SlideShare a Scribd company logo
1 of 33
Download to read offline
Claudio Talarico, Gonzaga University
Spring 2015
First and Second Order Circuits
EE406 – Introduction to IC Design 2
Capacitors and Inductors
• intuition: bucket of charge
• Resist change of voltage
• DC open circuit
• Store voltage (charge)
• Energy stored = 0.5 C v(t)2
q = Cv → i = C
dv
dt
C
+"
–"
)
(t
v
i(t)
• intuition: water hose
• Resist change of current
• DC short circuit
• Store current (magnetic flux)
• Energy stored = 0.5 L i(t)2
λ = Li → v = L
di
dt
)
(t
i
+ v(t) −
EE406 – Introduction to IC Design 3
Characterization of an LTI system’s behavior
§ Techniques commonly used to characterize an LTI system:
1. Observe the response of the system when excited by a
step input (time domain response)
2. Observe the response of the system when excited by
sinusoidal inputs (frequency response)
L.T.I.	
  
h(t)	
  
xin(t) xout(t)
xout = xin
0−
t
∫ (τ )h(t −τ )dτ ≡ xin (t)*h(t)
Xout (s) = Xin (s)⋅ H(s)
Assumption:
xin(t) is causal (i.e. x(t)=0 for t < 0)
EE406 – Introduction to IC Design 4
Frequency Response
§ The merit of frequency-domain analysis is that it is easier than time
domain analysis:
§ The transfer function of any of the LTI circuits we consider
– Are rational with m ≤ n
– Are real valued coefficients aj and bi
– Have poles and zeros that are either real or complex conjugated
– Furthermore, if the system is stable
• All denominator coefficients are positive
• The real part of all poles are negative
L[x(t)] = e−st
0−
∞
∫ x(t)dt = X(s)
One sided Laplace Transform
(assumption: x(t) is causal or is made
causal by multiplying it by u(t))
H(s) =
a0 + a1s +...+ amsm
1+ b1s +...+ bnsn
= K
(s +ωz1)...(s +ωzm )
(s +ωp1)...(s +ωpn )
=
= K
(s − z1)...(s − zm )
(s − p1)...(s − pn )
withK ≡
am
bn
root form
“mathematicians” style
EE406 – Introduction to IC Design 5
Frequency Response
H(s) = a0
1+
s
ωz1
!
"
#
$
%
&... 1+
s
ωzm
!
"
#
$
%
&
1+
s
ωp1
!
"
#
#
$
%
&
&... 1+
s
ωpn
!
"
#
#
$
%
&
&
= a0
1−
s
z1
!
"
#
$
%
&... 1−
s
zm
!
"
#
$
%
&
1−
s
p1
!
"
#
$
%
&... 1−
s
pn
!
"
#
$
%
&
“EE” style
NOTE :
pi = −ωpi (poles)
zi = −ωzi (zeros)
EE406 – Introduction to IC Design 6
Magnitude and Phase (1)
§ When an LTI system is exited with a sinusoid the output is a sinusoid of
the same frequency. The magnitude of the output is equal to the input
magnitude multiplied by the magnitude response (|H(jωin)|). The phase
difference between the output and input sinusoid is equal to the phase
response (ϕ=phase[H(jωin)])
xin (t) = Ain cos(ωt) = Ain
ejω t
+e− jω t
2
RE axis
IM axis
unit circle
1ejθ = cosθ +jsinθ
θ
Xin (jω)= F[xin (t)]
H( jω) = H( jω) ejωt0
cosθ =
ejθ
+e− jθ
2
Euler’s
formula
F	

Xout ( jω) = Xin ( jω)⋅ H( jω)
EE406 – Introduction to IC Design 7
Magnitude and Phase (2)
xout (t) = H( jωin ) xin (t +t0 ) =
= Ain H( jωin ) cos[ω(t +t0 )]=
= Ain H( jωin ) cos(ωt +ωt0 )
Xout ( jω) = Xin ( jω)⋅ H( jω) = Xin ( jω)⋅| H( jω)|⋅ejωt0
F -1	

Time	
  Shift	
  Property:	
  	
  
F[x(t−t0)]	
  =	
  X(f)	
  e−j2πft0	
  
EE406 – Introduction to IC Design 8
First order circuits
§ A first order transfer function has a first order denominator
H(s) =
A0
1+
s
ωp
H(s) = A0
1+
s
ωz
1+
s
ωp
First order low pass transfer function.
This is the most commonly encountered
transfer function in electronic circuits
General first order transfer function.
EE406 – Introduction to IC Design 9
Step Response of first order circuits (1)
§ Case 1: First order low pass transfer function
xin (t) = Ain ⋅u(t) ↔ Xin (s) =
Ain
s
Xout (s) =
Ain
s
A0
1+
s
ωp
= Ain A0
1
s
−
1
s+ωp
"
#
$
$
%
&
'
'
!
xout (t) = Ain A0u(t) 1−e−t/τ
"
# %
& with τ =1/ωp
H(s) =
A0
1+
s
ωp
EE406 – Introduction to IC Design 10
Step Response of first order circuits (2)
§ Case 2: General first order transfer function
xin (t) = Ain ⋅u(t) ↔ Xin (s) =
Ain
s
Xout (s) =
Ain A0
s
1+
s
ωz
1+
s
ωp
!
xout (t) = Ain A0u(t) 1− 1−
ωp
ωz
"
#
$
%
&
'e−t/τ
(
)
*
*
+
,
-
-
where τ =1/ωp
H(s) = A0
1+
s
ωz
1+
s
ωp
EE406 – Introduction to IC Design 11
Step Response of first order circuits (3)
§ Notice xout(t) “short term” and “long term” behavior
§ The short term and long term behavior can also be verified using the
Laplace transform
xout (0+) = Ain A0
ωp
ωz
xout (∞) = Ain A0
xout (0+) = lims→∞ s⋅ Xout (s) = lims→∞ s
Ain
s
⋅ H(s) = Ain A0
ωp
ωz
xout (∞) = lims→0 s⋅ Xout (s) = lims→0 s
Ain
s
⋅ H(s) = Ain A0
EE406 – Introduction to IC Design 12
Equation for step response to any first order circuit
xout (t) = xout (∞)−[ xout (∞)− xout (0+)]⋅e −t/τ
where τ =1/ωp
Steady
response
Transitory
response
EE406 – Introduction to IC Design 13
Example #1
§ R = 1KΩ, C= 1µF.
§ Input is a 0.5V step at time 0
Source:	
  Carusone,	
  Johns	
  and	
  Mar2n	
  
