SlideShare a Scribd company logo
1 of 7
Download to read offline
TELKOMNIKA Telecommunication, Computing, Electronics and Control
Vol. 18, No. 3, June 2020, pp. 1169~1175
ISSN: 1693-6930, accredited First Grade by Kemenristekdikti, Decree No: 21/E/KPT/2018
DOI: 10.12928/TELKOMNIKA.v18i3.14313  1169
Journal homepage: http://journal.uad.ac.id/index.php/TELKOMNIKA
Simple broadband circularly polarized monopole antenna
with two asymmetrically connected U-shaped
parasitic strips and defective ground plane
Hussein Alsariera1
, Z. Zakaria2
, A. A. M. Isa3
, Sameer Alani4
, M. Y. Zeain5
,
Othman S. Al-Heety6
, S. Ahmed7
, Mussa Mabrok8
, R. Alahnomi9
1,2,3,4,5,6,8,9
Department of Electronic and Computer Engineering,
University Teknikal Malaysia Melaka (UTeM), Malaysia
7
Faculty of Engineering and Technology, Multimedia Universty, Malaysia
Article Info ABSTRACT
Article history:
Received Oct 12, 2019
Revised Feb 1, 2020
Accepted Feb 17, 2020
A simple compact broadband circularly polarized monopole antenna,
which comprises a simple monopole, a modified ground plane with
an implementing triangular stub and two asymmetrically connected U-shaped
parasitic strips, is proposed. Simulation results show that the proposed
compact antenna (0.62λo×0.68λo) achieves a 10-dB impedance bandwidth
(IBW) of 111% (1.7 to 5.95 GHz) and a 3-dB axial ratio bandwidth (ARBW)
of 61% (3.3–6.2 GHz) with a peak gain between 2.9–4 dBi for the entire
ARBW. With its broad IBW and ARBW, compact size and simple structure,
the proposed antenna is suitable for different wireless communications.
Keywords:
Axial ratio (AR)
Broadband antenna
Circularly polarised (CP)
Monopole antenna
This is an open access article under the CC BY-SA license.
Corresponding Authors:
Hussein Alsariera,
Department of Electronic and Computer Engineering,
University Teknikal Malaysia Melaka (UTeM),
Jalan Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia.
Email: husseinalsareira@gmail.com
1. INTRODUCTION
Printed monopole antennas are widely used in modern wireless communications due to its attractive
features, such as small size, low profile, easy fabrication, omnidirectional coverage and ability to provide
wide or broad bandwidth [1–7]. Modern wireless communications require circular polarisation (CP) more
than linear polarisation (LP), especially when the transmitter and receiver antennas are not in polarisation
alignment, because a circularly polarised antenna can reduce the mismatch between the transmitter and
receiver. This scenario can minimise the Faraday rotation effect to provide a stable communication link and
mitigate the multipath interference [8–15].
In general, CP is generated by two orthogonal electric field components, namely, horizontal (EHor)
and vertical (EVer) electric field components, which have equal amplitudes and a 90° phase difference.
However, the radiation of a traditional monopole antenna is LP due to the weak radiation in the horizontal
component. Therefore, several techniques have been proposed in [16–24] to generate CP operation. CP was
achieved in [16] by coupling a rectangular open patch with an inverted C-shaped monopole in addition to
placing a vertical rectangular stub on the ground plane. CP was achieved using a simple monopole and placing
an inverted L-strip on the right coplanar waveguide (CPW) ground in [17]. A compact antenna size was offered
 ISSN: 1693-6930
TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 3, June 2020: 1169 - 1175
1170
by previous designs in [14, 15], but several printed CP broadband antennas were presented in [18–22] due to
the narrow impedance bandwidth (IBW) and axial-ratio bandwidth (ARBW) amongst them [14, 15]. In [18],
a C-shaped monopole was modified in the ground plane by placing two triangular stubs and a simple monopole
antenna coupled with two spiral strips [19], an inverted strip with an open slot in the middle of
the ground plane [20], a simple radiator with two parasitic open loops. The modification also involved
improving the ground plane with horizontal and vertical slots [21], a rectangular monopole and an asymmetrical
ground plane in [22]. However, the printed monopole antennas in [18–22] had broad IBW and ARBW, but
the bandwidth extension was achieved by extending the antenna design dimensions.
To achieve broad IBW and ARBW with a compact antenna size, [23] presented several printed
antenna designs. An inverted L-shaped feeding with a hook-shaped ground [23–26], a parasitic G-shaped strip
coupled with an inverted C-shaped [24] and P-shaped monopole coupled with a single parasitic strip improved
the ground plane with a rectangular horizontal stub [25]. A coin-shaped radiator with an asymmetric CPW-fed
ground plane [26] was observed. Previous designs with IBW and ARBW were obtained in compact sizes.
Nevertheless, IBW and ARBW must be improved to cover most of wireless communications.
In this study, a simple broadband CP monopole antenna is proposed. With a parasitic strip, a broad
IBW is achieved beside the dropdown whole of AR values. The first CP band is obtained by placing a triangular
stub on the right side of the ground plane for further IBW and ARBW enhancement. Then, a slot is introduced
in the triangular stub. The presented antenna has an IBW of 111% (1.7–5.95 GHz) and an ARBW of 61%
(3.3–6.2 GHz).
2. ANTENNA DESIGN AND ANALYSIS
2.1. Antenna design
Figure 1 shows the configuration of the designed printed CP antenna. The antenna is printed at
the top of a 50×55 mm2
FR4 substrate with a 1.6 mm thickness, a 4.4 dielectric constant and a 0.02 loss tangent.
The antenna is fed with a 50 Ω microstrip transmission line with width wf1 and length lf1. Impedance
transformation is applied with wf2 and lf2 dimensions to obtain good impedance matching. The proposed
antenna is based on simple straight-line monopole radiator, a modified ground plane and two asymmetrically
connected U-shaped parasitic strips (CUSPS). Table 1 lists all the optimised parameters according to CST
microwave studio.
Figure 1. Prototype of proposed printed CP antenna;
(a) Parameterized front view (b) parameterized back view (c) cross-sectional view
Table 1. The optimized dimensions of proposed antenna
Parameter Value Parameter value parameter value
W 55 wt1 30 lp2 27
L 50 wt2 19 lp3 18.5
wf1 2.2 wt3 7.7 lp4 17
wf2 0.65 ws 25 lp5 20
wp1 5 g 5 lt1 7
wp2 7 lf1 10 lt2 4.2
wp3 8 lf2 22 lt3 1.8
wp4 3 lg 16.5 lc 13
wp5 5 lp1 27.5 lh 22.5
TELKOMNIKA Telecommun Comput El Control 
Simple broadband circularly polarized monopole antenna with… (Hussein Alsariera)
1171
2.2. Antenna development steps
Four prototypes (Ants. 1 to Ant. 4) are illustrated in Figure 2 to explain the development steps
of the proposed antenna,. S11 and AR simulated results are also depicted in Figure 3. Ant. 1, which is
a straight-line monopole with dual width and approximately quarter wavelength length, is proposed to generate
the fundamental resonance at centre frequency (3.8 GHz), as shown Figure 3 (a). The antenna radiates LP
waves in this step in which the AR values are large ( >15 dB). Figure 3 (b) is presented after the CUSPS in
Ant. 2. Almost all IBW results are improved, especially at the low and mid frequencies, as observed in
Figure 3 (a). Thus, an improvement for ARBW is achieved. However, the AR values remain large (> 7 dB);
thus, the radiation of Ant. 2 is LP in the entire band.
Figure 2. Four steps in the development of the proposed antenna
Figure 3. Simulated results of Ant.1 to Ant. 4: (a) S11, (b) AR
A triangular stub with asymmetric lengths is introduced to the ground plane in Ant. 3 to generate
the fundamental CP band with ARBW (3.7–5.9 GHz), as shown in Figure 3 (b). This enhancement is due to
the increase in surface current paths in horizontal components and an improvement for impedance matching in
the entire IBW. An opening rectangular slit in the triangular stub contributes to obtaining a balance between
the amplitude of two orthogonal modes (EHor and EVer) with a maintaining correct phase deference (90°).
In the improvement of the CP band at lower and upper frequencies, the ARBW is extended to become
 ISSN: 1693-6930
TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 3, June 2020: 1169 - 1175
1172
(3.3–6.2GHz), as shown in Figure 3 (b). Figure 3 (a) shows that this slit facilitates the improvement in
impedance matching at upper frequencies.
2.3. Parametric study
To assess the effects of several critical parameters on IBW and ARBW, this section presents the study
on three parameters (lf2, g, lt1). The method of parametric study is based on [27–33].
2.3.1. Effects of upper part length of feed line lf2
Figure 4 depicts the influences of the upper part length on antenna performance when lf2 = 21 mm.
The IBW at upper frequencies tend to become broader as length decreases. Moreover, an improvement is
observed at the centre and lower frequencies; however, the S11 values at the 4–5.5 GHz range deteriorates when
lf2 = 23 mm. The antenna loses IBW in bandwidths ranging from 5.5 GHz to 6 GHz. In addition, the S11 values
at lower frequencies deteriorate; whereas, the variation of lf2 has minimal effects on AR values. The value of
22 mm is observed to provide the optimal result.
Figure 4. Variation of S11 and AR with respect to lf2: (a) S11 and (b) AR
2.3.2. Effects of location of parasitic strip (CUSPS) (g)
The proposed antenna performance is investigated with changing gap (g) between the ground plane
and parasitic strip. The variation of the g value plays an important role on both antenna performance (IBW and
ARBW) when g = 4 mm. An improvement on IBW at the lower and middle frequencies can be achieved.
The IBW is affected at the upper frequency band, as shown in Figure 5 (a). AR is strongly affected with
the decreased g, as well as enlarged ARBW (from 3.2–6.2 GHz to 2.9–6.5 GHz), as shown in Figure 5 (b).
When g = 6 mm, the S11 values deteriorate at lower and mid band, but the S11 values at upper band have
improved, as observed in Figure 3 (a). Increasing g shrinks the ARBW and AR values at mid frequencies and
become close to 3dB, as shown in Figure 5 (b). A value of 5 mm is maintained to obtain the broadest ARBW
