SlideShare a Scribd company logo
1 of 22
Download to read offline
1
Examination of the Interaction of ADAM Proteins with
Oxidized Phospholipids and their Role in Endothelial
Inflammation
Tridu Huynh, 1, 3
James R. Springstead,1
Sangderk Lee,2
Judith A. Berliner1,2,4
1
Department of Medicine, Division of Cardiology
2
Department of Pathology
University of California – Los Angeles, Los Angeles, CA 90095, USA
3
Correspondence: tridu.huynh@gmail.com
4
Correspondence: jberliner@mednet.ucla.edu
UID: 703-773-534
2
SUMMARY
Atherosclerosis is a chronic inflammatory disease characterized by lipid accumulation and
subsequent inflammation of the artery walls that can result in heart attacks and strokes. PAPC
is one of the major phospholipids in low-density lipoprotein (LDL), and products of its oxidation
(Ox-PAPC) interact and activate endothelial cells, which leads to the induction of chemokines,
such as IL-8. IL-8 results in the migration and retention of monocytes into the subendothelial
space, an initial step in atherogenesis. IL-8 induction is regulated by several pathways, one of
which is the ADAM-mediated HBEGF-EGFR pathway. It has previously been shown that Ox-
PAPC binds to several endothelial cell proteins, among which are some ADAMTS proteins. In
this study, using Ox-PAPE-N-biotin, a biotinylated analog of Ox-PAPC, we present evidence
that Ox-PAPC activates ADAM proteins, specifically ADAMTS1 and ADAMTS4, both of which
have been implicated in IL-8 regulation, by covalently binding to them.
3
INTRODUCTION
Atherosclerosis, a chronic inflammatory disease of the artery wall, is the major cause of heart
attacks and strokes, which are the leading causes of death in the United States (Heron, 2007).
Atherosclerosis is characterized by the accumulation of lipids and fibrous debris in the
subendothelial space of artery walls. Early atherosclerotic lesions consist of the formation of
fatty streaks in arteries, which results from the accumulation of lipid-engorged macrophages, or
foam cells, in the subendothelial space. Although fatty streaks are not clinically significant, they
are the precursor to fibrous plaques, which arise from the migration of smooth muscle cells and
the accumulation of lipid-rich necrotic debris in these now more advanced lesions. The final
clinical complication of atherosclerosis is thrombosis, the formation of a blood clot inside a blood
vessel as a result of the rupture of the unstable atherosclerotic lesion. Such blood clot can
obstruct the blood flow through the circulatory system, resulting in a myocardial infarction or
stroke (Lusis, 2000).
Results from many clinical studies and animal models have shown that high levels of
low-density lipoprotein (LDL), a fat carrier in the bloodstream, are strongly correlated with
atherosclerotic development (Schwenke et al., 1989; Goldstein et al., 1977). More specifically, it
was noticed that LDL lipids were oxidized in the subendothelial space of arteries after retention.
These now called minimally modified LDL (MM-LDL) were seen to predict and accumulate in
atherosclerotic lesions (Witztum et al., 1991).
1-palmitoyl-2-arachidonyl-sn-glycerol-3-phosphocholine (PAPC) is one of the major
phospholipids in LDL and cell membranes. It has previously been shown that products of
oxidized PAPC (Ox-PAPC) are a major bioactive component of MM-LDL, and are present in
atherosclerotic lesions (Leitinger et al., 1997; Watson et al., 1997). Ox-PAPC contributes to
endothelial cell activation, a key initial event in atherogenesis, which enhances monocyte-
endothelial interactions partly through the induction of chemokines, such as Interleukin-8 (IL-8)
and monocyte chemotactic protein-1 (MCP-1) (Bobryshey et al., 2005). Previous research has
4
shown that monocyte recruitment, retention and differentiation into the subendothelial space is
an initial step in atherosclerotic plaque development. Upon entry, monocytes recruited at
atherosclerotic lesions differentiate into macrophages that take up lipids until they eventually
become lipid-laden foam cells that contribute to the formation of the fatty streak (Insull et al.,
2009).
IL-8 is regulated by many pathways, one of which is the heparin-binding epidermal
growth factor and epidermal growth factor receptor (HBEGF-EGFR) pathway. We have shown
in previous studies that Ox-PAPC activates certain ADAM proteins (a disintegrin and
metalloproteinase), and that such activated ADAMs process HBEGF on the cell surface. The
soluble HBEGF ligand then binds to the EGFR, leading to IL-8 induction in the cell (Lee et al.,
2012; Figure 1).
Using Ox-PAPE-N-biotin (Ox-PNB), a biotinylated analog of Ox-PAPC with identical
biological properties, it has previously been demonstrated that Ox-PAPC binds to several
endothelial cell proteins (Gugiu et al., 2008).Furthermore, we previously showed that Ox-PAPC
covalently binds to cysteine residues on specific ADAMs in endothelial cells (Lee et al., 2012).
We hypothesize that binding of Ox-PAPC activates the ADAMs, which would then result in an
induction of IL-8 in endothelial cells through the aforementioned ADAM-mediated HBEGF-
EGFR pathway.
This study focuses on the interaction between the metalloproteinases (MPs) ADAMTS1
and ADAMTS4 (a disintegrin and metalloproteinase with thrombodspondin motifs) and Ox-
PAPC. ADAMTS4 is the subject of current study because it was previously shown to be
involved in IL-8 regulation by Ox-PAPC in past silencing studies (Lee et al., 2012). ADAMTS1 is
the subject of current study because it is known to cleave VEGFR2, which plays a role similar to
EGFR in IL-8 regulation. The ADAMTS are a group of proteases that are found both in
mammals and invertebrates. They are extracellular, multi-domain enzymes that have several
known functions, one of which is the cleavage of matrix proteoglycans aggrecan and versican
5
(Porter et al., 2005). Aggrecan is an extracellular matrix proteoglycan that was used in past and
present studies to assay the activity of certain ADAMTS proteins.
In this study, using Ox-PNB, we present evidence that Ox-PAPC activates ADAMTS1
and ADAMTS4’s enzymatic activity and that it covalently binds to them.
RESULTS
Ox-PAPC Activates ADAM Proteins
To determine whether Ox-PAPC activates ADAM proteins’ enzymatic activities, we measured
the processing of fluorogenic ADAM substrate. Human Aortic Endothelial Cells (HAECs) were
treated with either no Ox-PAPC or 50ug/mL of Ox-PAPC and substrate cleavage was assayed
at various time points (Figure 2A). Ox-PAPC is seen to clearly increase the activity of ADAM
proteins over time. To further prove the point, HAECs were treated with varying concentrations
of GM6001 or Batimastat (matrix metalloproteinase inhibitors) for 4 hours, and the amount of
ADAM cleavage was assayed through fluorescence quantification, again (Figure 2B). Increasing
concentration of GM6001 or Batimastat were seen to inhibit Ox-PAPC’s activation of ADAM
proteins.
Ox-PAPC Activates Aggrecanases, ADAMTS1 and ADAMTS4 being two of them
To hone in on a specific subset of ADAM proteins for further study, exogenous aggrecan was
used as a substrate to determine whether or not aggrecanases are a subset of ADAM proteins
that undergo activation in the presence of Ox-PAPC. Also, as previously mentionned, we
previously showed that ADAMTS1 and ADAMTS4 are implicated in IL-8 regulation through Ox-
PAPC, both of which are known aggrecanases (Boeuf et al., 2012). Western blot analysis of
HAECs with aggrecan added in Ox-PAPC or control condition showed degradation of aggrecan
as early as 1 hour (Figure 3A). This show that Ox-PAPC leads to activation of aggrecanase(s).
6
HAECs with aggrecan added were then transfected with either ADAMTS4, ADAMTS1 or control
and treated with either no Ox-PAPC or 50ug/mL of Ox-PAPC. In this experiment, the control
condition consisted only of transfection reagent. Future experiments will consist of transfection
with a plasmid lacking an ADAM protein as a better control. Ox-PAPC is seen to increase
cleavage of aggrecan in both ADAMTS4 and ADAMTS1 transfected cells as well as
untransfected cells (Figure 3B). This shows that Ox-PAPC activates enzymatic activities of
ADAMTS4 and ADAMTS1 specifically.
Ox-PAPC Demonstrates Specificity of Binding
Given the chemically reactive nature of Ox-PAPC, it is plausible that it could have demonstrated
opportunistic binding to a variety of molecules with no relevance to the model under study. To
address this concern, HAECs were treated with different doses of Ox-PNB (10, 7, 4, 1, and 0
ug/mL) for four hours. Western blot analysis was then performed to visualize Ox-PNB bound
proteins using streptavidin-HRP. The untreated condition revealed a couple of non-specific