H(s) =
1
1+ sRC
τ = RC =1µs ⇔ ωp =
1
τ
=1Mrad / s ⇔ f−3dB =
ωp
2π
≅159KHz
Vout (t) = 0.5⋅ 1−e−t/τ
( )u(t)
EE406 – Introduction to IC Design 14
Example #2 (1)
Source:	
  Carusone,	
  Johns	
  and	
  Mar2n	
  
§ R1 = 2KΩ, R2=10KΩ
§ C1= 5pF. C2=10pF
§ Input is a 2V step at time 0
H(s) =
R2
R1 + R2
⋅
1+ sR1C1
1+ s
R1R2
R1 + R2
(C1 +C2 )
"
#
$
$
$
$
%
&
'
'
'
'
By inspection
H(s → 0) =
R2
R1 + R2
≡ A0; H(s → ∞) =
C1
C1 +C2
≡ A∞
τ p = (R1 || R2 )⋅(C1 ||C2 ) =
R1R2
R1 + R2
(C1 +C2 )
τz = R1C1
EE406 – Introduction to IC Design 15
Example #2 (2)
= Ain
R2
R1 + R2
Ain
C1
C1 +C2
=
Vout(t)
Vout(0+)
Vout(∞)
Vout (0+)+ Vout (∞)−Vout (0+)⋅ 1−e−t/τ p
( )
$
%
&
' fort > 0
Vout (t) =
0 fort ≤ 0
EE406 – Introduction to IC Design 16
Example #3
§ Consider an amplifier having a small signal transfer function
approximately given by
§ Find approx. unity gain BW and phase shift at the unity gain frequency
since A0 >> 1:
A(s) =
A0
1+
s
ωp
§ A0 = 1 x 105
§ ωp = 1 x 103 rad/s
A(s) ≈
A0
s
ωp
=
A0ωp
s
A0ωp
jωu
=1 ⇒ ωu ≅ A0ωp
A( jω) ≈
A0ωp
jω
Phase[A( jωu )] ≈ Phase
A0ωp
jωu
"
#
$
%
&
'= −90!
EE406 – Introduction to IC Design 17
Second-order low pass Transfer Function
§ Interesting cases:
- Poles are real
- one of the poles is dominant
- Poles are complex
ω3dB ≅
1
b1
b1 = τ j
∑
( )
H(s) =
a0
1+ b1s + b2s2
=
a0
1+
s
ω0Q
+
s2
ω0
2
b1 ≡
1
ω0Q
; b2 ≡
1
ω0
2
EE406 – Introduction to IC Design 18
Poles Location
1+
s
ω0Q
+
s2
ω0
2
= 0
§ Roots of the denominator of the transfer function:
§ Complex Conjugate poles
(overshooting in step response)
- For Q = 0.707 (Φ=45°), the -3dB frequency is ω0
(Maximally Flat Magnitude or Butterworth Response)
- For Q > 0.707 the frequency response has peaking
§ Real poles (no overshoot in the step response)
for Q > 0.5 ⇒ p1,2 = −
ω0
2Q
1∓ j 4Q2
−1
( )= −ωR ∓ jωI
for Q ≤ 0.5 ⇒ p1,2 = −
ω0
2Q
1∓ 1− 4Q2
( )
Poles location with Q> 0.5
jω	

