentry hours because Dakota could, if it wished, use the resources to produce a desk that could be sold for $60. Since the entrepreneur is offering 8y1 + 4y2 + 2y3 for the resources used to produce a desk, he or she must choose y1, y2, and y3 to satisfy: 8y1 + 4y2 + 2y3 โ‰ฅ 60. Similar reasoning shows that at least $30 must be paid for the resources used to produce a table. Thus y1, y2, and y3 must satisfy: 6y1 + 2y2 + 1.5y3 โ‰ฅ 30 Likewise, at least $20 must be paid for the combination of resources used to produce one chair. Thus y1, y2, and y3 must satisfy: y1 + 1.5y2 + 0.5y3 โ‰ฅ 20. The solution to the Dakota dual yields prices for timber, finishing hours, and carpentry hours.
  • 7. COMPILED BY TSEGAY BERHE [ MSC IN PRODUCTION ENGINEERING & MANAGEMENT ] 6 4.4. Simple way of solving dual problems [optimal Dual solution] The primal and dual solutions are closely related, in the sense that the optimal solution of either problem directly yields the optimal solution to the other, as is explained subsequently. Thus, in an LP model in which the number of variables is considerably smaller than the number of constraints, computational savings may be realized by solving the dual because the amount of computations associated with determining the inverse matrix primarily increases with the number of constraints. Notice that the rule addresses only the amount of computations in each iteration but says nothing about the total number of iterations needed to solve each problem. This section provides two methods for determining the dual values. Method 1. ( ๐‘‚๐‘๐‘ก๐‘–๐‘š๐‘Ž๐‘™ ๐‘ฃ๐‘Ž๐‘™๐‘ข๐‘’ ๐‘œ๐‘“ ๐‘‘๐‘ข๐‘Ž๐‘™ ๐‘ฃ๐‘Ž๐‘Ÿ๐‘Ž๐‘–๐‘๐‘™๐‘’ ๐‘Œ๐‘– ) = ( ๐‘‚๐‘๐‘ก๐‘–๐‘š๐‘Ž๐‘™ ๐‘๐‘Ÿ๐‘–๐‘š๐‘Ž๐‘™ ๐‘ ๐‘๐‘œ๐‘’๐‘“๐‘“๐‘–๐‘๐‘–๐‘’๐‘›๐‘ก ๐‘œ๐‘“ ๐‘ ๐‘ก๐‘Ž๐‘Ÿ๐‘ก๐‘–๐‘›๐‘” ๐‘๐‘Ž๐‘ ๐‘–๐‘ ๐‘ฃ๐‘Ž๐‘Ÿ๐‘–๐‘Ž๐‘๐‘™๐‘’ ๐‘‹๐‘– + ๐‘œ๐‘Ÿ๐‘”๐‘–๐‘›๐‘Ž๐‘™ ๐‘œ๐‘๐‘—๐‘’๐‘๐‘ก๐‘–๐‘ฃ๐‘’ ๐‘๐‘œ๐‘’๐‘“๐‘“๐‘–๐‘๐‘–๐‘’๐‘›๐‘ก ๐‘œ๐‘“ ๐‘‹๐‘– ) Example 1 ๐‘€๐‘Ž๐‘ฅ ๐‘ = 2๐‘‹1 + 2๐‘‹2 + 5๐‘‹3 + 4๐‘‹4 S. t ๐‘‹1 + 3๐‘‹2 + 4๐‘‹3 + 3๐‘‹4 โ‰ค 10 4๐‘‹1 + 2๐‘‹2 + 6๐‘‹3 + 8๐‘‹4 โ‰ค 25 ( ๐‘‚๐‘๐‘ก๐‘–๐‘š๐‘Ž๐‘™ ๐‘ฃ๐‘Ž๐‘™๐‘ข๐‘’ ๐‘œ๐‘“ ๐‘‘๐‘ข๐‘Ž๐‘™ ๐‘ฃ๐‘Ž๐‘Ÿ๐‘Ž๐‘–๐‘๐‘™๐‘’ ๐‘Œ1 ) = ( 4 5 + 0 ) = 4 5 ( ๐‘‚๐‘๐‘ก๐‘–๐‘š๐‘Ž๐‘™ ๐‘ฃ๐‘Ž๐‘™๐‘ข๐‘’ ๐‘œ๐‘“ ๐‘‘๐‘ข๐‘Ž๐‘™ ๐‘ฃ๐‘Ž๐‘Ÿ๐‘Ž๐‘–๐‘๐‘™๐‘’ ๐‘Œ2 ) = 3 10 + 0 = 3 10 Method 2 ( ๐‘œ๐‘๐‘ก๐‘–๐‘š๐‘Ž๐‘™ ๐‘ฃ๐‘Ž๐‘™๐‘ข๐‘’ ๐‘œ๐‘“ ๐‘‘๐‘ข๐‘Ž๐‘™ ๐‘ฃ๐‘Ž๐‘Ÿ๐‘–๐‘Ž๐‘๐‘™๐‘’๐‘  ) = ( ๐‘…๐‘œ๐‘ค ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ ๐‘œ๐‘“ ๐‘œ๐‘Ÿ๐‘”๐‘–๐‘›๐‘Ž๐‘™ ๐‘œ๐‘๐‘—๐‘’๐‘๐‘ก๐‘–๐‘ฃ๐‘’ ๐‘๐‘œ๐‘’๐‘“๐‘“๐‘–๐‘๐‘–๐‘’๐‘›๐‘ก๐‘  ๐‘œ๐‘“ ๐‘œ๐‘๐‘ก๐‘–๐‘š๐‘Ž๐‘™ ๐‘๐‘Ÿ๐‘–๐‘š๐‘Ž๐‘™ ๐‘๐‘Ž๐‘ ๐‘–๐‘ ๐‘ฃ๐‘Ž๐‘Ÿ๐‘–๐‘Ž๐‘๐‘™๐‘’๐‘  ) โˆ— ( ๐‘œ๐‘๐‘ก๐‘–๐‘š๐‘Ž๐‘™ ๐‘๐‘Ÿ๐‘–๐‘š๐‘Ž๐‘™ ๐‘–๐‘›๐‘ฃ๐‘’๐‘Ÿ๐‘ ๐‘’ ) Cj 2 2 5 4 0 0 C.B.V B.V X1 X2 X3 X4 S1 S2 solution 5 X3 0 1 1 2/5 2/5 - 1/10 1.5 2 X1 1 -1 0 1.4 - 3/5 2/5 4 Zj 2 3 5 24/5 4/5 3/10 Zj-Cj 0 1 0 4/5 4/5 3/10 Optimal table B -1