bands that represent endogenous proteins with avidin-binding properties (Cauli et al., 1994). A
noticeable band was detected around 90kDa, with binding seen at concentrations as low as
1ug/mL (Figure 4). This suggests that Ox-PNB has a higher binding affinity for specific proteins.
Ox-PAPC Binds to ADAMTS4 and ADAMTS1
To test the hypothesis that ADAMTS4 and ADAMTS1 are enzymatically activated through
covalent binding to Ox-PAPC, human embryonic kidney 293 (HEK293) cells were transfected
with either ADAMTS4-HA or ADAMTS1-HA, treated with 50ug/mL of either unoxidized PNB or
Ox-PNB for 30 minutes, immunoprecipitated with streptavidin beads, and blotted with anti-HA-
HRP. ADAMTS4 and ADAMTS1 have an expected molecular weight of 90 and 105kDa,
respectively. There is a clear increase in band intensity in the according bands for both
ADAMTS1 and ADAMTS4 going from treatment with PNB to treatment with Ox-PNB,
7
suggesting that Ox-PNB, and therefore Ox-PAPC, binds to ADAMTS4 and ADAMTS1.
However, the increase in band intensity is much greater for ADAMTS4 than ADAMTS1,
suggesting that Ox-PAPC binds to ADAMTS4 more strongly (Figure 5).
Ox-PAPC Promotes Cleavage of ADAMTS4 into Mature Form
HEK293 cells were transfected with either ADAMTS1-HA or ADAMTS4-HA, treated with either
phosphate buffered saline (PBS) or 50ug/mL of Ox-PAPC for an hour, immunoprecipitated with
anti-HA beads, and blotted with anti-HA-HRP. There is a clear increase in band intensity for
what is supposedly the cleaved, mature form of ADAMTS4 around 68kDa going from PBS to
Ox-PAPC treatment. On the other hand, ADAMTS1’s cleaved, mature form around 85kDa does
not seem to show such an increase (Figure 6). This suggests that Ox-PAPC promotes cleavage
of ADAMTS4 into its active, mature form, but that ADAMTS1 does not undergo the same
process.
PCSK3 is Implicated in IL-8 Regulation by Ox-PAPC
Given the results obtained in figure 5, we naturally became interested in the mechanism by
which Ox-PAPC might lead to increased production of the mature form of ADAMTS4. Proprotein
convertase subtilisin/kexin (PCSK) is a family of enzymes that perform cleavage and conversion
of immature, target proteins into their biologically active forms (Turpeinen et al., 2011). PCSK3
(FURIN) is known to proteolytically process pro-ADAMTS4 into its mature form. We then first
tested whether or not PCSKs had a role in IL-8 regulation by Ox-PAPC using silencing
techniques. HAECs were transfected with either scrambled siRNA or one of two siRNAs against
PCSK3. The second siRNA against PCSK3 resulted in a 40-50% knockdown of the protein with
a corresponding ~30% knockdown of IL-8 induction in the cells (Figure 7). This is modest
evidence that PCSKs might play a role in IL-8 regulation by Ox-PAPC.
8
DISCUSSION
This study provides evidence for the activation of ADAM proteins’ enzymatic activities
through Ox-PAPC, specifically the aggrecanases ADAMTS4 and ADAMTS1, which we have
previously shown to be implicated in IL-8 upregulation in endothelial cells by Ox-PAPC.
Furthermore, using Ox-PNB, we show that Ox-PAPC clearly binds to ADAMTS4, with modest if
not negligible binding to ADAMTS1 (Figure 5). Taken together, several hypotheses can be put
forward as to how Ox-PAPC activates ADAMTS’s enzymatic activity. Other groups have shown
that covalent interaction of metalloproteinases (MPs) with electrophiles caused enhancement of
enzyme activity (Rajagopalan et al., 1996). A plausible mechanism of activation could be
through Ox-PAPC displacing what is known as the “cysteine switch” from the zinc-containing
catalytic domain of the MP. The cysteine switch is a cysteine-containing consensus sequence in
the N-terminal pro-peptide domain that coordinates with the zinc ion in the catalytic site. The
MP’s activity is suppressed as a result of zinc-cysteine coordination and pro-peptide domain
occlusion of the active site (Rosenblum et al., 2007). This mechanism is of particular interest
and the subject of further study to us because we previously showed that Ox-PAPC binds to
cysteine residues in some ADAM and ADAMTS proteins, ADAMTS4 being one of them (Lee et
al., 2012). Determination of the specific cysteines bound by Ox-PAPC is the subject of further
study. Mutation of putative cysteine binding sites on ADAMTSs in an attempt to determine
actual binding sites as well as to confirm whether binding is the actual mechanism of ADAMTS
activation are the aims of future studies.
The results of figure 6 were unexpected and hint at a possible involvement of
PCSKs in IL-8 regulation by Ox-PAPC. There is a clear increase in what seems to be the
cleaved, mature form of ADAMTS4 going from control to Ox-PAPC condition, showing that Ox-
PAPC leads to activation of ADAMTS4’s processing. The same cannot be said of ADAMTS1,
however, suggesting that ADAMTS1 does not undergo the same process. We hypothesized that
Ox-PAPC binding to ADAMTS4 leads to a conformational change that would predispose it to
9
processing by PCSK3 (FURIN), which is known to process pro-ADAMTS4 into its mature form
(Wang et al., 2004). Silencing PCSK3 resulted in a modest (~30%) reduction in IL-8 levels in
HAECs (Figure 7). The low impact of PCSK3’s silencing on IL-8 could be attributed to the fact
that the silencing only reduced PCSK3’s level by 40-50%. It could also be due to the fact that IL-
8 is regulated by many pathways. Nevertheless, PCSK3 still shows some evidence of being
involved in IL-8 upregulation by Ox-PAPC. Replication of PCSK3’s silencing is required to firmly
determine that. We would also broaden our silencing study to other members of the PCSK
family that might be involved in processing of ADAM proteins involved in IL-8 regulation by Ox-
PAPC.
EXPERIMENTAL PROCEDURES
Preparation of Ox-PAPC
PAPC (1-palmitoyl-2-arachidonyl-sn-glycerol-3-phosphocholine) was purchased from Avanti
Polar Lipids and was oxidized by exposure to air for 48 hrs. Oxidation was monitored by
electrospray ionization-mass spectrometry (ESI-MS).
PAPE-N-biotin synthesis
A solution 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphatidylethanolamine (PAPE) in dry
dichloromethane was added drop-wise to a magnetically stirred solution of biotin,
dicyclohexylcarbodiimide, and dimethylaminopyridine under argon at room temperature. The
solution was mixed for 12 h at room temperature. The solvent was evaporated and the lipid was
separated by reverse-phase high-performance liquid chromatography (HPLC) with ESI-MS
detection in negative mode to produce 1-palmitoyl-2-arachidonoyl-snglycero-3-phosphatidyl-(N-
biotinylethanolamine) (PAPE-N-biotin).
Cell Culture and Treatment
10
Plates for Human Aortic Endothelial Cells (HAECs) or Human Embryonic Kidney 293 (HEK293)
cells were coated with 0.1% gelatin-PBS. HAECs were cultured in
MCDB-131 complete media (VEC technologies) alone or M199 medium supplemented with
20% FBS (Hyclone), 100U/mL penicillin, 100ug/mL streptomycin, 1mmol/L sodium pyruvate,
65ug/mL heparin (Sigma), and 50ug/mL endothelial cell growth supplement (ECGS) (BD
Biosciences). HEK293 cells were cultured in DMEM (Dulbecco's Modified Eagle Medium)
containing 4.5 g/L glucose supplemented with 10% FBS (Hyclone), 100U/mL penicillin,
100ug/mL streptomycin, 1mmol/L sodium pyruvate. Ox-PAPC in chloroform (stock: 10mg/ml)
was dried to a lipid residue and resuspended in M199 medium plus 1% FBS for cell treatment.
Generally, cells were changed to M199 medium containing 1% serum for 30min before cell
treatment. Cells were then incubated with or without Ox-PAPC in medium containing 1% serum.
ADAM Substrate Cleavage Assay
The activity of endogenous ADAMs in HAECs were determined using a fluorogenic ADAM
substrate (Enzo BML-P235, Dabcyl-Leu–Ala-Gln–Ala-Homophe–Arg-Ser—Lys[5-FAM]-NH2).
The product formation was determined by fluoroscence measurement using excitation at 485
nm and emission at 520 nm.
Transfection of Plasmids or siRNAs
90% and above confluent cells were treated with plasmid or siRNA complexes with
Lipofectamine 2000 (Invitrogen) for 4-6 hours in OPTIMEM media (Invitrogen) with fungizone at
37°C. The OPTIMEM media was then removed, washed with 1x PBS without calcium and
magnesium, and replaced with 4.5g/L DMEM with 10% FBS media. Cells were used for
experiments after 2 days of cell growth. The specific silencing of target genes was confirmed by
qRT-PCR and Western blotting.
11
Immunoprecipitation
Anti-HA resins or Neutravidin beads (Roche) were used for immunoprecipitation. 1mL of lysate
was mixed with 50uL of either beads in 1.5mL eppendorf tubes. The tubes were then sealed
and incubated with gentle-end-over-end mixing in 4°C room overnight. Following the incubation,
the lysate was centrifuged at 4,000g and the supernatant was removed. Resins were washed