and optimal IBW result.
Figure 5. Variation of S11 and AR with respect to g: (a) S11 and (b) AR
TELKOMNIKA Telecommun Comput El Control 
Simple broadband circularly polarized monopole antenna with… (Hussein Alsariera)
1173
2.3.3. Effects of triangular length lt1
Figure 6 shows the effect of triangular length lt1 on antenna performance (S11 and AR).
Figure 6 (a) shows that as the triangular length decreases, the S11 values at the mid band improves. Figure 6 (b)
shows that the S11 values at the lower and upper bands worsen, and the IBW slightly decreases. The AR values
are also found to be sensitive with variations of the triangular length. Decreasing the lt1 also decreases the
ARBW. Therefore, when the triangular length lt1 is tuned, IBW and ARBW can be controlled. The optimal
value for triangular length lt1 is 7 mm.
Figure 6. Variation of S11 and AR with respect to lt1: (a) S11 and (b) AR
3. RESULTS AND DISCUSSIONS
The proposed antenna with optimised dimensions in Table 1 is investigated through the stages of
antenna development as shown in Figure 2 and a parametric study (2.3). Figure 7 shows the final simulation
results, that is, an IBW of 111% (1.7–5.95 GHz). Figure 8 shows the simulated AR and gain results in which
the simulated AR is 61% (3.3–6.2 GHz). The simulated peak gain is between 2.9 and 4 dBi in the obtained CP
band; hence, the maximum simulated gain is 4 dBi at 5.4 GHz.
Figure 7. The simulated results of the designed antenna: (a) S11 and (b) AR and gain
Figure 8 depicts the simulated radiation patterns in the XZ (φ = 0°) plane and YZ (φ = 90°) of
the proposed antenna at three different frequency bands of 2.4, 3.5 and 5.2 GHz. The proposed antenna can
radiate CP waves via the bidirectional radiator. Two opposite sense radiations, namely, right hand circular
polarisation (RHCP) and left hand circular polarisation (LHCP) at both sides are generated. The antenna
radiates an RHCP wave towards the +z direction and an LHCP in the −z direction.
 ISSN: 1693-6930
TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 3, June 2020: 1169 - 1175
1174
Figure 8. Simulated radiation patterns at (a) 3.5, (b) 4.8 and (c) 5.8 GHz
4. CONCLUSION
A broadband CP monopole antenna with wide IBW and ARBW, simple design and compact size is
designed and investigated by coupling the parasitic strip with a modified ground plane and implementing
a triangular stub. A wide CP band is achieved with total dimensions of 0.62λo × 0.68λo. The simulated IBW
and ARBW are at 111% (1.7–5.95 GHz) and 61% (3.3–6.2 GHz) respectively. The proposed antenna can
provide a bidirectional radiation with symmetry waves. Therefore, the proposed antenna is suitable for many
wireless communications, especially indoor wireless ones such as WLAN, WiMAX and LTE, due to its
compact size and ability to radiate CP waves from both antenna sides.
ACKNOWLEDGMENT
The authors are gratefull to Universiti Teknikal Malaysia Melaka (UTeM) for GRA grant number
(06-01-14-SF0142L00028).
REFERENCES
[1] Ullah U., Koziel S., "A Novel Coplanar-Strip-Based Excitation Technique for Design of Broadband Circularly
Polarization Antennas with Wide 3 dB Axial Ratio Beamwidth," IEEE Trans. Antennas Propag., vol. 67, no. 6,
pp. 4224–4229, 2019.
[2] Sariera H., Zakaria Z., Isa A. A. M., Alahnomi R., "A Review on monopole and dipole antennas for in-building
coverage applications," Int. J. Commun. Antenna Propag., vol. 7, no. 5, pp. 386–396, 2017.
[3] Sariera H. S. M., Zakaria Z., Isa A. A. M., "Broadband CPW-Fed Monopole Antenna for Indoor Applications,"
J. Telecommun. Electron. Comput. Eng., vol. 10, pp. 31–34, 2018
[4] Othman A., Shaari N. I. S., Zobilah A. M., Shairi N. A., Zakaria Z., "Design of compact ultra wideband antenna for
microwave medical imaging application," Indones. J. Electr. Eng. Comput. Sci., vol. 15, no. 3, pp. 1197–1202, 2019.
TELKOMNIKA Telecommun Comput El Control 
Simple broadband circularly polarized monopole antenna with… (Hussein Alsariera)
1175
[5] F. A. El, Bri S., Saadi A., "UWB antenna with circular patch for earley breast cancer detection," TELKOMNIKA
Telecommunication Computing Electronics Control, vol. 17, no. 5, pp. 2370–2377, 2019.
[6] Alhegazi A., Zakaria Z., Shairi N. A., Sutikno T., Alahnomi R. A., Abu-Khadrah A. I., "Analysis and investigation
of a novel microwave sensor with high Q-factor for liquid characterization," TELKOMNIKA Telecommunication
Computing Electronics Control, vol. 12, no. 3, pp. 1407-1412, 2019.
[7] Alahnomi R. A., Zakaria Z., Yussof Z. M., Sutikno T., Mohd Bahar A. A., Alhegazi A., "Determination of solid
material permittivity using T-ring resonator for food industry," TELKOMNIKA Telecommunication Computing
Electronics Control, vol. 17, no. 1, pp. 489–496, 2019.
[8] Zhang H., Guo Y., Wang G., "A Wideband Circularly Polarized Crossed-Slot Antenna with Stable Phase Center,"
IEEE Antennas Wirel. Propag. Lett., vol. 18, no. 5, pp. 941–945, 2019.
[9] Zeain M. Y., Abu M., Zakaria Z., Sariera H. S. M., Lago H., "Design of helical antenna for wideband frequency,"
Int. J. Eng. Res. Technol., vol. 11, no. 4, pp. 595–603, 2018.
[10] Jhajharia T., Tiwari V., Yadav D., Rawat S., Bhatnagar D., "Wideband circularly polarised antenna with
an asymmetric meandered-shaped monopole and defected ground structure for wireless communication,"
IET Microwaves, Antennas Propag., vol. 12, no. 9, pp. 1554–1558, 2018.
[11] Illahi U., Iqbal J., Sulaiman M. I., Alam M., Mazliham M. S., Jamaluddin M. H., "Circularly polarized rectangular
dielectric resonator antenna excited by an off-set conformal metal strip," Indones. J. Electr. Eng. Comput. Sci.,
vol. 15, no. 2, pp. 902–909, 2019.
[12] Iqbal J., Illahi U., Sulaiman M. I., Alam M., Mazliham M. S., Ding L. S., "Mutual coupling reduction in
circularly polarized dielectric resonator MIMO antenna," Indones. J. Electr. Eng. Comput. Sci., vol. 15, no. 1,
pp. 266–273, 2019.
[13] Islam M. T., Misran N., Shakib M. N., Zamri M. N. A., "Circularly Polarized microstrip patch antenna," Indones. J.
Electr. Eng. Comput. Sci., vol. 9, no. 2, pp. 363–366, 2010.
[14] Alhegazi A., Zakaria Z., Shairi N. A., Salleh A., Ahmed S., "Antena UWB ze zintegrowanym filtrem do selektywnego
usuwania wybranego pasma," Prz. Elektrotechniczny, vol. 92, no. 9, pp. 224–228, 2016.
[15] Alhegazi A., Zakaria Z., Shairi N. A., Ibrahim I. M., Ahmed S., "A novel reconfigurable UWB filtering-antenna with
dual sharp band notches using double split ring resonators," Prog. Electromagn. Res. C, vol. 79, pp. 185–198, 2017.
[16] Ding, Kang, Cheng Gao, Tongbin Yu, and D. Q., "Compact broadband circularly polarized monopole antenna," IEEE
Trans. Antennas Propag., vol. 63, no. 2, pp. 611–612, 2015.
[17] Chen Q., Zhang H., Yang L.-C., Xue B., Min X.-L., "Broadband Cpw-Fed Circularly Polarized Planar Monopole
Antenna With Inverted-L Strip and Asymmetric Ground Plane for Wlan Application," Prog. Electromagn. Res. C,
vol. 74, pp. 91–100, 2017.
[18] Tang H., Wang K., Wu R., Yu C., Zhang J., Wang X., "A Novel Broadband Circularly Polarized Monopole Antenna
Based on C-Shaped Radiator," IEEE Antennas Wirel. Propag. Lett., vol. pp, no. 99, pp. 5–8, 2017.
[19] Ding K., Gao C., Wu Y., Qu D., Zhang B., "A Broadband Circularly Polarized Printed Monopole AntennaWith
Parasitic Strips," IEEE Antennas Wirel. Propag. Lett., vol. 16, pp. 2509–2512, 2017.
[20] Chen Q., Zhang H., Yang L., Li B., Min X., "Wideband Inverted-L Microstrip-via-Fed Circularly Polarized Antenna
with Asymmetrical Ground for WLAN/Wimax Applications," Frequenz, vol. 72, no. 7-8, 2017.
[21] Feng G., Chen L., Shi X., "A broadband circularly polarized monopole antenna employing parasitic loops and
defective ground plane," Microw. Opt. Technol. Lett., vol. 62, no. 1, 2019.
[22] Ding K., Guo Y., Gao C., "CPW-Fed Wideband Circularly Polarized Printed Monopole Antenna With Open Loop
and Asymmetric Ground Plane," IEEE Antennas Wirel. Propag. Lett., vol. 16, pp. 833–836, 2017.
[23] Samsuzzaman M., Islam M. T., Singh M. J., "A compact printed monopole antenna with wideband circular
polarization," IEEE Access, vol. 6, pp. 54713–54725, 2018.
[24] Midya M., Bhattacharjee S., Mitra M., "Broadband Circularly Polarized Planar Monopole Antenna with G-Shaped
Parasitic Strip," IEEE Antennas Wirel. Propag. Lett., Vol. 18, no. 4, pp. 1–1, 2019.
[25] Sariera H., Zakaria Z., Isa A. A. M., "A Broadband P-Shaped Circularly Polarized Monopole Antenna with a Single
Parasitic Strip," IEEE Antennas Wirel. Propag. Lett., vol. 18, no. 10, pp. 2194–2198, 2019.
[26] Chen T., Zhang J., Wang W., "A Novel CPW-Fed Planar Monopole Antenna with Broadband Circularly
Polarization," Prog. Electromagn. Res. M, vol. 84, pp. 11-20, 2019.
[27] Algumaei M. Y., Shairi N. A., Zakaria Z., Zobilah A. M., Edward N., "A coupled-line balun for ultra-wideband
single-balanced diode mixer," TELKOMNIKA Telecommunication Computing Electronics Control, vol. 17, no. 1,
pp. 246–252, 2019.
[28] Zobilah A. M., Othman A., Shairi N. A., Zakaria Z., "Parametric studies of ring and parallel coupled line resonators
for matched bandstop filter design," Indones. J. Electr. Eng. Comput. Sci., vol. 14, no. 1, pp. 29–37, 2019.
[29] Ibrahim A. M., Ibrahim I. M., and Shair N. A., “A Compact Sextuple Multi-Band Printed Monopole Antenna,”
Opcion, vol. 86, pp. 1448–1467, 2018.
[30] Ibrahim A. M., Ibrahim I. M., and Shairi N. A., “Design a Compact Wide Bandwidth of a Printed Antenna using
Defected Ground Structure,” J. Adv. Res. Dyn. Control Syst, vol. 11, no. 02, pp. 1065–1076, 2019.
[31] S. Alani, Z. Zakaria, and A. Ahmad, “Miniaturized UWB elliptical patch antenna for skin cancer diagnosis imaging,”
Int. J. Electr. Comput. Eng., vol. 10, no. 2, pp. 1422–1429, 2020.
[32] H. Sariera, Z. Zakaria, and A. A. M. Isa, “New Broadband L-shaped CPW-fed Circularly Polarized Monopole
Antenna with Asymmetric Modified Ground Plane and a Couple Series-aligning Inverted L-shaped Strip,”
AEUE-Int. J. Electron. Commun., p. 153139, 2020.
[33] A. Alhegazi, Z. Zakaria, N. A. Shairi, R. A. Alahnomi, and H. Alsariera, “Reconfigurable Filtering-Antenna with
triple Band Notches for UWB Applications,” Int. J. Eng. Res. Technol., vol. 12, no. 12, pp. 3076–3081, 2019.

