SlideShare a Scribd company logo
1 of 37
DFT and FFT
• FFT is an algorithm to convert a time domain
signal to DFT efficiently.
• FFT is not unique. Many algorithms are
available.
• Each algorithm has merits and demerits.
• In each algorithm, depending on the sequence
needed at the output, the input is regrouped.
• The groups are decided by the number of
samples.
FFTs
• The number of points can be nine too.
• It can be 15 as well.
• Any number in multiples of two integers.
• It can not be any prime number.
• It can be in the multiples of two prime
numbers.
FFTs
• The purpose of this series of lectures is to
learn the basics of FFT algorithms.
• Algorithms having number of samples 2N,
where N is an integer is most preferred.
• 8 point radix-2 FFT by decimation is used
from learning point of view.
• Radix-x: here ‘x’ represents number of
samples in each group made at the first
stage. They are generally equal.
• We shall study radix-2 and radix-3.
Radix-2: DIT or, DIF
• Radix-2 is the first FFT algorithm. It was
proposed by Cooley and Tukey in 1965.
• Though it is not the efficient algorithm, it lays
foundation for time-efficient DFT calculations.
• The next slide shows the saving in time
required for calculations with radix-2.
• The algorithms appear either in
(a) Decimation In Time (DIT), or,
(b) Decimation In Frequency (DIF).
• DIT and DIF, both yield same complexity and
results. They are complementary.
• We shall stress on 8 to radix 2 DIT FFT.
Other popular Algorithms
Besides many, the popular algorithms are:
• Goertzel algorithm
• Chirp Z algorithm
• Index mapping algorithm
• Split radix in prime number algorithm.
have modified approach over radix-2.
Split radix in prime number does not use even the twiddles.
We now pay attention to 8/radix-2 butterfly FIT FFT algorithm.
Relationship between exponential forms
and twiddle factors (W) for Periodicity = N
Sr.
No.
Exponential form Symbolic form
01 e-j2n/N = e-j2(n+N)/N WN
n = WN
n+N
02 e-j2(n+N/2)/N = - e-j2n/N WN
n+N/2= - WN
n
03 e-j2k = e-j2Nk/N = 1 WN
N+K = 1
04 e-j2(2/N) = e-j2/(N/2) WN
2 = WN/2
Values of various twiddles WN
n for
length N=8
n WN
n = e(-j2)(n/N) Remarks
0 1 = 10 WN
0
1 (1-j)/√2 = 1 -45 WN
1
2 -j = 1 -90 WN
2
3 - (1+j)/√2 = 1-135 WN
3
4 -1 = 1 -180 WN
4 = -WN
0
5 - (1-j)/√2 = 1 -225 WN
5 = -WN
1
6 j = 1 90 WN
6 = -WN
2
7 (1+j)/√2 = 1 45 WN
7 = -WN
3
DFT calculations
• The forward DFT, frequency domain output in the
range 0kN-1 is given by:
• While the Inverse DFT, time domain output, again, in
the range 0kN-1 is denoted by
X k
( )
0
n 1

n
x n
( ) W
N
 nk







x n
( )
1
N
0
n 1

k
X k
( ) W
N
  nk
















Matrix Relations
• The DFT samples defined by
can be expressed in NxN matrix as
where
 T
N
X
X
X ]
[
.....
]
[
]
[ 1
1
0 

X
 T
N
x
x
x ]
[
.....
]
[
]
[ 1
1
0 

x
1
0
,
]
[
]
[
1
0







N
k
W
n
x
k
X
N
n
kn
N
   
x(n)
X(k)
1
0
n






 


N
nk
N
W
Matrix Relations
can be expanded as NXN DFT matrix

























2
)
1
(
)
1
(
2
)
1
(
)
1
(
2
4
2
)
1
(
2
1
1
0
1
1
1
1
1
1
1
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
k
nk
N
W
W
W
W
W
W
W
W
W
W












1
0
N
k
nk
N
W
DFT:
For N of length 4,range of n, k = [0 1 2 3] each.
Hence X(n) = x(0)WN
n.0+x(1)WN
n.1+x(2)WN
n.2 + x(3)WN
n.3
X k
( )
0
n 1

n
x n
( ) W
N
 nk






 x
x(0) x(1) x(2) x(3)
X(0) = W4
0x0 W4
0x1 W4
0x2 W4
0x3
X(1) = W4
1x0 W4
1x1 W4
1x2 W4
1x3
X(2) = W4
2x0 W4
2x1 W4
2x2 W4
2x3
X(3) = W4
3x0 W4
3x1 W4
3x2 W4
3x3
x(0) x(1) x(2) x(3)
X(0) = W4
0x0 W4
0x1 W4
0x2 W4
0x3
X(1) = W4
1x0 W4
1x1 W4
1x2 W4
1x3
X(2) = W4
2x0 W4
2x1 W4
2x2 W4
2x3
X(3) = W4
3x0 W4
3x1 W4
3x2 W4
3x3
x(0) x(1) x(2) x(3)
X(0) = W4
0 W4
0 W4
0 W4
0
X(1) = W4
0 W4
1 W4
2 W4
3
X(2) = W4
0 W4
2 W4
4 W4
6
X(3) = W4
0 W4
3 W4
6 W4
9
Can be rewritten as:
x(0) x(1) x(2) x(3)
X(0) = W4
0 W4
0 W4
0 W4
0
X(1) = W4
0 W4
1 W4
2 W4
3
X(2) = W4
0 W4
2 W4
4 W4
6
X(3) = W4
0 W4
3 W4
6 W4
9
x(0) x(1) x(2) x(3)
X(0) = W4
0 W4
0 W4
0 W4
0
X(1) = W4
0 W4
1 W4
2 -W4
1
X(2) = W4
0 W4
2 W4
0 W4
2
X(3) = W4
0 -W4
1 W4
2 W4
1
x(0) x(1) x(2) x(3)
X(0) = W4
0 W4
0 W4
0 W4
0
X(1) = W4
0 W4
1 W4
2 -W4
1
X(2) = W4
0 W4
2 W4
0 W4
2
X(3) = W4
0 -W4
1 W4
2 W4
1
x(0) x(1) x(2) x(3)
X(0) = 1 1 1 1
X(1) = 1 -j -1 j
X(2) = 1 -1 1 -1
X(3) = 1 j -1 -j
Matrix Relations
• Likewise, the IDFT is
can be expressed in NxN matrix form as
1
0
,
]
[
]
[
1
0








