SlideShare a Scribd company logo
1 of 99
Download to read offline
ADITYA
Structural Geology
(UNIT-III)
P Shiva Kumar
Sr. Assistant Professor
Department of Civil Engineering
ADITYA
Unit-3 Outcomes
At the end of the Course, Student will be able to:
CO 1 : Illustrate the Outcrop, Strike and Dip.
CO 2 : Illustrate the types and mechanism of folding.
CO 3 : Illustrate the types and mechanism of faulting.
CO 4 : Illustrate the joints and unconformities.
CO 5 : Understand the importance of structural
geology and stratigraphy for civil engineers.
2
Engineering Geology
P Shiva Kumar, Sr. Assistant Professor, CE
ADITYA
Contents
Structural Geology
• Strike, Dip and Outcrop.
• Study of common geological structures associating with the
rocks such as Folds.
• Faults.
• Joints and Unconformities- parts, types.
• Mechanism and their importance in Civil Engineering.
• Engineering properties of rocks.
Stratigraphy
• Introduction & Formations in India.
3
Engineering Geology
P Shiva Kumar, Sr. Assistant Professor, CE
ADITYA
4
Engineering Geology
P Shiva Kumar, Sr. Assistant Professor, CE
Module 1 : Introduction to Structural Geology and
Folds.
Module 1 : Introduction to Structural Geology and
Folds.
ADITYA
Introduction to Structural Geology and Folds.
P. Shiva Kumar
Sr. Assistant Professor
Department of Civil Engineering
ADITYA
Learning Outcomes
At the end of this lecture, Student will be able to:
LO 1 : Understand the occurrence and types of
secondary rock structures.
6
Engineering Geology
P Shiva Kumar, Sr. Assistant Professor, CE
ADITYA
Engineering Geology
P Shiva Kumar, Sr. Assistant Professor, CE
7
Structural geology is the study of factors such as origin, occurrence,
classification, type and effects of various secondary structures like folds, faults,
joints, rock cleavage, the attitude of secondary rock formations and how they
are different from those primary structures such as bedding and vesicular
structure, which develop in rocks at the time of their formation.
OR
The study of three dimensional distribution of rocks formations with respect to
their deformational histories.
The understanding of the dynamics of the stress areas in the rock formations can
reveal the important events or prevailing conditions of past history of regional
geology of that rock formations.
ADITYA
Engineering Geology
P Shiva Kumar, Sr. Assistant Professor, CE
8
Economical Importance of Structural Geology:
• The study of geologic structures has been of prime importance in
economic geology.
• Folded and faulted rock strata commonly form traps for the
accumulation and concentration of fluids such as petroleum and
natural gas.
• Veins of minerals containing various metals commonly occupy faults
and fractures in structurally complex areas.
• Deposits of gold, silver, copper, lead, zinc, and other metals, are
commonly located in structurally complex areas.
• Structural geology is a critical part of engineering geology, which is
concerned with the physical and mechanical properties of natural
rocks.
ADITYA
Engineering Geology
P Shiva Kumar, Sr. Assistant Professor, CE
9
Geologic structures are
important for understanding:
1) The locations of earthquakes
(faults).
2) The formation of mountains
(faults and folds). Orogeny and
Epeirogeny .
3) How to locate natural
resources (oil, gold, etc.) by using
geophysical exploration.
ADITYA
Engineering Geology
P Shiva Kumar, Sr. Assistant Professor, CE
10
Primary rock structures Secondary rock Structures
Formed from origin of the rock: Formed out of local and regional deformations.
Igneous rock Structures : Intrusive and extrusive
like vesicular, amygdale, columnar, pillow, flow,
dykes, sills, bysmalith, batholiths, lenticulars etc.,.
( growth of formations)
The deformations are fractures: Cracks, fissures,
faults and joints.
Sedimentary rock structures: strata or stratum,
ripple marks, tracks and trails.
( impressions on beds)
The deformations produce in the direction of
forces acting on the rock formations, referred as
attitude of bedding.
Metamorphic rock structures: Gneiss, schist,
granulose and Cataclastic.
( alteration of parent rocks in presence of
pressure and temperature)
The common deformational features are: Folds,
Faults, Joints and Unconformities.
ADITYA
Engineering Geology
P Shiva Kumar, Sr. Assistant Professor, CE
11
STRUCTURAL GEOLOGY
Horizontal bedding is modified by:
• Faults: Result of brittle deformation (shallow in crust).
• Folds: Result of plastic deformation (deep in crust).
ADITYA
Engineering Geology
P Shiva Kumar, Sr. Assistant Professor, CE
12
The three types of stress:
• Compressive stress – Forces squeeze or push toward one
another from opposite directions (cause shortening or
flattening).
• Tensional stress – Forces pull away from one another in
opposite directions (cause stretching or extension).
• Shear stress – Forces that are offset from one another and
operate in parallel but opposite directions.
ADITYA
Engineering Geology
P Shiva Kumar, Sr. Assistant Professor, CE
13
Outcrop, strike and Dip of formations:
An outcrop is the exposed rock, so named because the exposed rock "crops out."
STRIKE is the direction of the line formed by
the intersection of a rock surface with a
horizontal plane.
DIP is the acute angle that a rock surface
makes with a horizontal plane.
ADITYA
Engineering Geology
P Shiva Kumar, Sr. Assistant Professor, CE
14
Folds: A fold is a flexure or foliation caused only in sedimentary beds due to compressional and shear
forces.
Parts of folds are :
1. Anticline
2. Syncline
3. Axis
4. Axial plain
5. Hinge
6. Inflection plane
7. Limbs
8. Bedding plain
The inflection points are points of zero curvature, where the sense of curvature changes from a convex
to a concave line.
ADITYA
Engineering Geology
P Shiva Kumar, Sr. Assistant Professor, CE
15
Types of Folds
ADITYA
Engineering Geology
P Shiva Kumar, Sr. Assistant Professor, CE
16
ADITYA
Engineering Geology
P Shiva Kumar, Sr. Assistant Professor, CE
17
Geoanticlinal and Geosynclinals
ADITYA
Engineering Geology
P Shiva Kumar, Sr. Assistant Professor, CE
18
Synclinal fold Anticlinal fold
ADITYA
Engineering Geology
P Shiva Kumar, Sr. Assistant Professor, CE
19
Recumbent Fold
Isoclinal Fold
Dome
fold
ADITYA
Engineering Geology
P Shiva Kumar, Sr. Assistant Professor, CE
20
Mechanisms of Folding
• Folding of rocks takes place by different ways of accommodation of
stress. In many cases, slips or shear occur in between the beds.
• The process is similar to slipping of cards which occurs when the set is
fold. If they are not allowed to slip over one another, folding of the set
cannot take place.
• This is the way in which folding generally occur in the case of hard and
competent rock like quartzite's.
• In another kind of folding, folds are characterized by thinning of the
limbs and thickening of crest and troughs. This takes place commonly in
weak and incompetent rocks like shales
• Three distinct mechanisms have been identified for the folding of
rocks: bending (across the fold), buckling ( along the fold parallel to
beds), and passive folding ( at grain level instead of single bed level).
ADITYA
Engineering Geology
P Shiva Kumar, Sr. Assistant Professor, CE
21
Causes and Effects of Folding
• Most of the important folds, as already pointed out, are due to tectonic
causes. But a few folds of a minor type are due to non-tectonic causes,
• Mainly, the compressive and shear type of tectonic forces are responsible
for the folding phenomenon. Igneous intrusion of viscous magmas such
as laccoliths and lopoliths also contribute to folding.
• Non-tectonic causes like landslides, creeping, differential compaction,
isostatic setting and glaciations too are responsible for some folds. These
are minor in terms of frequency of occurrence and magnitude.
ADITYA
Engineering Geology
P Shiva Kumar, Sr. Assistant Professor, CE
22
Effects of Folding
• When a folded area is affected by weathering and erosion, interesting
topographic features are produced as follows, immediately after
folding, anticlines by virtue of their upward bending appear as hills
and synclines due to downward warping appear as valley.
• During folding in the crest portions, the geological formation are
subjected to tensional forces and hence numerous fractures appear
there. Because of these fractures, crest portions are eroded quickly
leading to conspicuous degradations locally.
• On the other hand, trough portion are highly compressed and hence
offer a greater resistance to erosion. Thus, they stand out in the long
run at a greater elevation, while the adjacent parts degrade fast. The