More Related Content

What's hot

Integrated sub-harmonically pumped up-converter antenna for spatial power com...
Integrated sub-harmonically pumped up-converter antenna for spatial power com...Integrated sub-harmonically pumped up-converter antenna for spatial power com...
Integrated sub-harmonically pumped up-converter antenna for spatial power com...
fanfan he
 
Complementary symmetric corner truncated compact square microstrip antenna fo...
Complementary symmetric corner truncated compact square microstrip antenna fo...Complementary symmetric corner truncated compact square microstrip antenna fo...
Complementary symmetric corner truncated compact square microstrip antenna fo...
IAEME Publication
 
Distributed Amplifiers presenatation
Distributed Amplifiers presenatationDistributed Amplifiers presenatation
Distributed Amplifiers presenatation
Rakesh Chahal
 
10 manières de récupérer des lnb
10 manières de récupérer des lnb10 manières de récupérer des lnb
10 manières de récupérer des lnb
startimes&&mzouri
 

What's hot (18)

Integrated sub-harmonically pumped up-converter antenna for spatial power com...
Integrated sub-harmonically pumped up-converter antenna for spatial power com...Integrated sub-harmonically pumped up-converter antenna for spatial power com...
Integrated sub-harmonically pumped up-converter antenna for spatial power com...
 
A 28 GHz 0.18-μm CMOS cascade power amplifier with reverse body bias technique
A 28 GHz 0.18-μm CMOS cascade power amplifier with reverse body bias techniqueA 28 GHz 0.18-μm CMOS cascade power amplifier with reverse body bias technique
A 28 GHz 0.18-μm CMOS cascade power amplifier with reverse body bias technique
 
417 2281-1-sp
417 2281-1-sp417 2281-1-sp
417 2281-1-sp
 
INVERTER CC FOR CA Vaishnav
INVERTER CC FOR CA VaishnavINVERTER CC FOR CA Vaishnav
INVERTER CC FOR CA Vaishnav
 
06555892
0655589206555892
06555892
 
Complementary symmetric corner truncated compact square microstrip antenna fo...
Complementary symmetric corner truncated compact square microstrip antenna fo...Complementary symmetric corner truncated compact square microstrip antenna fo...
Complementary symmetric corner truncated compact square microstrip antenna fo...
 