with 500uL of Tris-buffered saline containing 0.1% Tween 20 (TBST) three times. 45uL of
sample buffer consisting of 2x SDS sample buffer with β-mercaptoethanol in a 19:1 ratio was
added to the tubes and then boiled for 5 minutes. The tubes were then centrifuged for 2 minutes
at 4000rpm and the eluent was collected and ready to be loaded on a gel.
Western Blotting
Laemmeli buffer (2x, Bio-rad) containing both protease and phosphatase inhibitors and PMSF
(1mM) was used for protein-samples preparation for SDS-PAGE. The samples were loaded
onto wells of a 4-20% Tris-glycine SDS gel (NuGel). Blots were transferred overnight. The blots
were incubated with primary and secondary antibodies in 5% milk or 1% BSA in TBST. They
were then developed and analyzed using enhanced chemiluminescence (ECL) prime kit
(Amersham). VersaDoc Imaging System (BioRad) and Quantity One® program were used for
image acquirement and band density analysis.
Quantitative Real-Time PCR (qRT-PCR)
Total RNAs and cDNAs were isolated and prepared using RNA extraction and cDNA synthesis
kits from Bio-Rad. SYBR® green master mixture and PCR amplification system from Roche
Diagnostics were used for PCR amplification and quantification procedure. The transcriptional
level of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was determined for each cDNA
normalization.
12
REFERENCES
Bobryshev, Y.V. (2005). Monocyte recruitment and foam cell formation in atherosclerosis.
Micron. 37, 208-222.
Boeuf, S., Graf, F., Fischer, J., Moradi, B., Little, C.B., Richter, W. (2012). Regulation of
aggrecanases from the ADAMTS family and aggrecan neoepitope formation during in vitro
chondrogenesis of human mesenchymal stem cells. Eur. Cell. Mater. 4, 320-32.
Cauli, A., Yanni, G., Panavi, G.S. (1994). Endogenous avidin-binding activity in epithelial cells of
the ducts of the human salivary glands. Clin. Exp. Rheumatol. 12, 45-7.
Goldstein, L.J., Brown S.M. (1977). The low-density lipoprotein pathway and its relation to
atherosclerosis. Annu. Rev. Biochem. 46, 897-930.
Gugiu, G.B., Mouillesseaux, K., Duong, V., Herzog, T., Hekimian, A., Koroniak, L., Vondriska,
T.M., Watson, A.D. (2008). Protein targets of oxidized phospholipds in endothelial cells. J. Lipid
Res. 49, 510-520.
Heron, M. (2011). Deaths: leading causes for 2007. Natl. Vital Stat. Rep. 59, 1-95.
Insull, W. (2009). The Pathology of Atherosclerosis: Plaque Development and Plaque
Responses to Medical Treatment. Am. J. Med. 122, S3-S14.
Lee, S., Springstead, J.R., Parks, B.W., Romanoski, C.E., Palvolgyi, R., Ho, T., Nguyen, P.,
Lusis, A.J., Berliner, J.A. (2012). Metalloproteinase processing of HBEGF is a Proximal event in
the Response of human aortic endothelial cells to oxidized phospholipids. Arterioscler. Thromb.
Vasc. Biol. 32, 1246-1254.
Leitinger, N., Watson A.D., Faull K.F., Fogelman A.M., Berliner J.A. (1997). Monocyte binding to
endothelial cells induced by oxidized phospholipids present in minimally oxidized low density
lipoprotein is inhibited by a platelet activating factor receptor antagonist. Adv. Exp. Med Biol.
433, 379-382.
Lusis, A.J. (2000). Atherosclerosis. Nature 407, 233-41.
Porter, S., Clark, I.M., Kevorkian, L., Edwards, D.R. (2005). The ADAMTS metalloproteinases.
Biochem. J. 386, 15-27.
Rajagopalan, S., Meng, X.P., Ramasamy, S., Harrison, D.G., Galis, Z.S. (1996). Reactive
oxygen species produced by macrophage-derived foam cells regulate the activity of vascular
matrix metalloproteinases in vitro. Implications for atherosclerotic plaque stability. J. Clin. Invest.
98, 2572-9.
Rosenblum, G., Meroueh, S., Toth, M., Fisher, J.F., Fridman, R., Mobashery, S., Sagi, I. (2007).
Molecular structure and dynamics of the stepwise activation mechanism of a matrix
metalloproteinase zymogen: challenging the cysteine switch dogma. J. Am. Chem. Soc. 129,
13566-74.
Schwenke, D.C., Carew, T.E. (1989). Initiation of atherosclerotic lesions in cholesterol-fed
rabbits. Focal increases in arterial LDL concentration precede development of fatty streak
lesions. Arterioscler. Thromb. Vasc. Biol. 9, 895-907.
13
Springstead, J.R., Gugiu, B.G., Lee, S., Cha, S., Watson, A.D., Berliner, J.A. (2012). Evidence
for the importance of OxPAPC interaction with cysteines in regulating endothelial cell function.
J. Lipid Res. 53, 1304-15.
Turpeinen, H., Raitoharju, E., Oksanen, A., Oksala, N., Levula, M., Lyytikäinen, L.P., Järvinen,
O., Creemers, J.W., Kähönen, M., Laaksonen, R., et al. (2011). Proprotein convertases in
human atherosclerotic plaques: the overexpression of FURIN and its substrate cytokines BAFF
and APRIL. Atherosclerosis 29, 799-806.
Wang, P., Tortorella, M., England, K., Malfait, A.M., Thomas, G., Arner, E.C., Pei, D. (2004).
Proprotein convertase furin interacts with and cleaves pro-ADAMTS4 (aggrecanse-1) in the
trans-golgi network. J. Biol. Chem. 279, 15434-40.
Watson, A.D., Leitinger, N., Navab, M., Faull, K.F, Horkko, S., Witztum, J.L., Palinski, W.,
Schwenke, D., Salomon, R.G, Sha, W., et al. (1997). Structural identification by mass
spectrometry of oxidized phospholipids in minimally oxidized low density lipoprotein that induce
monocyte/endothelial interactions and evidence for their presence in vivo. J. Biol. Chem. 272,
13597-13607.
Witztum, J.L., Steinberg, D. (1991). Role of oxidized low density lipoprotein in atherogenesis. J.
Clin. Invest. 88, 1785–92.
Yeh, M., Leitinger, N., De Martin, R., Onai, N., Matsushima, K., Vora, D.K., Berliner, J.A.,
Srinivasa, T.R. (2001). Increased Transcription of IL-8 in Endothelial Cells Is Differentially
Regulated by TNF- α and Oxidized Phospholipids. Arterioscler. Thromb. Vasc. Biol. 21, 1585-
91.
FIGURE LEGENDS
Figure 1. Hypothesized induction of IL-8 expression through Ox-PAPC pathway.
Figure 2. Ox-PAPC activates ADAM proteins.
HAECs in 50mM Tris – pH 7.5 and 100mM NaCl buffer with 8uM of ADAM fluorogenic substrate
(BML-P235 from Enzo).
(A) Cells were treated with either no Ox-PAPC or 50ug/mL Ox-PAPC. Cleavage of the
fluorogenic substrate was assayed at various time points as described in the Methods section
(30, 60, 90, 120, 180, 240 mins).
14
(B) Cells were treated with either no Ox-PAPC or 50ug/mL Ox-PAPC and varying
concentrations of GM6001 or Batimastat (matrix metalloproteinase inhibitors) for 4 hours and
the amount of ADAM cleavage was assayed through quantification of fluorescence.
Figure 3. Ox-PAPC activates Aggrecanases.
(A) HAECs in 50mM Tris – pH 7.5, 100 mM NaCl and 10mM calcium buffer with or without
50ug/mL Ox-PAPC. Exogenous aggrecan fragments were added to the cells due to the large
size of endogenous aggrecan, and supernatant was collected at different time points (1, 2, 4
hours and overnight). Western blot analysis with anti-aggrecan shows that Ox-PAPC leads to
degradation of aggrecan as early as 1 hour.
(B) HAECs transfected with either vehicle or ADAMTS4 or ADAMTS1, treated with no Ox-
PAPC or 50ug/mL of Ox-PAPC, and blotted with anti-aggrecan. Top band represents
undigested aggrecan fragments, bottom band represents digested fragments.
Figure 4. Ox-PNB demonstrates specificity of binding.
HAECs treated with different doses of Ox-PNB for 4 hours. Western blot analysis with
streptavidin-HRP was performed to visualize Ox-PNB bound proteins. A couple of non-specific
avidin-binding proteins can be seen in the untreated lane. A band around 90kDa can be seen at
concentrations as low as 1ug/mL.
Figure 5. Ox-PAPC binds to ADAMTS4 and ADAMTS1.
HEK293 cells transfected with ADAMTS4 or ADAMTS1, treated with 50ug/mL of PNB or Ox-
PNB for 30 minutes, immunoprecipitated with streptavidin resins, and blotted with anti-HA-HRP.
Arrows represent the size of each ADAMTS protein.
Figure 6. Ox-PAPC promotes cleavage of ADAMTS4 into mature form.
15
HEK293 cells transfected with ADAMTS4 or ADAMTS1, treated with PBS or Ox-PAPC for an
hour, immunoprecipitated with anti-HA resins, and blotted with anti-HA-HRP. Arrows indicate
the size of each ADAMTS’s mature size.
Figure 7. PCSK3 is involved in IL-8 regulation by Ox-PAPC
HEK293 cells transfected with PCSK3 siRNA or scrambled for 4 hours and grown in VEC media
for 3.5 days before treatment with Ox-PAPC for 4 hours. Values normalized to GAPDH levels.
siFURIN2 knocked down PCSK3 expression by 40-50% with a corresponding 30% knockdown
of IL-8 induction.
.
16
FIGURE 1
17
FIGURE 2
A
0
5000
10000
15000
20000
25000
30 60 90 120 180 240
Fluorescence(485/530nm)
Incubation time (min)
ADAM Activity in HAECs
control
Ox50
0
5000
10000
15000
20000
25000
30000
502512.56.253.1250
Fluorescence(485/530nm)
GM6001
ADAM Activity with GM6001
Ox50
media
0
5000
10000
15000
20000
25000
30000
50025012562.531.250
Fluorescence(485/530nm)
Batimastat
ADAM Activity with Batimastat
Ox50
media
18
FIGURE 3
A
B
19
FIGURE 4
20
FIGURE 5
21
FIGURE 6
22
FIGURE 7