net result of this response to erosion is that the anticlines will change
over to valleys, while synclines change 'over to hills.
ADITYA
Engineering Geology
P Shiva Kumar, Sr. Assistant Professor, CE
23
After completion of module 1 the student is now able to understand
formation of secondary rock structures and mechanism of folding.
Summary
ADITYA
Engineering Geology
P Shiva Kumar, Sr. Assistant Professor, CE
24
ADITYA
25
Engineering Geology
P Shiva Kumar, Sr. Assistant Professor, CE
Module 2 : Faults, Mechanism and Effects
Module 2 : Faults, Mechanism and Effects
ADITYA
Faults, Mechanism and Effects
P. Shiva Kumar
Sr. Assistant Professor
Department of Civil Engineering
ADITYA
Learning Outcomes
At the end of this lecture, Student will be able to:
LO 1 : Understand the occurrence and types of
faults.
27
Engineering Geology
P Shiva Kumar, Sr. Assistant Professor, CE
ADITYA
Engineering Geology
P Shiva Kumar, Sr. Assistant Professor, CE
28
Depending upon the nature and magnitude of stresses and the types of the rocks, the rock bodies
may get fractured into different parts , and relative displacement of blocks may occur for
different distances. These are varying from a few centimeters to many meters and this
displacement may occur in any direction.
The deformation is bending it is referred as fold, while if it is a fracture it is fault.
Various stages showing
mechanism of folding leading
to faulting.
ADITYA
Engineering Geology
P Shiva Kumar, Sr. Assistant Professor, CE
29
Fault can be defined as a linear or curvy linear, straight line or planar fracture formed due to
deferential stress developed by loading of rocks and tectonic forces in tight plutonic
environment.
Terminology of fault:
1. Foot wall
2. Hanging wall
3. Slip
4. Fault plane
5. Hade
6. Heave
7. Throw
8. Strike and dip of fault
ADITYA
Engineering Geology
P Shiva Kumar, Sr. Assistant Professor, CE
30
ADITYA
Engineering Geology
P Shiva Kumar, Sr. Assistant Professor, CE
31
ADITYA
Engineering Geology
P Shiva Kumar, Sr. Assistant Professor, CE
32
https://upload.wikimedia.org/wikip
edia/commons/5/53/California_Dep
artment_of_Conservation_-
_Earthquake_Shaking_Potential_for_
California.jpg
The San Andreas fault line
formed about 30 million
years ago as the North
American plate engulfed
nearly all of the Farallon
plate. ... This fault is one of
the largest faults in the
world, running more than
800 (1,287 kms) miles from
the Salton Sea to Cape
Mendocino. It carves the
state in two.
ADITYA
Engineering Geology
P Shiva Kumar, Sr. Assistant Professor, CE
33
ADITYA
Engineering Geology
P Shiva Kumar, Sr. Assistant Professor, CE
34
ADITYA
Engineering Geology
P Shiva Kumar, Sr. Assistant Professor, CE
35
Displacement(slip) was measured as the distance along the fault
between the mapped terminations of a given stratigraphic layer(
between bedding planes) at the fault surface. (such as is done in
Williams and Chapman, 1983, and others)
Absolute displacements represents of the faults which are measured
when slip take place where one is static and other one is displacing,
while relative displacements are measured along with the direction of
deformations has both footwall and hanging wall displaces. (In
perspective of loss of friction and tectonic movements).
ADITYA
Engineering Geology
P Shiva Kumar, Sr. Assistant Professor, CE
36
Possible absolute slips
ADITYA
Engineering Geology
P Shiva Kumar, Sr. Assistant Professor, CE
37
Classification of faults based on
1. Type of displacement along the fault plane.
2. Relative movement between footwall and hanging wall.
3. Type of slip involved.
4. Mutual relation of attitudes of fault plane and adjacent beds.
5. Inclination of fault plane.
6. Mode of occurrence of faults.
ADITYA
Engineering Geology
P Shiva Kumar, Sr. Assistant Professor, CE
38
1. Type of displacement along the fault plane. 2. Relative movement between footwall and hanging wall.
ADITYA
Engineering Geology
P Shiva Kumar, Sr. Assistant Professor, CE
39
2. Relative movement between footwall and hanging wall.
ADITYA
Engineering Geology
P Shiva Kumar, Sr. Assistant Professor, CE
40
3. Type of slip involved.
ADITYA
Engineering Geology
P Shiva Kumar, Sr. Assistant Professor, CE
41
4. Mutual relation of attitudes of fault plane and adjacent beds.
Adjacent Strike slip
faults
Adjacent dip slip faults Oblique or diagonal
slip faults
ADITYA
Engineering Geology
P Shiva Kumar, Sr. Assistant Professor, CE
42
5. Inclination of fault plane.
High angle fault is gravity or
normal fault
Low angle fault is reverse fault
also know as thrust faults
6. Mode of occurrence of faults.
ADITYA
Engineering Geology
P Shiva Kumar, Sr. Assistant Professor, CE
43
Miscellaneous faults
ADITYA
Engineering Geology
P Shiva Kumar, Sr. Assistant Professor, CE
44
Step faults and parallel faults
Parallel faults have same strike
and dip amounts
Step faults are normal faults which
are similarly to parallel faults with
regular intervals of faulting.
ADITYA
Engineering Geology
P Shiva Kumar, Sr. Assistant Professor, CE
45
Engineering consideration of faults
• Faults cause very much shearing and crushing of rocks located in
the fault zone making the rocks weak on one hand and porous,
permeable on the other hand.
• So following general conclusions can be drawn:
I. The faulted rocks will form weak foundations for the dams.
II. The fault zones will provide easy pathways for the water and
causes leakage when left untreated in the dams.
III.Once the fault zone becomes lubricated with water, the
probability of further slipping becomes high. This may create
critical condition within the foundation.
IV.Faulting products like gouge and breccia create additional
problems.
ADITYA
Engineering Geology
P Shiva Kumar, Sr. Assistant Professor, CE
46
Fault gouge and breccia
ADITYA
Engineering Geology
P Shiva Kumar, Sr. Assistant Professor, CE
47
ADITYA
Engineering Geology
P Shiva Kumar, Sr. Assistant Professor, CE
48
Causes of faulting
1. Tensional stress is when slabs of rock are pulled apart. ...
2. Compressional stress is when slabs of rock are pushed together. ...
3. Shear stress is when slabs of rock slide past each other horizontally
in opposite directions.
Evidence of faults
1. Visible displacement of rocks.
2. Pulverized rock and
“Slickensides”.
3. Key beds cut out by faulting
reappear elsewhere.
ADITYA
Engineering Geology
P Shiva Kumar, Sr. Assistant Professor, CE
49
1. One of the main effects of the faults on topography is that they very often result in the
development of distinct types of steep slopes which are aptly called fault scarps. Three types of
fault associated scarps are often recognized- fault scarps, fault-line scarps and composite-fault
scarps.
2. Locating buildings, tanks, and pipelines and assessing the seismic shaking and tsunami hazard to
infrastructure and people in the vicinity.
ADITYA
Engineering Geology
P Shiva Kumar, Sr. Assistant Professor, CE
50
ADITYA
Engineering Geology
P Shiva Kumar, Sr. Assistant Professor, CE
51
After completion of module 2 the student is now able to understand the
occurrence and types of faults.
Summary
ADITYA
Engineering Geology
P Shiva Kumar, Sr. Assistant Professor, CE
52
ADITYA
53
Engineering Geology
P Shiva Kumar, Sr. Assistant Professor, CE
Module 3 : Joints in rocks
Module 3 : Joints in rocks
ADITYA
Joints in rocks
P. Shiva Kumar
Sr. Assistant Professor
Department of Civil Engineering
ADITYA
Learning Outcomes
At the end of this lecture, Student will be able to:
LO 1 : Understand the occurrence of joints.
55
Engineering Geology
P Shiva Kumar, Sr. Assistant Professor, CE
ADITYA
Engineering Geology
P Shiva Kumar, Sr. Assistant Professor, CE
56
Joints are the planar structure and simply known as crack along bed/rock without
displacement.
Joints/Fracture is a planar or sub planar discontinuity which causes movement ,and change
in mechanical properties of rock and minerals.
Joints:- A fracture without measurable shear displacement (cracks or tensile fractures)
Fault:- A fracture with measurable displacement.
Parts of joints
ADITYA
Engineering Geology
P Shiva Kumar, Sr. Assistant Professor, CE
57
ADITYA
Engineering Geology
P Shiva Kumar, Sr. Assistant Professor, CE
58
Classification of Joints – Based on geometry
ADITYA
Engineering Geology
P Shiva Kumar, Sr. Assistant Professor, CE
59
Classification of Joints – Based on dip
ADITYA
Engineering Geology
P Shiva Kumar, Sr. Assistant Professor, CE
60
Classification of Joints – Based on origin
ADITYA
Engineering Geology
P Shiva Kumar, Sr. Assistant Professor, CE
61
Type of joints identified in common rocks
1. Columnar joints
2. Pillow joints
ADITYA
Engineering Geology
P Shiva Kumar, Sr. Assistant Professor, CE