N
n
W
k
X
n
x
N
k
n
k
N
   
X(k)
1
0
n
x
1











N
n
nk
N
W
Matrix Relations
can also be expanded as NXN DFT matrix



































2
)
1
(
)
1
(
2
)
1
(
)
1
(
2
4
2
)
1
(
2
1
1
0
1
1
1
1
1
1
1
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
k
nk
N
W
W
W
W
W
W
W
W
W
W













1
0
N
k
nk
N
W
Observe:




1
0
N
k
nk
N
W














1
0
1
*
1
0
N
n
nk
N
W W
N
N
k
nk
N
The inversion can be had by Hermitian conjugating j by –j and dividing by N.
x(0) x(1) x(2) x(3)
X(0) = 1 1 1 1
X(1) = 1 -j -1 j
X(2) = 1 -1 1 -1
X(3) = 1 j -1 -j
X 0
( )
X 1
( )
X 2
( )
X 3
( )












1
1
1
1
1
j

1

j
1
1

1
1

1
j
1

j













x 0
( )
x 1
( )
x 2
( )
x 3
( )














Characterisitc or system matrix
X 0
( )
X 1
( )
X 2
( )
X 3
( )












1
1
1
1
1
j

1

j
1
1

1
1

1
j
1

j













x 0
( )
x 1
( )
x 2
( )
x 3
( )














x 0
( )
x 1
( )
x 2
( )
x 3
( )












1
4
1
1
1
1
1
j
1

j

1
1

1
1

1
j

1

j












X 0
( )
X 1
( )
X 2
( )
X 3
( )


























x
The effective determinant of above is 1/4.
Conversion in system matrices of DFT and IDFT obtained by replacing by j by –j.
Inversion of above matrix is:
x 0
( )
x 1
( )
x 2
( )
x 3
( )












1
4
1
1
1
1
1
j
1

j

1
1

1
1

1
j

1

j












X 0
( )
X 1
( )
X 2
( )
X 3
( )


























FOR 8 point DFT: N=8
• The system Matrix is:
W8
0x0 W8
0x1 W8
0x2 W8
0x3 W8
0x4 W8
0x5 W8
0x6 W8
0x7
W8
1x0 W8
1x1 W8
1x2 W8
1x3 W8
1x4 W8
1x5 W8
1x6 W8
1x7
W8
2x0 W8
2x1 W8
2x2 W8
2x3 W8
2x4 W8
2x5 W8
2x6 W8
2x7
W8
3x0 W8
3x1 W8
3x2 W8
3x3 W8
3x4 W8
3x5 W8
3x6 W8
3x7
W8
4x0 W8
4x1 W8
4x2 W8
4x3 W8
4x4 W8
4x5 W8
4x6 W8
4x7
W8
5x0 W8
5x1 W8
5x2 W8
5x3 W8
5x4 W8
5x5 W8
5x6 W8
5x7
W8
6x0 W8
6x1 W8
6x2 W8
6x3 W8
6x4 W8
6x5 W8
6x6 W8
6x7
W8
7x0 W8
7x1 W8
7x2 W8
7x0 W8
7x4 W8
7x5 W8
7x6 W8
7x7
The characteristic matrix of 8-point
DFT is:
1
1
1
1
1
1
1
1
1
1 j

2
j

1 j

( )

2
1

1 j

( )

2
j
1 j

2
1
j

1

j
1
j

1

j
1
1 j

( )

2
j
1 j

2
1

1 j

2
j

1 j

( )

2
1
1

1
1

1
1

1
1

1
1 j

( )

2
j

1 j

2
1

1 j

2
j
1 j

( )

2
1
j
1

j

1
j
1

j

1
1 j

2
j
1 j

( )

2
1

1 j

( )

2
j

1 j

( )
2


































DFT and its Inverse
Conversion in system matrices of DFT and IDFT obtained by
replacing by j by –j..
1
1
1
1
1
1
1
1
1
1 j

2
j

1 j

( )

2
1

1 j

( )

2
j
1 j

2
1
j

1

j
1
j

1

j
1
1 j

( )

2
j
1 j

2
1

1 j

2
j

1 j

( )

2
1
1

1
1

1
1

1
1

1
1 j

( )

2
j

1 j

2
1

1 j

2
j
1 j

( )

2
1
j
1

j

1
j
1

j

1
1 j

2
j
1 j

( )

2
1

1 j

( )

2
j

1 j

( )
2


































1
8
1
1
1
1
1
1
1
1
1
1 j

2
j
1 j

2

1

1 j

2

j

1 j

2
1
j
1

j

1
j
1

j

1
1 j

2

j

1 j

2
1

1 j

2
j
1 j

2

1
1

1
1

1
1

1
1

1
1 j

2

j
1 j

2
1

1 j

2
j

1 j

2

1
j

1

j
1
j

1

j
1
1 j

2
j

1 j

2

1

1 j

2

j
1 j

2





































































DFT IDFT
Effective
determinant
Calculation advantage in radix-2
algorithms for various values of N
Improvement
A/B
N N^2 N^2-N A (N/2)ln(N) Nln(N) B
8 64 56 120 8.32 16.64 24.95 4.81
16 256 240 496 22.18 44.36 66.54 7.45
32 1024 992 2016 55.45 110.90 166.36 12.12
64 4096 4032 8128 133.08 266.17 399.25 20.36
128 16384 16256 32640 310.53 621.06 931.59 35.04
256 65536 65280 130816 709.78 1419.57 2129.35 61.43
512 262144 261632 523776 1597.01 3194.02 4791.03 109.32
1024 1048576 1047552 2096128 3548.91 7097.83 10646.74 196.88
2048 4194304 4192256 8386560 7807.61 15615.22 23422.83 358.05
4096 16777216 16773120 33550336 17034.79 34069.57 51104.36 656.51
8192 67108864 67100672 134209536 36908.70 73817.40 110726.10 1212.09
16384 268435456 268419072 536854528 79495.66 158991.33 238486.99 2251.09
No. of
computation
points
DIRECT COMPUTATION FFT computaton
complex
multiplication
Complex
additions
complex
multiplication
Complex
additions
Total Total
The Process of Decimation
• First step of process of decimation is splitting a
sequence in smaller sequences.
• A sequence of 15 can be splitted in five
sequences of threes or three sequences of fives.
• A sequence of 16 numbers can be splitted in 2
sequences of 8. Further,
 each sequence of 8 can be be splitted in two
sequences of 4;
 Subsequently each sequence of 4 can be splitted in
two sequences of two;
 There can be various combinations and varied
complexities.
4-point DFT
X 0
( )
X 1
( )
X 2
( )
X 3
( )












