SlideShare a Scribd company logo
1 of 21
Sinusoidal Waves
Presented
By
SURESH.R
H.T.No : 16705A0426
Objective of Lecture
 Discuss the characteristics of a sinusoidal wave.
 Define the mathematical relationship between the
period, frequency, and angular frequency of a sine
wave.
 Explain how to define the amplitude of a sine wave.
 Describe what a phase angle is and the difference
between lagging and leading signals.
Characteristics of a Sine Wave
 The length of time it takes to complete one cycle or conversely
the number of cycles that occur in one second.
 Period
 Frequency
 Angular Frequency
 The maximum and minimum voltage or current swing
 Amplitude
 Peak-to-peak amplitude
 Value of the root mean square (RMS)
 Average value of a sine wave
 DC offset
 Comparison between two sine waves
 Phase angle
 Lagging and leading signals
Time Period, T
mssttT 7.16
60
1
12 
The time that it takes for a
sine wave to complete one full
cycle. This can be measured
by finding the times at which
the signal crosses zero (need
two zero crossings). The unit
usually used is seconds (s).
An alternative way to measure
the period is to determine the
time required for the sine
wave return to the same
maximum or minimum value.
t1 t2
Frequency, f
 The number of cycles a sine wave will complete in one
second(fractions are okay). The unit is cycles/second
or Hertz (Hz).
 The longer the period, the lower the frequency is.
 The shorter the period, the higher the frequency is.
T
f
1

Hz
msT
f 60
7.16
11

Electric Utilities
 Standardization on the frequency of the electricity
distribution systems didn’t occur until the mid-
1900’s.
 The frequency of the ac voltage supplied by power
companies in the US is 60 Hz.
 The frequency used in much of Europe and Asia is 50 Hz.
 While some electronic circuits function properly when
connected to a power supply operating at either frequency,
some are designed for a specific frequency, which is one
reason why power adaptors are needed when you travel.
 If you look at the label on the tablet ‘brick’, the frequency
of the ac signal is specified.
Angular frequency
 Motors are used in the alternators in coal- and gas-
powered electric generation stations. One full rotation
of the motor shaft produces one complete cycle of the
ac electricity produced.
 Position of the motor shaft is measured in radians (rad)
or degrees (o).
 1 rad = 57.3o
 2p rad = 360o
rad/s37760  Hzf
T
f
p
p
2
2 
Amplitude
Peak amplitude Peak-to-Peak amplitude
ppp
ppp
II
VV
2
2


Instantaneous Value
 Instantaneous value or amplitude is the magnitude of
the sinusoid at a point in time.
VssradVtvmst
VssradVtvst
tsradVtv
94.2)]01.0)(/377sin[(5)(10
0)]0)(/377sin[(5)(0
])/377sin[(5)(



Average Value
 The average value of a
sinusoid signal is the
integral of the sine wave
over one full cycle. This
is always equal to zero.
 If the average of an ac
signal is not zero, then
there is a dc component
known as a DC offset.
Root Mean Square (RMS)
 Most equipment that measure the amplitude of a
sinusoidal signal displays the results as a root mean
square value. This is signified by the unit Vac or VRMS.
 RMS voltage and current are used to calculate the average
power associated with the voltage or current signal in one
cycle.
 