A Leaky Wave Antenna Design Based on Half-mode Substrate Integrated Waveguide...
A Leaky Wave Antenna Design Based on Half-mode Substrate Integrated Waveguide...A Leaky Wave Antenna Design Based on Half-mode Substrate Integrated Waveguide...
A Leaky Wave Antenna Design Based on Half-mode Substrate Integrated Waveguide...
 
Distributed Amplifiers presenatation
Distributed Amplifiers presenatationDistributed Amplifiers presenatation
Distributed Amplifiers presenatation
 
Broadband planar 90 degrees loaded-stub phase shifter
Broadband planar 90 degrees loaded-stub phase shifterBroadband planar 90 degrees loaded-stub phase shifter
Broadband planar 90 degrees loaded-stub phase shifter
 
10 manières de récupérer des lnb
10 manières de récupérer des lnb10 manières de récupérer des lnb
10 manières de récupérer des lnb
 
IRJET- A Design Implementation of Single Stage Amplifiers using HEMT Tec...
IRJET- 	  A Design Implementation of Single Stage Amplifiers  using  HEMT Tec...IRJET- 	  A Design Implementation of Single Stage Amplifiers  using  HEMT Tec...
IRJET- A Design Implementation of Single Stage Amplifiers using HEMT Tec...
 
525 192-198
525 192-198525 192-198
525 192-198
 
MODIFIED DOHERTY POWER AMPLIFIER FOR WIDER BAND
 MODIFIED DOHERTY POWER AMPLIFIER FOR WIDER BAND MODIFIED DOHERTY POWER AMPLIFIER FOR WIDER BAND
MODIFIED DOHERTY POWER AMPLIFIER FOR WIDER BAND
 
Compare compact uhf antennas
Compare compact uhf antennasCompare compact uhf antennas
Compare compact uhf antennas
 
POLARIZATION RECONFIGURABLE ANTENNA
POLARIZATION RECONFIGURABLE ANTENNAPOLARIZATION RECONFIGURABLE ANTENNA
POLARIZATION RECONFIGURABLE ANTENNA
 
Am Radio Receiver And Amplifier Experiment And Am Transmission Demonstration
Am Radio Receiver And Amplifier Experiment And Am Transmission DemonstrationAm Radio Receiver And Amplifier Experiment And Am Transmission Demonstration
Am Radio Receiver And Amplifier Experiment And Am Transmission Demonstration
 
Low Power and Fast Transient High Swing CMOS Telescopic Operational Amplifier
Low Power and Fast Transient High Swing CMOS Telescopic Operational AmplifierLow Power and Fast Transient High Swing CMOS Telescopic Operational Amplifier
Low Power and Fast Transient High Swing CMOS Telescopic Operational Amplifier
 
Design and analysis of low power pseudo differential
Design and analysis of low power pseudo differentialDesign and analysis of low power pseudo differential
Design and analysis of low power pseudo differential
 

Similar to Simple broadband circularly polarized monopole antenna with two asymmetrically connected U-shaped parasitic strips and defective ground plane

Design and analysys of vhf circular polarization antenna for leo satellite do...
Design and analysys of vhf circular polarization antenna for leo satellite do...Design and analysys of vhf circular polarization antenna for leo satellite do...
Design and analysys of vhf circular polarization antenna for leo satellite do...
py3ff
 

Similar to Simple broadband circularly polarized monopole antenna with two asymmetrically connected U-shaped parasitic strips and defective ground plane (20)

Wide to multiband elliptical monopole reconfigurable antenna for multimode sy...
Wide to multiband elliptical monopole reconfigurable antenna for multimode sy...Wide to multiband elliptical monopole reconfigurable antenna for multimode sy...
Wide to multiband elliptical monopole reconfigurable antenna for multimode sy...
 
Circularly polarized antenna array based on hybrid couplers for 5G devices
Circularly polarized antenna array based on hybrid couplers for 5G devicesCircularly polarized antenna array based on hybrid couplers for 5G devices
Circularly polarized antenna array based on hybrid couplers for 5G devices
 
U-slot Circular Patch Antenna for WLAN Application
U-slot Circular Patch Antenna for WLAN ApplicationU-slot Circular Patch Antenna for WLAN Application
U-slot Circular Patch Antenna for WLAN Application
 
Design and analysys of vhf circular polarization antenna for leo satellite do...
Design and analysys of vhf circular polarization antenna for leo satellite do...Design and analysys of vhf circular polarization antenna for leo satellite do...
Design and analysys of vhf circular polarization antenna for leo satellite do...
 
Ann
AnnAnn
Ann
 
rahim2012.pdf
rahim2012.pdfrahim2012.pdf
rahim2012.pdf
 
PLANAR ACS FED DUAL BAND ANTENNA WITH DGS FOR WIRELESS APPLICATIONS
PLANAR ACS FED DUAL BAND ANTENNA WITH DGS FOR WIRELESS APPLICATIONSPLANAR ACS FED DUAL BAND ANTENNA WITH DGS FOR WIRELESS APPLICATIONS
PLANAR ACS FED DUAL BAND ANTENNA WITH DGS FOR WIRELESS APPLICATIONS
 
PLANAR ACS FED DUAL BAND ANTENNA WITH DGS FOR WIRELESS APPLICATIONS
PLANAR ACS FED DUAL BAND ANTENNA WITH DGS FOR WIRELESS APPLICATIONSPLANAR ACS FED DUAL BAND ANTENNA WITH DGS FOR WIRELESS APPLICATIONS
PLANAR ACS FED DUAL BAND ANTENNA WITH DGS FOR WIRELESS APPLICATIONS
 
PLANAR ACS FED DUAL BAND ANTENNA WITH DGS FOR WIRELESS APPLICATIONS
PLANAR ACS FED DUAL BAND ANTENNA WITH DGS FOR WIRELESS APPLICATIONS PLANAR ACS FED DUAL BAND ANTENNA WITH DGS FOR WIRELESS APPLICATIONS
PLANAR ACS FED DUAL BAND ANTENNA WITH DGS FOR WIRELESS APPLICATIONS
 
PLANAR ACS FED DUAL BAND ANTENNA WITH DGS FOR WIRELESS APPLICATIONS
PLANAR ACS FED DUAL BAND ANTENNA WITH DGS FOR WIRELESS APPLICATIONSPLANAR ACS FED DUAL BAND ANTENNA WITH DGS FOR WIRELESS APPLICATIONS
PLANAR ACS FED DUAL BAND ANTENNA WITH DGS FOR WIRELESS APPLICATIONS
 
PLANAR ACS FED DUAL BAND ANTENNA WITH DGS FOR WIRELESS APPLICATIONS
PLANAR ACS FED DUAL BAND ANTENNA WITH DGS FOR WIRELESS APPLICATIONSPLANAR ACS FED DUAL BAND ANTENNA WITH DGS FOR WIRELESS APPLICATIONS
PLANAR ACS FED DUAL BAND ANTENNA WITH DGS FOR WIRELESS APPLICATIONS
 
PLANAR ACS FED DUAL BAND ANTENNA WITH DGS FOR WIRELESS APPLICATIONS
PLANAR ACS FED DUAL BAND ANTENNA WITH DGS FOR WIRELESS APPLICATIONSPLANAR ACS FED DUAL BAND ANTENNA WITH DGS FOR WIRELESS APPLICATIONS
PLANAR ACS FED DUAL BAND ANTENNA WITH DGS FOR WIRELESS APPLICATIONS
 
PLANAR ACS FED DUAL BAND ANTENNA WITH DGS FOR WIRELESS APPLICATIONS
PLANAR ACS FED DUAL BAND ANTENNA WITH DGS FOR WIRELESS APPLICATIONS PLANAR ACS FED DUAL BAND ANTENNA WITH DGS FOR WIRELESS APPLICATIONS
PLANAR ACS FED DUAL BAND ANTENNA WITH DGS FOR WIRELESS APPLICATIONS
 
A low cost fractal CPW fed antenna for UWB applications with a circular radia...
A low cost fractal CPW fed antenna for UWB applications with a circular radia...A low cost fractal CPW fed antenna for UWB applications with a circular radia...
A low cost fractal CPW fed antenna for UWB applications with a circular radia...
 