62
Sheet joints
block joints
ADITYA
Engineering Geology
P Shiva Kumar, Sr. Assistant Professor, CE
63
Flaggy lime stone
Flaggy sandstone
ADITYA
Engineering Geology
P Shiva Kumar, Sr. Assistant Professor, CE
64
RECOGNITION OF JOINTS
1. Flat or smooth surface, joint surface are develop.
2. Gap between joints.
3. block has been displaced due to faulting the joint may be observed in the field but it is necessary
data in order to convey other end to make pertinent analysis .
Importance of joints
1. Mineral exploration in mining industries.
2. Granite industries for quarrying rock blocks.
3. To find the ground water flow in hydrogeological aspect. Joints acts as permeable layer
for aquifer, oil and gas reservoir, it helps in secondary migration of hydrocarbon.
4. Bed rock analysis for construction of tall building in hill area. In hilly region joints get
easily lubricated due to moisture and start sliding causes landslides.
5. To understand the geology and geomorphology of local area control weathering and
erosion.
6. Joints are important to the economic and safe development of petroleum ,
hydrothermal and groundwater resources and the subject of intensive research relative to
development of these resources.
ADITYA
Engineering Geology
P Shiva Kumar, Sr. Assistant Professor, CE
65
After completion of module 3 the student is now able to understand the
occurrence of joints.
Summary
ADITYA
Engineering Geology
P Shiva Kumar, Sr. Assistant Professor, CE
66
ADITYA
67
Engineering Geology
P Shiva Kumar, Sr. Assistant Professor, CE
Module 4 : Unconformity
Module 4 : Unconformity
ADITYA
Unconformities
P. Shiva Kumar
Sr. Assistant Professor
Department of Civil Engineering
ADITYA
Learning Outcomes
At the end of this lecture, Student will be able to:
LO 1 : Understand the occurrence of Unconformities.
69
Engineering Geology
P Shiva Kumar, Sr. Assistant Professor, CE
ADITYA
Engineering Geology
P Shiva Kumar, Sr. Assistant Professor, CE
70
• Unconformity is one of the common geological structure found in rocks.
• It is a product of diastrophism ( Folding and faulting of earth crust leading to formation
of mountains, planes, plateaus and they can divide the streams and change the pattern
of flow).
• Diastrophism can also be referred as geo-tectonics.
• An unconformity is a contact between two rock units in which the upper unit is usually
much younger than the lower unit.
• Unconformities are typically buried erosional surfaces that can represent a break in the
geologic record of hundreds of millions of years or more.
• For example, the contact between a 400 million year old sandstone that was deposited
by a rising sea on a weathered bedrock surface that is 600 million years old is an
unconformity that represents a time hiatus of 200 million years.
• The sediment and/or rock that was deposited directly on the bedrock during that
200 million year span was eroded away, leaving the “basement” surface exposed. There
are three kinds of unconformities: disconformities, nonconformities, and angular
unconformities.
ADITYA
Engineering Geology
P Shiva Kumar, Sr. Assistant Professor, CE
71
In geology, the law of
superposition or order of
superposition, states that the
sequence of layers observed
in sedimentary rocks marks
the time of deposition of
the layers. The lowest layer
is the oldest layer of
deposition and the ones
above it are successive
younger layers of deposition
according to the law of
superposition definition.
ADITYA
Engineering Geology
P Shiva Kumar, Sr. Assistant Professor, CE
72
An unconformity is surface formed with a disturbance in deposition or with a time gap in deposition
of two conformable series . They occur at three basic types of contacts:
• Depositional contacts, where a sediment layer is deposited over preexisting rock.
• Fault contacts, where two units are juxtaposed by a fracture on which sliding has occurred.
• Intrusive contacts, where one rock body cuts across another rock body.
Parts of unconformities:
ADITYA
Engineering Geology
P Shiva Kumar, Sr. Assistant Professor, CE
73
Formation of unconformities
There are two important points in the formation of unconformities:-
1. When there occurs break in deposition of sedimentary beds, there may or may not
occur unconformity due to geological action of weathering and Erosion.
2. First formed set of conformable beds may or may not get inclined or angular due to
the tectonic up-liftment or depressed due to subsidence.
Types of Unconformities
Based on factors like:-
• How many beds are there in the formation,
• The attitude of bedding,
• The extent of the formation,
• And based on types of rocks the unconformities are named.
ADITYA
Engineering Geology
P Shiva Kumar, Sr. Assistant Professor, CE
74
1. Non-conformity is when the underlying
formations are igneous or metamorphic and the
overlying deposited formations are sedimentary,
such unconformities are referred non-
conformities.
ADITYA
Engineering Geology
P Shiva Kumar, Sr. Assistant Professor, CE
75
2. Angular unconformities occurs
when underlying and overlying
strata of the sedimentary rock
formations is not parallel.
ADITYA
Engineering Geology
P Shiva Kumar, Sr. Assistant Professor, CE
76
3. Disconformity occurs when the disturbance in the successive formation of two conformable
series at their contact are (at bedding plane) is just a erosional surface with the presence of
any of the rocks like conglomerates, breccia, bauxite, laterite with a time difference between
to conformable sets referred to be “Haitus”.
ADITYA
Engineering Geology
P Shiva Kumar, Sr. Assistant Professor, CE
77
4. A Para-conformity is a type of unconformity
in which strata are parallel; there is no
apparent erosion and the unconformity
surface resembles a simple bedding plane.
5. A buttress unconformity is one in which the
younger, overlying rocks are cut by the contact. This
relationship occurs because the younger sediments are
deposited against the older rocks as they stood out in
topographic relief.
ADITYA
Engineering Geology
P Shiva Kumar, Sr. Assistant Professor, CE
78
6. Regional and local unconformities: Regional unconformities occur for several square
kilometres of area appearing to be a size of a mountain, while local unconformities occur
at very small areas less than few square meter of formations.
Recognition of unconformities
1. Difference in attitude of two adjacent beds ( may be or may not be disconformity).
2. Difference in nature, age and types of fossils in adjacent sets of rock.
3. Occurrence of conglomerate, residual soil, laterite, bauxite along the unconformity
surface.
4. Considerable difference in degree of metamorphism of two adjacent sets of beds.
5. Stratigraphic correlation and lithological peculiarities ( difference in attitude of the
formations, textural, structural and mineralogical compositions).
ADITYA
Engineering Geology
P Shiva Kumar, Sr. Assistant Professor, CE
79
After completion of module 4 the student is now able to understand the
occurrence of unconformities.
Summary
ADITYA
Engineering Geology
P Shiva Kumar, Sr. Assistant Professor, CE
80
ADITYA
Engineering Geology
P Shiva Kumar, Sr. Assistant Professor, CE
81
ADITYA
Engineering Geology
P Shiva Kumar, Sr. Assistant Professor, CE
82
ADITYA
Engineering Geology
P Shiva Kumar, Sr. Assistant Professor, CE
83
ADITYA
Engineering Geology
P Shiva Kumar, Sr. Assistant Professor, CE
84
ADITYA
Engineering Geology
P Shiva Kumar, Sr. Assistant Professor, CE
85
ADITYA
Engineering Geology
P Shiva Kumar, Sr. Assistant Professor, CE
86
ADITYA
Engineering Geology
P Shiva Kumar, Sr. Assistant Professor, CE
87
ADITYA
Engineering Geology
P Shiva Kumar, Sr. Assistant Professor, CE
88
ADITYA
Engineering Geology
P Shiva Kumar, Sr. Assistant Professor, CE
89
ADITYA
Engineering Geology
P Shiva Kumar, Sr. Assistant Professor, CE
90
ADITYA
Engineering Geology
P Shiva Kumar, Sr. Assistant Professor, CE
91
ADITYA
Engineering Geology
P Shiva Kumar, Sr. Assistant Professor, CE
92
ADITYA
Engineering Geology
P Shiva Kumar, Sr. Assistant Professor, CE
93
ADITYA
Engineering Geology
P Shiva Kumar, Sr. Assistant Professor, CE
94
ADITYA
Engineering Geology
P Shiva Kumar, Sr. Assistant Professor, CE
95
ADITYA
Engineering Geology
P Shiva Kumar, Sr. Assistant Professor, CE
96
ADITYA
Engineering Geology
P Shiva Kumar, Sr. Assistant Professor, CE
97
ADITYA
Summary
From this unit – 3 students are now able illustrate and
understand the occurrence of minerals and rocks,
their identification.
98
Engineering Geology
P Shiva Kumar, Sr. Assistant Professor, CE
ADITYA
Engineering Geology
P Shiva Kumar, Sr. Assistant Professor, CE
99
Thank you