σ	

Φ =	

Source:
Carusone
EE406 – Introduction to IC Design 19
Frequency Response
10
−2
10
−1
10
0
10
1
−20
−15
−10
−5
0
5
10
/ 0
Magnitude
[dB]
|H(s)|
Q=0.5
Q=1/sqrt(2)
Q=1
Q=2
H(s) =
1
1+
s
ω0Q
+
s2
ω0
2
EE406 – Introduction to IC Design 20
Step Response
§ Ringing for Q > 0.5
§ The case Q=0.5 is called maximally damped response (fastest settling
without any overshoot)
“Underdamped” Q > 0.5
“Overdamped” Q < 0.5
Q=0.5
Source:
Carusone
time
EE406 – Introduction to IC Design 21
Widely- Spaced Real Poles
Real poles occurs when Q ≤ 0.5:
Real poles widely-spaced (that is one of the poles is dominant) implies:
for Q ≤ 0.5 ⇒ p1,2 = −
ω0
2Q
1∓ 1− 4Q2
( )
H(s) =
a0
1+ b1s + b2s2
=
a0
1+
s
ω0Q
+
s2
ω0
2
b1 ≡
1
ω0Q
; b2 ≡
1
ω0
2
p1 ≡ −
ω0
2Q
−
ω0
2Q
1− 4Q2
<< p2 ≡ −
ω0
2Q
+
ω0
2Q
1− 4Q2
!
0 << 2 1− 4Q2
⇔ 0 << 1− 4Q2
⇔ 0 <<1− 4Q2
⇔ Q2
<<
1
4
⇔
b2
b1
2
<<
1
4
EE406 – Introduction to IC Design 22
Widely-Spaced Real Poles
This means that in order to estimate the -3dB bandwidth of the circuit, all
we need to know is b1 !
ZVTC method:
H(s) =
a0
1+ b1s+ b2s2
=
a0
1−
s
p1
"
#
$
%
&
'⋅ 1−
s
p2
"
#
$
%
&
'
=
a0
1−
s
p1
−
s
p2
+
s2
p1p2
≅
a0
1−
s
p1
+
s2
p1p2
⇒ p1 ≅ −
1
b1
p2 ≅
1
p1b2
= −
b1
b2
H(s) ≅
a0
1−
s
p1
⇒ ω-3dB ≅ p1 ≅
1
b1
b1 = τ j
∑ ⇒ω−3dB ≅
1
b1
=
1
τ j
∑
EE406 – Introduction to IC Design 23
Example: Series RLC circuit (1)
vin (t) =VIu(t)
+"
–" C
R L
+"
–"
vout (t)
)
(t
i
Vout (s)
Vin (s)
=
1
sC
R+ sL +
1
sC
=
1
1+ sRC + s2
LC
≡
1
1+
s
ω0Q
+
s2
ω0
2
ω0
2
=
1
LC
; Q =
1
ω0RC
=
L /C
R
≡
Z0
R
EE406 – Introduction to IC Design 24
• Two possible cases:
− For Q ≤ ½ real poles:
− For Q > ½ complex poles
1+
s
ω0Q
+
s2
ω0
2
= 0 ⇔ s2
+ s⋅
ω0
Q
+ω0
2
= 0 ⇔ s1,2 =
−
ω0
Q
∓
ω0
Q
$
%
&
'
(
)
2
− 4ω0
2
2
⇔
⇔ s1,2 = −
ω0
2Q
1∓ 1− 4Q2
( )
s1,2 = −
ω0
2Q
1∓ j 4Q2
−1
( )≡ −α 1∓ j 4Q2
−1
( )
s1,2 = −
ω0
2Q
1∓ 1− 4Q2
( )≡ −α 1∓ 1− 4Q2
( )
Example - Series RLC: Poles location (2)
ω0
2Q
≡α
EE406 – Introduction to IC Design 25
Example – series RLC
Vout (s)
Vin (s)
=
1
sC
R+ sL +
1
sC
=
1
1+ sRC + s2
LC
≡
1
1+ s
Q
ω0
+
s2
ω0
2
ω0
2
=
1
LC
; Q =
1
ω0RC
=
L /C
R
≡
Z0
R
;
ω0
2Q
≡α
C =
1
L⋅ω0
2
; L =
1
C ⋅ω0
2
Q =
1
RCω0
=
L
R
⋅
1
ω0
α =
ω0
2Q
=
R
2L
EE406 – Introduction to IC Design 26
Example – series RLC
− For Q ≤ ½ real poles:
− For Q > ½ complex poles
s2
+ s⋅
ω0
Q
+ω0
2
= 0 ⇔ s2
+ s⋅2α +ω0
2
= 0 ⇔ s1,2 = −α ∓ α2
−ω0
2
s1,2 = −α ∓ α2
−ω0
2
for
ω0
α
<<1 the polesarewidelyspaced
!
"
#
$
%
&
s1,2 = −α ∓ j ω0
2
−α2
= −α ∓ jωn
X
X
ωn
α=ω0/2Q
ω0
−ωp1
RE
IM
ωn = natural (damped) frequency
−ωp2
ω0 = resonant frequency
EE406 – Introduction to IC Design 27
Example – series RLC: Step response
(a) Overdamped Q < 0.5 (α > ω0 )
(b) Critically damped Q=0.5 (α = ω0 )
(c) Underdamped Q > 0.5 (α < ω0 )
vout(t)
time
⇔ζ ≡α /ω0 >1
⇔ζ ≡α /ω0 =1
⇔ζ ≡α /ω0 <1
α = damping factor (rate of decay)
ω0 = resonance frequency
ζ = Damping ratio
ωn = ringing frequency
EE406 – Introduction to IC Design 28
Example – RLC series: Quality Factor Q
For a system under sinusoidal excitation at a frequency ω, the most
fundamental definition for Q is:
At the resonant frequency ω0, the current through the network is simply
Vin/R. Energy in such a network sloshes back and forth between the
inductance and the inductor, with a constant sum. The peak inductor
current at resonance is Ipk=Vpk/R, so the energy stored by the network can
be computed as:
The average power dissipated in the resistor at resonance is:
Z0 = Characteristic impedance of the network
At resonance |ZC| = |ZL|=ω0L=(ω0C)−1=
Q =ω
energystored
average powerdissipated
Estored =
1
2
L⋅ Ipk
2
Pavg =
1
2
R⋅ Ipk
2
Q =ω0
Estored
Pavg
=
1
LC
⋅
L
R
=
L /C
R
=
Z0
R
dimensionless
L /C ≡ Z0
EE406 – Introduction to IC Design 29
Example – series RLC: Ringing and Q
Since Q is a measure of the rate of energy loss, one expect a higher Q to
be associated with more persistent ringing than a lower Q.
Rule of thumb: Q is roughly equal to the number of cycles of ringing.
Frequency of the ringing oscillations: 1/fn = Tn = 2π/ωn
IM	