Novel fractal antenna for UWB applications using the coplanar waveguide feed ...
Novel fractal antenna for UWB applications using the coplanar waveguide feed ...Novel fractal antenna for UWB applications using the coplanar waveguide feed ...
Novel fractal antenna for UWB applications using the coplanar waveguide feed ...
 
A simple design and fabrication of polarization reconfigurable antenna for in...
A simple design and fabrication of polarization reconfigurable antenna for in...A simple design and fabrication of polarization reconfigurable antenna for in...
A simple design and fabrication of polarization reconfigurable antenna for in...
 
Iet map.2014.0326
Iet map.2014.0326Iet map.2014.0326
Iet map.2014.0326
 
PLANAR ACS FED DUAL BAND ANTENNA WITH DGS FOR WIRELESS APPLICATIONS
PLANAR ACS FED DUAL BAND ANTENNA WITH DGS FOR WIRELESS APPLICATIONS PLANAR ACS FED DUAL BAND ANTENNA WITH DGS FOR WIRELESS APPLICATIONS
PLANAR ACS FED DUAL BAND ANTENNA WITH DGS FOR WIRELESS APPLICATIONS
 
PLANAR ACS FED DUAL BAND ANTENNA WITH DGS FOR WIRELESS APPLICATIONS
PLANAR ACS FED DUAL BAND ANTENNA WITH DGS FOR WIRELESS APPLICATIONS PLANAR ACS FED DUAL BAND ANTENNA WITH DGS FOR WIRELESS APPLICATIONS
PLANAR ACS FED DUAL BAND ANTENNA WITH DGS FOR WIRELESS APPLICATIONS
 
PLANAR ACS FED DUAL BAND ANTENNA WITH DGS FOR WIRELESS APPLICATIONS
PLANAR ACS FED DUAL BAND ANTENNA WITH DGS FOR WIRELESS APPLICATIONSPLANAR ACS FED DUAL BAND ANTENNA WITH DGS FOR WIRELESS APPLICATIONS
PLANAR ACS FED DUAL BAND ANTENNA WITH DGS FOR WIRELESS APPLICATIONS
 

More from TELKOMNIKA JOURNAL

Amazon products reviews classification based on machine learning, deep learni...
Amazon products reviews classification based on machine learning, deep learni...Amazon products reviews classification based on machine learning, deep learni...
Amazon products reviews classification based on machine learning, deep learni...
TELKOMNIKA JOURNAL
 
Improving the detection of intrusion in vehicular ad-hoc networks with modifi...
Improving the detection of intrusion in vehicular ad-hoc networks with modifi...Improving the detection of intrusion in vehicular ad-hoc networks with modifi...
Improving the detection of intrusion in vehicular ad-hoc networks with modifi...
TELKOMNIKA JOURNAL
 
Impact of CuS counter electrode calcination temperature on quantum dot sensit...
Impact of CuS counter electrode calcination temperature on quantum dot sensit...Impact of CuS counter electrode calcination temperature on quantum dot sensit...
Impact of CuS counter electrode calcination temperature on quantum dot sensit...
TELKOMNIKA JOURNAL
 
Adaptive segmentation algorithm based on level set model in medical imaging
Adaptive segmentation algorithm based on level set model in medical imagingAdaptive segmentation algorithm based on level set model in medical imaging
Adaptive segmentation algorithm based on level set model in medical imaging
TELKOMNIKA JOURNAL
 
Automatic channel selection using shuffled frog leaping algorithm for EEG bas...
Automatic channel selection using shuffled frog leaping algorithm for EEG bas...Automatic channel selection using shuffled frog leaping algorithm for EEG bas...
Automatic channel selection using shuffled frog leaping algorithm for EEG bas...
TELKOMNIKA JOURNAL
 

More from TELKOMNIKA JOURNAL (20)

Amazon products reviews classification based on machine learning, deep learni...
Amazon products reviews classification based on machine learning, deep learni...Amazon products reviews classification based on machine learning, deep learni...
Amazon products reviews classification based on machine learning, deep learni...
 
Design, simulation, and analysis of microstrip patch antenna for wireless app...
Design, simulation, and analysis of microstrip patch antenna for wireless app...Design, simulation, and analysis of microstrip patch antenna for wireless app...
Design, simulation, and analysis of microstrip patch antenna for wireless app...
 
Design and simulation an optimal enhanced PI controller for congestion avoida...
Design and simulation an optimal enhanced PI controller for congestion avoida...Design and simulation an optimal enhanced PI controller for congestion avoida...
Design and simulation an optimal enhanced PI controller for congestion avoida...
 
Improving the detection of intrusion in vehicular ad-hoc networks with modifi...
Improving the detection of intrusion in vehicular ad-hoc networks with modifi...Improving the detection of intrusion in vehicular ad-hoc networks with modifi...
Improving the detection of intrusion in vehicular ad-hoc networks with modifi...
 
Conceptual model of internet banking adoption with perceived risk and trust f...
Conceptual model of internet banking adoption with perceived risk and trust f...Conceptual model of internet banking adoption with perceived risk and trust f...
Conceptual model of internet banking adoption with perceived risk and trust f...
 
Efficient combined fuzzy logic and LMS algorithm for smart antenna
Efficient combined fuzzy logic and LMS algorithm for smart antennaEfficient combined fuzzy logic and LMS algorithm for smart antenna
Efficient combined fuzzy logic and LMS algorithm for smart antenna
 
Design and implementation of a LoRa-based system for warning of forest fire
Design and implementation of a LoRa-based system for warning of forest fireDesign and implementation of a LoRa-based system for warning of forest fire
Design and implementation of a LoRa-based system for warning of forest fire
 
Wavelet-based sensing technique in cognitive radio network
Wavelet-based sensing technique in cognitive radio networkWavelet-based sensing technique in cognitive radio network
Wavelet-based sensing technique in cognitive radio network
 
A novel compact dual-band bandstop filter with enhanced rejection bands
A novel compact dual-band bandstop filter with enhanced rejection bandsA novel compact dual-band bandstop filter with enhanced rejection bands
A novel compact dual-band bandstop filter with enhanced rejection bands
 
Deep learning approach to DDoS attack with imbalanced data at the application...
Deep learning approach to DDoS attack with imbalanced data at the application...Deep learning approach to DDoS attack with imbalanced data at the application...
Deep learning approach to DDoS attack with imbalanced data at the application...
 
Brief note on match and miss-match uncertainties
Brief note on match and miss-match uncertaintiesBrief note on match and miss-match uncertainties
Brief note on match and miss-match uncertainties
 
Implementation of FinFET technology based low power 4×4 Wallace tree multipli...
Implementation of FinFET technology based low power 4×4 Wallace tree multipli...Implementation of FinFET technology based low power 4×4 Wallace tree multipli...
Implementation of FinFET technology based low power 4×4 Wallace tree multipli...
 
Evaluation of the weighted-overlap add model with massive MIMO in a 5G system
Evaluation of the weighted-overlap add model with massive MIMO in a 5G systemEvaluation of the weighted-overlap add model with massive MIMO in a 5G system
Evaluation of the weighted-overlap add model with massive MIMO in a 5G system
 
Reflector antenna design in different frequencies using frequency selective s...
Reflector antenna design in different frequencies using frequency selective s...Reflector antenna design in different frequencies using frequency selective s...
Reflector antenna design in different frequencies using frequency selective s...
 
Reagentless iron detection in water based on unclad fiber optical sensor
Reagentless iron detection in water based on unclad fiber optical sensorReagentless iron detection in water based on unclad fiber optical sensor
Reagentless iron detection in water based on unclad fiber optical sensor
 
Impact of CuS counter electrode calcination temperature on quantum dot sensit...
Impact of CuS counter electrode calcination temperature on quantum dot sensit...Impact of CuS counter electrode calcination temperature on quantum dot sensit...
Impact of CuS counter electrode calcination temperature on quantum dot sensit...
 