T
RMS dttv
T
V
0
2
)(
1
  RVP
VVV
RMSAve
ppRMS
2
707.0
2
2


Phase Angle
 The phase angle is an angular measurement of the
position of one sinusoid signal with respect to a
reference.
 The signal and reference must have the same frequency.
Calculation of Phase
 Suppose there are three signals
 One signal is the reference
 I have chosen the reference to be the signal in blue on the
following slide
 The phase of the other two signals will be calculated
with respect to the reference signal.
 The period of each signal should be the same, which means
that all signals have the same frequency.
Time (seconds)
Voltage(V)
Example #1
 Calculate the period, T, for the reference signal
 This is the time for a full cycle to be completed.
 T= 500 second for Signal 1
 Calculate the difference in time between zero crossings
of
 Signal 2 and Signal 1: Dt = 40 second – 0 seconds = 40 s
 Signal 3 and Signal 1: Dt = 480 seconds – 0 seconds= 480 s
Example #1 (con’t)
 The sinusoidal function that describes Signal 1, the
reference voltage, is
V(t) = 5V sin (t) where   2p/T = 12.6 mrad/s
 To write the sinusoidal function that describes Signals
2 and 3, we need to address the fact that there is a shift
in the zero crossings
V(t) = A sin (t + f) where   2p/T
f  2p Dt/T in radians or f = 360o Dt/T
 f is called the phase shift
Lagging and Leading
 Don’t get fooled by the positions of the curves on the
graph!
 Signal 2: V(t) = 5V sin [12.6 mrad/s)t – 28.8o]
 f is -0.502 radians or -28.8 degrees
 Signal 2 lags Signal 1 as it reaches zero at a later time than Signal 1
 Signal 3: V(t) = 5V sin [12.6 mrad/s)t + 14.4o]
 f is 0.251 radians or 14.4 degrees
 Signal 3 leads Signal 1 as it reaches zero at an earlier time than
Signal 1
Formulas
)sin()( f  tVtv p
where f is in degrees and the units
for  are usually not included.
Summary
 AC signals are sinusoidal functions.
 The mathematical description of the sinusoid includes the peak
amplitude and the angular frequency and may include a phase
angle.
 RMS values of a sinusoid are calculated using the
formula
 Phase angle for a sinusoid is calculated with respect to
a reference.
 A signal lags a reference when fsignal – freference < 0o.
 It leads a reference when fsignal – freference > 0o.
T
f
p
p
2
2 )sin()( f  tVtv p
 
T
RMS dttv
T
V
0
2
)(
1
pRMS VV 707.0
Alternating current voltages

More Related Content

What's hot

transformer slide prsentation
transformer slide prsentation transformer slide prsentation
transformer slide prsentation abu jubayer
 
Electrical instruments ppt
Electrical instruments pptElectrical instruments ppt
Electrical instruments pptAmey Waghmare
 
AC FUNDAMENTALS.pptx
AC FUNDAMENTALS.pptxAC FUNDAMENTALS.pptx
AC FUNDAMENTALS.pptxroshan375533
 
U 4 ramp digital voltmeter
U 4 ramp digital voltmeterU 4 ramp digital voltmeter
U 4 ramp digital voltmetervmspraneeth
 
Single phase AC circuit
Single phase AC  circuit  Single phase AC  circuit
Single phase AC circuit MuhammadAli2362
 
BASIC ELECTRICAL ENGINEERING BEEE
BASIC ELECTRICAL ENGINEERING BEEE BASIC ELECTRICAL ENGINEERING BEEE
BASIC ELECTRICAL ENGINEERING BEEE Prasant Kumar
 
Phasor diagram
Phasor diagramPhasor diagram
Phasor diagramragulkncet
 
DC Voltmeter and Ammeter
DC Voltmeter and AmmeterDC Voltmeter and Ammeter
DC Voltmeter and AmmeterAL- AMIN
 
Electrical measuring instruments
Electrical measuring instrumentsElectrical measuring instruments
Electrical measuring instrumentsSuhail Ahmed
 
Resistor capacitor inductor
Resistor capacitor inductorResistor capacitor inductor
Resistor capacitor inductorManish Kumar
 
Voltage Regulators ppt
Voltage Regulators pptVoltage Regulators ppt
Voltage Regulators pptGurkirat Singh
 
Indicating instruments
Indicating instrumentsIndicating instruments
Indicating instrumentsKausik das
 
Design of dc armature winding
Design of dc armature windingDesign of dc armature winding
Design of dc armature windingAbhishek Choksi
 
TRANSFORMERS and LOSSES
TRANSFORMERS and LOSSESTRANSFORMERS and LOSSES
TRANSFORMERS and LOSSESPraveen Kumar
 

What's hot (20)

Buck converter
Buck converterBuck converter
Buck converter
 
transformer slide prsentation
transformer slide prsentation transformer slide prsentation
transformer slide prsentation
 
Electrical instruments ppt
Electrical instruments pptElectrical instruments ppt
Electrical instruments ppt
 