  • 8. COMPILED BY TSEGAY BERHE [ MSC IN PRODUCTION ENGINEERING & MANAGEMENT ] 7 (๐‘Œ1 ๐‘Œ2) = (5 2) โˆ— ( 2 5 โˆ’ 1 10 โˆ’ 3 5 2 5 ) = (5 โˆ— 2 5 โˆ’ 3 5 โˆ— 2 5 โˆ— (โˆ’ 1 10 ) + 2 5 โˆ— 2) = ( 4 5 3 10 ) ๐‘€๐‘Ž๐‘ฅ ๐‘ = ๐‘€๐‘–๐‘› ๐‘ค 2๐‘‹1 + 2๐‘‹2 + 5๐‘‹3 + 4๐‘‹4 = 10๐‘Œ1 + 25๐‘Œ2 2 โˆ— 4 + 2 โˆ— 0 + 5 โˆ— 1.5 + 4 โˆ— 0 = 10 โˆ— 0.9 + 25 โˆ— 0.3 = ๐Ÿ๐Ÿ“. ๐Ÿ“ Example 2 Maximize 22X1 + 6X2 + 2X3 Subject to: 10X1 + 2X2 + X3 โ‰ค 100 7X1 + 3X2 + 2X3 โ‰ค 72 2X1 + 4X2 + X3 โ‰ค 80 X1, X2, X3 โ‰ฅ 0 Max Z=22X1 + 6X2 + 2X3+0S1+0S2+0S3 Subject to: 10X1 + 2X2 + X3 + S1= 100 7X1 + 3X2 + 2X3+ S2= 72 2X1 + 4X2 + X3+ S3 = 80 X1, X2, X3, S1, S2, S3 โ‰ฅ 0 Optimal table Cj 22 6 2 0 0 0 CBV Basic Variable X1 X2 X3 S1 S2 S3 Basic solution Min Ratio 22 X1 1 0 -0.06 0.19 -0.13 0 9.75 6 X2 0 1 0.81 -0.44 0.63 0 1.25 0 S3 0 0 -2.13 1.38 -2.25 1 55.5 Zj 22 6 3.5 1.5 1 0 222 Cj-Zj 0 0 -1.5 -1.5 -1 0 ( ๐‘‚๐‘๐‘ก๐‘–๐‘š๐‘Ž๐‘™ ๐‘ฃ๐‘Ž๐‘™๐‘ข๐‘’ ๐‘œ๐‘“ ๐‘‘๐‘ข๐‘Ž๐‘™ ๐‘ฃ๐‘Ž๐‘Ÿ๐‘Ž๐‘–๐‘๐‘™๐‘’ ๐‘Œ1 ) = (1.54 + 0 ) = 1.5
  • 9. COMPILED BY TSEGAY BERHE [ MSC IN PRODUCTION ENGINEERING & MANAGEMENT ] 8 ( ๐‘‚๐‘๐‘ก๐‘–๐‘š๐‘Ž๐‘™ ๐‘ฃ๐‘Ž๐‘™๐‘ข๐‘’ ๐‘œ๐‘“ ๐‘‘๐‘ข๐‘Ž๐‘™ ๐‘ฃ๐‘Ž๐‘Ÿ๐‘Ž๐‘–๐‘๐‘™๐‘’ ๐‘Œ2 ) = 1 + 0 = 1 ( ๐‘‚๐‘๐‘ก๐‘–๐‘š๐‘Ž๐‘™ ๐‘ฃ๐‘Ž๐‘™๐‘ข๐‘’ ๐‘œ๐‘“ ๐‘‘๐‘ข๐‘Ž๐‘™ ๐‘ฃ๐‘Ž๐‘Ÿ๐‘Ž๐‘–๐‘๐‘™๐‘’ ๐‘Œ3 ) = 0 + 0 = 0 Method 2; ( ๐‘œ๐‘๐‘ก๐‘–๐‘š๐‘Ž๐‘™ ๐‘ฃ๐‘Ž๐‘™๐‘ข๐‘’ ๐‘œ๐‘“ ๐‘‘๐‘ข๐‘Ž๐‘™ ๐‘ฃ๐‘Ž๐‘Ÿ๐‘–๐‘Ž๐‘๐‘™๐‘’๐‘  ) = ( ๐‘…๐‘œ๐‘ค ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ ๐‘œ๐‘“ ๐‘œ๐‘Ÿ๐‘”๐‘–๐‘›๐‘Ž๐‘™ ๐‘œ๐‘๐‘—๐‘’๐‘๐‘ก๐‘–๐‘ฃ๐‘’ ๐‘๐‘œ๐‘’๐‘“๐‘“๐‘–๐‘๐‘–๐‘’๐‘›๐‘ก๐‘  ๐‘œ๐‘“ ๐‘œ๐‘๐‘ก๐‘–๐‘š๐‘Ž๐‘™ ๐‘๐‘Ÿ๐‘–๐‘š๐‘Ž๐‘™ ๐‘๐‘Ž๐‘ ๐‘–๐‘ ๐‘ฃ๐‘Ž๐‘Ÿ๐‘–๐‘Ž๐‘๐‘™๐‘’๐‘  ) โˆ— ( ๐‘œ๐‘๐‘ก๐‘–๐‘š๐‘Ž๐‘™ ๐‘๐‘Ÿ๐‘–๐‘š๐‘Ž๐‘™ ๐‘–๐‘›๐‘ฃ๐‘’๐‘Ÿ๐‘ ๐‘’ ) (๐‘Œ1 ๐‘Œ2 ๐‘Œ3) = (๐‘‹1 ๐‘‹2 ๐‘†3) โˆ— ( 0.19 โˆ’0.13 0 โˆ’0.44 0.63 0 1.38 โˆ’2.25 1 ) (๐‘Œ1 ๐‘Œ2 ๐‘Œ3) = (22 6 0) โˆ— ( 0.19 โˆ’0.13 0 โˆ’0.44 0.63 0 1.38 โˆ’2.25 1 ) (๐‘Œ1 ๐‘Œ2 ๐‘Œ3) = (1.5 1 0) Max z=Min W 222=100*1.5+72*1+0*80 222=222 4.5. Post-optimal [Simplex method sensitivity Analysis] While solving a linear programming problem for optimal solution, we assume that: a. Technology is fixed, b. Fixed prices, c. Fixed levels of resources or requirements, d. The coefficients of variables in structural constraints (i.e. time required by a product on a particular resource) are fixed, e. profit contribution of the product will not vary during the planning period. The condition in the real world however, might be different from those that are assumed by the model. It is, therefore, desirable to determine how sensitive the optimal solution is to different types of changes in the problem data and parameters. Why we use sensitivity analysis? (a) Sensitivity analysis allow us to determine how "sensitive" the optimal solution is to changes in data values. (b) Sensitivity analysis is important to the manager who must operate in a dynamic environment with imprecise estimates of the coefficients. (c) Sensitivity analysis is used to determine how the optimal solution is affected by changes, within specified ranges, in: i. the objective function coefficients (cj ), which include: โ– Coefficients of basic variables.