More Related Content

Similar to Engineering Geology Unit 3.pdf

Structural Geology for petroleum Egineering Geology
Structural Geology for petroleum Egineering GeologyStructural Geology for petroleum Egineering Geology
Structural Geology for petroleum Egineering GeologyKamal Abdurahman
 
ENGINEERING GEOLOGY
ENGINEERING GEOLOGYENGINEERING GEOLOGY
ENGINEERING GEOLOGYTarun kumar
 
Application of structural geology to the solution of engineering problems
Application of structural geology to  the solution of engineering problemsApplication of structural geology to  the solution of engineering problems
Application of structural geology to the solution of engineering problemsRkosgaming
 
Geologic structure, fold fault & unconformity
Geologic structure, fold fault & unconformityGeologic structure, fold fault & unconformity
Geologic structure, fold fault & unconformityJahangir Alam
 
Geology report by jitu
Geology report by jituGeology report by jitu
Geology report by jituJitendra Gupta
 
ENGINEERING GEOLOGY
ENGINEERING GEOLOGYENGINEERING GEOLOGY
ENGINEERING GEOLOGYTarun kumar
 
Analysis of Seismic Performance of Rock Block Structures with STAAD Pro
Analysis of Seismic Performance of Rock Block Structures with STAAD ProAnalysis of Seismic Performance of Rock Block Structures with STAAD Pro
Analysis of Seismic Performance of Rock Block Structures with STAAD ProIJERA Editor
 
scribfree.com_on-earthquake-resistant-structures.pptx
scribfree.com_on-earthquake-resistant-structures.pptxscribfree.com_on-earthquake-resistant-structures.pptx
scribfree.com_on-earthquake-resistant-structures.pptxaps ratnuchak
 
deformation
 deformation  deformation
deformation fulay
 
Structural Geology elements
Structural Geology elementsStructural Geology elements
Structural Geology elementsAshik A S
 
brief INTRODUCTION TO ROCK MECHANICS.pptx
brief INTRODUCTION TO ROCK MECHANICS.pptxbrief INTRODUCTION TO ROCK MECHANICS.pptx
brief INTRODUCTION TO ROCK MECHANICS.pptxdalisanjennethcabint
 
Group-4-GEOLOGY-ppt (1).ppt
Group-4-GEOLOGY-ppt (1).pptGroup-4-GEOLOGY-ppt (1).ppt
Group-4-GEOLOGY-ppt (1).pptacaliston
 
Mechanism and kinematics of brittle deformation.pptx
Mechanism and kinematics of brittle deformation.pptxMechanism and kinematics of brittle deformation.pptx
Mechanism and kinematics of brittle deformation.pptxGAURAB DEB
 
Unit I PPT.pptx garden city green (1).pptx
Unit I PPT.pptx garden city green (1).pptxUnit I PPT.pptx garden city green (1).pptx
Unit I PPT.pptx garden city green (1).pptxSivaprashadrDrNGPIte
 

Similar to Engineering Geology Unit 3.pdf (20)

Structural Geology for petroleum Egineering Geology
Structural Geology for petroleum Egineering GeologyStructural Geology for petroleum Egineering Geology
Structural Geology for petroleum Egineering Geology
 
1 introduction
1 introduction1 introduction
1 introduction
 
ENGINEERING GEOLOGY
ENGINEERING GEOLOGYENGINEERING GEOLOGY
ENGINEERING GEOLOGY
 
Application of structural geology to the solution of engineering problems
Application of structural geology to  the solution of engineering problemsApplication of structural geology to  the solution of engineering problems
Application of structural geology to the solution of engineering problems
 
Engineering Geology Unit 2.pdf
Engineering Geology Unit 2.pdfEngineering Geology Unit 2.pdf
Engineering Geology Unit 2.pdf
 
Rock Drilling and Blasting LECTURES - NN.pdf
Rock Drilling and Blasting LECTURES - NN.pdfRock Drilling and Blasting LECTURES - NN.pdf
Rock Drilling and Blasting LECTURES - NN.pdf
 