RE	

R large α large Q small
The decaying envelope
is proportional to:
Ringing doesn’t last long
and its excursion is small
ωn
α=
e−αt
= e
−
ω0t
2Q
Φ=
Q=0.5 à Φ = 0°
Q=0.707 à Φ = 45°
Q=1 à Φ = 60°
Q=10 à Φ ≈ 87°
EE406 – Introduction to IC Design 30
Example – RLC series by intuition (1)
• We can predict the behavior of the circuit without solving pages of
differential equations or Laplace transforms. All we need to know is the
characteristics equation (denominator of H(s)) and the initial conditions
• The output voltage starts at V0, it ends at v(∞)=VI and it rings about Q
times before settling at VI
Assume the values of R,L,C are
such that ω0 > α (underdamping).
Initial conditions:
i(0) = −I0
v(0) = +V0
+"
–"
C
L +"
–"
)
(t
v
vI (t) =VIu(t)
)
(t
i
R
• The voltage across the capacitor cannot jump: v(0+)=v(0)=+V0
• The current through the inductor cannot jump: i(0+)=i(0)=−I0
EE406 – Introduction to IC Design 31
Example – RLC series using intuition (2)
• The only question left is to decide if v(t) will start off shooting down or
up ?
• But, … we know that i(0+) is negative à this means the current flows
from the capacitor toward the inductor à which means the capacitor
must be discharging à the voltage across the capacitor must be
dropping
)
(t
v
t
I
V
0
I
V
ωn
π!
2!
period of ringing
Q!
Ringing stops
after cycles
)
0
(
v
?
)
0
(
i is negative
so v(t) must
drop
EE406 – Introduction to IC Design 32
Example – RLC series using intuition (3)
• In practice for the under damped case it useful to compute two
parameters
• Overshoot
• Settling time
OS = exp
−π
ωn
α
"
#
$
%
&
' Normalized overshoot =
% overshoot w.r.t. final value
ts ≅ −
1
α
ln ε
ωn
ω0
#
$
%
&
'
( ε is the % error that we are willing
to tolerate w.r.t. the ideal final value
EE406 – Introduction to IC Design 33
First order vs. Second order circuits Behavior
• First order circuits introduce exponential behavior
• Second order circuits introduce sinusoidal and exponential behavior
combined
• Fortunately we will not need to go on analyzing 3rd, 4th, 5th and so on
circuits because they are not going to introduce fundamentally new
behavior

More Related Content

Similar to FirstAndSecond.pptx.pdf

Sistemas de control para ingenieria 3ra edicion norman s. nise sol
Sistemas de control para ingenieria  3ra edicion  norman s. nise solSistemas de control para ingenieria  3ra edicion  norman s. nise sol
Sistemas de control para ingenieria 3ra edicion norman s. nise solNielsy Quiroga
 
RF Module Design - [Chapter 1] From Basics to RF Transceivers
RF Module Design - [Chapter 1] From Basics to RF TransceiversRF Module Design - [Chapter 1] From Basics to RF Transceivers
RF Module Design - [Chapter 1] From Basics to RF TransceiversSimen Li
 
eecs242_lect3_rxarch.pdf
eecs242_lect3_rxarch.pdfeecs242_lect3_rxarch.pdf
eecs242_lect3_rxarch.pdfNahshonMObiri
 
Power cable - Voltage drop
Power cable - Voltage dropPower cable - Voltage drop
Power cable - Voltage dropLeonardo ENERGY
 
IA on effect of zinc concentration on voltage using nernst equation
IA on effect of zinc concentration on voltage using nernst equationIA on effect of zinc concentration on voltage using nernst equation
IA on effect of zinc concentration on voltage using nernst equationLawrence kok
 
IC Design of Power Management Circuits (III)
IC Design of Power Management Circuits (III)IC Design of Power Management Circuits (III)
IC Design of Power Management Circuits (III)Claudia Sin
 
W ee network_theory_10-06-17_ls2-sol
W ee network_theory_10-06-17_ls2-solW ee network_theory_10-06-17_ls2-sol
W ee network_theory_10-06-17_ls2-solAnkit Chaurasia
 
MMAC presentation 16_09_20_20_41.pptx
MMAC presentation 16_09_20_20_41.pptxMMAC presentation 16_09_20_20_41.pptx
MMAC presentation 16_09_20_20_41.pptxJuber33
 
A Simple Communication System Design Lab #3 with MATLAB Simulink
A Simple Communication System Design Lab #3 with MATLAB SimulinkA Simple Communication System Design Lab #3 with MATLAB Simulink
A Simple Communication System Design Lab #3 with MATLAB SimulinkJaewook. Kang
 
射頻電子 - [第四章] 散射參數網路
射頻電子 - [第四章] 散射參數網路射頻電子 - [第四章] 散射參數網路
射頻電子 - [第四章] 散射參數網路Simen Li
 
Solucionario circuitos eléctricos 6ta Edición Dorf Svoboda.pdf
Solucionario circuitos eléctricos 6ta Edición Dorf Svoboda.pdfSolucionario circuitos eléctricos 6ta Edición Dorf Svoboda.pdf
Solucionario circuitos eléctricos 6ta Edición Dorf Svoboda.pdfSANTIAGO PABLO ALBERTO
 

Similar to FirstAndSecond.pptx.pdf (20)

Unit 5 inverters
Unit 5 invertersUnit 5 inverters
Unit 5 inverters
 
Sistemas de control para ingenieria 3ra edicion norman s. nise sol
Sistemas de control para ingenieria  3ra edicion  norman s. nise solSistemas de control para ingenieria  3ra edicion  norman s. nise sol
Sistemas de control para ingenieria 3ra edicion norman s. nise sol
 
RF Module Design - [Chapter 1] From Basics to RF Transceivers
RF Module Design - [Chapter 1] From Basics to RF TransceiversRF Module Design - [Chapter 1] From Basics to RF Transceivers
RF Module Design - [Chapter 1] From Basics to RF Transceivers
 
eecs242_lect3_rxarch.pdf
eecs242_lect3_rxarch.pdfeecs242_lect3_rxarch.pdf
eecs242_lect3_rxarch.pdf
 
07_Digital timing_&_Pipelining.ppt
07_Digital timing_&_Pipelining.ppt07_Digital timing_&_Pipelining.ppt
07_Digital timing_&_Pipelining.ppt
 
lec7.ppt
lec7.pptlec7.ppt
lec7.ppt
 
Power cable - Voltage drop
Power cable - Voltage dropPower cable - Voltage drop
Power cable - Voltage drop
 
IA on effect of zinc concentration on voltage using nernst equation
IA on effect of zinc concentration on voltage using nernst equationIA on effect of zinc concentration on voltage using nernst equation
IA on effect of zinc concentration on voltage using nernst equation
 
Oscillatorsppt
OscillatorspptOscillatorsppt
Oscillatorsppt
 
bode_plot By DEV
 bode_plot By DEV bode_plot By DEV
bode_plot By DEV
 
unit3.ppt
unit3.pptunit3.ppt
unit3.ppt
 
Ec gate 13
Ec gate 13Ec gate 13
Ec gate 13
 
IC Design of Power Management Circuits (III)
IC Design of Power Management Circuits (III)IC Design of Power Management Circuits (III)
IC Design of Power Management Circuits (III)
 