1
1
1
1
1
j

1

j
1
1

1
1

1
j
1

j













x 0
( )
x 1
( )
x 2
( )
x 3
( )














Can be, by interchanging col. 2 and 3, seen as
X 0
( )
X 1
( )
X 2
( )
X 3
( )












1
1
1
1
1
1

1
1

1
j

1

j
1
j
1

j













x 0
( )
x 2
( )
x 1
( )
x 3
( )














4-point DFT
X 0
( )
X 1
( )
X 2
( )
X 3
( )












1
1
1
1
1
1

1
1

1
j

1

j
1
j
1

j













x 0
( )
x 2
( )
x 1
( )
x 3
( )














The system matrix is rewritten as
X 0
( )
X 1
( )
X 2
( )
X 3
( )












1
0
1
0
0
1
0
1
1
0
1

0
0
j

0
j












1
1
0
0
1
1

0
0
0
0
1
1
0
0
1
1














x 0
( )
x 2
( )
x 1
( )
x 3
( )














Matrix manipulation to get the desired
input sequence from the actual
x 0
( )
x 2
( )
x 1
( )
x 3
( )












1
0
0
0
0
0
1
0
0
1
0
0
0
0
0
1












x 0
( )
x 1
( )
x 2
( )
x 3
( )














Process of decimation: example
X[n]
-1
-2 1
2 3 4
5
6
7 n
X[1]
X[3]
X[5]
X[7]
X[n]
-1
-2 1
2 3 4
5
6
7 n
X[1]
X[2]
X[3] X[4]
X[5]
X[6]
X[7]
X[0]
X[n]
-1
-2 1
2 3 4
5
6
7 n
X[2]
X[4]
X[6]
X[0]
Separating the above sequence for +ve ‘n’ in even and odd sequence numbers .
Process of decimation: example
X[n]
-
- 1
2 3 4
5
6
7 n
X[1]
X[3]
X[5]
X[7]
2 3 4 6
X[n]
- 1 5 7 n
X[2]
X[4]
X[6]
X[0]
Compress the even sequence by two.
Shift the sequence to left by one and
compress by two
X[n]
-
1 2 3
n
X[2]
X[4]
X[6]
X[0]
X[n]
2
4 6 n
X[1]
X[3]
X[5]
X[7]
The compression is also called decimation
x 0
( ) x 2
( )

x 0
( ) x 2
( )

x 1
( ) x 3
( )

x 1
( ) x 3
( )













1
1
0
0
1
1

0
0
0
0
1
1
0
0
1
1













x 0
( )
x 2
( )
x 1
( )
x 3
( )














X 0
( )
X 1
( )
X 2
( )
X 3
( )












1
0
1
0
0
1
0
1
1
0
1

0
0
j

0
j












x 0
( ) x 2
( )

x 0
( ) x 2
( )

x 1
( ) x 3
( )

x 1
( ) x 3
( )















X 0
( )
X 1
( )
X 2
( )
X 3
( )












1
0
1
0
0
1
0
1
1
0
1

0
0
j

0
j












1
1
0
0
1
1

0
0
0
0
1
1
0
0
1
1














x 0
( )
x 2
( )
x 1
( )
x 3
( )













 First stage of
realization
Second
stage
Decimation of 4 point DFT into 2xradix-2
• The values of
W4
0= 1; W4
2 = -1; W4
1= -j; and W4
3 = j
X[0]
x0
x2
x1
x3
x0+x2
xo -x2
x1+x3
x1-x3
X[1]
X[2]
X[3]
Wo
w1
W2
W3
-1
-1
Decimation of 4 point DFT into 2xradix-2
• The values of
W4
0= 1; W4
2 = -1; W4
1= -j; and W4
3 = j
X[0]
N/4 point
DFT
even
N/4 point
DFT
odd
x0
x2
x1
x3
x0+x2
xo -x2
x1+x3
x1-x3
X[1]
X[2]
X[3]
Wo
w1
W2
W3
N=8-point radix-4 DIT-FFT:
N/2 point
DFT
[EVEN]
N/2 point
DFT
[ODD]
X(0)
X(4)
X(2)
X(6)
X(1)
X(3)
X(5)
X(7)
X[0]
X[1]
X[2]
X[3]
X[4]
X[5]
X[6]
X[7]
X0[0]
X1 [0]
X0[1]
X1 [1]
X0[2]
X1[2]
X0[3]
X1[3]
a
-j 
-b
-1
-a 
j
b
Note: -W4 = W0=1; -W5= W1 = a = (1-j)/2;
-W2 = W6=j and -W3 = W7 = b = (1+j)/2
1
The matrix equation of the slide is:
• Note the symmetry between 1st and 3rd partition
and 2nd and 4th partition of system matrix.
X 0
( )
X 1
( )
X 2
( )
X 3
( )
X 4
( )
X 5
( )
X 6
( )
X 7
( )























1
0
0
0
1
0
0
0
0
1
0
0
0
1
0
0
0
0
1
0
0
0
1
0
0
0
0
1
0
0
0
1
1
0
0
0
1

0
0
0
0
a
0
0
0
a

0
0
0
0
j

0
0
0
j
0
0
0
0
b

0
0
0
b






















X
0
0
( )
X
o
1
( )
X
o
2
( )
X
0
3
( )
X
1
0
( )
X
1
1
( )
X
1
2
( )
X
1
3
( )
































N=8-point radix-2 DIT-FFT:
N-point DFT
N/2 point DFT
N/4 point DFT
X[0]
X[1]
X[2]
X[3]
X[4]
X[5]
X[6]
X[7]
x[0]
x[4]
x[2]
x[6]
x[1]
x[5]
x[3]
x[7]
-1
-1
-1
-1
-1
-1
-1
-1
w2
w2
w2
w1
w3
-1
-1
-1
-1
System Matrix for N/2 point DFT
Block
Note that partitions 2 and 3 are null matrices while partitions 1 and 4 are identical.
Also note that subpartitions 1st and 3rd are I matrices and
2nd and 4th sub-partitions have sign difference.
Cross diagonals in either case are zero.
X
0
0
( )
X
o
1
( )
X
o
2
( )
X
0
3
( )
X
1
0
( )
X
1
1
( )
X
1
2
( )
X
1
3
( )






