More Related Content

What's hot

Brianna Betton poster 071816- Final
Brianna Betton poster 071816- FinalBrianna Betton poster 071816- Final
Brianna Betton poster 071816- FinalBrianna Betton
 
George Wang's Lab Research at the Martin Lab Yale University
George Wang's Lab Research at the Martin Lab Yale UniversityGeorge Wang's Lab Research at the Martin Lab Yale University
George Wang's Lab Research at the Martin Lab Yale UniversityGeorge Wang
 
Protective role of co q10 or l carnitine on the integrity of the myocardium i...
Protective role of co q10 or l carnitine on the integrity of the myocardium i...Protective role of co q10 or l carnitine on the integrity of the myocardium i...
Protective role of co q10 or l carnitine on the integrity of the myocardium i...Prof. Hesham N. Mustafa
 
Poster_Mitchell Cornely (edited)
Poster_Mitchell Cornely (edited)Poster_Mitchell Cornely (edited)
Poster_Mitchell Cornely (edited)Mitchell Cornely
 
Enzyme specificity types and applications
Enzyme specificity types and applicationsEnzyme specificity types and applications
Enzyme specificity types and applicationsrohini sane
 
Investigating Chemical Chaperones that can improve the stability of Lysozymes...
Investigating Chemical Chaperones that can improve the stability of Lysozymes...Investigating Chemical Chaperones that can improve the stability of Lysozymes...
Investigating Chemical Chaperones that can improve the stability of Lysozymes...oyepata
 
Presentation at Immunologisk Selskab, 2006
Presentation at Immunologisk Selskab, 2006Presentation at Immunologisk Selskab, 2006
Presentation at Immunologisk Selskab, 2006groder
 
Protein folding and aggregation
Protein folding and aggregationProtein folding and aggregation
Protein folding and aggregationFaizan Abul Qais
 
Protein folding
Protein foldingProtein folding
Protein foldingsaba naeem
 
Corticosteroid induced disorders – an overview
Corticosteroid induced disorders – an overviewCorticosteroid induced disorders – an overview
Corticosteroid induced disorders – an overviewpharmaindexing
 
Protein folding slids
Protein folding slidsProtein folding slids
Protein folding slidsanam tariq
 
Protein folding and proteostasis
Protein folding and proteostasisProtein folding and proteostasis
Protein folding and proteostasisMufassira Rahman
 

What's hot (18)

Brianna Betton poster 071816- Final
Brianna Betton poster 071816- FinalBrianna Betton poster 071816- Final
Brianna Betton poster 071816- Final
 
George Wang's Lab Research at the Martin Lab Yale University
George Wang's Lab Research at the Martin Lab Yale UniversityGeorge Wang's Lab Research at the Martin Lab Yale University
George Wang's Lab Research at the Martin Lab Yale University
 
Protective role of co q10 or l carnitine on the integrity of the myocardium i...
Protective role of co q10 or l carnitine on the integrity of the myocardium i...Protective role of co q10 or l carnitine on the integrity of the myocardium i...
Protective role of co q10 or l carnitine on the integrity of the myocardium i...
 
Poster_Mitchell Cornely (edited)
Poster_Mitchell Cornely (edited)Poster_Mitchell Cornely (edited)
Poster_Mitchell Cornely (edited)
 
Therapeutic Glycoprotein
Therapeutic GlycoproteinTherapeutic Glycoprotein
Therapeutic Glycoprotein
 
Enzyme specificity types and applications
Enzyme specificity types and applicationsEnzyme specificity types and applications
Enzyme specificity types and applications
 
Investigating Chemical Chaperones that can improve the stability of Lysozymes...
Investigating Chemical Chaperones that can improve the stability of Lysozymes...Investigating Chemical Chaperones that can improve the stability of Lysozymes...
Investigating Chemical Chaperones that can improve the stability of Lysozymes...
 
Presentation at Immunologisk Selskab, 2006
Presentation at Immunologisk Selskab, 2006Presentation at Immunologisk Selskab, 2006
Presentation at Immunologisk Selskab, 2006
 
Protein folding and aggregation
Protein folding and aggregationProtein folding and aggregation
Protein folding and aggregation
 
Protein folding
Protein foldingProtein folding
Protein folding
 
McShannon Abstract
McShannon AbstractMcShannon Abstract
McShannon Abstract
 
Corticosteroid induced disorders – an overview
Corticosteroid induced disorders – an overviewCorticosteroid induced disorders – an overview
Corticosteroid induced disorders – an overview
 
Protein folding slids
Protein folding slidsProtein folding slids
Protein folding slids
 
Enzymes
EnzymesEnzymes
Enzymes
 
Our Article
Our ArticleOur Article
Our Article
 
lam12373
lam12373lam12373
lam12373
 
Final Paper Revision
Final Paper RevisionFinal Paper Revision
Final Paper Revision
 
Protein folding and proteostasis
Protein folding and proteostasisProtein folding and proteostasis
Protein folding and proteostasis
 

Viewers also liked

The sportsman of our school
The sportsman of our schoolThe sportsman of our school
The sportsman of our schoolprosvsports
 
Cultural Self-Inventory for Distributed Agile Teams
Cultural Self-Inventory for Distributed Agile TeamsCultural Self-Inventory for Distributed Agile Teams
Cultural Self-Inventory for Distributed Agile TeamsSococo
 
Revista espírita 1864
Revista espírita   1864Revista espírita   1864
Revista espírita 1864anaccc2013
 
Sherav Introduction 2016
Sherav Introduction 2016Sherav Introduction 2016
Sherav Introduction 2016Vijay Nainani
 
Proposed budget 16 17 final
Proposed budget 16 17 finalProposed budget 16 17 final
Proposed budget 16 17 finalgrelli
 
Enabling Banks for Mobile
Enabling Banks for MobileEnabling Banks for Mobile
Enabling Banks for MobileSimon Clarke
 
Information Literacy & Open Access for Physics and Astronomy Graduate Students
Information Literacy & Open Access for Physics and Astronomy Graduate StudentsInformation Literacy & Open Access for Physics and Astronomy Graduate Students
Information Literacy & Open Access for Physics and Astronomy Graduate StudentsJackie Werner
 
Mobilization workshop slides
Mobilization workshop slidesMobilization workshop slides
Mobilization workshop slidesOpikom Web Apps
 

Viewers also liked (15)

Independencia de chile reconquista
Independencia de chile reconquistaIndependencia de chile reconquista
Independencia de chile reconquista
 
Alimentos para iluminar
Alimentos para iluminarAlimentos para iluminar
Alimentos para iluminar
 
The sportsman of our school
The sportsman of our schoolThe sportsman of our school
The sportsman of our school
 
Cultural Self-Inventory for Distributed Agile Teams
Cultural Self-Inventory for Distributed Agile TeamsCultural Self-Inventory for Distributed Agile Teams
Cultural Self-Inventory for Distributed Agile Teams
 
Revista espírita 1864
Revista espírita   1864Revista espírita   1864
Revista espírita 1864
 
trabajo en clase fesutrac popayan
trabajo en clase fesutrac popayantrabajo en clase fesutrac popayan
trabajo en clase fesutrac popayan
 
Blog
BlogBlog
Blog
 
Sherav Introduction 2016
Sherav Introduction 2016Sherav Introduction 2016
Sherav Introduction 2016
 
Proposed budget 16 17 final
Proposed budget 16 17 finalProposed budget 16 17 final
Proposed budget 16 17 final
 
Enabling Banks for Mobile
Enabling Banks for MobileEnabling Banks for Mobile
Enabling Banks for Mobile
 