Geologic structure, fold fault & unconformity
Geologic structure, fold fault & unconformityGeologic structure, fold fault & unconformity
Geologic structure, fold fault & unconformity
 
Geology report by jitu
Geology report by jituGeology report by jitu
Geology report by jitu
 
ENGINEERING GEOLOGY
ENGINEERING GEOLOGYENGINEERING GEOLOGY
ENGINEERING GEOLOGY
 
Analysis of Seismic Performance of Rock Block Structures with STAAD Pro
Analysis of Seismic Performance of Rock Block Structures with STAAD ProAnalysis of Seismic Performance of Rock Block Structures with STAAD Pro
Analysis of Seismic Performance of Rock Block Structures with STAAD Pro
 
scribfree.com_on-earthquake-resistant-structures.pptx
scribfree.com_on-earthquake-resistant-structures.pptxscribfree.com_on-earthquake-resistant-structures.pptx
scribfree.com_on-earthquake-resistant-structures.pptx
 
deformation
 deformation  deformation
deformation
 
Structural Geology elements
Structural Geology elementsStructural Geology elements
Structural Geology elements
 
Engineering geology unit i
Engineering geology unit  iEngineering geology unit  i
Engineering geology unit i
 
brief INTRODUCTION TO ROCK MECHANICS.pptx
brief INTRODUCTION TO ROCK MECHANICS.pptxbrief INTRODUCTION TO ROCK MECHANICS.pptx
brief INTRODUCTION TO ROCK MECHANICS.pptx
 
Group-4-GEOLOGY-ppt (1).ppt
Group-4-GEOLOGY-ppt (1).pptGroup-4-GEOLOGY-ppt (1).ppt
Group-4-GEOLOGY-ppt (1).ppt
 
Mechanism and kinematics of brittle deformation.pptx
Mechanism and kinematics of brittle deformation.pptxMechanism and kinematics of brittle deformation.pptx
Mechanism and kinematics of brittle deformation.pptx
 
Unit I PPT.pptx garden city green (1).pptx
Unit I PPT.pptx garden city green (1).pptxUnit I PPT.pptx garden city green (1).pptx
Unit I PPT.pptx garden city green (1).pptx
 
MODULE-3 EG.pdf
MODULE-3 EG.pdfMODULE-3 EG.pdf
MODULE-3 EG.pdf
 
Engineering Geology Unit 4 Earthquakes.pdf
Engineering Geology Unit 4 Earthquakes.pdfEngineering Geology Unit 4 Earthquakes.pdf
Engineering Geology Unit 4 Earthquakes.pdf
 

Recently uploaded

MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINESIVASHANKAR N
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxAsutosh Ranjan
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSRajkumarAkumalla
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...Soham Mondal
 
the ladakh protest in leh ladakh 2024 sonam wangchuk.pptx
the ladakh protest in leh ladakh 2024 sonam wangchuk.pptxthe ladakh protest in leh ladakh 2024 sonam wangchuk.pptx
the ladakh protest in leh ladakh 2024 sonam wangchuk.pptxhumanexperienceaaa
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxwendy cai
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)Suman Mia
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxJoão Esperancinha
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVRajaP95
 
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝soniya singh
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile servicerehmti665
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
Analog to Digital and Digital to Analog Converter
Analog to Digital and Digital to Analog ConverterAnalog to Digital and Digital to Analog Converter
Analog to Digital and Digital to Analog ConverterAbhinavSharma374939
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSKurinjimalarL3
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escortsranjana rawat
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxpranjaldaimarysona
 

Recently uploaded (20)

MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptx
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
 
the ladakh protest in leh ladakh 2024 sonam wangchuk.pptx
the ladakh protest in leh ladakh 2024 sonam wangchuk.pptxthe ladakh protest in leh ladakh 2024 sonam wangchuk.pptx
the ladakh protest in leh ladakh 2024 sonam wangchuk.pptx
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptx
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
 
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
 
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCRCall Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile service
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINEDJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
 
Analog to Digital and Digital to Analog Converter
Analog to Digital and Digital to Analog ConverterAnalog to Digital and Digital to Analog Converter
Analog to Digital and Digital to Analog Converter
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptx
 