A progressive learning for structural tolerance online sequential extreme lea...
A progressive learning for structural tolerance online sequential extreme lea...A progressive learning for structural tolerance online sequential extreme lea...
A progressive learning for structural tolerance online sequential extreme lea...
 
Electroencephalography-based brain-computer interface using neural networks
Electroencephalography-based brain-computer interface using neural networksElectroencephalography-based brain-computer interface using neural networks
Electroencephalography-based brain-computer interface using neural networks
 
Adaptive segmentation algorithm based on level set model in medical imaging
Adaptive segmentation algorithm based on level set model in medical imagingAdaptive segmentation algorithm based on level set model in medical imaging
Adaptive segmentation algorithm based on level set model in medical imaging
 
Automatic channel selection using shuffled frog leaping algorithm for EEG bas...
Automatic channel selection using shuffled frog leaping algorithm for EEG bas...Automatic channel selection using shuffled frog leaping algorithm for EEG bas...
Automatic channel selection using shuffled frog leaping algorithm for EEG bas...
 

Recently uploaded

Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort ServiceCall Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Christo Ananth
 
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
9953056974 Low Rate Call Girls In Saket, Delhi NCR
 

Recently uploaded (20)

Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort ServiceCall Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.ppt
 
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghly
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - V
 
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
 
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
 
NFPA 5000 2024 standard .
NFPA 5000 2024 standard                                  .NFPA 5000 2024 standard                                  .
NFPA 5000 2024 standard .
 
University management System project report..pdf
University management System project report..pdfUniversity management System project report..pdf
University management System project report..pdf
 
Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . ppt
 
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
 
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
 
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptxBSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
 
chapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineeringchapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineering
 
Double rodded leveling 1 pdf activity 01
Double rodded leveling 1 pdf activity 01Double rodded leveling 1 pdf activity 01
Double rodded leveling 1 pdf activity 01
 
Bhosari ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready For ...
Bhosari ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready For ...Bhosari ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready For ...
Bhosari ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready For ...
 
PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELL
PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELLPVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELL
PVC VS. FIBERGLASS (FRP) GRAVITY SEWER - UNI BELL
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
 
Online banking management system project.pdf
Online banking management system project.pdfOnline banking management system project.pdf
Online banking management system project.pdf
 
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
 

Simple broadband circularly polarized monopole antenna with two asymmetrically connected U-shaped parasitic strips and defective ground plane