Magnetic circuits
Magnetic circuitsMagnetic circuits
Magnetic circuits
 
Diodes basics
Diodes   basicsDiodes   basics
Diodes basics
 
AC FUNDAMENTALS.pptx
AC FUNDAMENTALS.pptxAC FUNDAMENTALS.pptx
AC FUNDAMENTALS.pptx
 
U 4 ramp digital voltmeter
U 4 ramp digital voltmeterU 4 ramp digital voltmeter
U 4 ramp digital voltmeter
 
Inductance and capacitance
 Inductance and capacitance Inductance and capacitance
Inductance and capacitance
 
Single phase AC circuit
Single phase AC  circuit  Single phase AC  circuit
Single phase AC circuit
 
BASIC ELECTRICAL ENGINEERING BEEE
BASIC ELECTRICAL ENGINEERING BEEE BASIC ELECTRICAL ENGINEERING BEEE
BASIC ELECTRICAL ENGINEERING BEEE
 
Phasor diagram
Phasor diagramPhasor diagram
Phasor diagram
 
DC Voltmeter and Ammeter
DC Voltmeter and AmmeterDC Voltmeter and Ammeter
DC Voltmeter and Ammeter
 
Electrical measuring instruments
Electrical measuring instrumentsElectrical measuring instruments
Electrical measuring instruments
 
Resistor capacitor inductor
Resistor capacitor inductorResistor capacitor inductor
Resistor capacitor inductor
 
Voltage Regulators ppt
Voltage Regulators pptVoltage Regulators ppt
Voltage Regulators ppt
 
Indicating instruments
Indicating instrumentsIndicating instruments
Indicating instruments
 
Design of dc armature winding
Design of dc armature windingDesign of dc armature winding
Design of dc armature winding
 
TRANSFORMERS and LOSSES
TRANSFORMERS and LOSSESTRANSFORMERS and LOSSES
TRANSFORMERS and LOSSES
 
Electrical machine slide share
Electrical machine slide shareElectrical machine slide share
Electrical machine slide share
 
Multimeter basics
Multimeter   basicsMultimeter   basics
Multimeter basics
 

Viewers also liked (7)

Traffic signals based on microcontroller based
Traffic signals based on microcontroller basedTraffic signals based on microcontroller based
Traffic signals based on microcontroller based
 
alternating current
 alternating current alternating current
alternating current
 
Alternating Current
Alternating CurrentAlternating Current
Alternating Current
 
Space mouse[1]
Space mouse[1]Space mouse[1]
Space mouse[1]
 
Microcontroller based automatic engine locking system for drunken drivers
Microcontroller based automatic engine locking system for drunken driversMicrocontroller based automatic engine locking system for drunken drivers
Microcontroller based automatic engine locking system for drunken drivers
 
Alchol detection
Alchol detectionAlchol detection
Alchol detection
 
5 pen technology[1]
5 pen technology[1]5 pen technology[1]
5 pen technology[1]
 

Similar to Alternating current voltages

generation of ac voltage
generation of ac voltagegeneration of ac voltage
generation of ac voltage2461998
 
Alternating current and voltages
Alternating current and voltagesAlternating current and voltages
Alternating current and voltagesBhavik Koradiya
 
4. chap4 bekg1123_sesi_1415_s3 (1)
4. chap4 bekg1123_sesi_1415_s3 (1)4. chap4 bekg1123_sesi_1415_s3 (1)
4. chap4 bekg1123_sesi_1415_s3 (1)tompoktompok
 
Chapter 3: AC Sources and AC Characteristic
Chapter 3: AC Sources and AC CharacteristicChapter 3: AC Sources and AC Characteristic
Chapter 3: AC Sources and AC CharacteristicJeremyLauKarHei
 
Ac wave forms theroy
Ac wave forms theroyAc wave forms theroy
Ac wave forms theroyReece Hancock
 
Lecture 7 ac waves
Lecture 7 ac wavesLecture 7 ac waves
Lecture 7 ac wavesMohamed Jama
 
Ac circuits notes
Ac circuits   notesAc circuits   notes
Ac circuits notesmadhu1729
 