  • 10. COMPILED BY TSEGAY BERHE [ MSC IN PRODUCTION ENGINEERING & MANAGEMENT ] 9 โ– Coefficients of non-basic variables. ii. the right-hand side (RHS) values (bi ), (i.e. resource or requirement levels). iii. Change in the consumption rate (Technological coefficients) The above changes may result in one of the following three cases Case I. The optimal solution remains unchanged, that is the basic variables and their values remain essentially unchanged. Case II. The basic variables remain the same but their values are changed. (d) Case III. The basic solution changes completely. ๐‘‚๐‘๐‘—๐‘’๐‘๐‘ก๐‘–๐‘ฃ๐‘’ ๐‘“๐‘ข๐‘›๐‘๐‘ก๐‘–๐‘œ๐‘›(๐‘€๐‘Ž๐‘ฅ๐‘–๐‘š๐‘–๐‘ง๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘Ÿ ๐‘€๐‘–๐‘›๐‘–๐‘š๐‘–๐‘ง๐‘Ž๐‘ก๐‘–๐‘œ๐‘›), ๐‘ = ๐ถ1๐‘‹1+๐ถ2๐‘‹2+ . . . . . . . . +๐ถ๐‘›๐‘‹๐‘› ๐‘†. ๐‘ก { ๐‘Ž11๐‘‹1 + ๐‘Ž12๐‘‹2 + . . . + ๐‘Ž1๐‘›๐‘‹๐‘› (โ‰ค, =, โ‰ฅ)๐‘1 ๐‘Ž21๐‘‹1 + ๐‘Ž22๐‘‹2 + . . . + ๐‘Ž2๐‘›๐‘‹๐‘› (โ‰ค, =, โ‰ฅ)๐‘2 ๐‘Ž31๐‘‹1 + ๐‘Ž32๐‘‹2 + . . . + ๐‘Ž3๐‘›๐‘‹๐‘› (โ‰ค, =, โ‰ฅ)๐‘3 . . . ๐‘Ž๐‘š1๐‘‹1 + ๐‘Ž๐‘š2๐‘‹2 + . . . + ๐‘Ž๐‘š๐‘›๐‘‹๐‘› (โ‰ค, =, โ‰ฅ)๐‘๐‘š ๐‘‹1, ๐‘‹2, , , ๐‘‹๐‘› โ‰ฅ 0 โžข Sensitivity of the optimal solution to the changes in the available resources, (i.e. the right hand side RHS of the constraints bij) โžข Sensitivity of the optimal solution to the changes in the unit profit or unit cost, (i.e. the coefficient of the objective function Cij) โžข Change in the consumption rate (Technological coefficients) The right hand side of the constraint denotes present level of availability of resources (or requirement in minimization problems). When this is increased or decreased, it will have effect on the objective function and it may also change the basic variable in the optimal solution. Example 1 ๐‘€๐‘Ž๐‘ฅ ๐‘ = 2๐‘‹1 + 2๐‘‹2 + 5๐‘‹3 + 4๐‘‹4 S. t ๐‘‹1 + 3๐‘‹2 + 4๐‘‹3 + 3๐‘‹4 โ‰ค 10, ๐‘€๐‘Ž๐‘› โˆ’ โ„Ž๐‘œ๐‘ข๐‘Ÿ๐‘  ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ÿ๐‘Ž๐‘–๐‘›๐‘ก๐‘  4๐‘‹1 + 2๐‘‹2 + 6๐‘‹3 + 8๐‘‹4 โ‰ค 25, ๐‘€๐‘Ž๐‘โ„Ž๐‘–๐‘›๐‘’ โ„Ž๐‘œ๐‘ข๐‘Ÿ๐‘  ๐‘‹ij โ‰ฅ 0
  • 11. COMPILED BY TSEGAY BERHE [ MSC IN PRODUCTION ENGINEERING & MANAGEMENT ] 10 Optimal table Cj 2 2 5 4 0 0 C.B.V B.V X1 X2 X3 X4 S1 S2 solution 5 X3 0 1 1 2/5 2/5 - 1/10 3/2 2 X1 1 -1 0 7/5 - 3/5 2/5 4 Zj 2 3 5 24/5 4/5 3/10 Zj-Cj 0 1 0 4/5 4/5 3/10 N.B. From this optimal table โžข {X1, X3} are Basic variables (B.V) because there are in the solution โžข {X2, X3} are Non Basic variables (N.B.V) because there are not in the solution Solution X1 = 4; X2 = 0; X3 = 1.5; S1 = 0; S2 = 0; ) Z = 15.5 โžข Man-hours are completely utilized hence S1 = 0. Machine hours are completely utilized, hence S2 = 0 I. The shadow price of the man-hours resource is $4/5. Hence it means to say that as we go on increasing one hour of man-hour resource, the objective function will go on increasing by $4/5 per hour. II. Similarly, the shadow price per unit of machine hour is $3/10. Similar reasoning can be given, that is every unit increase in machine hour resource will increase the objective function by $3/10. If the management want to increase the capacity of both man-hours and machine-hours, which one should receive priority? โ€ข The answer is man-hours, since it is shadow price is greater than the shadow price of machine-hours. If the management considers to increase man-hours by 10 hours i.e., from 10 hours to 20 hours and machine hours by 20 hours i.e., 25 hours to 45 hours will the optimal solution remain unchanged? Use example 1 for more illustration 1. Change in the coefficient of objective function (Ci) Case 1;Change in the coefficient of objective Non basic variable(N.B.V) ฮ” Coeff of Objective. Function Case 2;Change in the coefficient of objective basic variable(B.V) Case 1; Change in the coefficient of objective Non basic variable (N.B.V) a. Change in the coefficient of objective of X2 [C2]