1
0
1
0
0
0
0
0
0
1
0
1
0
0
0
0
1
0
1

0
0
0
0
0
0
j

0
j
0
0
0
0
0
0
0
0
1
0
1
0
0
0
0
0
0
1
0
1
0
0
0
0
1
0
1

0
0
0
0
0
0
j

0
j






















x 0
( ) x 4
( )

x 0
( ) x 4
( )

x 2
( ) x 6
( )

x 2
( ) x 6
( )

x 1
( ) x 5
( )

x 1
( ) x 5
( )

x 3
( ) x 7
( )

x 3
( ) x 7
( )

























System Matrix for N/4 block
Again see the simile between 1and 4 partitions. Note that 2 and 3 s are null matrices.
Further note the sub-partition matrices. They also follow the same rule.
All the elements are real.
x 0
( ) x 4
( )

x 0
( ) x 4
( )

x 2
( ) x 6
( )

x 2
( ) x 6
( )

x 1
( ) x 5
( )

x 1
( ) x 5
( )

x 3
( ) x 7
( )

x 3
( ) x 7
( )























1
1
0
0
0
0
0
0
1
1

0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
1
1

0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
1
1

0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
1
1























x 1
( )
x 4
( )
x 2
( )
x 6
( )
x 1
( )
x 5
( )
x 3
( )
x 7
( )
























Signal flow graph for decimation of 8 point DFT
N-point DFT
N/2 point DFT
N/4 point DFT
X[0]
X[1]
X[2]
X[3]
X[4]
X[5]
X[6]
X[7]
x[0]
x[4]
x[2]
x[6]
x[1]
x[5]
x[3]
x[7]
-1
-1
-1
-1
-1
-1
-1
-1
w2
w2
w2
w1
w3
-1
-1
-1
-1

More Related Content

What's hot

Time Response Analysis
Time Response AnalysisTime Response Analysis
Time Response AnalysisManthan Kanani
 
Random process.pptx
Random process.pptxRandom process.pptx
Random process.pptxNeetha K
 
Gradient divergence curl
Gradient divergence curlGradient divergence curl
Gradient divergence curlVikas Vikram
 
Generating functions solve recurrence
Generating functions solve recurrenceGenerating functions solve recurrence
Generating functions solve recurrenceHae Morgia
 
Double Integral Powerpoint
Double Integral PowerpointDouble Integral Powerpoint
Double Integral Powerpointoaishnosaj
 
Digital Signal Processing[ECEG-3171]-Ch1_L03
Digital Signal Processing[ECEG-3171]-Ch1_L03Digital Signal Processing[ECEG-3171]-Ch1_L03
Digital Signal Processing[ECEG-3171]-Ch1_L03Rediet Moges
 
state space representation,State Space Model Controllability and Observabilit...
state space representation,State Space Model Controllability and Observabilit...state space representation,State Space Model Controllability and Observabilit...
state space representation,State Space Model Controllability and Observabilit...Waqas Afzal
 
Fun and Easy Kalman filter Tutorial - Using Pokemon Example
Fun and Easy Kalman filter Tutorial - Using Pokemon ExampleFun and Easy Kalman filter Tutorial - Using Pokemon Example
Fun and Easy Kalman filter Tutorial - Using Pokemon ExampleRitesh Kanjee
 
Independence, basis and dimension
Independence, basis and dimensionIndependence, basis and dimension
Independence, basis and dimensionATUL KUMAR YADAV
 
Basic simulation lab manual1
Basic simulation lab manual1Basic simulation lab manual1
Basic simulation lab manual1Janardhana Raju M
 
Newton backward interpolation
Newton backward interpolationNewton backward interpolation
Newton backward interpolationMUHAMMADUMAIR647
 
Eigenvalues and eigenvectors
Eigenvalues and eigenvectorsEigenvalues and eigenvectors
Eigenvalues and eigenvectorsiraq
 
Eigenvalues and Eigenvectors
Eigenvalues and EigenvectorsEigenvalues and Eigenvectors
Eigenvalues and EigenvectorsVinod Srivastava
 

What's hot (20)

B.Tech-II_Unit-II
B.Tech-II_Unit-IIB.Tech-II_Unit-II
B.Tech-II_Unit-II
 
Time Response Analysis
Time Response AnalysisTime Response Analysis
Time Response Analysis
 
Random process.pptx
Random process.pptxRandom process.pptx
Random process.pptx
 
Gradient divergence curl
Gradient divergence curlGradient divergence curl
Gradient divergence curl
 
Generating functions solve recurrence
Generating functions solve recurrenceGenerating functions solve recurrence
Generating functions solve recurrence
 
Information theory
Information theoryInformation theory
Information theory
 
Double Integral Powerpoint
Double Integral PowerpointDouble Integral Powerpoint
Double Integral Powerpoint
 
Digital Signal Processing[ECEG-3171]-Ch1_L03
Digital Signal Processing[ECEG-3171]-Ch1_L03Digital Signal Processing[ECEG-3171]-Ch1_L03
Digital Signal Processing[ECEG-3171]-Ch1_L03
 
Signals and Systems Notes
Signals and Systems Notes Signals and Systems Notes
Signals and Systems Notes
 
state space representation,State Space Model Controllability and Observabilit...
state space representation,State Space Model Controllability and Observabilit...state space representation,State Space Model Controllability and Observabilit...
state space representation,State Space Model Controllability and Observabilit...
 