Engineering science lesson 9
Engineering science lesson 9Engineering science lesson 9
Engineering science lesson 9Shahid Aaqil
 
Ac waveform and ac circuit theory of sinusoids
Ac waveform and ac circuit theory of sinusoidsAc waveform and ac circuit theory of sinusoids
Ac waveform and ac circuit theory of sinusoidsSoham Gajjar
 
ac fundamentals.pdf
ac fundamentals.pdfac fundamentals.pdf
ac fundamentals.pdfPRPrasad1
 
Cro (emmi) (3)
Cro (emmi) (3)Cro (emmi) (3)
Cro (emmi) (3)Ravi Anand
 
Basic Electrical Engineering- AC Circuit
Basic Electrical Engineering- AC CircuitBasic Electrical Engineering- AC Circuit
Basic Electrical Engineering- AC CircuitBhavesh jesadia
 
HVac transmssion lines systems.ppt
HVac transmssion lines systems.pptHVac transmssion lines systems.ppt
HVac transmssion lines systems.pptabidSherazi
 

Similar to Alternating current voltages (20)

generation of ac voltage
generation of ac voltagegeneration of ac voltage
generation of ac voltage
 
Alternating current and voltages
Alternating current and voltagesAlternating current and voltages
Alternating current and voltages
 
4. chap4 bekg1123_sesi_1415_s3 (1)
4. chap4 bekg1123_sesi_1415_s3 (1)4. chap4 bekg1123_sesi_1415_s3 (1)
4. chap4 bekg1123_sesi_1415_s3 (1)
 
Chapter 3: AC Sources and AC Characteristic
Chapter 3: AC Sources and AC CharacteristicChapter 3: AC Sources and AC Characteristic
Chapter 3: AC Sources and AC Characteristic
 
AC-lecture1.ppt
AC-lecture1.pptAC-lecture1.ppt
AC-lecture1.ppt
 
Ac wave forms theroy
Ac wave forms theroyAc wave forms theroy
Ac wave forms theroy
 
Lecture 7 ac waves
Lecture 7 ac wavesLecture 7 ac waves
Lecture 7 ac waves
 
ac slides type 2.pdf
ac slides type 2.pdfac slides type 2.pdf
ac slides type 2.pdf
 
Chapter 1
Chapter 1Chapter 1
Chapter 1
 
Ac circuits notes
Ac circuits   notesAc circuits   notes
Ac circuits notes
 
ECE131 Unit 1 lecture 9.pptx
ECE131 Unit 1 lecture 9.pptxECE131 Unit 1 lecture 9.pptx
ECE131 Unit 1 lecture 9.pptx
 
Engineering science lesson 9
Engineering science lesson 9Engineering science lesson 9
Engineering science lesson 9
 
Ac single phase
Ac single phaseAc single phase
Ac single phase
 
Ac waveform and ac circuit theory of sinusoids
Ac waveform and ac circuit theory of sinusoidsAc waveform and ac circuit theory of sinusoids
Ac waveform and ac circuit theory of sinusoids
 
ac fundamentals.pdf
ac fundamentals.pdfac fundamentals.pdf
ac fundamentals.pdf
 
Cro (emmi) (3)
Cro (emmi) (3)Cro (emmi) (3)
Cro (emmi) (3)
 
Ece320 notes-part1
Ece320 notes-part1Ece320 notes-part1
Ece320 notes-part1
 
Ece320 notes-part1 2
Ece320 notes-part1 2Ece320 notes-part1 2
Ece320 notes-part1 2
 
Basic Electrical Engineering- AC Circuit
Basic Electrical Engineering- AC CircuitBasic Electrical Engineering- AC Circuit
Basic Electrical Engineering- AC Circuit
 
HVac transmssion lines systems.ppt
HVac transmssion lines systems.pptHVac transmssion lines systems.ppt
HVac transmssion lines systems.ppt
 

Recently uploaded

Romantic Opera MUSIC FOR GRADE NINE pptx
Romantic Opera MUSIC FOR GRADE NINE pptxRomantic Opera MUSIC FOR GRADE NINE pptx
Romantic Opera MUSIC FOR GRADE NINE pptxsqpmdrvczh
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxthorishapillay1
 
Keynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designKeynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designMIPLM
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatYousafMalik24
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxiammrhaywood
 
ROOT CAUSE ANALYSIS PowerPoint Presentation
ROOT CAUSE ANALYSIS PowerPoint PresentationROOT CAUSE ANALYSIS PowerPoint Presentation
ROOT CAUSE ANALYSIS PowerPoint PresentationAadityaSharma884161
 
AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.arsicmarija21
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxOH TEIK BIN
 
Quarter 4 Peace-education.pptx Catch Up Friday
Quarter 4 Peace-education.pptx Catch Up FridayQuarter 4 Peace-education.pptx Catch Up Friday
Quarter 4 Peace-education.pptx Catch Up FridayMakMakNepo
 
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdfAMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdfphamnguyenenglishnb
 
Grade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptxGrade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptxChelloAnnAsuncion2
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 
Gas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxGas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxDr.Ibrahim Hassaan
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...Nguyen Thanh Tu Collection
 
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfFraming an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfUjwalaBharambe
 
How to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPHow to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPCeline George
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxAnupkumar Sharma
 
Roles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceRoles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceSamikshaHamane
 

Recently uploaded (20)

Romantic Opera MUSIC FOR GRADE NINE pptx
Romantic Opera MUSIC FOR GRADE NINE pptxRomantic Opera MUSIC FOR GRADE NINE pptx
Romantic Opera MUSIC FOR GRADE NINE pptx
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptx
 
Keynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designKeynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-design
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice great
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
 
ROOT CAUSE ANALYSIS PowerPoint Presentation
ROOT CAUSE ANALYSIS PowerPoint PresentationROOT CAUSE ANALYSIS PowerPoint Presentation
ROOT CAUSE ANALYSIS PowerPoint Presentation
 
AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptx
 
Quarter 4 Peace-education.pptx Catch Up Friday
Quarter 4 Peace-education.pptx Catch Up FridayQuarter 4 Peace-education.pptx Catch Up Friday
Quarter 4 Peace-education.pptx Catch Up Friday
 
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdfAMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
 
Grade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptxGrade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptx
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
 
9953330565 Low Rate Call Girls In Rohini Delhi NCR
9953330565 Low Rate Call Girls In Rohini  Delhi NCR9953330565 Low Rate Call Girls In Rohini  Delhi NCR
9953330565 Low Rate Call Girls In Rohini Delhi NCR
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 
Gas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxGas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptx
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
 
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfFraming an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
 
How to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPHow to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERP
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
 
Roles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceRoles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in Pharmacovigilance
 