W ee network_theory_10-06-17_ls2-sol
W ee network_theory_10-06-17_ls2-solW ee network_theory_10-06-17_ls2-sol
W ee network_theory_10-06-17_ls2-sol
 
residue
residueresidue
residue
 
MMAC presentation 16_09_20_20_41.pptx
MMAC presentation 16_09_20_20_41.pptxMMAC presentation 16_09_20_20_41.pptx
MMAC presentation 16_09_20_20_41.pptx
 
A Simple Communication System Design Lab #3 with MATLAB Simulink
A Simple Communication System Design Lab #3 with MATLAB SimulinkA Simple Communication System Design Lab #3 with MATLAB Simulink
A Simple Communication System Design Lab #3 with MATLAB Simulink
 
射頻電子 - [第四章] 散射參數網路
射頻電子 - [第四章] 散射參數網路射頻電子 - [第四章] 散射參數網路
射頻電子 - [第四章] 散射參數網路
 
Electricmotor4
Electricmotor4Electricmotor4
Electricmotor4
 
Solucionario circuitos eléctricos 6ta Edición Dorf Svoboda.pdf
Solucionario circuitos eléctricos 6ta Edición Dorf Svoboda.pdfSolucionario circuitos eléctricos 6ta Edición Dorf Svoboda.pdf
Solucionario circuitos eléctricos 6ta Edición Dorf Svoboda.pdf
 

More from ShanmukhSaiR

Modeling of Induction motor using Ansys Motor Cad
Modeling of Induction motor using Ansys Motor CadModeling of Induction motor using Ansys Motor Cad
Modeling of Induction motor using Ansys Motor CadShanmukhSaiR
 
HYPER LOOP SEMINAR PPT (1)_085046.pdf
HYPER LOOP SEMINAR PPT (1)_085046.pdfHYPER LOOP SEMINAR PPT (1)_085046.pdf
HYPER LOOP SEMINAR PPT (1)_085046.pdfShanmukhSaiR
 
BJT AC Analysis - Gdlc.pdf
BJT AC Analysis - Gdlc.pdfBJT AC Analysis - Gdlc.pdf
BJT AC Analysis - Gdlc.pdfShanmukhSaiR
 
WTO EEA PPT (2)_112353.pdf
WTO EEA PPT (2)_112353.pdfWTO EEA PPT (2)_112353.pdf
WTO EEA PPT (2)_112353.pdfShanmukhSaiR
 
EE - Power System-1.pdf
EE - Power System-1.pdfEE - Power System-1.pdf
EE - Power System-1.pdfShanmukhSaiR
 
symmetrical_fault_analysis.pdf
symmetrical_fault_analysis.pdfsymmetrical_fault_analysis.pdf
symmetrical_fault_analysis.pdfShanmukhSaiR
 
revit_2022_whats_new_presentation.pdf
revit_2022_whats_new_presentation.pdfrevit_2022_whats_new_presentation.pdf
revit_2022_whats_new_presentation.pdfShanmukhSaiR
 

More from ShanmukhSaiR (9)

Modeling of Induction motor using Ansys Motor Cad
Modeling of Induction motor using Ansys Motor CadModeling of Induction motor using Ansys Motor Cad
Modeling of Induction motor using Ansys Motor Cad
 
unit-3-8255.pdf
unit-3-8255.pdfunit-3-8255.pdf
unit-3-8255.pdf
 
HYPER LOOP SEMINAR PPT (1)_085046.pdf
HYPER LOOP SEMINAR PPT (1)_085046.pdfHYPER LOOP SEMINAR PPT (1)_085046.pdf
HYPER LOOP SEMINAR PPT (1)_085046.pdf
 
BJT AC Analysis - Gdlc.pdf
BJT AC Analysis - Gdlc.pdfBJT AC Analysis - Gdlc.pdf
BJT AC Analysis - Gdlc.pdf
 
WTO EEA PPT (2)_112353.pdf
WTO EEA PPT (2)_112353.pdfWTO EEA PPT (2)_112353.pdf
WTO EEA PPT (2)_112353.pdf
 
Fuse.pdf
Fuse.pdfFuse.pdf
Fuse.pdf
 
EE - Power System-1.pdf
EE - Power System-1.pdfEE - Power System-1.pdf
EE - Power System-1.pdf
 
symmetrical_fault_analysis.pdf
symmetrical_fault_analysis.pdfsymmetrical_fault_analysis.pdf
symmetrical_fault_analysis.pdf
 
revit_2022_whats_new_presentation.pdf
revit_2022_whats_new_presentation.pdfrevit_2022_whats_new_presentation.pdf
revit_2022_whats_new_presentation.pdf
 

Recently uploaded

Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxbritheesh05
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVRajaP95
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024Mark Billinghurst
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSCAESB
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...Soham Mondal
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidNikhilNagaraju
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AIabhishek36461
 
Current Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLCurrent Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLDeelipZope
 
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)dollysharma2066
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSKurinjimalarL3
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxJoão Esperancinha
 
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort servicejennyeacort
 
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEINFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEroselinkalist12
 
Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxk795866
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerAnamika Sarkar
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...VICTOR MAESTRE RAMIREZ
 

Recently uploaded (20)

Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptx
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentation
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfid
 
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AI
 
Current Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLCurrent Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCL
 
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Serviceyoung call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
 
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
 
Design and analysis of solar grass cutter.pdf
Design and analysis of solar grass cutter.pdfDesign and analysis of solar grass cutter.pdf
Design and analysis of solar grass cutter.pdf
 
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
 
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEINFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
 
Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptx
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
 
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...
 