Fun and Easy Kalman filter Tutorial - Using Pokemon Example
Fun and Easy Kalman filter Tutorial - Using Pokemon ExampleFun and Easy Kalman filter Tutorial - Using Pokemon Example
Fun and Easy Kalman filter Tutorial - Using Pokemon Example
 
Independence, basis and dimension
Independence, basis and dimensionIndependence, basis and dimension
Independence, basis and dimension
 
Galois field
Galois fieldGalois field
Galois field
 
Complex analysis
Complex analysisComplex analysis
Complex analysis
 
Basic simulation lab manual1
Basic simulation lab manual1Basic simulation lab manual1
Basic simulation lab manual1
 
Adaptive filter
Adaptive filterAdaptive filter
Adaptive filter
 
Newton backward interpolation
Newton backward interpolationNewton backward interpolation
Newton backward interpolation
 
Eigenvalues and eigenvectors
Eigenvalues and eigenvectorsEigenvalues and eigenvectors
Eigenvalues and eigenvectors
 
Eigenvalues and Eigenvectors
Eigenvalues and EigenvectorsEigenvalues and Eigenvectors
Eigenvalues and Eigenvectors
 
MATLAB - Arrays and Matrices
MATLAB - Arrays and MatricesMATLAB - Arrays and Matrices
MATLAB - Arrays and Matrices
 

Similar to 15Tarique_DSP_8ETC.PPT

Image compression- JPEG Compression & its Modes
Image compression- JPEG Compression & its ModesImage compression- JPEG Compression & its Modes
Image compression- JPEG Compression & its Modeskanimozhirajasekaren
 
M4L1.ppt
M4L1.pptM4L1.ppt
M4L1.pptdudoo1
 
EC8553 Discrete time signal processing
EC8553 Discrete time signal processing EC8553 Discrete time signal processing
EC8553 Discrete time signal processing ssuser2797e4
 
Dynamic stiffness and eigenvalues of nonlocal nano beams
Dynamic stiffness and eigenvalues of nonlocal nano beamsDynamic stiffness and eigenvalues of nonlocal nano beams
Dynamic stiffness and eigenvalues of nonlocal nano beamsUniversity of Glasgow
 
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...Alexander Litvinenko
 
Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...
Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...
Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...Simen Li
 
Logic Design - Chapter 5: Part1 Combinattional Logic
Logic Design - Chapter 5: Part1 Combinattional LogicLogic Design - Chapter 5: Part1 Combinattional Logic
Logic Design - Chapter 5: Part1 Combinattional LogicGouda Mando
 
Course-Notes__Advanced-DSP.pdf
Course-Notes__Advanced-DSP.pdfCourse-Notes__Advanced-DSP.pdf
Course-Notes__Advanced-DSP.pdfShreeDevi42
 
Advanced_DSP_J_G_Proakis.pdf
Advanced_DSP_J_G_Proakis.pdfAdvanced_DSP_J_G_Proakis.pdf
Advanced_DSP_J_G_Proakis.pdfHariPrasad314745
 
Fast Fourier Transform (FFT) Algorithms in DSP
Fast Fourier Transform (FFT) Algorithms in DSPFast Fourier Transform (FFT) Algorithms in DSP
Fast Fourier Transform (FFT) Algorithms in DSProykousik2020
 
Introduction to Information Technology Lecture 2
Introduction to Information Technology Lecture 2Introduction to Information Technology Lecture 2
Introduction to Information Technology Lecture 2MikeCrea
 
Linear transformation.ppt
Linear transformation.pptLinear transformation.ppt
Linear transformation.pptRaj Parekh
 
Data sparse approximation of the Karhunen-Loeve expansion
Data sparse approximation of the Karhunen-Loeve expansionData sparse approximation of the Karhunen-Loeve expansion
Data sparse approximation of the Karhunen-Loeve expansionAlexander Litvinenko
 

Similar to 15Tarique_DSP_8ETC.PPT (20)

Clase 16 dsp
Clase 16 dspClase 16 dsp
Clase 16 dsp
 
Adaline and Madaline.ppt
Adaline and Madaline.pptAdaline and Madaline.ppt
Adaline and Madaline.ppt
 
Dif fft
Dif fftDif fft
Dif fft
 
UNIT I_5.pdf
UNIT I_5.pdfUNIT I_5.pdf
UNIT I_5.pdf
 
Proyecto parcial 2
Proyecto parcial 2Proyecto parcial 2
Proyecto parcial 2
 
Image compression- JPEG Compression & its Modes
Image compression- JPEG Compression & its ModesImage compression- JPEG Compression & its Modes
Image compression- JPEG Compression & its Modes
 
M4L1.ppt
M4L1.pptM4L1.ppt
M4L1.ppt
 
EC8553 Discrete time signal processing
EC8553 Discrete time signal processing EC8553 Discrete time signal processing
EC8553 Discrete time signal processing
 
Dynamic stiffness and eigenvalues of nonlocal nano beams
Dynamic stiffness and eigenvalues of nonlocal nano beamsDynamic stiffness and eigenvalues of nonlocal nano beams
Dynamic stiffness and eigenvalues of nonlocal nano beams
 
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
 
Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...
Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...
Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...
 
Logic Design - Chapter 5: Part1 Combinattional Logic
Logic Design - Chapter 5: Part1 Combinattional LogicLogic Design - Chapter 5: Part1 Combinattional Logic
Logic Design - Chapter 5: Part1 Combinattional Logic
 
Course-Notes__Advanced-DSP.pdf
Course-Notes__Advanced-DSP.pdfCourse-Notes__Advanced-DSP.pdf
Course-Notes__Advanced-DSP.pdf
 
Advanced_DSP_J_G_Proakis.pdf
Advanced_DSP_J_G_Proakis.pdfAdvanced_DSP_J_G_Proakis.pdf
Advanced_DSP_J_G_Proakis.pdf
 
Fourier slide
Fourier slideFourier slide
Fourier slide
 
Fast Fourier Transform (FFT) Algorithms in DSP
Fast Fourier Transform (FFT) Algorithms in DSPFast Fourier Transform (FFT) Algorithms in DSP
Fast Fourier Transform (FFT) Algorithms in DSP
 
Introduction to Information Technology Lecture 2
Introduction to Information Technology Lecture 2Introduction to Information Technology Lecture 2
Introduction to Information Technology Lecture 2
 
Randomized algorithms ver 1.0
Randomized algorithms ver 1.0Randomized algorithms ver 1.0
Randomized algorithms ver 1.0
 
Linear transformation.ppt
Linear transformation.pptLinear transformation.ppt
Linear transformation.ppt
 
Data sparse approximation of the Karhunen-Loeve expansion
Data sparse approximation of the Karhunen-Loeve expansionData sparse approximation of the Karhunen-Loeve expansion
Data sparse approximation of the Karhunen-Loeve expansion
 