Engineering Geology Unit 3.pdf

  • 1. ADITYA Structural Geology (UNIT-III) P Shiva Kumar Sr. Assistant Professor Department of Civil Engineering
  • 2. ADITYA Unit-3 Outcomes At the end of the Course, Student will be able to: CO 1 : Illustrate the Outcrop, Strike and Dip. CO 2 : Illustrate the types and mechanism of folding. CO 3 : Illustrate the types and mechanism of faulting. CO 4 : Illustrate the joints and unconformities. CO 5 : Understand the importance of structural geology and stratigraphy for civil engineers. 2 Engineering Geology P Shiva Kumar, Sr. Assistant Professor, CE
  • 3. ADITYA Contents Structural Geology • Strike, Dip and Outcrop. • Study of common geological structures associating with the rocks such as Folds. • Faults. • Joints and Unconformities- parts, types. • Mechanism and their importance in Civil Engineering. • Engineering properties of rocks. Stratigraphy • Introduction & Formations in India. 3 Engineering Geology P Shiva Kumar, Sr. Assistant Professor, CE
  • 4. ADITYA 4 Engineering Geology P Shiva Kumar, Sr. Assistant Professor, CE Module 1 : Introduction to Structural Geology and Folds. Module 1 : Introduction to Structural Geology and Folds.
  • 5. ADITYA Introduction to Structural Geology and Folds. P. Shiva Kumar Sr. Assistant Professor Department of Civil Engineering
  • 6. ADITYA Learning Outcomes At the end of this lecture, Student will be able to: LO 1 : Understand the occurrence and types of secondary rock structures. 6 Engineering Geology P Shiva Kumar, Sr. Assistant Professor, CE
  • 7. ADITYA Engineering Geology P Shiva Kumar, Sr. Assistant Professor, CE 7 Structural geology is the study of factors such as origin, occurrence, classification, type and effects of various secondary structures like folds, faults, joints, rock cleavage, the attitude of secondary rock formations and how they are different from those primary structures such as bedding and vesicular structure, which develop in rocks at the time of their formation. OR The study of three dimensional distribution of rocks formations with respect to their deformational histories. The understanding of the dynamics of the stress areas in the rock formations can reveal the important events or prevailing conditions of past history of regional geology of that rock formations.
  • 8. ADITYA Engineering Geology P Shiva Kumar, Sr. Assistant Professor, CE 8 Economical Importance of Structural Geology: • The study of geologic structures has been of prime importance in economic geology. • Folded and faulted rock strata commonly form traps for the accumulation and concentration of fluids such as petroleum and natural gas. • Veins of minerals containing various metals commonly occupy faults and fractures in structurally complex areas. • Deposits of gold, silver, copper, lead, zinc, and other metals, are commonly located in structurally complex areas. • Structural geology is a critical part of engineering geology, which is concerned with the physical and mechanical properties of natural rocks.
  • 9. ADITYA Engineering Geology P Shiva Kumar, Sr. Assistant Professor, CE 9 Geologic structures are important for understanding: 1) The locations of earthquakes (faults). 2) The formation of mountains (faults and folds). Orogeny and Epeirogeny . 3) How to locate natural resources (oil, gold, etc.) by using geophysical exploration.
  • 10. ADITYA Engineering Geology P Shiva Kumar, Sr. Assistant Professor, CE 10 Primary rock structures Secondary rock Structures Formed from origin of the rock: Formed out of local and regional deformations. Igneous rock Structures : Intrusive and extrusive like vesicular, amygdale, columnar, pillow, flow, dykes, sills, bysmalith, batholiths, lenticulars etc.,. ( growth of formations) The deformations are fractures: Cracks, fissures, faults and joints. Sedimentary rock structures: strata or stratum, ripple marks, tracks and trails. ( impressions on beds) The deformations produce in the direction of forces acting on the rock formations, referred as attitude of bedding. Metamorphic rock structures: Gneiss, schist, granulose and Cataclastic. ( alteration of parent rocks in presence of pressure and temperature) The common deformational features are: Folds, Faults, Joints and Unconformities.
  • 11. ADITYA Engineering Geology P Shiva Kumar, Sr. Assistant Professor, CE 11 STRUCTURAL GEOLOGY Horizontal bedding is modified by: • Faults: Result of brittle deformation (shallow in crust). • Folds: Result of plastic deformation (deep in crust).
  • 12. ADITYA Engineering Geology P Shiva Kumar, Sr. Assistant Professor, CE 12 The three types of stress: • Compressive stress – Forces squeeze or push toward one another from opposite directions (cause shortening or flattening). • Tensional stress – Forces pull away from one another in opposite directions (cause stretching or extension). • Shear stress – Forces that are offset from one another and operate in parallel but opposite directions.
  • 13. ADITYA Engineering Geology P Shiva Kumar, Sr. Assistant Professor, CE 13 Outcrop, strike and Dip of formations: An outcrop is the exposed rock, so named because the exposed rock "crops out." STRIKE is the direction of the line formed by the intersection of a rock surface with a horizontal plane. DIP is the acute angle that a rock surface makes with a horizontal plane.
  • 14. ADITYA Engineering Geology P Shiva Kumar, Sr. Assistant Professor, CE 14 Folds: A fold is a flexure or foliation caused only in sedimentary beds due to compressional and shear forces. Parts of folds are : 1. Anticline 2. Syncline 3. Axis 4. Axial plain 5. Hinge 6. Inflection plane 7. Limbs 8. Bedding plain The inflection points are points of zero curvature, where the sense of curvature changes from a convex to a concave line.
  • 15. ADITYA Engineering Geology P Shiva Kumar, Sr. Assistant Professor, CE 15 Types of Folds
  • 16. ADITYA Engineering Geology P Shiva Kumar, Sr. Assistant Professor, CE 16
  • 17. ADITYA Engineering Geology P Shiva Kumar, Sr. Assistant Professor, CE 17 Geoanticlinal and Geosynclinals
  • 18. ADITYA Engineering Geology P Shiva Kumar, Sr. Assistant Professor, CE 18 Synclinal fold Anticlinal fold
  • 19. ADITYA Engineering Geology P Shiva Kumar, Sr. Assistant Professor, CE 19 Recumbent Fold Isoclinal Fold Dome fold
  • 20. ADITYA Engineering Geology P Shiva Kumar, Sr. Assistant Professor, CE 20 Mechanisms of Folding • Folding of rocks takes place by different ways of accommodation of stress. In many cases, slips or shear occur in between the beds. • The process is similar to slipping of cards which occurs when the set is fold. If they are not allowed to slip over one another, folding of the set cannot take place. • This is the way in which folding generally occur in the case of hard and competent rock like quartzite's. • In another kind of folding, folds are characterized by thinning of the limbs and thickening of crest and troughs. This takes place commonly in weak and incompetent rocks like shales • Three distinct mechanisms have been identified for the folding of rocks: bending (across the fold), buckling ( along the fold parallel to beds), and passive folding ( at grain level instead of single bed level).
  • 21. ADITYA Engineering Geology P Shiva Kumar, Sr. Assistant Professor, CE 21 Causes and Effects of Folding • Most of the important folds, as already pointed out, are due to tectonic causes. But a few folds of a minor type are due to non-tectonic causes, • Mainly, the compressive and shear type of tectonic forces are responsible for the folding phenomenon. Igneous intrusion of viscous magmas such as laccoliths and lopoliths also contribute to folding. • Non-tectonic causes like landslides, creeping, differential compaction, isostatic setting and glaciations too are responsible for some folds. These are minor in terms of frequency of occurrence and magnitude.
  • 22. ADITYA Engineering Geology P Shiva Kumar, Sr. Assistant Professor, CE 22 Effects of Folding • When a folded area is affected by weathering and erosion, interesting topographic features are produced as follows, immediately after folding, anticlines by virtue of their upward bending appear as hills and synclines due to downward warping appear as valley. • During folding in the crest portions, the geological formation are subjected to tensional forces and hence numerous fractures appear there. Because of these fractures, crest portions are eroded quickly leading to conspicuous degradations locally. • On the other hand, trough portion are highly compressed and hence offer a greater resistance to erosion. Thus, they stand out in the long run at a greater elevation, while the adjacent parts degrade fast. The net result of this response to erosion is that the anticlines will change over to valleys, while synclines change 'over to hills.