Information Literacy & Open Access for Physics and Astronomy Graduate Students
Information Literacy & Open Access for Physics and Astronomy Graduate StudentsInformation Literacy & Open Access for Physics and Astronomy Graduate Students
Information Literacy & Open Access for Physics and Astronomy Graduate Students
 
Periodización historia de chile
Periodización historia de chilePeriodización historia de chile
Periodización historia de chile
 
Mobilization workshop slides
Mobilization workshop slidesMobilization workshop slides
Mobilization workshop slides
 
Design Thinking
Design ThinkingDesign Thinking
Design Thinking
 
Organismos vivos
Organismos vivosOrganismos vivos
Organismos vivos
 

Similar to Research Thesis

Pharmacology Of Pain Essay
Pharmacology Of Pain EssayPharmacology Of Pain Essay
Pharmacology Of Pain EssayLeslie Lee
 
Biochemical transformation of bacterial lipopolysacchar
Biochemical  transformation  of  bacterial lipopolysaccharBiochemical  transformation  of  bacterial lipopolysacchar
Biochemical transformation of bacterial lipopolysaccharChantellPantoja184
 
keto reductases.pdf
keto reductases.pdfketo reductases.pdf
keto reductases.pdfNazishTariq4
 
Modulation of MMP and ADAM gene expression in human chondrocytes by IL-1 and OSM
Modulation of MMP and ADAM gene expression in human chondrocytes by IL-1 and OSMModulation of MMP and ADAM gene expression in human chondrocytes by IL-1 and OSM
Modulation of MMP and ADAM gene expression in human chondrocytes by IL-1 and OSMpjtkoshy
 
Fall2014_ResearchPoster_CodyHeiser
Fall2014_ResearchPoster_CodyHeiserFall2014_ResearchPoster_CodyHeiser
Fall2014_ResearchPoster_CodyHeiserCody Heiser
 
Lipids and carbohydrates biochemistry
Lipids and carbohydrates biochemistryLipids and carbohydrates biochemistry
Lipids and carbohydrates biochemistryTaw Alzu
 
Biochemical Study on Endothelial Nitric Oxide Gene Polymorphism in Fatty Live...
Biochemical Study on Endothelial Nitric Oxide Gene Polymorphism in Fatty Live...Biochemical Study on Endothelial Nitric Oxide Gene Polymorphism in Fatty Live...
Biochemical Study on Endothelial Nitric Oxide Gene Polymorphism in Fatty Live...iosrjce
 
© 2010 El-Ansary et al, publisher and licensee Dove Medical Pr.docx
© 2010 El-Ansary et al, publisher and licensee Dove Medical Pr.docx© 2010 El-Ansary et al, publisher and licensee Dove Medical Pr.docx
© 2010 El-Ansary et al, publisher and licensee Dove Medical Pr.docxgerardkortney
 
Book role of plants, environmental toxins and physical neurotoxicological fac...
Book role of plants, environmental toxins and physical neurotoxicological fac...Book role of plants, environmental toxins and physical neurotoxicological fac...
Book role of plants, environmental toxins and physical neurotoxicological fac...M. Luisetto Pharm.D.Spec. Pharmacology
 
PIIS1552526009012771(1)(3)
PIIS1552526009012771(1)(3)PIIS1552526009012771(1)(3)
PIIS1552526009012771(1)(3)Marco Garza
 
KATP Channel Activation by Statins Decreases Intra-Ocular Pressure. Should We...
KATP Channel Activation by Statins Decreases Intra-Ocular Pressure. Should We...KATP Channel Activation by Statins Decreases Intra-Ocular Pressure. Should We...
KATP Channel Activation by Statins Decreases Intra-Ocular Pressure. Should We...Healthcare and Medical Sciences
 
Liver ischemia/reperfusion injury, a setting in which the functional mass is ...
Liver ischemia/reperfusion injury, a setting in which the functional mass is ...Liver ischemia/reperfusion injury, a setting in which the functional mass is ...
Liver ischemia/reperfusion injury, a setting in which the functional mass is ...Prof. Hesham N. Mustafa
 

Similar to Research Thesis (20)

Pharmacology Of Pain Essay
Pharmacology Of Pain EssayPharmacology Of Pain Essay
Pharmacology Of Pain Essay
 
Biochemical transformation of bacterial lipopolysacchar
Biochemical  transformation  of  bacterial lipopolysaccharBiochemical  transformation  of  bacterial lipopolysacchar
Biochemical transformation of bacterial lipopolysacchar
 
PhDABSTRACT
PhDABSTRACTPhDABSTRACT
PhDABSTRACT
 
Simvastatin Treatment Prevents Cell Damage and Regulates Angiogenesis in a Ra...
Simvastatin Treatment Prevents Cell Damage and Regulates Angiogenesis in a Ra...Simvastatin Treatment Prevents Cell Damage and Regulates Angiogenesis in a Ra...
Simvastatin Treatment Prevents Cell Damage and Regulates Angiogenesis in a Ra...
 
keto reductases.pdf
keto reductases.pdfketo reductases.pdf
keto reductases.pdf
 
Perez Cruz Et Al 2006
Perez Cruz Et Al 2006Perez Cruz Et Al 2006
Perez Cruz Et Al 2006
 
J. Biol. Chem.-2015-Maganti-9812-22
J. Biol. Chem.-2015-Maganti-9812-22J. Biol. Chem.-2015-Maganti-9812-22
J. Biol. Chem.-2015-Maganti-9812-22
 
Modulation of MMP and ADAM gene expression in human chondrocytes by IL-1 and OSM
Modulation of MMP and ADAM gene expression in human chondrocytes by IL-1 and OSMModulation of MMP and ADAM gene expression in human chondrocytes by IL-1 and OSM
Modulation of MMP and ADAM gene expression in human chondrocytes by IL-1 and OSM
 
Reserch.docxpoprawki
Reserch.docxpoprawkiReserch.docxpoprawki
Reserch.docxpoprawki
 
CRP.pdf
CRP.pdfCRP.pdf
CRP.pdf
 
Rbc membrane
Rbc membraneRbc membrane
Rbc membrane
 
Fall2014_ResearchPoster_CodyHeiser
Fall2014_ResearchPoster_CodyHeiserFall2014_ResearchPoster_CodyHeiser
Fall2014_ResearchPoster_CodyHeiser
 
Lipids and carbohydrates biochemistry
Lipids and carbohydrates biochemistryLipids and carbohydrates biochemistry
Lipids and carbohydrates biochemistry
 
Biochemical Study on Endothelial Nitric Oxide Gene Polymorphism in Fatty Live...
Biochemical Study on Endothelial Nitric Oxide Gene Polymorphism in Fatty Live...Biochemical Study on Endothelial Nitric Oxide Gene Polymorphism in Fatty Live...
Biochemical Study on Endothelial Nitric Oxide Gene Polymorphism in Fatty Live...
 
© 2010 El-Ansary et al, publisher and licensee Dove Medical Pr.docx
© 2010 El-Ansary et al, publisher and licensee Dove Medical Pr.docx© 2010 El-Ansary et al, publisher and licensee Dove Medical Pr.docx
© 2010 El-Ansary et al, publisher and licensee Dove Medical Pr.docx
 
Book role of plants, environmental toxins and physical neurotoxicological fac...
Book role of plants, environmental toxins and physical neurotoxicological fac...Book role of plants, environmental toxins and physical neurotoxicological fac...
Book role of plants, environmental toxins and physical neurotoxicological fac...
 
Yang{JMCC_2013]
Yang{JMCC_2013]Yang{JMCC_2013]
Yang{JMCC_2013]
 
PIIS1552526009012771(1)(3)
PIIS1552526009012771(1)(3)PIIS1552526009012771(1)(3)
PIIS1552526009012771(1)(3)
 
KATP Channel Activation by Statins Decreases Intra-Ocular Pressure. Should We...
KATP Channel Activation by Statins Decreases Intra-Ocular Pressure. Should We...KATP Channel Activation by Statins Decreases Intra-Ocular Pressure. Should We...
KATP Channel Activation by Statins Decreases Intra-Ocular Pressure. Should We...
 
Liver ischemia/reperfusion injury, a setting in which the functional mass is ...
Liver ischemia/reperfusion injury, a setting in which the functional mass is ...Liver ischemia/reperfusion injury, a setting in which the functional mass is ...
Liver ischemia/reperfusion injury, a setting in which the functional mass is ...
 