Recently uploaded

SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )Tsuyoshi Horigome
 
Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girlsssuser7cb4ff
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxJoão Esperancinha
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfAsst.prof M.Gokilavani
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxwendy cai
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSCAESB
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...Soham Mondal
 
power system scada applications and uses
power system scada applications and usespower system scada applications and uses
power system scada applications and usesDevarapalliHaritha
 
chaitra-1.pptx fake news detection using machine learning
chaitra-1.pptx  fake news detection using machine learningchaitra-1.pptx  fake news detection using machine learning
chaitra-1.pptx fake news detection using machine learningmisbanausheenparvam
 
Current Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLCurrent Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLDeelipZope
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130Suhani Kapoor
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionDr.Costas Sachpazis
 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx959SahilShah
 
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)dollysharma2066
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSKurinjimalarL3
 
Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxbritheesh05
 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...srsj9000
 
Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxk795866
 

Recently uploaded (20)

SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 
Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girls
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
 
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptx
 
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptxExploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentation
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
 
power system scada applications and uses
power system scada applications and usespower system scada applications and uses
power system scada applications and uses
 
chaitra-1.pptx fake news detection using machine learning
chaitra-1.pptx  fake news detection using machine learningchaitra-1.pptx  fake news detection using machine learning
chaitra-1.pptx fake news detection using machine learning
 
Current Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLCurrent Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCL
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx
 
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
 
Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptx
 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
 
Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptx
 

15Tarique_DSP_8ETC.PPT

  • 1. DFT and FFT • FFT is an algorithm to convert a time domain signal to DFT efficiently. • FFT is not unique. Many algorithms are available. • Each algorithm has merits and demerits. • In each algorithm, depending on the sequence needed at the output, the input is regrouped. • The groups are decided by the number of samples.
  • 2. FFTs • The number of points can be nine too. • It can be 15 as well. • Any number in multiples of two integers. • It can not be any prime number. • It can be in the multiples of two prime numbers.
  • 3. FFTs • The purpose of this series of lectures is to learn the basics of FFT algorithms. • Algorithms having number of samples 2N, where N is an integer is most preferred. • 8 point radix-2 FFT by decimation is used from learning point of view. • Radix-x: here ‘x’ represents number of samples in each group made at the first stage. They are generally equal. • We shall study radix-2 and radix-3.
  • 4. Radix-2: DIT or, DIF • Radix-2 is the first FFT algorithm. It was proposed by Cooley and Tukey in 1965. • Though it is not the efficient algorithm, it lays foundation for time-efficient DFT calculations. • The next slide shows the saving in time required for calculations with radix-2. • The algorithms appear either in (a) Decimation In Time (DIT), or, (b) Decimation In Frequency (DIF). • DIT and DIF, both yield same complexity and results. They are complementary. • We shall stress on 8 to radix 2 DIT FFT.
  • 5. Other popular Algorithms Besides many, the popular algorithms are: • Goertzel algorithm • Chirp Z algorithm • Index mapping algorithm • Split radix in prime number algorithm. have modified approach over radix-2. Split radix in prime number does not use even the twiddles. We now pay attention to 8/radix-2 butterfly FIT FFT algorithm.
  • 6. Relationship between exponential forms and twiddle factors (W) for Periodicity = N Sr. No. Exponential form Symbolic form 01 e-j2n/N = e-j2(n+N)/N WN n = WN n+N 02 e-j2(n+N/2)/N = - e-j2n/N WN n+N/2= - WN n 03 e-j2k = e-j2Nk/N = 1 WN N+K = 1 04 e-j2(2/N) = e-j2/(N/2) WN 2 = WN/2
  • 7. Values of various twiddles WN n for length N=8 n WN n = e(-j2)(n/N) Remarks 0 1 = 10 WN 0 1 (1-j)/√2 = 1 -45 WN 1 2 -j = 1 -90 WN 2 3 - (1+j)/√2 = 1-135 WN 3 4 -1 = 1 -180 WN 4 = -WN 0 5 - (1-j)/√2 = 1 -225 WN 5 = -WN 1 6 j = 1 90 WN 6 = -WN 2 7 (1+j)/√2 = 1 45 WN 7 = -WN 3
  • 8. DFT calculations • The forward DFT, frequency domain output in the range 0kN-1 is given by: • While the Inverse DFT, time domain output, again, in the range 0kN-1 is denoted by X k ( ) 0 n 1  n x n ( ) W N  nk        x n ( ) 1 N 0 n 1  k X k ( ) W N   nk                
  • 9. Matrix Relations • The DFT samples defined by can be expressed in NxN matrix as where  T N X X X ] [ ..... ] [ ] [ 1 1 0   X  T N x x x ] [ ..... ] [ ] [ 1 1 0   x 1 0 , ] [ ] [ 1 0        N k W n x k X N n kn N     x(n) X(k) 1 0 n           N nk N W
  • 10. Matrix Relations can be expanded as NXN DFT matrix                          2 ) 1 ( ) 1 ( 2 ) 1 ( ) 1 ( 2 4 2 ) 1 ( 2 1 1 0 1 1 1 1 1 1 1 N N N N N N N N N N N N N N N k nk N W W W W W W W W W W             1 0 N k nk N W
  • 11. DFT: For N of length 4,range of n, k = [0 1 2 3] each. Hence X(n) = x(0)WN n.0+x(1)WN n.1+x(2)WN n.2 + x(3)WN n.3 X k ( ) 0 n 1  n x n ( ) W N  nk        x x(0) x(1) x(2) x(3) X(0) = W4 0x0 W4 0x1 W4 0x2 W4 0x3 X(1) = W4 1x0 W4 1x1 W4 1x2 W4 1x3 X(2) = W4 2x0 W4 2x1 W4 2x2 W4 2x3 X(3) = W4 3x0 W4 3x1 W4 3x2 W4 3x3
  • 12. x(0) x(1) x(2) x(3) X(0) = W4 0x0 W4 0x1 W4 0x2 W4 0x3 X(1) = W4 1x0 W4 1x1 W4 1x2 W4 1x3 X(2) = W4 2x0 W4 2x1 W4 2x2 W4 2x3 X(3) = W4 3x0 W4 3x1 W4 3x2 W4 3x3 x(0) x(1) x(2) x(3) X(0) = W4 0 W4 0 W4 0 W4 0 X(1) = W4 0 W4 1 W4 2 W4 3 X(2) = W4 0 W4 2 W4 4 W4 6 X(3) = W4 0 W4 3 W4 6 W4 9 Can be rewritten as:
  • 13. x(0) x(1) x(2) x(3) X(0) = W4 0 W4 0 W4 0 W4 0 X(1) = W4 0 W4 1 W4 2 W4 3 X(2) = W4 0 W4 2 W4 4 W4 6 X(3) = W4 0 W4 3 W4 6 W4 9 x(0) x(1) x(2) x(3) X(0) = W4 0 W4 0 W4 0 W4 0 X(1) = W4 0 W4 1 W4 2 -W4 1 X(2) = W4 0 W4 2 W4 0 W4 2 X(3) = W4 0 -W4 1 W4 2 W4 1
  • 14. x(0) x(1) x(2) x(3) X(0) = W4 0 W4 0 W4 0 W4 0 X(1) = W4 0 W4 1 W4 2 -W4 1 X(2) = W4 0 W4 2 W4 0 W4 2 X(3) = W4 0 -W4 1 W4 2 W4 1 x(0) x(1) x(2) x(3) X(0) = 1 1 1 1 X(1) = 1 -j -1 j X(2) = 1 -1 1 -1 X(3) = 1 j -1 -j
  • 15. Matrix Relations • Likewise, the IDFT is can be expressed in NxN matrix form as 1 0 , ] [ ] [ 1 0         N n W k X n x N k n k N     X(k) 1 0 n x 1            N n nk N W
  • 16. Matrix Relations can also be expanded as NXN DFT matrix                                    2 ) 1 ( ) 1 ( 2 ) 1 ( ) 1 ( 2 4 2 ) 1 ( 2 1 1 0 1 1 1 1 1 1 1 N N N N N N N N N N N N N N N k nk N W W W W W W W W W W              1 0 N k nk N W Observe:     1 0 N k nk N W               1 0 1 * 1 0 N n nk N W W N N k nk N The inversion can be had by Hermitian conjugating j by –j and dividing by N.
  • 17. x(0) x(1) x(2) x(3) X(0) = 1 1 1 1 X(1) = 1 -j -1 j X(2) = 1 -1 1 -1 X(3) = 1 j -1 -j X 0 ( ) X 1 ( ) X 2 ( ) X 3 ( )             1 1 1 1 1 j  1  j 1 1  1 1  1 j 1  j              x 0 ( ) x 1 ( ) x 2 ( ) x 3 ( )               Characterisitc or system matrix
  • 18. X 0 ( ) X 1 ( ) X 2 ( ) X 3 ( )             1 1 1 1 1 j  1  j 1 1  1 1  1 j 1  j              x 0 ( ) x 1 ( ) x 2 ( ) x 3 ( )               x 0 ( ) x 1 ( ) x 2 ( ) x 3 ( )             1 4 1 1 1 1 1 j 1  j  1 1  1 1  1 j  1  j             X 0 ( ) X 1 ( ) X 2 ( ) X 3 ( )                           x The effective determinant of above is 1/4. Conversion in system matrices of DFT and IDFT obtained by replacing by j by –j. Inversion of above matrix is: x 0 ( ) x 1 ( ) x 2 ( ) x 3 ( )             1 4 1 1 1 1 1 j 1  j  1 1  1 1  1 j  1  j             X 0 ( ) X 1 ( ) X 2 ( ) X 3 ( )                          