  • 23. ADITYA Engineering Geology P Shiva Kumar, Sr. Assistant Professor, CE 23 After completion of module 1 the student is now able to understand formation of secondary rock structures and mechanism of folding. Summary
  • 24. ADITYA Engineering Geology P Shiva Kumar, Sr. Assistant Professor, CE 24
  • 25. ADITYA 25 Engineering Geology P Shiva Kumar, Sr. Assistant Professor, CE Module 2 : Faults, Mechanism and Effects Module 2 : Faults, Mechanism and Effects
  • 26. ADITYA Faults, Mechanism and Effects P. Shiva Kumar Sr. Assistant Professor Department of Civil Engineering
  • 27. ADITYA Learning Outcomes At the end of this lecture, Student will be able to: LO 1 : Understand the occurrence and types of faults. 27 Engineering Geology P Shiva Kumar, Sr. Assistant Professor, CE
  • 28. ADITYA Engineering Geology P Shiva Kumar, Sr. Assistant Professor, CE 28 Depending upon the nature and magnitude of stresses and the types of the rocks, the rock bodies may get fractured into different parts , and relative displacement of blocks may occur for different distances. These are varying from a few centimeters to many meters and this displacement may occur in any direction. The deformation is bending it is referred as fold, while if it is a fracture it is fault. Various stages showing mechanism of folding leading to faulting.
  • 29. ADITYA Engineering Geology P Shiva Kumar, Sr. Assistant Professor, CE 29 Fault can be defined as a linear or curvy linear, straight line or planar fracture formed due to deferential stress developed by loading of rocks and tectonic forces in tight plutonic environment. Terminology of fault: 1. Foot wall 2. Hanging wall 3. Slip 4. Fault plane 5. Hade 6. Heave 7. Throw 8. Strike and dip of fault
  • 30. ADITYA Engineering Geology P Shiva Kumar, Sr. Assistant Professor, CE 30
  • 31. ADITYA Engineering Geology P Shiva Kumar, Sr. Assistant Professor, CE 31
  • 32. ADITYA Engineering Geology P Shiva Kumar, Sr. Assistant Professor, CE 32 https://upload.wikimedia.org/wikip edia/commons/5/53/California_Dep artment_of_Conservation_- _Earthquake_Shaking_Potential_for_ California.jpg The San Andreas fault line formed about 30 million years ago as the North American plate engulfed nearly all of the Farallon plate. ... This fault is one of the largest faults in the world, running more than 800 (1,287 kms) miles from the Salton Sea to Cape Mendocino. It carves the state in two.
  • 33. ADITYA Engineering Geology P Shiva Kumar, Sr. Assistant Professor, CE 33
  • 34. ADITYA Engineering Geology P Shiva Kumar, Sr. Assistant Professor, CE 34
  • 35. ADITYA Engineering Geology P Shiva Kumar, Sr. Assistant Professor, CE 35 Displacement(slip) was measured as the distance along the fault between the mapped terminations of a given stratigraphic layer( between bedding planes) at the fault surface. (such as is done in Williams and Chapman, 1983, and others) Absolute displacements represents of the faults which are measured when slip take place where one is static and other one is displacing, while relative displacements are measured along with the direction of deformations has both footwall and hanging wall displaces. (In perspective of loss of friction and tectonic movements).
  • 36. ADITYA Engineering Geology P Shiva Kumar, Sr. Assistant Professor, CE 36 Possible absolute slips
  • 37. ADITYA Engineering Geology P Shiva Kumar, Sr. Assistant Professor, CE 37 Classification of faults based on 1. Type of displacement along the fault plane. 2. Relative movement between footwall and hanging wall. 3. Type of slip involved. 4. Mutual relation of attitudes of fault plane and adjacent beds. 5. Inclination of fault plane. 6. Mode of occurrence of faults.
  • 38. ADITYA Engineering Geology P Shiva Kumar, Sr. Assistant Professor, CE 38 1. Type of displacement along the fault plane. 2. Relative movement between footwall and hanging wall.
  • 39. ADITYA Engineering Geology P Shiva Kumar, Sr. Assistant Professor, CE 39 2. Relative movement between footwall and hanging wall.
  • 40. ADITYA Engineering Geology P Shiva Kumar, Sr. Assistant Professor, CE 40 3. Type of slip involved.
  • 41. ADITYA Engineering Geology P Shiva Kumar, Sr. Assistant Professor, CE 41 4. Mutual relation of attitudes of fault plane and adjacent beds. Adjacent Strike slip faults Adjacent dip slip faults Oblique or diagonal slip faults
  • 42. ADITYA Engineering Geology P Shiva Kumar, Sr. Assistant Professor, CE 42 5. Inclination of fault plane. High angle fault is gravity or normal fault Low angle fault is reverse fault also know as thrust faults 6. Mode of occurrence of faults.
  • 43. ADITYA Engineering Geology P Shiva Kumar, Sr. Assistant Professor, CE 43 Miscellaneous faults
  • 44. ADITYA Engineering Geology P Shiva Kumar, Sr. Assistant Professor, CE 44 Step faults and parallel faults Parallel faults have same strike and dip amounts Step faults are normal faults which are similarly to parallel faults with regular intervals of faulting.
  • 45. ADITYA Engineering Geology P Shiva Kumar, Sr. Assistant Professor, CE 45 Engineering consideration of faults • Faults cause very much shearing and crushing of rocks located in the fault zone making the rocks weak on one hand and porous, permeable on the other hand. • So following general conclusions can be drawn: I. The faulted rocks will form weak foundations for the dams. II. The fault zones will provide easy pathways for the water and causes leakage when left untreated in the dams. III.Once the fault zone becomes lubricated with water, the probability of further slipping becomes high. This may create critical condition within the foundation. IV.Faulting products like gouge and breccia create additional problems.
  • 46. ADITYA Engineering Geology P Shiva Kumar, Sr. Assistant Professor, CE 46 Fault gouge and breccia
  • 47. ADITYA Engineering Geology P Shiva Kumar, Sr. Assistant Professor, CE 47
  • 48. ADITYA Engineering Geology P Shiva Kumar, Sr. Assistant Professor, CE 48 Causes of faulting 1. Tensional stress is when slabs of rock are pulled apart. ... 2. Compressional stress is when slabs of rock are pushed together. ... 3. Shear stress is when slabs of rock slide past each other horizontally in opposite directions. Evidence of faults 1. Visible displacement of rocks. 2. Pulverized rock and “Slickensides”. 3. Key beds cut out by faulting reappear elsewhere.
  • 49. ADITYA Engineering Geology P Shiva Kumar, Sr. Assistant Professor, CE 49 1. One of the main effects of the faults on topography is that they very often result in the development of distinct types of steep slopes which are aptly called fault scarps. Three types of fault associated scarps are often recognized- fault scarps, fault-line scarps and composite-fault scarps. 2. Locating buildings, tanks, and pipelines and assessing the seismic shaking and tsunami hazard to infrastructure and people in the vicinity.
  • 50. ADITYA Engineering Geology P Shiva Kumar, Sr. Assistant Professor, CE 50
  • 51. ADITYA Engineering Geology P Shiva Kumar, Sr. Assistant Professor, CE 51 After completion of module 2 the student is now able to understand the occurrence and types of faults. Summary
  • 52. ADITYA Engineering Geology P Shiva Kumar, Sr. Assistant Professor, CE 52
  • 53. ADITYA 53 Engineering Geology P Shiva Kumar, Sr. Assistant Professor, CE Module 3 : Joints in rocks Module 3 : Joints in rocks
  • 54. ADITYA Joints in rocks P. Shiva Kumar Sr. Assistant Professor Department of Civil Engineering
  • 55. ADITYA Learning Outcomes At the end of this lecture, Student will be able to: LO 1 : Understand the occurrence of joints. 55 Engineering Geology P Shiva Kumar, Sr. Assistant Professor, CE
  • 56. ADITYA Engineering Geology P Shiva Kumar, Sr. Assistant Professor, CE 56 Joints are the planar structure and simply known as crack along bed/rock without displacement. Joints/Fracture is a planar or sub planar discontinuity which causes movement ,and change in mechanical properties of rock and minerals. Joints:- A fracture without measurable shear displacement (cracks or tensile fractures) Fault:- A fracture with measurable displacement. Parts of joints
  • 57. ADITYA Engineering Geology P Shiva Kumar, Sr. Assistant Professor, CE 57
  • 58. ADITYA Engineering Geology P Shiva Kumar, Sr. Assistant Professor, CE 58 Classification of Joints – Based on geometry
  • 59. ADITYA Engineering Geology P Shiva Kumar, Sr. Assistant Professor, CE 59 Classification of Joints – Based on dip
  • 60. ADITYA Engineering Geology P Shiva Kumar, Sr. Assistant Professor, CE 60 Classification of Joints – Based on origin
  • 61. ADITYA Engineering Geology P Shiva Kumar, Sr. Assistant Professor, CE 61 Type of joints identified in common rocks 1. Columnar joints 2. Pillow joints
  • 62. ADITYA Engineering Geology P Shiva Kumar, Sr. Assistant Professor, CE 62 Sheet joints block joints