Research Thesis

  • 1. 1 Examination of the Interaction of ADAM Proteins with Oxidized Phospholipids and their Role in Endothelial Inflammation Tridu Huynh, 1, 3 James R. Springstead,1 Sangderk Lee,2 Judith A. Berliner1,2,4 1 Department of Medicine, Division of Cardiology 2 Department of Pathology University of California – Los Angeles, Los Angeles, CA 90095, USA 3 Correspondence: tridu.huynh@gmail.com 4 Correspondence: jberliner@mednet.ucla.edu UID: 703-773-534
  • 2. 2 SUMMARY Atherosclerosis is a chronic inflammatory disease characterized by lipid accumulation and subsequent inflammation of the artery walls that can result in heart attacks and strokes. PAPC is one of the major phospholipids in low-density lipoprotein (LDL), and products of its oxidation (Ox-PAPC) interact and activate endothelial cells, which leads to the induction of chemokines, such as IL-8. IL-8 results in the migration and retention of monocytes into the subendothelial space, an initial step in atherogenesis. IL-8 induction is regulated by several pathways, one of which is the ADAM-mediated HBEGF-EGFR pathway. It has previously been shown that Ox- PAPC binds to several endothelial cell proteins, among which are some ADAMTS proteins. In this study, using Ox-PAPE-N-biotin, a biotinylated analog of Ox-PAPC, we present evidence that Ox-PAPC activates ADAM proteins, specifically ADAMTS1 and ADAMTS4, both of which have been implicated in IL-8 regulation, by covalently binding to them.
  • 3. 3 INTRODUCTION Atherosclerosis, a chronic inflammatory disease of the artery wall, is the major cause of heart attacks and strokes, which are the leading causes of death in the United States (Heron, 2007). Atherosclerosis is characterized by the accumulation of lipids and fibrous debris in the subendothelial space of artery walls. Early atherosclerotic lesions consist of the formation of fatty streaks in arteries, which results from the accumulation of lipid-engorged macrophages, or foam cells, in the subendothelial space. Although fatty streaks are not clinically significant, they are the precursor to fibrous plaques, which arise from the migration of smooth muscle cells and the accumulation of lipid-rich necrotic debris in these now more advanced lesions. The final clinical complication of atherosclerosis is thrombosis, the formation of a blood clot inside a blood vessel as a result of the rupture of the unstable atherosclerotic lesion. Such blood clot can obstruct the blood flow through the circulatory system, resulting in a myocardial infarction or stroke (Lusis, 2000). Results from many clinical studies and animal models have shown that high levels of low-density lipoprotein (LDL), a fat carrier in the bloodstream, are strongly correlated with atherosclerotic development (Schwenke et al., 1989; Goldstein et al., 1977). More specifically, it was noticed that LDL lipids were oxidized in the subendothelial space of arteries after retention. These now called minimally modified LDL (MM-LDL) were seen to predict and accumulate in atherosclerotic lesions (Witztum et al., 1991). 1-palmitoyl-2-arachidonyl-sn-glycerol-3-phosphocholine (PAPC) is one of the major phospholipids in LDL and cell membranes. It has previously been shown that products of oxidized PAPC (Ox-PAPC) are a major bioactive component of MM-LDL, and are present in atherosclerotic lesions (Leitinger et al., 1997; Watson et al., 1997). Ox-PAPC contributes to endothelial cell activation, a key initial event in atherogenesis, which enhances monocyte- endothelial interactions partly through the induction of chemokines, such as Interleukin-8 (IL-8) and monocyte chemotactic protein-1 (MCP-1) (Bobryshey et al., 2005). Previous research has
  • 4. 4 shown that monocyte recruitment, retention and differentiation into the subendothelial space is an initial step in atherosclerotic plaque development. Upon entry, monocytes recruited at atherosclerotic lesions differentiate into macrophages that take up lipids until they eventually become lipid-laden foam cells that contribute to the formation of the fatty streak (Insull et al., 2009). IL-8 is regulated by many pathways, one of which is the heparin-binding epidermal growth factor and epidermal growth factor receptor (HBEGF-EGFR) pathway. We have shown in previous studies that Ox-PAPC activates certain ADAM proteins (a disintegrin and metalloproteinase), and that such activated ADAMs process HBEGF on the cell surface. The soluble HBEGF ligand then binds to the EGFR, leading to IL-8 induction in the cell (Lee et al., 2012; Figure 1). Using Ox-PAPE-N-biotin (Ox-PNB), a biotinylated analog of Ox-PAPC with identical biological properties, it has previously been demonstrated that Ox-PAPC binds to several endothelial cell proteins (Gugiu et al., 2008).Furthermore, we previously showed that Ox-PAPC covalently binds to cysteine residues on specific ADAMs in endothelial cells (Lee et al., 2012). We hypothesize that binding of Ox-PAPC activates the ADAMs, which would then result in an induction of IL-8 in endothelial cells through the aforementioned ADAM-mediated HBEGF- EGFR pathway. This study focuses on the interaction between the metalloproteinases (MPs) ADAMTS1 and ADAMTS4 (a disintegrin and metalloproteinase with thrombodspondin motifs) and Ox- PAPC. ADAMTS4 is the subject of current study because it was previously shown to be involved in IL-8 regulation by Ox-PAPC in past silencing studies (Lee et al., 2012). ADAMTS1 is the subject of current study because it is known to cleave VEGFR2, which plays a role similar to EGFR in IL-8 regulation. The ADAMTS are a group of proteases that are found both in mammals and invertebrates. They are extracellular, multi-domain enzymes that have several known functions, one of which is the cleavage of matrix proteoglycans aggrecan and versican
  • 5. 5 (Porter et al., 2005). Aggrecan is an extracellular matrix proteoglycan that was used in past and present studies to assay the activity of certain ADAMTS proteins. In this study, using Ox-PNB, we present evidence that Ox-PAPC activates ADAMTS1 and ADAMTS4’s enzymatic activity and that it covalently binds to them. RESULTS Ox-PAPC Activates ADAM Proteins To determine whether Ox-PAPC activates ADAM proteins’ enzymatic activities, we measured the processing of fluorogenic ADAM substrate. Human Aortic Endothelial Cells (HAECs) were treated with either no Ox-PAPC or 50ug/mL of Ox-PAPC and substrate cleavage was assayed at various time points (Figure 2A). Ox-PAPC is seen to clearly increase the activity of ADAM proteins over time. To further prove the point, HAECs were treated with varying concentrations of GM6001 or Batimastat (matrix metalloproteinase inhibitors) for 4 hours, and the amount of ADAM cleavage was assayed through fluorescence quantification, again (Figure 2B). Increasing concentration of GM6001 or Batimastat were seen to inhibit Ox-PAPC’s activation of ADAM proteins. Ox-PAPC Activates Aggrecanases, ADAMTS1 and ADAMTS4 being two of them To hone in on a specific subset of ADAM proteins for further study, exogenous aggrecan was used as a substrate to determine whether or not aggrecanases are a subset of ADAM proteins that undergo activation in the presence of Ox-PAPC. Also, as previously mentionned, we previously showed that ADAMTS1 and ADAMTS4 are implicated in IL-8 regulation through Ox- PAPC, both of which are known aggrecanases (Boeuf et al., 2012). Western blot analysis of HAECs with aggrecan added in Ox-PAPC or control condition showed degradation of aggrecan as early as 1 hour (Figure 3A). This show that Ox-PAPC leads to activation of aggrecanase(s).
  • 6. 6 HAECs with aggrecan added were then transfected with either ADAMTS4, ADAMTS1 or control and treated with either no Ox-PAPC or 50ug/mL of Ox-PAPC. In this experiment, the control condition consisted only of transfection reagent. Future experiments will consist of transfection with a plasmid lacking an ADAM protein as a better control. Ox-PAPC is seen to increase cleavage of aggrecan in both ADAMTS4 and ADAMTS1 transfected cells as well as untransfected cells (Figure 3B). This shows that Ox-PAPC activates enzymatic activities of ADAMTS4 and ADAMTS1 specifically. Ox-PAPC Demonstrates Specificity of Binding Given the chemically reactive nature of Ox-PAPC, it is plausible that it could have demonstrated opportunistic binding to a variety of molecules with no relevance to the model under study. To address this concern, HAECs were treated with different doses of Ox-PNB (10, 7, 4, 1, and 0 ug/mL) for four hours. Western blot analysis was then performed to visualize Ox-PNB bound proteins using streptavidin-HRP. The untreated condition revealed a couple of non-specific bands that represent endogenous proteins with avidin-binding properties (Cauli et al., 1994). A noticeable band was detected around 90kDa, with binding seen at concentrations as low as 1ug/mL (Figure 4). This suggests that Ox-PNB has a higher binding affinity for specific proteins. Ox-PAPC Binds to ADAMTS4 and ADAMTS1 To test the hypothesis that ADAMTS4 and ADAMTS1 are enzymatically activated through covalent binding to Ox-PAPC, human embryonic kidney 293 (HEK293) cells were transfected with either ADAMTS4-HA or ADAMTS1-HA, treated with 50ug/mL of either unoxidized PNB or Ox-PNB for 30 minutes, immunoprecipitated with streptavidin beads, and blotted with anti-HA- HRP. ADAMTS4 and ADAMTS1 have an expected molecular weight of 90 and 105kDa, respectively. There is a clear increase in band intensity in the according bands for both ADAMTS1 and ADAMTS4 going from treatment with PNB to treatment with Ox-PNB,