FirstAndSecond.pptx.pdf

  • 1. Claudio Talarico, Gonzaga University Spring 2015 First and Second Order Circuits
  • 2. EE406 – Introduction to IC Design 2 Capacitors and Inductors • intuition: bucket of charge • Resist change of voltage • DC open circuit • Store voltage (charge) • Energy stored = 0.5 C v(t)2 q = Cv → i = C dv dt C +" –" ) (t v i(t) • intuition: water hose • Resist change of current • DC short circuit • Store current (magnetic flux) • Energy stored = 0.5 L i(t)2 λ = Li → v = L di dt ) (t i + v(t) −
  • 3. EE406 – Introduction to IC Design 3 Characterization of an LTI system’s behavior § Techniques commonly used to characterize an LTI system: 1. Observe the response of the system when excited by a step input (time domain response) 2. Observe the response of the system when excited by sinusoidal inputs (frequency response) L.T.I.   h(t)   xin(t) xout(t) xout = xin 0− t ∫ (τ )h(t −τ )dτ ≡ xin (t)*h(t) Xout (s) = Xin (s)⋅ H(s) Assumption: xin(t) is causal (i.e. x(t)=0 for t < 0)
  • 4. EE406 – Introduction to IC Design 4 Frequency Response § The merit of frequency-domain analysis is that it is easier than time domain analysis: § The transfer function of any of the LTI circuits we consider – Are rational with m ≤ n – Are real valued coefficients aj and bi – Have poles and zeros that are either real or complex conjugated – Furthermore, if the system is stable • All denominator coefficients are positive • The real part of all poles are negative L[x(t)] = e−st 0− ∞ ∫ x(t)dt = X(s) One sided Laplace Transform (assumption: x(t) is causal or is made causal by multiplying it by u(t)) H(s) = a0 + a1s +...+ amsm 1+ b1s +...+ bnsn = K (s +ωz1)...(s +ωzm ) (s +ωp1)...(s +ωpn ) = = K (s − z1)...(s − zm ) (s − p1)...(s − pn ) withK ≡ am bn root form “mathematicians” style
  • 5. EE406 – Introduction to IC Design 5 Frequency Response H(s) = a0 1+ s ωz1 ! " # $ % &... 1+ s ωzm ! " # $ % & 1+ s ωp1 ! " # # $ % & &... 1+ s ωpn ! " # # $ % & & = a0 1− s z1 ! " # $ % &... 1− s zm ! " # $ % & 1− s p1 ! " # $ % &... 1− s pn ! " # $ % & “EE” style NOTE : pi = −ωpi (poles) zi = −ωzi (zeros)
  • 6. EE406 – Introduction to IC Design 6 Magnitude and Phase (1) § When an LTI system is exited with a sinusoid the output is a sinusoid of the same frequency. The magnitude of the output is equal to the input magnitude multiplied by the magnitude response (|H(jωin)|). The phase difference between the output and input sinusoid is equal to the phase response (ϕ=phase[H(jωin)]) xin (t) = Ain cos(ωt) = Ain ejω t +e− jω t 2 RE axis IM axis unit circle 1ejθ = cosθ +jsinθ θ Xin (jω)= F[xin (t)] H( jω) = H( jω) ejωt0 cosθ = ejθ +e− jθ 2 Euler’s formula F Xout ( jω) = Xin ( jω)⋅ H( jω)
  • 7. EE406 – Introduction to IC Design 7 Magnitude and Phase (2) xout (t) = H( jωin ) xin (t +t0 ) = = Ain H( jωin ) cos[ω(t +t0 )]= = Ain H( jωin ) cos(ωt +ωt0 ) Xout ( jω) = Xin ( jω)⋅ H( jω) = Xin ( jω)⋅| H( jω)|⋅ejωt0 F -1 Time  Shift  Property:     F[x(t−t0)]  =  X(f)  e−j2πft0  
  • 8. EE406 – Introduction to IC Design 8 First order circuits § A first order transfer function has a first order denominator H(s) = A0 1+ s ωp H(s) = A0 1+ s ωz 1+ s ωp First order low pass transfer function. This is the most commonly encountered transfer function in electronic circuits General first order transfer function.
  • 9. EE406 – Introduction to IC Design 9 Step Response of first order circuits (1) § Case 1: First order low pass transfer function xin (t) = Ain ⋅u(t) ↔ Xin (s) = Ain s Xout (s) = Ain s A0 1+ s ωp = Ain A0 1 s − 1 s+ωp " # $ $ % & ' ' ! xout (t) = Ain A0u(t) 1−e−t/τ " # % & with τ =1/ωp H(s) = A0 1+ s ωp
  • 10. EE406 – Introduction to IC Design 10 Step Response of first order circuits (2) § Case 2: General first order transfer function xin (t) = Ain ⋅u(t) ↔ Xin (s) = Ain s Xout (s) = Ain A0 s 1+ s ωz 1+ s ωp ! xout (t) = Ain A0u(t) 1− 1− ωp ωz " # $ % & 'e−t/τ ( ) * * + , - - where τ =1/ωp H(s) = A0 1+ s ωz 1+ s ωp
  • 11. EE406 – Introduction to IC Design 11 Step Response of first order circuits (3) § Notice xout(t) “short term” and “long term” behavior § The short term and long term behavior can also be verified using the Laplace transform xout (0+) = Ain A0 ωp ωz xout (∞) = Ain A0 xout (0+) = lims→∞ s⋅ Xout (s) = lims→∞ s Ain s ⋅ H(s) = Ain A0 ωp ωz xout (∞) = lims→0 s⋅ Xout (s) = lims→0 s Ain s ⋅ H(s) = Ain A0