  • 12. COMPILED BY TSEGAY BERHE [ MSC IN PRODUCTION ENGINEERING & MANAGEMENT ] 11 2+ฮ”2 C2 2-ฮ”2 If the coefficient of X2 is changed then only Z2-C2 will change be changed and the other Zj-Cj along the column are still constant. In addition, in order to do the sensitivity analysis, the current optimal table should be optimal. So the optimal table is still optimal if Z2-C2 โ‰ฅ0. Case 1: Then if C2 =2+ฮ”2 [Maximum Increment] then ๐‘2 โˆ’ ๐ถ2 โ‰ฅ 0 ๐Ÿ‘ โˆ’ [๐Ÿ + ๐›ฅ2] โ‰ฅ 0 ๐Ÿ โˆ’ ๐›ฅ2 โ‰ฅ 0 ๐œŸ๐Ÿ = ๐Ÿ ๐‘–๐‘“ ๐›ฅ2 โ‰ฅ 1, ๐‘กโ„Ž๐‘’๐‘› ๐‘2 โˆ’ ๐ถ2 ๐‘ค๐‘–๐‘™๐‘™ ๐‘๐‘’ ๐‘›๐‘’๐‘”๐‘Ž๐‘ก๐‘–๐‘ฃ๐‘’, ๐‘กโ„Ž๐‘–๐‘  ๐‘–๐‘›๐‘‘๐‘–๐‘๐‘Ž๐‘ก๐‘’๐‘  ๐‘กโ„Ž๐‘’ ๐‘“๐‘–๐‘›๐‘Ž๐‘™ ๐‘ก๐‘Ž๐‘๐‘™๐‘’ ๐‘–๐‘  ๐‘›๐‘œ๐‘ก ๐‘œ๐‘๐‘ก๐‘–๐‘š๐‘Ž๐‘™ ๐ถ2 = ๐Ÿ + ๐›ฅ2 = 2 + 1 = 3 , ๐‘กโ„Ž๐‘–๐‘  ๐‘–๐‘  ๐‘กโ„Ž๐‘’ ๐‘š๐‘Ž๐‘ฅ๐‘–๐‘š๐‘ข๐‘š ๐‘–๐‘›๐‘๐‘Ÿ๐‘’๐‘š๐‘’๐‘›๐‘ก Case 2: Then if C2 =2-ฮ”2 ๐‘2 โˆ’ ๐ถ2 โ‰ฅ 0 ๐Ÿ‘ โˆ’ [๐Ÿ โˆ’ ๐›ฅ2] โ‰ฅ 0 ๐Ÿ + ๐›ฅ2 โ‰ฅ 0 ๐›ฅ2 โ‰ฅ โˆ’1, ๐ผ๐‘› ๐‘œ๐‘Ÿ๐‘‘๐‘’๐‘Ÿ ๐‘ก๐‘œ ๐‘‘๐‘œ ๐‘กโ„Ž๐‘’ ๐‘ ๐‘’๐‘›๐‘ ๐‘ก๐‘–๐‘ฃ๐‘–๐‘ก๐‘ฆ ๐‘Ž๐‘›๐‘Ž๐‘™๐‘ฆ๐‘ ๐‘–๐‘  ๐‘กโ„Ž๐‘’ ๐‘œ๐‘๐‘ก๐‘–๐‘š๐‘Ž๐‘™ ๐‘ก๐‘Ž๐‘๐‘™๐‘’ ๐‘ โ„Ž๐‘œ๐‘ข๐‘™๐‘‘ ๐‘๐‘’ ๐‘Ÿ๐‘’๐‘š๐‘Ž๐‘–๐‘› ๐‘œ๐‘๐‘ก๐‘–๐‘š๐‘Ž๐‘™, ๐‘กโ„Ž๐‘’๐‘› ๐›ฅ2 = โˆž Then ๐‘ช๐Ÿ = ๐Ÿ โˆ’ โˆž = โˆ’โˆž Then the range of optimality for the coefficient of non-basic variable X2 which is C2. โˆ’โˆž โ‰ค ๐‘ช๐Ÿ โ‰ค ๐Ÿ‘ b. Change in the coefficient of objective of X4 [C4] 4+ฮ”4 C4 4-ฮ”4 Case 1: Then if C2 =4+ฮ”4 [Maximum Increment]
  • 13. COMPILED BY TSEGAY BERHE [ MSC IN PRODUCTION ENGINEERING & MANAGEMENT ] 12 then ๐‘4 โˆ’ ๐ถ4 โ‰ฅ 0 ๐Ÿ๐Ÿ’ ๐Ÿ“ โˆ’ [๐Ÿ’ + ๐›ฅ4] โ‰ฅ 0 ๐Ÿ’ ๐Ÿ“ โˆ’ ๐›ฅ4 โ‰ฅ 0 ๐œŸ๐Ÿ’ = ๐Ÿ’ ๐Ÿ“ ๐‘–๐‘“ ๐›ฅ24 โ‰ฅ 4 5 , ๐‘กโ„Ž๐‘’๐‘› ๐‘4 โˆ’ ๐ถ4 ๐‘ค๐‘–๐‘™๐‘™ ๐‘๐‘’ ๐‘›๐‘’๐‘”๐‘Ž๐‘ก๐‘–๐‘ฃ๐‘’, ๐‘กโ„Ž๐‘–๐‘  ๐‘–๐‘›๐‘‘๐‘–๐‘๐‘Ž๐‘ก๐‘’๐‘  ๐‘กโ„Ž๐‘’ ๐‘“๐‘–๐‘›๐‘Ž๐‘™ ๐‘ก๐‘Ž๐‘๐‘™๐‘’ ๐‘–๐‘  ๐‘›๐‘œ๐‘ก ๐‘œ๐‘๐‘ก๐‘–๐‘š๐‘Ž๐‘™ ๐‘ช๐Ÿ’ = ๐Ÿ’ + ๐Ÿ’ ๐Ÿ“ = ๐Ÿ๐Ÿ’ ๐Ÿ“ , ๐’•๐’‰๐’Š๐’” ๐’Š๐’” ๐’•๐’‰๐’† ๐’Ž๐’‚๐’™๐’Š๐’Ž๐’–๐’Ž ๐’Š๐’๐’„๐’“๐’†๐’Ž๐’†๐’๐’• Case 2: Then if C4 =4-ฮ”4 ๐‘4 โˆ’ ๐ถ4 โ‰ฅ 0 24 5 โˆ’ [4 โˆ’ ๐›ฅ2] โ‰ฅ 0 4 5 + ๐›ฅ4 โ‰ฅ 0 ๐œŸ๐Ÿ โ‰ฅ โˆ’ ๐Ÿ’ ๐Ÿ“ , ๐ผ๐‘› ๐‘œ๐‘Ÿ๐‘‘๐‘’๐‘Ÿ ๐‘ก๐‘œ ๐‘‘๐‘œ ๐‘กโ„Ž๐‘’ ๐‘ ๐‘’๐‘›๐‘ ๐‘ก๐‘–๐‘ฃ๐‘–๐‘ก๐‘ฆ ๐‘Ž๐‘›๐‘Ž๐‘™๐‘ฆ๐‘ ๐‘–๐‘  ๐‘กโ„Ž๐‘’ ๐‘œ๐‘๐‘ก๐‘–๐‘š๐‘Ž๐‘™ ๐‘ก๐‘Ž๐‘๐‘™๐‘’ ๐‘ โ„Ž๐‘œ๐‘ข๐‘™๐‘‘ ๐‘๐‘’ ๐‘Ÿ๐‘’๐‘š๐‘Ž๐‘–๐‘› ๐‘œ๐‘๐‘ก๐‘–๐‘š๐‘Ž๐‘™, ๐‘กโ„Ž๐‘’๐‘› ๐›ฅ4 = โˆž Then ๐‘ช๐Ÿ’ = ๐Ÿ’ โˆ’ โˆž = โˆ’โˆž Then the range of optimality for the coefficient of non-basic variable X4 which is C4; โˆ’โˆž โ‰ค ๐‘ช๐Ÿ’ โ‰ค ๐Ÿ๐Ÿ’ ๐Ÿ“ Case 2; Change in the coefficient of objective basic variable (B.V) From the above optimal table, the basic variables are X1, X3, because these variables are within the solution with the value of 4,3/2 respectively. a. Change in the coefficient of X1, 2+ฮ”1 C1 2-ฮ”1 N.B. if the coefficient of the basic variable is changed, then the whole Zj-Cj value will be also changed. Though a new value of Zj-Cj should be determined using the current optimal table.