  • 7. 7 suggesting that Ox-PNB, and therefore Ox-PAPC, binds to ADAMTS4 and ADAMTS1. However, the increase in band intensity is much greater for ADAMTS4 than ADAMTS1, suggesting that Ox-PAPC binds to ADAMTS4 more strongly (Figure 5). Ox-PAPC Promotes Cleavage of ADAMTS4 into Mature Form HEK293 cells were transfected with either ADAMTS1-HA or ADAMTS4-HA, treated with either phosphate buffered saline (PBS) or 50ug/mL of Ox-PAPC for an hour, immunoprecipitated with anti-HA beads, and blotted with anti-HA-HRP. There is a clear increase in band intensity for what is supposedly the cleaved, mature form of ADAMTS4 around 68kDa going from PBS to Ox-PAPC treatment. On the other hand, ADAMTS1’s cleaved, mature form around 85kDa does not seem to show such an increase (Figure 6). This suggests that Ox-PAPC promotes cleavage of ADAMTS4 into its active, mature form, but that ADAMTS1 does not undergo the same process. PCSK3 is Implicated in IL-8 Regulation by Ox-PAPC Given the results obtained in figure 5, we naturally became interested in the mechanism by which Ox-PAPC might lead to increased production of the mature form of ADAMTS4. Proprotein convertase subtilisin/kexin (PCSK) is a family of enzymes that perform cleavage and conversion of immature, target proteins into their biologically active forms (Turpeinen et al., 2011). PCSK3 (FURIN) is known to proteolytically process pro-ADAMTS4 into its mature form. We then first tested whether or not PCSKs had a role in IL-8 regulation by Ox-PAPC using silencing techniques. HAECs were transfected with either scrambled siRNA or one of two siRNAs against PCSK3. The second siRNA against PCSK3 resulted in a 40-50% knockdown of the protein with a corresponding ~30% knockdown of IL-8 induction in the cells (Figure 7). This is modest evidence that PCSKs might play a role in IL-8 regulation by Ox-PAPC.
  • 8. 8 DISCUSSION This study provides evidence for the activation of ADAM proteins’ enzymatic activities through Ox-PAPC, specifically the aggrecanases ADAMTS4 and ADAMTS1, which we have previously shown to be implicated in IL-8 upregulation in endothelial cells by Ox-PAPC. Furthermore, using Ox-PNB, we show that Ox-PAPC clearly binds to ADAMTS4, with modest if not negligible binding to ADAMTS1 (Figure 5). Taken together, several hypotheses can be put forward as to how Ox-PAPC activates ADAMTS’s enzymatic activity. Other groups have shown that covalent interaction of metalloproteinases (MPs) with electrophiles caused enhancement of enzyme activity (Rajagopalan et al., 1996). A plausible mechanism of activation could be through Ox-PAPC displacing what is known as the “cysteine switch” from the zinc-containing catalytic domain of the MP. The cysteine switch is a cysteine-containing consensus sequence in the N-terminal pro-peptide domain that coordinates with the zinc ion in the catalytic site. The MP’s activity is suppressed as a result of zinc-cysteine coordination and pro-peptide domain occlusion of the active site (Rosenblum et al., 2007). This mechanism is of particular interest and the subject of further study to us because we previously showed that Ox-PAPC binds to cysteine residues in some ADAM and ADAMTS proteins, ADAMTS4 being one of them (Lee et al., 2012). Determination of the specific cysteines bound by Ox-PAPC is the subject of further study. Mutation of putative cysteine binding sites on ADAMTSs in an attempt to determine actual binding sites as well as to confirm whether binding is the actual mechanism of ADAMTS activation are the aims of future studies. The results of figure 6 were unexpected and hint at a possible involvement of PCSKs in IL-8 regulation by Ox-PAPC. There is a clear increase in what seems to be the cleaved, mature form of ADAMTS4 going from control to Ox-PAPC condition, showing that Ox- PAPC leads to activation of ADAMTS4’s processing. The same cannot be said of ADAMTS1, however, suggesting that ADAMTS1 does not undergo the same process. We hypothesized that Ox-PAPC binding to ADAMTS4 leads to a conformational change that would predispose it to
  • 9. 9 processing by PCSK3 (FURIN), which is known to process pro-ADAMTS4 into its mature form (Wang et al., 2004). Silencing PCSK3 resulted in a modest (~30%) reduction in IL-8 levels in HAECs (Figure 7). The low impact of PCSK3’s silencing on IL-8 could be attributed to the fact that the silencing only reduced PCSK3’s level by 40-50%. It could also be due to the fact that IL- 8 is regulated by many pathways. Nevertheless, PCSK3 still shows some evidence of being involved in IL-8 upregulation by Ox-PAPC. Replication of PCSK3’s silencing is required to firmly determine that. We would also broaden our silencing study to other members of the PCSK family that might be involved in processing of ADAM proteins involved in IL-8 regulation by Ox- PAPC. EXPERIMENTAL PROCEDURES Preparation of Ox-PAPC PAPC (1-palmitoyl-2-arachidonyl-sn-glycerol-3-phosphocholine) was purchased from Avanti Polar Lipids and was oxidized by exposure to air for 48 hrs. Oxidation was monitored by electrospray ionization-mass spectrometry (ESI-MS). PAPE-N-biotin synthesis A solution 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphatidylethanolamine (PAPE) in dry dichloromethane was added drop-wise to a magnetically stirred solution of biotin, dicyclohexylcarbodiimide, and dimethylaminopyridine under argon at room temperature. The solution was mixed for 12 h at room temperature. The solvent was evaporated and the lipid was separated by reverse-phase high-performance liquid chromatography (HPLC) with ESI-MS detection in negative mode to produce 1-palmitoyl-2-arachidonoyl-snglycero-3-phosphatidyl-(N- biotinylethanolamine) (PAPE-N-biotin). Cell Culture and Treatment
  • 10. 10 Plates for Human Aortic Endothelial Cells (HAECs) or Human Embryonic Kidney 293 (HEK293) cells were coated with 0.1% gelatin-PBS. HAECs were cultured in MCDB-131 complete media (VEC technologies) alone or M199 medium supplemented with 20% FBS (Hyclone), 100U/mL penicillin, 100ug/mL streptomycin, 1mmol/L sodium pyruvate, 65ug/mL heparin (Sigma), and 50ug/mL endothelial cell growth supplement (ECGS) (BD Biosciences). HEK293 cells were cultured in DMEM (Dulbecco's Modified Eagle Medium) containing 4.5 g/L glucose supplemented with 10% FBS (Hyclone), 100U/mL penicillin, 100ug/mL streptomycin, 1mmol/L sodium pyruvate. Ox-PAPC in chloroform (stock: 10mg/ml) was dried to a lipid residue and resuspended in M199 medium plus 1% FBS for cell treatment. Generally, cells were changed to M199 medium containing 1% serum for 30min before cell treatment. Cells were then incubated with or without Ox-PAPC in medium containing 1% serum. ADAM Substrate Cleavage Assay The activity of endogenous ADAMs in HAECs were determined using a fluorogenic ADAM substrate (Enzo BML-P235, Dabcyl-Leu–Ala-Gln–Ala-Homophe–Arg-Ser—Lys[5-FAM]-NH2). The product formation was determined by fluoroscence measurement using excitation at 485 nm and emission at 520 nm. Transfection of Plasmids or siRNAs 90% and above confluent cells were treated with plasmid or siRNA complexes with Lipofectamine 2000 (Invitrogen) for 4-6 hours in OPTIMEM media (Invitrogen) with fungizone at 37°C. The OPTIMEM media was then removed, washed with 1x PBS without calcium and magnesium, and replaced with 4.5g/L DMEM with 10% FBS media. Cells were used for experiments after 2 days of cell growth. The specific silencing of target genes was confirmed by qRT-PCR and Western blotting.