  • 1. TELKOMNIKA Telecommunication, Computing, Electronics and Control Vol. 18, No. 3, June 2020, pp. 1169~1175 ISSN: 1693-6930, accredited First Grade by Kemenristekdikti, Decree No: 21/E/KPT/2018 DOI: 10.12928/TELKOMNIKA.v18i3.14313  1169 Journal homepage: http://journal.uad.ac.id/index.php/TELKOMNIKA Simple broadband circularly polarized monopole antenna with two asymmetrically connected U-shaped parasitic strips and defective ground plane Hussein Alsariera1 , Z. Zakaria2 , A. A. M. Isa3 , Sameer Alani4 , M. Y. Zeain5 , Othman S. Al-Heety6 , S. Ahmed7 , Mussa Mabrok8 , R. Alahnomi9 1,2,3,4,5,6,8,9 Department of Electronic and Computer Engineering, University Teknikal Malaysia Melaka (UTeM), Malaysia 7 Faculty of Engineering and Technology, Multimedia Universty, Malaysia Article Info ABSTRACT Article history: Received Oct 12, 2019 Revised Feb 1, 2020 Accepted Feb 17, 2020 A simple compact broadband circularly polarized monopole antenna, which comprises a simple monopole, a modified ground plane with an implementing triangular stub and two asymmetrically connected U-shaped parasitic strips, is proposed. Simulation results show that the proposed compact antenna (0.62λo×0.68λo) achieves a 10-dB impedance bandwidth (IBW) of 111% (1.7 to 5.95 GHz) and a 3-dB axial ratio bandwidth (ARBW) of 61% (3.3–6.2 GHz) with a peak gain between 2.9–4 dBi for the entire ARBW. With its broad IBW and ARBW, compact size and simple structure, the proposed antenna is suitable for different wireless communications. Keywords: Axial ratio (AR) Broadband antenna Circularly polarised (CP) Monopole antenna This is an open access article under the CC BY-SA license. Corresponding Authors: Hussein Alsariera, Department of Electronic and Computer Engineering, University Teknikal Malaysia Melaka (UTeM), Jalan Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia. Email: husseinalsareira@gmail.com 1. INTRODUCTION Printed monopole antennas are widely used in modern wireless communications due to its attractive features, such as small size, low profile, easy fabrication, omnidirectional coverage and ability to provide wide or broad bandwidth [1–7]. Modern wireless communications require circular polarisation (CP) more than linear polarisation (LP), especially when the transmitter and receiver antennas are not in polarisation alignment, because a circularly polarised antenna can reduce the mismatch between the transmitter and receiver. This scenario can minimise the Faraday rotation effect to provide a stable communication link and mitigate the multipath interference [8–15]. In general, CP is generated by two orthogonal electric field components, namely, horizontal (EHor) and vertical (EVer) electric field components, which have equal amplitudes and a 90° phase difference. However, the radiation of a traditional monopole antenna is LP due to the weak radiation in the horizontal component. Therefore, several techniques have been proposed in [16–24] to generate CP operation. CP was achieved in [16] by coupling a rectangular open patch with an inverted C-shaped monopole in addition to placing a vertical rectangular stub on the ground plane. CP was achieved using a simple monopole and placing an inverted L-strip on the right coplanar waveguide (CPW) ground in [17]. A compact antenna size was offered
  • 2.  ISSN: 1693-6930 TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 3, June 2020: 1169 - 1175 1170 by previous designs in [14, 15], but several printed CP broadband antennas were presented in [18–22] due to the narrow impedance bandwidth (IBW) and axial-ratio bandwidth (ARBW) amongst them [14, 15]. In [18], a C-shaped monopole was modified in the ground plane by placing two triangular stubs and a simple monopole antenna coupled with two spiral strips [19], an inverted strip with an open slot in the middle of the ground plane [20], a simple radiator with two parasitic open loops. The modification also involved improving the ground plane with horizontal and vertical slots [21], a rectangular monopole and an asymmetrical ground plane in [22]. However, the printed monopole antennas in [18–22] had broad IBW and ARBW, but the bandwidth extension was achieved by extending the antenna design dimensions. To achieve broad IBW and ARBW with a compact antenna size, [23] presented several printed antenna designs. An inverted L-shaped feeding with a hook-shaped ground [23–26], a parasitic G-shaped strip coupled with an inverted C-shaped [24] and P-shaped monopole coupled with a single parasitic strip improved the ground plane with a rectangular horizontal stub [25]. A coin-shaped radiator with an asymmetric CPW-fed ground plane [26] was observed. Previous designs with IBW and ARBW were obtained in compact sizes. Nevertheless, IBW and ARBW must be improved to cover most of wireless communications. In this study, a simple broadband CP monopole antenna is proposed. With a parasitic strip, a broad IBW is achieved beside the dropdown whole of AR values. The first CP band is obtained by placing a triangular stub on the right side of the ground plane for further IBW and ARBW enhancement. Then, a slot is introduced in the triangular stub. The presented antenna has an IBW of 111% (1.7–5.95 GHz) and an ARBW of 61% (3.3–6.2 GHz). 2. ANTENNA DESIGN AND ANALYSIS 2.1. Antenna design Figure 1 shows the configuration of the designed printed CP antenna. The antenna is printed at the top of a 50×55 mm2 FR4 substrate with a 1.6 mm thickness, a 4.4 dielectric constant and a 0.02 loss tangent. The antenna is fed with a 50 Ω microstrip transmission line with width wf1 and length lf1. Impedance transformation is applied with wf2 and lf2 dimensions to obtain good impedance matching. The proposed antenna is based on simple straight-line monopole radiator, a modified ground plane and two asymmetrically connected U-shaped parasitic strips (CUSPS). Table 1 lists all the optimised parameters according to CST microwave studio. Figure 1. Prototype of proposed printed CP antenna; (a) Parameterized front view (b) parameterized back view (c) cross-sectional view Table 1. The optimized dimensions of proposed antenna Parameter Value Parameter value parameter value W 55 wt1 30 lp2 27 L 50 wt2 19 lp3 18.5 wf1 2.2 wt3 7.7 lp4 17 wf2 0.65 ws 25 lp5 20 wp1 5 g 5 lt1 7 wp2 7 lf1 10 lt2 4.2 wp3 8 lf2 22 lt3 1.8 wp4 3 lg 16.5 lc 13 wp5 5 lp1 27.5 lh 22.5
  • 3. TELKOMNIKA Telecommun Comput El Control  Simple broadband circularly polarized monopole antenna with… (Hussein Alsariera) 1171 2.2. Antenna development steps Four prototypes (Ants. 1 to Ant. 4) are illustrated in Figure 2 to explain the development steps of the proposed antenna,. S11 and AR simulated results are also depicted in Figure 3. Ant. 1, which is a straight-line monopole with dual width and approximately quarter wavelength length, is proposed to generate the fundamental resonance at centre frequency (3.8 GHz), as shown Figure 3 (a). The antenna radiates LP waves in this step in which the AR values are large ( >15 dB). Figure 3 (b) is presented after the CUSPS in Ant. 2. Almost all IBW results are improved, especially at the low and mid frequencies, as observed in Figure 3 (a). Thus, an improvement for ARBW is achieved. However, the AR values remain large (> 7 dB); thus, the radiation of Ant. 2 is LP in the entire band. Figure 2. Four steps in the development of the proposed antenna Figure 3. Simulated results of Ant.1 to Ant. 4: (a) S11, (b) AR A triangular stub with asymmetric lengths is introduced to the ground plane in Ant. 3 to generate the fundamental CP band with ARBW (3.7–5.9 GHz), as shown in Figure 3 (b). This enhancement is due to the increase in surface current paths in horizontal components and an improvement for impedance matching in the entire IBW. An opening rectangular slit in the triangular stub contributes to obtaining a balance between the amplitude of two orthogonal modes (EHor and EVer) with a maintaining correct phase deference (90°). In the improvement of the CP band at lower and upper frequencies, the ARBW is extended to become
  • 4.  ISSN: 1693-6930 TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 3, June 2020: 1169 - 1175 1172 (3.3–6.2GHz), as shown in Figure 3 (b). Figure 3 (a) shows that this slit facilitates the improvement in impedance matching at upper frequencies. 2.3. Parametric study To assess the effects of several critical parameters on IBW and ARBW, this section presents the study on three parameters (lf2, g, lt1). The method of parametric study is based on [27–33]. 2.3.1. Effects of upper part length of feed line lf2 Figure 4 depicts the influences of the upper part length on antenna performance when lf2 = 21 mm. The IBW at upper frequencies tend to become broader as length decreases. Moreover, an improvement is observed at the centre and lower frequencies; however, the S11 values at the 4–5.5 GHz range deteriorates when lf2 = 23 mm. The antenna loses IBW in bandwidths ranging from 5.5 GHz to 6 GHz. In addition, the S11 values at lower frequencies deteriorate; whereas, the variation of lf2 has minimal effects on AR values. The value of 22 mm is observed to provide the optimal result. Figure 4. Variation of S11 and AR with respect to lf2: (a) S11 and (b) AR 2.3.2. Effects of location of parasitic strip (CUSPS) (g) The proposed antenna performance is investigated with changing gap (g) between the ground plane and parasitic strip. The variation of the g value plays an important role on both antenna performance (IBW and ARBW) when g = 4 mm. An improvement on IBW at the lower and middle frequencies can be achieved. The IBW is affected at the upper frequency band, as shown in Figure 5 (a). AR is strongly affected with the decreased g, as well as enlarged ARBW (from 3.2–6.2 GHz to 2.9–6.5 GHz), as shown in Figure 5 (b). When g = 6 mm, the S11 values deteriorate at lower and mid band, but the S11 values at upper band have improved, as observed in Figure 3 (a). Increasing g shrinks the ARBW and AR values at mid frequencies and become close to 3dB, as shown in Figure 5 (b). A value of 5 mm is maintained to obtain the broadest ARBW and optimal IBW result. Figure 5. Variation of S11 and AR with respect to g: (a) S11 and (b) AR