  • 12. EE406 – Introduction to IC Design 12 Equation for step response to any first order circuit xout (t) = xout (∞)−[ xout (∞)− xout (0+)]⋅e −t/τ where τ =1/ωp Steady response Transitory response
  • 13. EE406 – Introduction to IC Design 13 Example #1 § R = 1KΩ, C= 1µF. § Input is a 0.5V step at time 0 Source:  Carusone,  Johns  and  Mar2n   H(s) = 1 1+ sRC τ = RC =1µs ⇔ ωp = 1 τ =1Mrad / s ⇔ f−3dB = ωp 2π ≅159KHz Vout (t) = 0.5⋅ 1−e−t/τ ( )u(t)
  • 14. EE406 – Introduction to IC Design 14 Example #2 (1) Source:  Carusone,  Johns  and  Mar2n   § R1 = 2KΩ, R2=10KΩ § C1= 5pF. C2=10pF § Input is a 2V step at time 0 H(s) = R2 R1 + R2 ⋅ 1+ sR1C1 1+ s R1R2 R1 + R2 (C1 +C2 ) " # $ $ $ $ % & ' ' ' ' By inspection H(s → 0) = R2 R1 + R2 ≡ A0; H(s → ∞) = C1 C1 +C2 ≡ A∞ τ p = (R1 || R2 )⋅(C1 ||C2 ) = R1R2 R1 + R2 (C1 +C2 ) τz = R1C1
  • 15. EE406 – Introduction to IC Design 15 Example #2 (2) = Ain R2 R1 + R2 Ain C1 C1 +C2 = Vout(t) Vout(0+) Vout(∞) Vout (0+)+ Vout (∞)−Vout (0+)⋅ 1−e−t/τ p ( ) $ % & ' fort > 0 Vout (t) = 0 fort ≤ 0
  • 16. EE406 – Introduction to IC Design 16 Example #3 § Consider an amplifier having a small signal transfer function approximately given by § Find approx. unity gain BW and phase shift at the unity gain frequency since A0 >> 1: A(s) = A0 1+ s ωp § A0 = 1 x 105 § ωp = 1 x 103 rad/s A(s) ≈ A0 s ωp = A0ωp s A0ωp jωu =1 ⇒ ωu ≅ A0ωp A( jω) ≈ A0ωp jω Phase[A( jωu )] ≈ Phase A0ωp jωu " # $ % & '= −90!
  • 17. EE406 – Introduction to IC Design 17 Second-order low pass Transfer Function § Interesting cases: - Poles are real - one of the poles is dominant - Poles are complex ω3dB ≅ 1 b1 b1 = τ j ∑ ( ) H(s) = a0 1+ b1s + b2s2 = a0 1+ s ω0Q + s2 ω0 2 b1 ≡ 1 ω0Q ; b2 ≡ 1 ω0 2
  • 18. EE406 – Introduction to IC Design 18 Poles Location 1+ s ω0Q + s2 ω0 2 = 0 § Roots of the denominator of the transfer function: § Complex Conjugate poles (overshooting in step response) - For Q = 0.707 (Φ=45°), the -3dB frequency is ω0 (Maximally Flat Magnitude or Butterworth Response) - For Q > 0.707 the frequency response has peaking § Real poles (no overshoot in the step response) for Q > 0.5 ⇒ p1,2 = − ω0 2Q 1∓ j 4Q2 −1 ( )= −ωR ∓ jωI for Q ≤ 0.5 ⇒ p1,2 = − ω0 2Q 1∓ 1− 4Q2 ( ) Poles location with Q> 0.5 jω σ Φ = Source: Carusone
  • 19. EE406 – Introduction to IC Design 19 Frequency Response 10 −2 10 −1 10 0 10 1 −20 −15 −10 −5 0 5 10 / 0 Magnitude [dB] |H(s)| Q=0.5 Q=1/sqrt(2) Q=1 Q=2 H(s) = 1 1+ s ω0Q + s2 ω0 2
  • 20. EE406 – Introduction to IC Design 20 Step Response § Ringing for Q > 0.5 § The case Q=0.5 is called maximally damped response (fastest settling without any overshoot) “Underdamped” Q > 0.5 “Overdamped” Q < 0.5 Q=0.5 Source: Carusone time
  • 21. EE406 – Introduction to IC Design 21 Widely- Spaced Real Poles Real poles occurs when Q ≤ 0.5: Real poles widely-spaced (that is one of the poles is dominant) implies: for Q ≤ 0.5 ⇒ p1,2 = − ω0 2Q 1∓ 1− 4Q2 ( ) H(s) = a0 1+ b1s + b2s2 = a0 1+ s ω0Q + s2 ω0 2 b1 ≡ 1 ω0Q ; b2 ≡ 1 ω0 2 p1 ≡ − ω0 2Q − ω0 2Q 1− 4Q2 << p2 ≡ − ω0 2Q + ω0 2Q 1− 4Q2 ! 0 << 2 1− 4Q2 ⇔ 0 << 1− 4Q2 ⇔ 0 <<1− 4Q2 ⇔ Q2 << 1 4 ⇔ b2 b1 2 << 1 4
  • 22. EE406 – Introduction to IC Design 22 Widely-Spaced Real Poles This means that in order to estimate the -3dB bandwidth of the circuit, all we need to know is b1 ! ZVTC method: H(s) = a0 1+ b1s+ b2s2 = a0 1− s p1 " # $ % & '⋅ 1− s p2 " # $ % & ' = a0 1− s p1 − s p2 + s2 p1p2 ≅ a0 1− s p1 + s2 p1p2 ⇒ p1 ≅ − 1 b1 p2 ≅ 1 p1b2 = − b1 b2 H(s) ≅ a0 1− s p1 ⇒ ω-3dB ≅ p1 ≅ 1 b1 b1 = τ j ∑ ⇒ω−3dB ≅ 1 b1 = 1 τ j ∑
  • 23. EE406 – Introduction to IC Design 23 Example: Series RLC circuit (1) vin (t) =VIu(t) +" –" C R L +" –" vout (t) ) (t i Vout (s) Vin (s) = 1 sC R+ sL + 1 sC = 1 1+ sRC + s2 LC ≡ 1 1+ s ω0Q + s2 ω0 2 ω0 2 = 1 LC ; Q = 1 ω0RC = L /C R ≡ Z0 R
  • 24. EE406 – Introduction to IC Design 24 • Two possible cases: − For Q ≤ ½ real poles: − For Q > ½ complex poles 1+ s ω0Q + s2 ω0 2 = 0 ⇔ s2 + s⋅ ω0 Q +ω0 2 = 0 ⇔ s1,2 = − ω0 Q ∓ ω0 Q $ % & ' ( ) 2 − 4ω0 2 2 ⇔ ⇔ s1,2 = − ω0 2Q 1∓ 1− 4Q2 ( ) s1,2 = − ω0 2Q 1∓ j 4Q2 −1 ( )≡ −α 1∓ j 4Q2 −1 ( ) s1,2 = − ω0 2Q 1∓ 1− 4Q2 ( )≡ −α 1∓ 1− 4Q2 ( ) Example - Series RLC: Poles location (2) ω0 2Q ≡α