  • 11. 11 Immunoprecipitation Anti-HA resins or Neutravidin beads (Roche) were used for immunoprecipitation. 1mL of lysate was mixed with 50uL of either beads in 1.5mL eppendorf tubes. The tubes were then sealed and incubated with gentle-end-over-end mixing in 4°C room overnight. Following the incubation, the lysate was centrifuged at 4,000g and the supernatant was removed. Resins were washed with 500uL of Tris-buffered saline containing 0.1% Tween 20 (TBST) three times. 45uL of sample buffer consisting of 2x SDS sample buffer with β-mercaptoethanol in a 19:1 ratio was added to the tubes and then boiled for 5 minutes. The tubes were then centrifuged for 2 minutes at 4000rpm and the eluent was collected and ready to be loaded on a gel. Western Blotting Laemmeli buffer (2x, Bio-rad) containing both protease and phosphatase inhibitors and PMSF (1mM) was used for protein-samples preparation for SDS-PAGE. The samples were loaded onto wells of a 4-20% Tris-glycine SDS gel (NuGel). Blots were transferred overnight. The blots were incubated with primary and secondary antibodies in 5% milk or 1% BSA in TBST. They were then developed and analyzed using enhanced chemiluminescence (ECL) prime kit (Amersham). VersaDoc Imaging System (BioRad) and Quantity One® program were used for image acquirement and band density analysis. Quantitative Real-Time PCR (qRT-PCR) Total RNAs and cDNAs were isolated and prepared using RNA extraction and cDNA synthesis kits from Bio-Rad. SYBR® green master mixture and PCR amplification system from Roche Diagnostics were used for PCR amplification and quantification procedure. The transcriptional level of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was determined for each cDNA normalization.
  • 12. 12 REFERENCES Bobryshev, Y.V. (2005). Monocyte recruitment and foam cell formation in atherosclerosis. Micron. 37, 208-222. Boeuf, S., Graf, F., Fischer, J., Moradi, B., Little, C.B., Richter, W. (2012). Regulation of aggrecanases from the ADAMTS family and aggrecan neoepitope formation during in vitro chondrogenesis of human mesenchymal stem cells. Eur. Cell. Mater. 4, 320-32. Cauli, A., Yanni, G., Panavi, G.S. (1994). Endogenous avidin-binding activity in epithelial cells of the ducts of the human salivary glands. Clin. Exp. Rheumatol. 12, 45-7. Goldstein, L.J., Brown S.M. (1977). The low-density lipoprotein pathway and its relation to atherosclerosis. Annu. Rev. Biochem. 46, 897-930. Gugiu, G.B., Mouillesseaux, K., Duong, V., Herzog, T., Hekimian, A., Koroniak, L., Vondriska, T.M., Watson, A.D. (2008). Protein targets of oxidized phospholipds in endothelial cells. J. Lipid Res. 49, 510-520. Heron, M. (2011). Deaths: leading causes for 2007. Natl. Vital Stat. Rep. 59, 1-95. Insull, W. (2009). The Pathology of Atherosclerosis: Plaque Development and Plaque Responses to Medical Treatment. Am. J. Med. 122, S3-S14. Lee, S., Springstead, J.R., Parks, B.W., Romanoski, C.E., Palvolgyi, R., Ho, T., Nguyen, P., Lusis, A.J., Berliner, J.A. (2012). Metalloproteinase processing of HBEGF is a Proximal event in the Response of human aortic endothelial cells to oxidized phospholipids. Arterioscler. Thromb. Vasc. Biol. 32, 1246-1254. Leitinger, N., Watson A.D., Faull K.F., Fogelman A.M., Berliner J.A. (1997). Monocyte binding to endothelial cells induced by oxidized phospholipids present in minimally oxidized low density lipoprotein is inhibited by a platelet activating factor receptor antagonist. Adv. Exp. Med Biol. 433, 379-382. Lusis, A.J. (2000). Atherosclerosis. Nature 407, 233-41. Porter, S., Clark, I.M., Kevorkian, L., Edwards, D.R. (2005). The ADAMTS metalloproteinases. Biochem. J. 386, 15-27. Rajagopalan, S., Meng, X.P., Ramasamy, S., Harrison, D.G., Galis, Z.S. (1996). Reactive oxygen species produced by macrophage-derived foam cells regulate the activity of vascular matrix metalloproteinases in vitro. Implications for atherosclerotic plaque stability. J. Clin. Invest. 98, 2572-9. Rosenblum, G., Meroueh, S., Toth, M., Fisher, J.F., Fridman, R., Mobashery, S., Sagi, I. (2007). Molecular structure and dynamics of the stepwise activation mechanism of a matrix metalloproteinase zymogen: challenging the cysteine switch dogma. J. Am. Chem. Soc. 129, 13566-74. Schwenke, D.C., Carew, T.E. (1989). Initiation of atherosclerotic lesions in cholesterol-fed rabbits. Focal increases in arterial LDL concentration precede development of fatty streak lesions. Arterioscler. Thromb. Vasc. Biol. 9, 895-907.
  • 13. 13 Springstead, J.R., Gugiu, B.G., Lee, S., Cha, S., Watson, A.D., Berliner, J.A. (2012). Evidence for the importance of OxPAPC interaction with cysteines in regulating endothelial cell function. J. Lipid Res. 53, 1304-15. Turpeinen, H., Raitoharju, E., Oksanen, A., Oksala, N., Levula, M., Lyytikäinen, L.P., Järvinen, O., Creemers, J.W., Kähönen, M., Laaksonen, R., et al. (2011). Proprotein convertases in human atherosclerotic plaques: the overexpression of FURIN and its substrate cytokines BAFF and APRIL. Atherosclerosis 29, 799-806. Wang, P., Tortorella, M., England, K., Malfait, A.M., Thomas, G., Arner, E.C., Pei, D. (2004). Proprotein convertase furin interacts with and cleaves pro-ADAMTS4 (aggrecanse-1) in the trans-golgi network. J. Biol. Chem. 279, 15434-40. Watson, A.D., Leitinger, N., Navab, M., Faull, K.F, Horkko, S., Witztum, J.L., Palinski, W., Schwenke, D., Salomon, R.G, Sha, W., et al. (1997). Structural identification by mass spectrometry of oxidized phospholipids in minimally oxidized low density lipoprotein that induce monocyte/endothelial interactions and evidence for their presence in vivo. J. Biol. Chem. 272, 13597-13607. Witztum, J.L., Steinberg, D. (1991). Role of oxidized low density lipoprotein in atherogenesis. J. Clin. Invest. 88, 1785–92. Yeh, M., Leitinger, N., De Martin, R., Onai, N., Matsushima, K., Vora, D.K., Berliner, J.A., Srinivasa, T.R. (2001). Increased Transcription of IL-8 in Endothelial Cells Is Differentially Regulated by TNF- α and Oxidized Phospholipids. Arterioscler. Thromb. Vasc. Biol. 21, 1585- 91. FIGURE LEGENDS Figure 1. Hypothesized induction of IL-8 expression through Ox-PAPC pathway. Figure 2. Ox-PAPC activates ADAM proteins. HAECs in 50mM Tris – pH 7.5 and 100mM NaCl buffer with 8uM of ADAM fluorogenic substrate (BML-P235 from Enzo). (A) Cells were treated with either no Ox-PAPC or 50ug/mL Ox-PAPC. Cleavage of the fluorogenic substrate was assayed at various time points as described in the Methods section (30, 60, 90, 120, 180, 240 mins).
  • 14. 14 (B) Cells were treated with either no Ox-PAPC or 50ug/mL Ox-PAPC and varying concentrations of GM6001 or Batimastat (matrix metalloproteinase inhibitors) for 4 hours and the amount of ADAM cleavage was assayed through quantification of fluorescence. Figure 3. Ox-PAPC activates Aggrecanases. (A) HAECs in 50mM Tris – pH 7.5, 100 mM NaCl and 10mM calcium buffer with or without 50ug/mL Ox-PAPC. Exogenous aggrecan fragments were added to the cells due to the large size of endogenous aggrecan, and supernatant was collected at different time points (1, 2, 4 hours and overnight). Western blot analysis with anti-aggrecan shows that Ox-PAPC leads to degradation of aggrecan as early as 1 hour. (B) HAECs transfected with either vehicle or ADAMTS4 or ADAMTS1, treated with no Ox- PAPC or 50ug/mL of Ox-PAPC, and blotted with anti-aggrecan. Top band represents undigested aggrecan fragments, bottom band represents digested fragments. Figure 4. Ox-PNB demonstrates specificity of binding. HAECs treated with different doses of Ox-PNB for 4 hours. Western blot analysis with streptavidin-HRP was performed to visualize Ox-PNB bound proteins. A couple of non-specific avidin-binding proteins can be seen in the untreated lane. A band around 90kDa can be seen at concentrations as low as 1ug/mL. Figure 5. Ox-PAPC binds to ADAMTS4 and ADAMTS1. HEK293 cells transfected with ADAMTS4 or ADAMTS1, treated with 50ug/mL of PNB or Ox- PNB for 30 minutes, immunoprecipitated with streptavidin resins, and blotted with anti-HA-HRP. Arrows represent the size of each ADAMTS protein. Figure 6. Ox-PAPC promotes cleavage of ADAMTS4 into mature form.
  • 15. 15 HEK293 cells transfected with ADAMTS4 or ADAMTS1, treated with PBS or Ox-PAPC for an hour, immunoprecipitated with anti-HA resins, and blotted with anti-HA-HRP. Arrows indicate the size of each ADAMTS’s mature size. Figure 7. PCSK3 is involved in IL-8 regulation by Ox-PAPC HEK293 cells transfected with PCSK3 siRNA or scrambled for 4 hours and grown in VEC media for 3.5 days before treatment with Ox-PAPC for 4 hours. Values normalized to GAPDH levels. siFURIN2 knocked down PCSK3 expression by 40-50% with a corresponding 30% knockdown of IL-8 induction. .
  • 17. 17 FIGURE 2 A 0 5000 10000 15000 20000 25000 30 60 90 120 180 240 Fluorescence(485/530nm) Incubation time (min) ADAM Activity in HAECs control Ox50 0 5000 10000 15000 20000 25000 30000 502512.56.253.1250 Fluorescence(485/530nm) GM6001 ADAM Activity with GM6001 Ox50 media 0 5000 10000 15000 20000 25000 30000 50025012562.531.250 Fluorescence(485/530nm) Batimastat ADAM Activity with Batimastat Ox50 media