  • 5. TELKOMNIKA Telecommun Comput El Control  Simple broadband circularly polarized monopole antenna with… (Hussein Alsariera) 1173 2.3.3. Effects of triangular length lt1 Figure 6 shows the effect of triangular length lt1 on antenna performance (S11 and AR). Figure 6 (a) shows that as the triangular length decreases, the S11 values at the mid band improves. Figure 6 (b) shows that the S11 values at the lower and upper bands worsen, and the IBW slightly decreases. The AR values are also found to be sensitive with variations of the triangular length. Decreasing the lt1 also decreases the ARBW. Therefore, when the triangular length lt1 is tuned, IBW and ARBW can be controlled. The optimal value for triangular length lt1 is 7 mm. Figure 6. Variation of S11 and AR with respect to lt1: (a) S11 and (b) AR 3. RESULTS AND DISCUSSIONS The proposed antenna with optimised dimensions in Table 1 is investigated through the stages of antenna development as shown in Figure 2 and a parametric study (2.3). Figure 7 shows the final simulation results, that is, an IBW of 111% (1.7–5.95 GHz). Figure 8 shows the simulated AR and gain results in which the simulated AR is 61% (3.3–6.2 GHz). The simulated peak gain is between 2.9 and 4 dBi in the obtained CP band; hence, the maximum simulated gain is 4 dBi at 5.4 GHz. Figure 7. The simulated results of the designed antenna: (a) S11 and (b) AR and gain Figure 8 depicts the simulated radiation patterns in the XZ (φ = 0°) plane and YZ (φ = 90°) of the proposed antenna at three different frequency bands of 2.4, 3.5 and 5.2 GHz. The proposed antenna can radiate CP waves via the bidirectional radiator. Two opposite sense radiations, namely, right hand circular polarisation (RHCP) and left hand circular polarisation (LHCP) at both sides are generated. The antenna radiates an RHCP wave towards the +z direction and an LHCP in the −z direction.
  • 6.  ISSN: 1693-6930 TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 3, June 2020: 1169 - 1175 1174 Figure 8. Simulated radiation patterns at (a) 3.5, (b) 4.8 and (c) 5.8 GHz 4. CONCLUSION A broadband CP monopole antenna with wide IBW and ARBW, simple design and compact size is designed and investigated by coupling the parasitic strip with a modified ground plane and implementing a triangular stub. A wide CP band is achieved with total dimensions of 0.62λo × 0.68λo. The simulated IBW and ARBW are at 111% (1.7–5.95 GHz) and 61% (3.3–6.2 GHz) respectively. The proposed antenna can provide a bidirectional radiation with symmetry waves. Therefore, the proposed antenna is suitable for many wireless communications, especially indoor wireless ones such as WLAN, WiMAX and LTE, due to its compact size and ability to radiate CP waves from both antenna sides. ACKNOWLEDGMENT The authors are gratefull to Universiti Teknikal Malaysia Melaka (UTeM) for GRA grant number (06-01-14-SF0142L00028). REFERENCES [1] Ullah U., Koziel S., "A Novel Coplanar-Strip-Based Excitation Technique for Design of Broadband Circularly Polarization Antennas with Wide 3 dB Axial Ratio Beamwidth," IEEE Trans. Antennas Propag., vol. 67, no. 6, pp. 4224–4229, 2019. [2] Sariera H., Zakaria Z., Isa A. A. M., Alahnomi R., "A Review on monopole and dipole antennas for in-building coverage applications," Int. J. Commun. Antenna Propag., vol. 7, no. 5, pp. 386–396, 2017. [3] Sariera H. S. M., Zakaria Z., Isa A. A. M., "Broadband CPW-Fed Monopole Antenna for Indoor Applications," J. Telecommun. Electron. Comput. Eng., vol. 10, pp. 31–34, 2018 [4] Othman A., Shaari N. I. S., Zobilah A. M., Shairi N. A., Zakaria Z., "Design of compact ultra wideband antenna for microwave medical imaging application," Indones. J. Electr. Eng. Comput. Sci., vol. 15, no. 3, pp. 1197–1202, 2019.
  • 7. TELKOMNIKA Telecommun Comput El Control  Simple broadband circularly polarized monopole antenna with… (Hussein Alsariera) 1175 [5] F. A. El, Bri S., Saadi A., "UWB antenna with circular patch for earley breast cancer detection," TELKOMNIKA Telecommunication Computing Electronics Control, vol. 17, no. 5, pp. 2370–2377, 2019. [6] Alhegazi A., Zakaria Z., Shairi N. A., Sutikno T., Alahnomi R. A., Abu-Khadrah A. I., "Analysis and investigation of a novel microwave sensor with high Q-factor for liquid characterization," TELKOMNIKA Telecommunication Computing Electronics Control, vol. 12, no. 3, pp. 1407-1412, 2019. [7] Alahnomi R. A., Zakaria Z., Yussof Z. M., Sutikno T., Mohd Bahar A. A., Alhegazi A., "Determination of solid material permittivity using T-ring resonator for food industry," TELKOMNIKA Telecommunication Computing Electronics Control, vol. 17, no. 1, pp. 489–496, 2019. [8] Zhang H., Guo Y., Wang G., "A Wideband Circularly Polarized Crossed-Slot Antenna with Stable Phase Center," IEEE Antennas Wirel. Propag. Lett., vol. 18, no. 5, pp. 941–945, 2019. [9] Zeain M. Y., Abu M., Zakaria Z., Sariera H. S. M., Lago H., "Design of helical antenna for wideband frequency," Int. J. Eng. Res. Technol., vol. 11, no. 4, pp. 595–603, 2018. [10] Jhajharia T., Tiwari V., Yadav D., Rawat S., Bhatnagar D., "Wideband circularly polarised antenna with an asymmetric meandered-shaped monopole and defected ground structure for wireless communication," IET Microwaves, Antennas Propag., vol. 12, no. 9, pp. 1554–1558, 2018. [11] Illahi U., Iqbal J., Sulaiman M. I., Alam M., Mazliham M. S., Jamaluddin M. H., "Circularly polarized rectangular dielectric resonator antenna excited by an off-set conformal metal strip," Indones. J. Electr. Eng. Comput. Sci., vol. 15, no. 2, pp. 902–909, 2019. [12] Iqbal J., Illahi U., Sulaiman M. I., Alam M., Mazliham M. S., Ding L. S., "Mutual coupling reduction in circularly polarized dielectric resonator MIMO antenna," Indones. J. Electr. Eng. Comput. Sci., vol. 15, no. 1, pp. 266–273, 2019. [13] Islam M. T., Misran N., Shakib M. N., Zamri M. N. A., "Circularly Polarized microstrip patch antenna," Indones. J. Electr. Eng. Comput. Sci., vol. 9, no. 2, pp. 363–366, 2010. [14] Alhegazi A., Zakaria Z., Shairi N. A., Salleh A., Ahmed S., "Antena UWB ze zintegrowanym filtrem do selektywnego usuwania wybranego pasma," Prz. Elektrotechniczny, vol. 92, no. 9, pp. 224–228, 2016. [15] Alhegazi A., Zakaria Z., Shairi N. A., Ibrahim I. M., Ahmed S., "A novel reconfigurable UWB filtering-antenna with dual sharp band notches using double split ring resonators," Prog. Electromagn. Res. C, vol. 79, pp. 185–198, 2017. [16] Ding, Kang, Cheng Gao, Tongbin Yu, and D. Q., "Compact broadband circularly polarized monopole antenna," IEEE Trans. Antennas Propag., vol. 63, no. 2, pp. 611–612, 2015. [17] Chen Q., Zhang H., Yang L.-C., Xue B., Min X.-L., "Broadband Cpw-Fed Circularly Polarized Planar Monopole Antenna With Inverted-L Strip and Asymmetric Ground Plane for Wlan Application," Prog. Electromagn. Res. C, vol. 74, pp. 91–100, 2017. [18] Tang H., Wang K., Wu R., Yu C., Zhang J., Wang X., "A Novel Broadband Circularly Polarized Monopole Antenna Based on C-Shaped Radiator," IEEE Antennas Wirel. Propag. Lett., vol. pp, no. 99, pp. 5–8, 2017. [19] Ding K., Gao C., Wu Y., Qu D., Zhang B., "A Broadband Circularly Polarized Printed Monopole AntennaWith Parasitic Strips," IEEE Antennas Wirel. Propag. Lett., vol. 16, pp. 2509–2512, 2017. [20] Chen Q., Zhang H., Yang L., Li B., Min X., "Wideband Inverted-L Microstrip-via-Fed Circularly Polarized Antenna with Asymmetrical Ground for WLAN/Wimax Applications," Frequenz, vol. 72, no. 7-8, 2017. [21] Feng G., Chen L., Shi X., "A broadband circularly polarized monopole antenna employing parasitic loops and defective ground plane," Microw. Opt. Technol. Lett., vol. 62, no. 1, 2019. [22] Ding K., Guo Y., Gao C., "CPW-Fed Wideband Circularly Polarized Printed Monopole Antenna With Open Loop and Asymmetric Ground Plane," IEEE Antennas Wirel. Propag. Lett., vol. 16, pp. 833–836, 2017. [23] Samsuzzaman M., Islam M. T., Singh M. J., "A compact printed monopole antenna with wideband circular polarization," IEEE Access, vol. 6, pp. 54713–54725, 2018. [24] Midya M., Bhattacharjee S., Mitra M., "Broadband Circularly Polarized Planar Monopole Antenna with G-Shaped Parasitic Strip," IEEE Antennas Wirel. Propag. Lett., Vol. 18, no. 4, pp. 1–1, 2019. [25] Sariera H., Zakaria Z., Isa A. A. M., "A Broadband P-Shaped Circularly Polarized Monopole Antenna with a Single Parasitic Strip," IEEE Antennas Wirel. Propag. Lett., vol. 18, no. 10, pp. 2194–2198, 2019. [26] Chen T., Zhang J., Wang W., "A Novel CPW-Fed Planar Monopole Antenna with Broadband Circularly Polarization," Prog. Electromagn. Res. M, vol. 84, pp. 11-20, 2019. [27] Algumaei M. Y., Shairi N. A., Zakaria Z., Zobilah A. M., Edward N., "A coupled-line balun for ultra-wideband single-balanced diode mixer," TELKOMNIKA Telecommunication Computing Electronics Control, vol. 17, no. 1, pp. 246–252, 2019. [28] Zobilah A. M., Othman A., Shairi N. A., Zakaria Z., "Parametric studies of ring and parallel coupled line resonators for matched bandstop filter design," Indones. J. Electr. Eng. Comput. Sci., vol. 14, no. 1, pp. 29–37, 2019. [29] Ibrahim A. M., Ibrahim I. M., and Shair N. A., “A Compact Sextuple Multi-Band Printed Monopole Antenna,” Opcion, vol. 86, pp. 1448–1467, 2018. [30] Ibrahim A. M., Ibrahim I. M., and Shairi N. A., “Design a Compact Wide Bandwidth of a Printed Antenna using Defected Ground Structure,” J. Adv. Res. Dyn. Control Syst, vol. 11, no. 02, pp. 1065–1076, 2019. [31] S. Alani, Z. Zakaria, and A. Ahmad, “Miniaturized UWB elliptical patch antenna for skin cancer diagnosis imaging,” Int. J. Electr. Comput. Eng., vol. 10, no. 2, pp. 1422–1429, 2020. [32] H. Sariera, Z. Zakaria, and A. A. M. Isa, “New Broadband L-shaped CPW-fed Circularly Polarized Monopole Antenna with Asymmetric Modified Ground Plane and a Couple Series-aligning Inverted L-shaped Strip,” AEUE-Int. J. Electron. Commun., p. 153139, 2020. [33] A. Alhegazi, Z. Zakaria, N. A. Shairi, R. A. Alahnomi, and H. Alsariera, “Reconfigurable Filtering-Antenna with triple Band Notches for UWB Applications,” Int. J. Eng. Res. Technol., vol. 12, no. 12, pp. 3076–3081, 2019.