  • 14. COMPILED BY TSEGAY BERHE [ MSC IN PRODUCTION ENGINEERING & MANAGEMENT ] 13 Case (a.1) when the coefficient of X1 which is C1 is changed to 2+ฮ”1 Then the new values of Zj-Cj respective to each variable along the column are; ๐‘1 = (5 โˆ— 0) + (2 + ๐›ฅ1) โˆ— 1 = 2 + ๐›ฅ1 ๐‘2 = 5 โˆ’ (2 + ๐›ฅ1) = 3 โˆ’ ๐›ฅ1 ๐‘3 = 5 โˆ’ (2 + ๐›ฅ1) โˆ— 0 = 5 ๐‘4 = 2 + 7 5 โˆ— (2 + ๐›ฅ1) = 24 5 + 7 5 ๐›ฅ1 ๐‘5 = 2 โˆ’ 3 5 (2 + ๐›ฅ1) = 4 5 โˆ’ 3 5 ๐›ฅ1 ๐‘6 = โˆ’ 1 2 + 2 5 (2 + ๐›ฅ1) = 3 10 + 2 5 ๐›ฅ1 The determine Zj-Cj ๐‘1 โˆ’ ๐ถ1 โ‰ฅ 0 [๐Ÿ โˆ’ ๐›ฅ1] โˆ’ [๐Ÿ โˆ’ ๐›ฅ1] ๐ŸŽ = 0 ๐›ฅ1 = โˆž ๐‘2 โˆ’ ๐ถ2 โ‰ฅ 0 [3 โˆ’ ๐›ฅ1] โˆ’ 2 โ‰ฅ 0 1 โˆ’ ๐›ฅ1 โ‰ฅ 0 ๐œŸ๐Ÿ = ๐Ÿ ๐‘3 โˆ’ ๐ถ3 โ‰ฅ 0 5 โˆ’ 5 โ‰ฅ 0 0 โ‰ฅ 0 ๐›ฅ1 = โˆž ๐‘4 โˆ’ ๐ถ4 โ‰ฅ 0 [ 24 5 + 7 5 ๐›ฅ1] โˆ’ 4 โ‰ฅ 0 4 5 + 7 5 ๐›ฅ1 โ‰ฅ 0 ๐›ฅ1 = โˆž ๐‘5 โˆ’ ๐ถ5 โ‰ฅ 0
  • 15. COMPILED BY TSEGAY BERHE [ MSC IN PRODUCTION ENGINEERING & MANAGEMENT ] 14 [ 4 5 โˆ’ 3 5 ๐›ฅ1] โˆ’ 0 โ‰ฅ 0 4 5 โˆ’ 3 5 ๐›ฅ1 โ‰ฅ 0 ๐›ฅ1 = 4/3 ๐‘6 โˆ’ ๐ถ6 โ‰ฅ 0 [ 3 10 + 2 5 ๐›ฅ1] โˆ’ 0 โ‰ฅ 0 3 10 + 2 5 ๐›ฅ1 โ‰ฅ 0 ๐›ฅ1 = โˆž Then the next step is selecting the value of ฮ”1 max ๐‘–๐‘›๐‘๐‘Ÿ๐‘’๐‘š๐‘’๐‘›๐‘ก ๐‘œ๐‘“ ๐›ฅ1 = ๐‘€๐‘–๐‘› {โˆž, 1, โˆž, โˆž, 4 3 , โˆž} = 1 ๐›ฅ1 = 1 Then ๐ถ1 = 2 + ๐›ฅ1 = 2 + 1 = 3 Case (a.2) when the coefficient of X1 which is C1 is changed to 2-ฮ”1 Performing the same analysis as case (a.1) then; ๐‘1 โˆ’ ๐ถ1 โ‰ฅ 0 5 โˆ’ 5 โ‰ฅ 0 0 โ‰ฅ 0 ๐›ฅ1 = โˆž ๐‘2 โˆ’ ๐ถ2 โ‰ฅ 0 [5 โˆ’ (โˆ’1 โˆ— (2 โˆ’ ๐›ฅ1)] โˆ’ 2 โ‰ฅ 0 1 + ๐›ฅ1 โ‰ฅ 0 ๐›ฅ1 = โˆž ๐‘3 โˆ’ ๐ถ3 โ‰ฅ 0 5 โˆ’ 5 โ‰ฅ 0 ๐œŸ๐Ÿ = โˆž ๐‘4 โˆ’ ๐ถ4 โ‰ฅ 0 [[ 10 5 + 7 5 (2 โˆ’ ๐›ฅ1)] โˆ’ 4 โ‰ฅ 0 4 5 โˆ’ 7 5 ๐›ฅ1 โ‰ฅ 0 ๐œŸ๐Ÿ = ๐Ÿ’ ๐Ÿ• ๐‘5 โˆ’ ๐ถ5 โ‰ฅ 0 [[ 10 5 โˆ’ 3 5 (2 โˆ’ ๐›ฅ1)] โˆ’ 0 โ‰ฅ 0
  • 16. COMPILED BY TSEGAY BERHE [ MSC IN PRODUCTION ENGINEERING & MANAGEMENT ] 15 4 5 + 3 5 ๐›ฅ1 โ‰ฅ 0 ๐›ฅ1 = โˆž ๐‘6 โˆ’ ๐ถ6 โ‰ฅ 0 [[ โˆ’5 10 + 2 5 (2 โˆ’ ๐›ฅ1)] โˆ’ 0 โ‰ฅ 0 3 10 โˆ’ 2 5 ๐›ฅ1 โ‰ฅ 0 ๐œŸ๐Ÿ = ๐Ÿ‘ ๐Ÿ’ Then for determining the maximum decrement ๐‘ด๐’‚๐’™ ๐’…๐’†๐’„๐’“๐’†๐’‚๐’Ž๐’†๐’๐’•๐œŸ๐Ÿ = ๐‘ด๐’Š๐’{โˆž, โˆž, โˆž, ๐Ÿ’ ๐Ÿ• , โˆž, ๐Ÿ‘ ๐Ÿ’ } ๐œŸ๐Ÿ = ๐Ÿ’ ๐Ÿ• ๐‘ช๐Ÿ = ๐Ÿ โˆ’ ๐Ÿ’ ๐Ÿ• = ๐Ÿ๐ŸŽ/๐Ÿ• Therefor the range of optimality for C1 is; ๐Ÿ๐ŸŽ ๐Ÿ• โ‰ค ๐‘ช๐Ÿ โ‰ค ๐Ÿ‘ 2. Change in the RHS of constraints โœ“ Let the initial RHS is a column matrix represented byโ€ bโ€ โœ“ Let B is m by m matrix of optimal basic variable in the initial table (according their order) โœ“ B-1 is the inverse matrix of B in which B* B-1 =I โœ“ In the optimal simplex table B-1 is the matrix of slack and surplus variables coefficients. Then the simplex iteration has the following important formula. ๐‘ฉ๐’‚๐’”๐’Š๐’„ ๐’”๐’๐’๐’–๐’•๐’Š๐’๐’[๐‘ฉ. ๐’”](๐’๐’‘๐’•๐’Š๐’Ž๐’‚๐’) = ๐‘ฉโˆ’๐Ÿ โˆ— ๐’ƒ ๐‘ฉ๐’‚๐’”๐’Š๐’„ ๐’”๐’๐’๐’–๐’•๐’Š๐’๐’[๐‘ฉ. ๐’”](๐’๐’‘๐’•๐’Š๐’Ž๐’‚๐’) = ( ๐Ÿ ๐Ÿ“ โˆ’ ๐Ÿ ๐Ÿ๐ŸŽ โˆ’ ๐Ÿ‘ ๐Ÿ“ ๐Ÿ ๐Ÿ“ ) โˆ— [ ๐Ÿ๐ŸŽ ๐Ÿ๐Ÿ“ ] โ‰ฅ 0 Cj 2 2 5 4 0 0 C.B.V B.V X1 X2 X3 X4 S1 S2 solution 5 X3 0 1 1 2/5 2/5 - 1/10 1.5 2 X1 1 -1 0 1.4 - 3/5 2/5 4 Zj 2 3 5 24/5 4/5 3/10 Zj-Cj 0 1 0 4/5 4/5 3/10 Optimal table B -1
  • 17. COMPILED BY TSEGAY BERHE [ MSC IN PRODUCTION ENGINEERING & MANAGEMENT ] 16 ๐‘‹3 = 2 5 โˆ— 10 โˆ’ 1 10 โˆ— 25 = 3 2 = ๐Ÿ. ๐Ÿ“ ๐‘‹1 = โˆ’ 3 5 โˆ— 10 + 2 5 โˆ— 25 = ๐Ÿ’ Case Case 1;Change in the R.H.S of constraints 1 Change in RHS Case 2;Change in the R.H.S of constraints 2 A. Change in the R.H.S of constraints 1 Let the RHS constraint one be changed by ๐œŸ๐Ÿ,Then ; โœ“ ๐ถ๐‘Ž๐‘ ๐‘’ ๐ด. 1; ๐’ƒ๐Ÿ = ๐Ÿ๐ŸŽ + ๐œŸ๐Ÿ โœ“ ๐ถ๐‘Ž๐‘ ๐‘’ ๐ด. 2; ๐’ƒ๐Ÿ = ๐Ÿ๐ŸŽ โˆ’ ๐œŸ๐Ÿ ๐ถ๐‘Ž๐‘ ๐‘’ ๐ด. 1; ๐’ƒ๐Ÿ = ๐Ÿ๐ŸŽ + ๐œŸ๐Ÿ,then ๐โˆ’๐Ÿ โˆ— ๐› = ( ๐Ÿ ๐Ÿ“ โˆ’ ๐Ÿ ๐Ÿ๐ŸŽ โˆ’ ๐Ÿ‘ ๐Ÿ“ ๐Ÿ ๐Ÿ“ ) โˆ— [ ๐Ÿ๐ŸŽ + ๐šซ๐Ÿ ๐Ÿ๐Ÿ“ ] โ‰ฅ ๐ŸŽ 2 5 โˆ— (10 + ๐›ฅ1) โˆ’ 1 10 โˆ— (25) โ‰ฅ 0 15 10 + 2 5 ๐›ฅ1 โ‰ฅ 0 ๐œŸ๐Ÿ = โˆž โˆ’3 5 โˆ— (10 + ๐›ฅ1) + 2 5 โˆ— (25) โ‰ฅ 0 20 5 โˆ’ 3 5 ๐›ฅ1 โ‰ฅ 0 ๐œŸ๐Ÿ = ๐Ÿ๐ŸŽ ๐Ÿ“ ๐œŸ๐Ÿ = ๐’Ž๐’Š๐’ {โˆž, ๐Ÿ๐ŸŽ ๐Ÿ‘ } = ๐Ÿ๐ŸŽ ๐Ÿ‘ ๐’ƒ๐Ÿ = ๐Ÿ๐ŸŽ + ๐œŸ๐Ÿ = ๐Ÿ๐ŸŽ + ๐Ÿ๐ŸŽ ๐Ÿ‘ = ๐Ÿ“๐ŸŽ/๐Ÿ‘
  • 18. COMPILED BY TSEGAY BERHE [ MSC IN PRODUCTION ENGINEERING & MANAGEMENT ] 17 ๐ถ๐‘Ž๐‘ ๐‘’ ๐ด. 2; ๐’ƒ๐Ÿ = ๐Ÿ๐ŸŽ โˆ’ ๐œŸ๐Ÿ ๐โˆ’๐Ÿ โˆ— ๐› = ( ๐Ÿ ๐Ÿ“ โˆ’ ๐Ÿ ๐Ÿ๐ŸŽ โˆ’ ๐Ÿ‘ ๐Ÿ“ ๐Ÿ ๐Ÿ“ ) โˆ— [ ๐Ÿ๐ŸŽ โˆ’ ๐šซ๐Ÿ ๐Ÿ๐Ÿ“ ] โ‰ฅ ๐ŸŽ 2 5 โˆ— (10 โˆ’ ๐›ฅ1) โˆ’ 1 10 โˆ— (25) โ‰ฅ 0 15 10 โˆ’ 2 5 ๐›ฅ1 โ‰ฅ 0 ๐œŸ๐Ÿ = ๐Ÿ๐Ÿ“ ๐Ÿ’ โˆ’3 5 โˆ— (10 โˆ’ ๐›ฅ1) + 2 5 โˆ— (25) โ‰ฅ 0 20 5 + 3 5 ๐›ฅ1 โ‰ฅ 0 ๐œŸ๐Ÿ = โˆž ๐›ฅ1 = ๐‘š๐‘–๐‘› {โˆž, 15 4 } = 15 4 ๐‘1 = 10 โˆ’ ๐›ฅ1 = 10 โˆ’ 15 4 = 25 4 ๐Ÿ๐Ÿ“ ๐Ÿ’ โ‰ค ๐’ƒ๐Ÿ โ‰ค ๐Ÿ“๐ŸŽ ๐Ÿ‘ , ๐’“๐’‚๐’๐’ˆ๐’† ๐’๐’‡ ๐’‡๐’†๐’‚๐’”๐’Š๐’ƒ๐’๐’Š๐’•๐’š ๐’‡๐’๐’“ ๐’„๐’๐’๐’”๐’•๐’“๐’‚๐’Š๐’๐’• ๐’๐’๐’† N.B. then we can increase constraint 1 up to 50/3 and we can decrease up to 25/4 B. Change in the R.H.S of constraints 2 Let the RHS constraint one be changed by ๐œŸ๐Ÿ,Then ; โœ“ ๐ถ๐‘Ž๐‘ ๐‘’ ๐ต. 1; ๐’ƒ๐Ÿ = ๐Ÿ๐Ÿ“ + ๐œŸ๐Ÿ โœ“ ๐ถ๐‘Ž๐‘ ๐‘’ ๐ต. 2; ๐’ƒ๐Ÿ = ๐Ÿ๐Ÿ“ โˆ’ ๐œŸ๐Ÿ ๐ถ๐‘Ž๐‘ ๐‘’ ๐ด. 2; ๐’ƒ๐Ÿ = ๐Ÿ๐Ÿ“ + ๐œŸ๐Ÿ
  • 19. COMPILED BY TSEGAY BERHE [ MSC IN PRODUCTION ENGINEERING & MANAGEMENT ] 18 ๐โˆ’๐Ÿ โˆ— ๐› = ( ๐Ÿ ๐Ÿ“ โˆ’ ๐Ÿ ๐Ÿ๐ŸŽ โˆ’ ๐Ÿ‘ ๐Ÿ“ ๐Ÿ ๐Ÿ“ ) โˆ— [ ๐Ÿ๐ŸŽ ๐Ÿ๐Ÿ“ + ๐šซ๐Ÿ ] โ‰ฅ ๐ŸŽ 2 5 โˆ— (10) โˆ’ 1 10 โˆ— (25 + ๐œŸ๐Ÿ) โ‰ฅ 0 15 10 โˆ’ 1 10 ๐›ฅ2 โ‰ฅ 0 ๐œŸ๐Ÿ = ๐Ÿ๐Ÿ“ โˆ’3 5 โˆ— (10) โˆ’ 2 5 โˆ— (25 + ๐œŸ๐Ÿ) โ‰ฅ 0 โˆ’30 5 + 50 5 + 2 5 ๐›ฅ2 โ‰ฅ 0 ๐œŸ๐Ÿ = โˆž ๐œŸ๐Ÿ = ๐’Ž๐’‚๐’™ ๐’Š๐’๐’„๐’“๐’†๐’‚๐’Ž๐’†๐’๐’• = ๐’Ž๐’Š๐’{๐Ÿ๐Ÿ“, โˆž} = ๐Ÿ๐Ÿ“, ๐’•๐’‰๐’†๐’ ๐’ƒ๐Ÿ = ๐Ÿ๐Ÿ“ + ๐Ÿ๐Ÿ“ = ๐Ÿ’๐ŸŽ ๐ถ๐‘Ž๐‘ ๐‘’ ๐ต. 2; ๐’ƒ๐Ÿ = ๐Ÿ๐Ÿ“ โˆ’ ๐œŸ๐Ÿ ๐โˆ’๐Ÿ โˆ— ๐› = ( ๐Ÿ ๐Ÿ“ โˆ’ ๐Ÿ ๐Ÿ๐ŸŽ โˆ’ ๐Ÿ‘ ๐Ÿ“ ๐Ÿ ๐Ÿ“ ) โˆ— [ ๐Ÿ๐ŸŽ ๐Ÿ๐Ÿ“ โˆ’ ๐šซ๐Ÿ ] โ‰ฅ ๐ŸŽ 2 5 โˆ— (10) โˆ’ 1 10 โˆ— (25 โˆ’ ๐œŸ๐Ÿ) โ‰ฅ 0 15 10 + 1 10 ๐›ฅ2 โ‰ฅ 0 ๐œŸ๐Ÿ = โˆž โˆ’3 5 โˆ— (10) โˆ’ 2 5 โˆ— (25 โˆ’ ๐œŸ๐Ÿ) โ‰ฅ 0