  • 63. ADITYA Engineering Geology P Shiva Kumar, Sr. Assistant Professor, CE 63 Flaggy lime stone Flaggy sandstone
  • 64. ADITYA Engineering Geology P Shiva Kumar, Sr. Assistant Professor, CE 64 RECOGNITION OF JOINTS 1. Flat or smooth surface, joint surface are develop. 2. Gap between joints. 3. block has been displaced due to faulting the joint may be observed in the field but it is necessary data in order to convey other end to make pertinent analysis . Importance of joints 1. Mineral exploration in mining industries. 2. Granite industries for quarrying rock blocks. 3. To find the ground water flow in hydrogeological aspect. Joints acts as permeable layer for aquifer, oil and gas reservoir, it helps in secondary migration of hydrocarbon. 4. Bed rock analysis for construction of tall building in hill area. In hilly region joints get easily lubricated due to moisture and start sliding causes landslides. 5. To understand the geology and geomorphology of local area control weathering and erosion. 6. Joints are important to the economic and safe development of petroleum , hydrothermal and groundwater resources and the subject of intensive research relative to development of these resources.
  • 65. ADITYA Engineering Geology P Shiva Kumar, Sr. Assistant Professor, CE 65 After completion of module 3 the student is now able to understand the occurrence of joints. Summary
  • 66. ADITYA Engineering Geology P Shiva Kumar, Sr. Assistant Professor, CE 66
  • 67. ADITYA 67 Engineering Geology P Shiva Kumar, Sr. Assistant Professor, CE Module 4 : Unconformity Module 4 : Unconformity
  • 68. ADITYA Unconformities P. Shiva Kumar Sr. Assistant Professor Department of Civil Engineering
  • 69. ADITYA Learning Outcomes At the end of this lecture, Student will be able to: LO 1 : Understand the occurrence of Unconformities. 69 Engineering Geology P Shiva Kumar, Sr. Assistant Professor, CE
  • 70. ADITYA Engineering Geology P Shiva Kumar, Sr. Assistant Professor, CE 70 • Unconformity is one of the common geological structure found in rocks. • It is a product of diastrophism ( Folding and faulting of earth crust leading to formation of mountains, planes, plateaus and they can divide the streams and change the pattern of flow). • Diastrophism can also be referred as geo-tectonics. • An unconformity is a contact between two rock units in which the upper unit is usually much younger than the lower unit. • Unconformities are typically buried erosional surfaces that can represent a break in the geologic record of hundreds of millions of years or more. • For example, the contact between a 400 million year old sandstone that was deposited by a rising sea on a weathered bedrock surface that is 600 million years old is an unconformity that represents a time hiatus of 200 million years. • The sediment and/or rock that was deposited directly on the bedrock during that 200 million year span was eroded away, leaving the “basement” surface exposed. There are three kinds of unconformities: disconformities, nonconformities, and angular unconformities.
  • 71. ADITYA Engineering Geology P Shiva Kumar, Sr. Assistant Professor, CE 71 In geology, the law of superposition or order of superposition, states that the sequence of layers observed in sedimentary rocks marks the time of deposition of the layers. The lowest layer is the oldest layer of deposition and the ones above it are successive younger layers of deposition according to the law of superposition definition.
  • 72. ADITYA Engineering Geology P Shiva Kumar, Sr. Assistant Professor, CE 72 An unconformity is surface formed with a disturbance in deposition or with a time gap in deposition of two conformable series . They occur at three basic types of contacts: • Depositional contacts, where a sediment layer is deposited over preexisting rock. • Fault contacts, where two units are juxtaposed by a fracture on which sliding has occurred. • Intrusive contacts, where one rock body cuts across another rock body. Parts of unconformities:
  • 73. ADITYA Engineering Geology P Shiva Kumar, Sr. Assistant Professor, CE 73 Formation of unconformities There are two important points in the formation of unconformities:- 1. When there occurs break in deposition of sedimentary beds, there may or may not occur unconformity due to geological action of weathering and Erosion. 2. First formed set of conformable beds may or may not get inclined or angular due to the tectonic up-liftment or depressed due to subsidence. Types of Unconformities Based on factors like:- • How many beds are there in the formation, • The attitude of bedding, • The extent of the formation, • And based on types of rocks the unconformities are named.
  • 74. ADITYA Engineering Geology P Shiva Kumar, Sr. Assistant Professor, CE 74 1. Non-conformity is when the underlying formations are igneous or metamorphic and the overlying deposited formations are sedimentary, such unconformities are referred non- conformities.
  • 75. ADITYA Engineering Geology P Shiva Kumar, Sr. Assistant Professor, CE 75 2. Angular unconformities occurs when underlying and overlying strata of the sedimentary rock formations is not parallel.
  • 76. ADITYA Engineering Geology P Shiva Kumar, Sr. Assistant Professor, CE 76 3. Disconformity occurs when the disturbance in the successive formation of two conformable series at their contact are (at bedding plane) is just a erosional surface with the presence of any of the rocks like conglomerates, breccia, bauxite, laterite with a time difference between to conformable sets referred to be “Haitus”.
  • 77. ADITYA Engineering Geology P Shiva Kumar, Sr. Assistant Professor, CE 77 4. A Para-conformity is a type of unconformity in which strata are parallel; there is no apparent erosion and the unconformity surface resembles a simple bedding plane. 5. A buttress unconformity is one in which the younger, overlying rocks are cut by the contact. This relationship occurs because the younger sediments are deposited against the older rocks as they stood out in topographic relief.
  • 78. ADITYA Engineering Geology P Shiva Kumar, Sr. Assistant Professor, CE 78 6. Regional and local unconformities: Regional unconformities occur for several square kilometres of area appearing to be a size of a mountain, while local unconformities occur at very small areas less than few square meter of formations. Recognition of unconformities 1. Difference in attitude of two adjacent beds ( may be or may not be disconformity). 2. Difference in nature, age and types of fossils in adjacent sets of rock. 3. Occurrence of conglomerate, residual soil, laterite, bauxite along the unconformity surface. 4. Considerable difference in degree of metamorphism of two adjacent sets of beds. 5. Stratigraphic correlation and lithological peculiarities ( difference in attitude of the formations, textural, structural and mineralogical compositions).
  • 79. ADITYA Engineering Geology P Shiva Kumar, Sr. Assistant Professor, CE 79 After completion of module 4 the student is now able to understand the occurrence of unconformities. Summary
  • 80. ADITYA Engineering Geology P Shiva Kumar, Sr. Assistant Professor, CE 80
  • 81. ADITYA Engineering Geology P Shiva Kumar, Sr. Assistant Professor, CE 81
  • 82. ADITYA Engineering Geology P Shiva Kumar, Sr. Assistant Professor, CE 82
  • 83. ADITYA Engineering Geology P Shiva Kumar, Sr. Assistant Professor, CE 83
  • 84. ADITYA Engineering Geology P Shiva Kumar, Sr. Assistant Professor, CE 84
  • 85. ADITYA Engineering Geology P Shiva Kumar, Sr. Assistant Professor, CE 85
  • 86. ADITYA Engineering Geology P Shiva Kumar, Sr. Assistant Professor, CE 86
  • 87. ADITYA Engineering Geology P Shiva Kumar, Sr. Assistant Professor, CE 87
  • 88. ADITYA Engineering Geology P Shiva Kumar, Sr. Assistant Professor, CE 88
  • 89. ADITYA Engineering Geology P Shiva Kumar, Sr. Assistant Professor, CE 89
  • 90. ADITYA Engineering Geology P Shiva Kumar, Sr. Assistant Professor, CE 90
  • 91. ADITYA Engineering Geology P Shiva Kumar, Sr. Assistant Professor, CE 91
  • 92. ADITYA Engineering Geology P Shiva Kumar, Sr. Assistant Professor, CE 92
  • 93. ADITYA Engineering Geology P Shiva Kumar, Sr. Assistant Professor, CE 93
  • 94. ADITYA Engineering Geology P Shiva Kumar, Sr. Assistant Professor, CE 94
  • 95. ADITYA Engineering Geology P Shiva Kumar, Sr. Assistant Professor, CE 95
  • 96. ADITYA Engineering Geology P Shiva Kumar, Sr. Assistant Professor, CE 96
  • 97. ADITYA Engineering Geology P Shiva Kumar, Sr. Assistant Professor, CE 97
  • 98. ADITYA Summary From this unit – 3 students are now able illustrate and understand the occurrence of minerals and rocks, their identification. 98 Engineering Geology P Shiva Kumar, Sr. Assistant Professor, CE
  • 99. ADITYA Engineering Geology P Shiva Kumar, Sr. Assistant Professor, CE 99 Thank you