  • 25. EE406 – Introduction to IC Design 25 Example – series RLC Vout (s) Vin (s) = 1 sC R+ sL + 1 sC = 1 1+ sRC + s2 LC ≡ 1 1+ s Q ω0 + s2 ω0 2 ω0 2 = 1 LC ; Q = 1 ω0RC = L /C R ≡ Z0 R ; ω0 2Q ≡α C = 1 L⋅ω0 2 ; L = 1 C ⋅ω0 2 Q = 1 RCω0 = L R ⋅ 1 ω0 α = ω0 2Q = R 2L
  • 26. EE406 – Introduction to IC Design 26 Example – series RLC − For Q ≤ ½ real poles: − For Q > ½ complex poles s2 + s⋅ ω0 Q +ω0 2 = 0 ⇔ s2 + s⋅2α +ω0 2 = 0 ⇔ s1,2 = −α ∓ α2 −ω0 2 s1,2 = −α ∓ α2 −ω0 2 for ω0 α <<1 the polesarewidelyspaced ! " # $ % & s1,2 = −α ∓ j ω0 2 −α2 = −α ∓ jωn X X ωn α=ω0/2Q ω0 −ωp1 RE IM ωn = natural (damped) frequency −ωp2 ω0 = resonant frequency
  • 27. EE406 – Introduction to IC Design 27 Example – series RLC: Step response (a) Overdamped Q < 0.5 (α > ω0 ) (b) Critically damped Q=0.5 (α = ω0 ) (c) Underdamped Q > 0.5 (α < ω0 ) vout(t) time ⇔ζ ≡α /ω0 >1 ⇔ζ ≡α /ω0 =1 ⇔ζ ≡α /ω0 <1 α = damping factor (rate of decay) ω0 = resonance frequency ζ = Damping ratio ωn = ringing frequency
  • 28. EE406 – Introduction to IC Design 28 Example – RLC series: Quality Factor Q For a system under sinusoidal excitation at a frequency ω, the most fundamental definition for Q is: At the resonant frequency ω0, the current through the network is simply Vin/R. Energy in such a network sloshes back and forth between the inductance and the inductor, with a constant sum. The peak inductor current at resonance is Ipk=Vpk/R, so the energy stored by the network can be computed as: The average power dissipated in the resistor at resonance is: Z0 = Characteristic impedance of the network At resonance |ZC| = |ZL|=ω0L=(ω0C)−1= Q =ω energystored average powerdissipated Estored = 1 2 L⋅ Ipk 2 Pavg = 1 2 R⋅ Ipk 2 Q =ω0 Estored Pavg = 1 LC ⋅ L R = L /C R = Z0 R dimensionless L /C ≡ Z0
  • 29. EE406 – Introduction to IC Design 29 Example – series RLC: Ringing and Q Since Q is a measure of the rate of energy loss, one expect a higher Q to be associated with more persistent ringing than a lower Q. Rule of thumb: Q is roughly equal to the number of cycles of ringing. Frequency of the ringing oscillations: 1/fn = Tn = 2π/ωn IM RE R large α large Q small The decaying envelope is proportional to: Ringing doesn’t last long and its excursion is small ωn α= e−αt = e − ω0t 2Q Φ= Q=0.5 à Φ = 0° Q=0.707 à Φ = 45° Q=1 à Φ = 60° Q=10 à Φ ≈ 87°
  • 30. EE406 – Introduction to IC Design 30 Example – RLC series by intuition (1) • We can predict the behavior of the circuit without solving pages of differential equations or Laplace transforms. All we need to know is the characteristics equation (denominator of H(s)) and the initial conditions • The output voltage starts at V0, it ends at v(∞)=VI and it rings about Q times before settling at VI Assume the values of R,L,C are such that ω0 > α (underdamping). Initial conditions: i(0) = −I0 v(0) = +V0 +" –" C L +" –" ) (t v vI (t) =VIu(t) ) (t i R • The voltage across the capacitor cannot jump: v(0+)=v(0)=+V0 • The current through the inductor cannot jump: i(0+)=i(0)=−I0
  • 31. EE406 – Introduction to IC Design 31 Example – RLC series using intuition (2) • The only question left is to decide if v(t) will start off shooting down or up ? • But, … we know that i(0+) is negative à this means the current flows from the capacitor toward the inductor à which means the capacitor must be discharging à the voltage across the capacitor must be dropping ) (t v t I V 0 I V ωn π! 2! period of ringing Q! Ringing stops after cycles ) 0 ( v ? ) 0 ( i is negative so v(t) must drop
  • 32. EE406 – Introduction to IC Design 32 Example – RLC series using intuition (3) • In practice for the under damped case it useful to compute two parameters • Overshoot • Settling time OS = exp −π ωn α " # $ % & ' Normalized overshoot = % overshoot w.r.t. final value ts ≅ − 1 α ln ε ωn ω0 # $ % & ' ( ε is the % error that we are willing to tolerate w.r.t. the ideal final value
  • 33. EE406 – Introduction to IC Design 33 First order vs. Second order circuits Behavior • First order circuits introduce exponential behavior • Second order circuits introduce sinusoidal and exponential behavior combined • Fortunately we will not need to go on analyzing 3rd, 4th, 5th and so on circuits because they are not going to introduce fundamentally new behavior