Alternating current voltages

  • 2. Objective of Lecture  Discuss the characteristics of a sinusoidal wave.  Define the mathematical relationship between the period, frequency, and angular frequency of a sine wave.  Explain how to define the amplitude of a sine wave.  Describe what a phase angle is and the difference between lagging and leading signals.
  • 3. Characteristics of a Sine Wave  The length of time it takes to complete one cycle or conversely the number of cycles that occur in one second.  Period  Frequency  Angular Frequency  The maximum and minimum voltage or current swing  Amplitude  Peak-to-peak amplitude  Value of the root mean square (RMS)  Average value of a sine wave  DC offset  Comparison between two sine waves  Phase angle  Lagging and leading signals
  • 4.
  • 5. Time Period, T mssttT 7.16 60 1 12  The time that it takes for a sine wave to complete one full cycle. This can be measured by finding the times at which the signal crosses zero (need two zero crossings). The unit usually used is seconds (s). An alternative way to measure the period is to determine the time required for the sine wave return to the same maximum or minimum value. t1 t2
  • 6. Frequency, f  The number of cycles a sine wave will complete in one second(fractions are okay). The unit is cycles/second or Hertz (Hz).  The longer the period, the lower the frequency is.  The shorter the period, the higher the frequency is. T f 1  Hz msT f 60 7.16 11 
  • 7. Electric Utilities  Standardization on the frequency of the electricity distribution systems didn’t occur until the mid- 1900’s.  The frequency of the ac voltage supplied by power companies in the US is 60 Hz.  The frequency used in much of Europe and Asia is 50 Hz.  While some electronic circuits function properly when connected to a power supply operating at either frequency, some are designed for a specific frequency, which is one reason why power adaptors are needed when you travel.  If you look at the label on the tablet ‘brick’, the frequency of the ac signal is specified.
  • 8. Angular frequency  Motors are used in the alternators in coal- and gas- powered electric generation stations. One full rotation of the motor shaft produces one complete cycle of the ac electricity produced.  Position of the motor shaft is measured in radians (rad) or degrees (o).  1 rad = 57.3o  2p rad = 360o rad/s37760  Hzf T f p p 2 2 
  • 9. Amplitude Peak amplitude Peak-to-Peak amplitude ppp ppp II VV 2 2  
  • 10. Instantaneous Value  Instantaneous value or amplitude is the magnitude of the sinusoid at a point in time. VssradVtvmst VssradVtvst tsradVtv 94.2)]01.0)(/377sin[(5)(10 0)]0)(/377sin[(5)(0 ])/377sin[(5)(   
  • 11. Average Value  The average value of a sinusoid signal is the integral of the sine wave over one full cycle. This is always equal to zero.  If the average of an ac signal is not zero, then there is a dc component known as a DC offset.
  • 12. Root Mean Square (RMS)  Most equipment that measure the amplitude of a sinusoidal signal displays the results as a root mean square value. This is signified by the unit Vac or VRMS.  RMS voltage and current are used to calculate the average power associated with the voltage or current signal in one cycle.   T RMS dttv T V 0 2 )( 1   RVP VVV RMSAve ppRMS 2 707.0 2 2  
  • 13. Phase Angle  The phase angle is an angular measurement of the position of one sinusoid signal with respect to a reference.  The signal and reference must have the same frequency.
  • 14. Calculation of Phase  Suppose there are three signals  One signal is the reference  I have chosen the reference to be the signal in blue on the following slide  The phase of the other two signals will be calculated with respect to the reference signal.  The period of each signal should be the same, which means that all signals have the same frequency.
  • 16. Example #1  Calculate the period, T, for the reference signal  This is the time for a full cycle to be completed.  T= 500 second for Signal 1  Calculate the difference in time between zero crossings of  Signal 2 and Signal 1: Dt = 40 second – 0 seconds = 40 s  Signal 3 and Signal 1: Dt = 480 seconds – 0 seconds= 480 s
  • 17. Example #1 (con’t)  The sinusoidal function that describes Signal 1, the reference voltage, is V(t) = 5V sin (t) where   2p/T = 12.6 mrad/s  To write the sinusoidal function that describes Signals 2 and 3, we need to address the fact that there is a shift in the zero crossings V(t) = A sin (t + f) where   2p/T f  2p Dt/T in radians or f = 360o Dt/T  f is called the phase shift
  • 18. Lagging and Leading  Don’t get fooled by the positions of the curves on the graph!  Signal 2: V(t) = 5V sin [12.6 mrad/s)t – 28.8o]  f is -0.502 radians or -28.8 degrees  Signal 2 lags Signal 1 as it reaches zero at a later time than Signal 1  Signal 3: V(t) = 5V sin [12.6 mrad/s)t + 14.4o]  f is 0.251 radians or 14.4 degrees  Signal 3 leads Signal 1 as it reaches zero at an earlier time than Signal 1
  • 19. Formulas )sin()( f  tVtv p where f is in degrees and the units for  are usually not included.
  • 20. Summary  AC signals are sinusoidal functions.  The mathematical description of the sinusoid includes the peak amplitude and the angular frequency and may include a phase angle.  RMS values of a sinusoid are calculated using the formula  Phase angle for a sinusoid is calculated with respect to a reference.  A signal lags a reference when fsignal – freference < 0o.  It leads a reference when fsignal – freference > 0o. T f p p 2 2 )sin()( f  tVtv p   T RMS dttv T V 0 2 )( 1 pRMS VV 707.0