  • 20. COMPILED BY TSEGAY BERHE [ MSC IN PRODUCTION ENGINEERING & MANAGEMENT ] 19 20 5 โˆ’ 2 5 (๐œŸ๐Ÿ) โ‰ฅ 0 ๐œŸ๐Ÿ=10 ๐œŸ๐Ÿ = ๐’Ž๐’Š๐’{โˆž, ๐Ÿ๐ŸŽ} = ๐Ÿ๐ŸŽ ๐’ƒ๐Ÿ = ๐Ÿ๐Ÿ“ โˆ’ ๐Ÿ๐ŸŽ = ๐Ÿ๐Ÿ“ then range of feasibility for constraint two; ๐Ÿ๐Ÿ“ โ‰ค ๐’ƒ๐Ÿ โ‰ค ๐Ÿ’๐ŸŽ 3. Change in the technological coeffiecnt [Consumption rate] โœ“ Let Xi is initial column matrix of variables โœ“ Xj is the optimal column matrix of variables ๐‘ฟ๐’‹ โƒ—โƒ—โƒ—โƒ— = ๐โˆ’๐Ÿ โˆ— ๐‘ฟ๐’Š ๐‘‹1 = [ ๐Ÿ ๐Ÿ’ ] ๐‘‹1 = [ 1 + ๐›ฅ1 4 ] = ๐‘š๐‘Ž๐‘ฅ๐‘–๐‘š๐‘ข๐‘š ๐‘–๐‘›๐‘๐‘Ÿ๐‘’๐‘Ž๐‘š๐‘’๐‘›๐‘ก ๐‘œ๐‘“ ๐‘๐‘œ๐‘’๐‘“๐‘“. ๐‘œ๐‘“ ๐‘‹1 ๐‘œ๐‘› ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ÿ๐‘Ž๐‘–๐‘›๐‘ก 1 ๐‘‹1 = [ 1 โˆ’ ๐›ฅ1 4 ] = ๐‘š๐‘Ž๐‘ฅ๐‘–๐‘š๐‘ข๐‘š ๐‘‘๐‘’๐‘๐‘Ÿ๐‘’๐‘Ž๐‘š๐‘’๐‘›๐‘ก ๐‘œ๐‘“ ๐‘๐‘œ๐‘’๐‘“๐‘“. ๐‘œ๐‘“ ๐‘‹1 ๐‘œ๐‘› ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ÿ๐‘Ž๐‘–๐‘›๐‘ก 1 ๐‘‹1 = [ 1 4 + ๐›ฅ1 ] = ๐‘š๐‘Ž๐‘ฅ๐‘–๐‘š๐‘ข๐‘š ๐‘–๐‘›๐‘๐‘Ÿ๐‘’๐‘Ž๐‘š๐‘’๐‘›๐‘ก ๐‘œ๐‘“ ๐‘๐‘œ๐‘’๐‘“๐‘“. ๐‘œ๐‘“ ๐‘‹1 ๐‘œ๐‘› ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ÿ๐‘Ž๐‘–๐‘›๐‘ก 2 ๐‘‹1 = [ 1 4 โˆ’ ๐›ฅ1 ] = ๐‘š๐‘Ž๐‘ฅ๐‘–๐‘š๐‘ข๐‘š ๐‘‘๐‘’๐‘๐‘Ÿ๐‘’๐‘Ž๐‘š๐‘’๐‘›๐‘ก ๐‘œ๐‘“ ๐‘๐‘œ๐‘’๐‘“๐‘“. ๐‘œ๐‘“ ๐‘‹1 ๐‘œ๐‘› ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ÿ๐‘Ž๐‘–๐‘›๐‘ก 2 Let coefficient of X1 in the first constraint changed by ฮ”1; Then ๐ถ๐‘Ž๐‘ ๐‘’1; ๐‘Ž11๐‘โ„Ž๐‘Ž๐‘›๐‘”๐‘’๐‘‘ ๐‘ก๐‘œ ๐‘Ž11 + ๐›ฅ1 = 1 + ๐›ฅ1 ๐ถ๐‘Ž๐‘ ๐‘’2; ๐‘Ž11๐‘โ„Ž๐‘Ž๐‘›๐‘”๐‘’๐‘‘ ๐‘ก๐‘œ ๐‘Ž11 โˆ’ ๐›ฅ1 = 1 โˆ’ ๐›ฅ1 ๐‘ช๐’‚๐’”๐’†๐Ÿ; ๐’‚๐Ÿ๐Ÿ๐’„๐’‰๐’‚๐’๐’ˆ๐’†๐’… ๐’•๐’ ๐’‚๐Ÿ๐Ÿ + ๐œŸ๐Ÿ = ๐Ÿ + ๐œŸ๐Ÿ ๐‘ฟ๐’‹ โƒ—โƒ—โƒ—โƒ— = ๐โˆ’๐Ÿ โˆ— ๐‘ฟ๐’Š
  • 21. COMPILED BY TSEGAY BERHE [ MSC IN PRODUCTION ENGINEERING & MANAGEMENT ] 20 ๐‘ฟ๐Ÿ โƒ—โƒ—โƒ—โƒ—โƒ— = ( ๐Ÿ ๐Ÿ“ โˆ’ ๐Ÿ ๐Ÿ๐ŸŽ โˆ’ ๐Ÿ‘ ๐Ÿ“ ๐Ÿ ๐Ÿ“ ) โˆ— [ ๐Ÿ + ๐œŸ๐Ÿ ๐Ÿ’ ] 2 5 + 2 5 ๐›ฅ1 โˆ’ 4 10 = ๐Ÿ ๐Ÿ“ ๐œŸ๐Ÿ โˆ’ 3 5 โˆ’ 3 5 ๐›ฅ1 + 2 5 โˆ— 4 = ๐Ÿ โˆ’ ๐Ÿ‘ ๐Ÿ“ ๐œŸ๐Ÿ ๐‘‹1 โƒ—โƒ—โƒ—โƒ— = ( 2 5 โˆ’ 1 10 โˆ’ 3 5 2 5 ) โˆ— [ 1 + ๐›ฅ1 4 ] = ( ๐Ÿ ๐Ÿ“ ๐œŸ๐Ÿ ๐Ÿ โˆ’ ๐Ÿ‘ ๐Ÿ“ ๐œŸ๐Ÿ ) If ๐‘ฟ๐Ÿ โƒ—โƒ—โƒ—โƒ—โƒ— will changed then Zj-Cj will also change Z1-C1 โ‰ฅ 0 5 โˆ— 2 5 ๐›ฅ1 + 2 โˆ— (1 โˆ’ 3 5 ๐›ฅ1) โˆ’ 2 โ‰ฅ 0 4 5 ๐›ฅ1 + 2 โˆ’ 2 โ‰ฅ 0 ๐›ฅ1 = โˆž ๐‘Ž11 + ๐›ฅ1 = 1 + โˆž = โˆž ๐‘ช๐’‚๐’”๐’†๐Ÿ;๐’‚๐Ÿ๐Ÿ๐’„๐’‰๐’‚๐’๐’ˆ๐’†๐’… ๐’•๐’ ๐’‚๐Ÿ๐Ÿ โˆ’ ๐œŸ๐Ÿ = ๐Ÿ โˆ’ ๐œŸ๐Ÿ ๐‘‹1 โƒ—โƒ—โƒ—โƒ— = ( 2 5 โˆ’ 1 10 โˆ’ 3 5 2 5 ) โˆ— [ 1 โˆ’ ๐›ฅ1 4 ] 2 5 โˆ’ 2 5 ๐›ฅ1 โˆ’ 4 10 = โˆ’ ๐Ÿ ๐Ÿ“ ๐œŸ๐Ÿ โˆ’ 3 5 + 3 5 ๐›ฅ1 + 2 5 โˆ— 4 = ๐Ÿ + ๐Ÿ‘ ๐Ÿ“ ๐œŸ๐Ÿ โ– ๐‘‹1 โƒ—โƒ—โƒ—โƒ— = ( 2 5 โˆ’ 1 10 โˆ’ 3 5 2 5 ) โˆ— [ 1 + ๐›ฅ1 4 ] = ( โˆ’ ๐Ÿ ๐Ÿ“ ๐œŸ๐Ÿ ๐Ÿ + ๐Ÿ‘ ๐Ÿ“ ๐œŸ๐Ÿ ) If ๐‘ฟ๐Ÿ โƒ—โƒ—โƒ—โƒ—โƒ— will changed then Zj-Cj will also change
  • 22. COMPILED BY TSEGAY BERHE [ MSC IN PRODUCTION ENGINEERING & MANAGEMENT ] 21 Z1-C1 โ‰ฅ 0 5 โˆ— (โˆ’ 2 5 ๐›ฅ1) + 2 โˆ— (1 + 3 5 ๐›ฅ1) โˆ’ 2 โ‰ฅ 0 โˆ’ 4 5 ๐›ฅ1 + 2 โˆ’ 2 โ‰ฅ 0 โˆ’ 4 5 ๐›ฅ1+โ‰ฅ 0 ๐›ฅ1 = 0 ๐’‚๐Ÿ๐Ÿ = ๐Ÿ โˆ’ ๐›ฅ1 = 1 ๐Ÿ โ‰ค ๐’‚๐Ÿ๐Ÿ โ‰ค โˆž, ๐’„๐’๐’๐’”๐’–๐’‘๐’•๐’Š๐’๐’ ๐’“๐’‚๐’๐’ˆ๐’† ๐’๐’‡ ๐‘ฟ๐Ÿ ๐’๐’ ๐’„๐’๐’๐’”๐’•๐’“๐’‚๐’Š๐’๐’• ๐Ÿ Let coefficient of X2 in the first constraint is changed by ฮ”2; ๐ถ๐‘Ž๐‘ ๐‘’1; ๐‘Ž12๐‘โ„Ž๐‘Ž๐‘›๐‘”๐‘’๐‘‘ ๐‘ก๐‘œ ๐‘Ž12 + ๐›ฅ2 = 3 + ๐›ฅ2 ๐ถ๐‘Ž๐‘ ๐‘’2; ๐‘Ž12๐‘โ„Ž๐‘Ž๐‘›๐‘”๐‘’๐‘‘ ๐‘ก๐‘œ ๐‘Ž12 โˆ’ ๐›ฅ2 = 3 โˆ’ ๐›ฅ2 ๐‘ช๐’‚๐’”๐’†๐Ÿ; ๐’‚๐Ÿ๐Ÿ๐’„๐’‰๐’‚๐’๐’ˆ๐’†๐’… ๐’•๐’ ๐’‚๐Ÿ๐Ÿ + ๐œŸ๐Ÿ = ๐Ÿ‘ + ๐œŸ๐Ÿ ๐‘‹2 โƒ—โƒ—โƒ—โƒ— = ( 2 5 โˆ’ 1 10 โˆ’ 3 5 2 5 ) โˆ— [ 3 + ๐›ฅ2 2 ] = ( 1 + 2 5 ๐œŸ๐Ÿ โˆ’1 โˆ’ 3 5 ๐œŸ๐Ÿ ) Z2-C2 โ‰ฅ 0 5 โˆ— (1 + 2 5 ๐›ฅ2) + 2 โˆ— (โˆ’1 โˆ’ 3 5 ๐›ฅ2) โˆ’ 2 โ‰ฅ 0 3 + 4 5 ๐›ฅ2 โ‰ฅ 0 ๐›ฅ2 = โˆž ๐‘Ž12 + ๐›ฅ2 = 3 + โˆž = โˆž ๐‘ช๐’‚๐’”๐’†๐Ÿ; ๐’‚๐Ÿ๐Ÿ๐’„๐’‰๐’‚๐’๐’ˆ๐’†๐’… ๐’•๐’ ๐’‚๐Ÿ๐Ÿ โˆ’ ๐œŸ๐Ÿ = ๐Ÿ‘ โˆ’ ๐œŸ๐Ÿ ๐‘‹2 โƒ—โƒ—โƒ—โƒ— = ( 2 5 โˆ’ 1 10 โˆ’ 3 5 2 5 ) โˆ— [ 3 โˆ’ ๐›ฅ2 2 ] = ( 1 โˆ’ 2 5 ๐œŸ๐Ÿ โˆ’1 + 3 5 ๐œŸ๐Ÿ ) Z2-C2 โ‰ฅ 0 5 โˆ— (1 โˆ’ 2 5 ๐›ฅ2) + 2 โˆ— (โˆ’1 + 3 5 ๐›ฅ2) โˆ’ 2 โ‰ฅ 0 1 โˆ’ 4 5 ๐›ฅ2 โ‰ฅ 0
  • 23. COMPILED BY TSEGAY BERHE [ MSC IN PRODUCTION ENGINEERING & MANAGEMENT ] 22 ๐›ฅ2 = 5 4 ๐‘Ž12 โˆ’ ๐›ฅ2 = 3 โˆ’ 5 4 = 7 4 ๐Ÿ• ๐Ÿ’ โ‰ค ๐’‚๐Ÿ๐Ÿ โ‰ค โˆž, ๐‘๐‘œ๐‘›๐‘ ๐‘ข๐‘š๐‘๐‘ก๐‘–๐‘œ๐‘› ๐‘Ÿ๐‘Ž๐‘›๐‘”๐‘’ ๐‘œ๐‘“ ๐‘‹2๐‘œ๐‘› ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ÿ๐‘–๐‘Ž๐‘›๐‘ก 1
  • 24. COMPILED BY TSEGAY BERHE [ MSC IN PRODUCTION ENGINEERING & MANAGEMENT ] 23 Exercise ๐‘€๐‘Ž๐‘ฅ ๐‘ = 12๐‘‹1 + 3๐‘‹2 + ๐‘‹3 S. t 10๐‘‹1 + 2๐‘‹2 + ๐‘‹3+โ‰ค 100 7๐‘‹1 + 3๐‘‹2 + 2๐‘‹3 โ‰ค 77 2๐‘‹1 + 4๐‘‹2 + ๐‘‹3 โ‰ค 80 ๐‘‹1, ๐‘‹2, ๐‘‹3 โ‰ฅ 0 Optimal table Cj 12 3 1 0 0 0 C.B. V B. V X1 X2 X3 S1 S2 S3 SOLUTION 12 X1 1 0 - 1/16 3/16 - 1/8 0 73/8 3 X2 0 1 13/16 - 7/16 5/8 0 35/8 0 S3 0 0 -2 11/8 -9/4 1 177/4 Zj 12 3 27/16 15/16 3/8 0 Zj-Cj 0 0 18/16 15/16 3/8 0 i. Determine the dual values ii. Determine the range of optimality of C1, C2 and C3 (change in the objective function coefficient) iii. Determine the range of feasibility b1 (change in the RHS constraints) iv. Determine the range of optimality of the consumption rate (a11)