  • 19. FOR 8 point DFT: N=8 • The system Matrix is: W8 0x0 W8 0x1 W8 0x2 W8 0x3 W8 0x4 W8 0x5 W8 0x6 W8 0x7 W8 1x0 W8 1x1 W8 1x2 W8 1x3 W8 1x4 W8 1x5 W8 1x6 W8 1x7 W8 2x0 W8 2x1 W8 2x2 W8 2x3 W8 2x4 W8 2x5 W8 2x6 W8 2x7 W8 3x0 W8 3x1 W8 3x2 W8 3x3 W8 3x4 W8 3x5 W8 3x6 W8 3x7 W8 4x0 W8 4x1 W8 4x2 W8 4x3 W8 4x4 W8 4x5 W8 4x6 W8 4x7 W8 5x0 W8 5x1 W8 5x2 W8 5x3 W8 5x4 W8 5x5 W8 5x6 W8 5x7 W8 6x0 W8 6x1 W8 6x2 W8 6x3 W8 6x4 W8 6x5 W8 6x6 W8 6x7 W8 7x0 W8 7x1 W8 7x2 W8 7x0 W8 7x4 W8 7x5 W8 7x6 W8 7x7
  • 20. The characteristic matrix of 8-point DFT is: 1 1 1 1 1 1 1 1 1 1 j  2 j  1 j  ( )  2 1  1 j  ( )  2 j 1 j  2 1 j  1  j 1 j  1  j 1 1 j  ( )  2 j 1 j  2 1  1 j  2 j  1 j  ( )  2 1 1  1 1  1 1  1 1  1 1 j  ( )  2 j  1 j  2 1  1 j  2 j 1 j  ( )  2 1 j 1  j  1 j 1  j  1 1 j  2 j 1 j  ( )  2 1  1 j  ( )  2 j  1 j  ( ) 2                                  
  • 21. DFT and its Inverse Conversion in system matrices of DFT and IDFT obtained by replacing by j by –j.. 1 1 1 1 1 1 1 1 1 1 j  2 j  1 j  ( )  2 1  1 j  ( )  2 j 1 j  2 1 j  1  j 1 j  1  j 1 1 j  ( )  2 j 1 j  2 1  1 j  2 j  1 j  ( )  2 1 1  1 1  1 1  1 1  1 1 j  ( )  2 j  1 j  2 1  1 j  2 j 1 j  ( )  2 1 j 1  j  1 j 1  j  1 1 j  2 j 1 j  ( )  2 1  1 j  ( )  2 j  1 j  ( ) 2                                   1 8 1 1 1 1 1 1 1 1 1 1 j  2 j 1 j  2  1  1 j  2  j  1 j  2 1 j 1  j  1 j 1  j  1 1 j  2  j  1 j  2 1  1 j  2 j 1 j  2  1 1  1 1  1 1  1 1  1 1 j  2  j 1 j  2 1  1 j  2 j  1 j  2  1 j  1  j 1 j  1  j 1 1 j  2 j  1 j  2  1  1 j  2  j 1 j  2                                                                      DFT IDFT Effective determinant
  • 22. Calculation advantage in radix-2 algorithms for various values of N Improvement A/B N N^2 N^2-N A (N/2)ln(N) Nln(N) B 8 64 56 120 8.32 16.64 24.95 4.81 16 256 240 496 22.18 44.36 66.54 7.45 32 1024 992 2016 55.45 110.90 166.36 12.12 64 4096 4032 8128 133.08 266.17 399.25 20.36 128 16384 16256 32640 310.53 621.06 931.59 35.04 256 65536 65280 130816 709.78 1419.57 2129.35 61.43 512 262144 261632 523776 1597.01 3194.02 4791.03 109.32 1024 1048576 1047552 2096128 3548.91 7097.83 10646.74 196.88 2048 4194304 4192256 8386560 7807.61 15615.22 23422.83 358.05 4096 16777216 16773120 33550336 17034.79 34069.57 51104.36 656.51 8192 67108864 67100672 134209536 36908.70 73817.40 110726.10 1212.09 16384 268435456 268419072 536854528 79495.66 158991.33 238486.99 2251.09 No. of computation points DIRECT COMPUTATION FFT computaton complex multiplication Complex additions complex multiplication Complex additions Total Total
  • 23. The Process of Decimation • First step of process of decimation is splitting a sequence in smaller sequences. • A sequence of 15 can be splitted in five sequences of threes or three sequences of fives. • A sequence of 16 numbers can be splitted in 2 sequences of 8. Further,  each sequence of 8 can be be splitted in two sequences of 4;  Subsequently each sequence of 4 can be splitted in two sequences of two;  There can be various combinations and varied complexities.
  • 24. 4-point DFT X 0 ( ) X 1 ( ) X 2 ( ) X 3 ( )             1 1 1 1 1 j  1  j 1 1  1 1  1 j 1  j              x 0 ( ) x 1 ( ) x 2 ( ) x 3 ( )               Can be, by interchanging col. 2 and 3, seen as X 0 ( ) X 1 ( ) X 2 ( ) X 3 ( )             1 1 1 1 1 1  1 1  1 j  1  j 1 j 1  j              x 0 ( ) x 2 ( ) x 1 ( ) x 3 ( )              
  • 25. 4-point DFT X 0 ( ) X 1 ( ) X 2 ( ) X 3 ( )             1 1 1 1 1 1  1 1  1 j  1  j 1 j 1  j              x 0 ( ) x 2 ( ) x 1 ( ) x 3 ( )               The system matrix is rewritten as X 0 ( ) X 1 ( ) X 2 ( ) X 3 ( )             1 0 1 0 0 1 0 1 1 0 1  0 0 j  0 j             1 1 0 0 1 1  0 0 0 0 1 1 0 0 1 1               x 0 ( ) x 2 ( ) x 1 ( ) x 3 ( )              
  • 26. Matrix manipulation to get the desired input sequence from the actual x 0 ( ) x 2 ( ) x 1 ( ) x 3 ( )             1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1             x 0 ( ) x 1 ( ) x 2 ( ) x 3 ( )              
  • 27. Process of decimation: example X[n] -1 -2 1 2 3 4 5 6 7 n X[1] X[3] X[5] X[7] X[n] -1 -2 1 2 3 4 5 6 7 n X[1] X[2] X[3] X[4] X[5] X[6] X[7] X[0] X[n] -1 -2 1 2 3 4 5 6 7 n X[2] X[4] X[6] X[0] Separating the above sequence for +ve ‘n’ in even and odd sequence numbers .
  • 28. Process of decimation: example X[n] - - 1 2 3 4 5 6 7 n X[1] X[3] X[5] X[7] 2 3 4 6 X[n] - 1 5 7 n X[2] X[4] X[6] X[0] Compress the even sequence by two. Shift the sequence to left by one and compress by two X[n] - 1 2 3 n X[2] X[4] X[6] X[0] X[n] 2 4 6 n X[1] X[3] X[5] X[7] The compression is also called decimation
  • 29. x 0 ( ) x 2 ( )  x 0 ( ) x 2 ( )  x 1 ( ) x 3 ( )  x 1 ( ) x 3 ( )              1 1 0 0 1 1  0 0 0 0 1 1 0 0 1 1              x 0 ( ) x 2 ( ) x 1 ( ) x 3 ( )               X 0 ( ) X 1 ( ) X 2 ( ) X 3 ( )             1 0 1 0 0 1 0 1 1 0 1  0 0 j  0 j             x 0 ( ) x 2 ( )  x 0 ( ) x 2 ( )  x 1 ( ) x 3 ( )  x 1 ( ) x 3 ( )                X 0 ( ) X 1 ( ) X 2 ( ) X 3 ( )             1 0 1 0 0 1 0 1 1 0 1  0 0 j  0 j             1 1 0 0 1 1  0 0 0 0 1 1 0 0 1 1               x 0 ( ) x 2 ( ) x 1 ( ) x 3 ( )               First stage of realization Second stage
  • 30. Decimation of 4 point DFT into 2xradix-2 • The values of W4 0= 1; W4 2 = -1; W4 1= -j; and W4 3 = j X[0] x0 x2 x1 x3 x0+x2 xo -x2 x1+x3 x1-x3 X[1] X[2] X[3] Wo w1 W2 W3 -1 -1
  • 31. Decimation of 4 point DFT into 2xradix-2 • The values of W4 0= 1; W4 2 = -1; W4 1= -j; and W4 3 = j X[0] N/4 point DFT even N/4 point DFT odd x0 x2 x1 x3 x0+x2 xo -x2 x1+x3 x1-x3 X[1] X[2] X[3] Wo w1 W2 W3
  • 32. N=8-point radix-4 DIT-FFT: N/2 point DFT [EVEN] N/2 point DFT [ODD] X(0) X(4) X(2) X(6) X(1) X(3) X(5) X(7) X[0] X[1] X[2] X[3] X[4] X[5] X[6] X[7] X0[0] X1 [0] X0[1] X1 [1] X0[2] X1[2] X0[3] X1[3] a -j  -b -1 -a  j b Note: -W4 = W0=1; -W5= W1 = a = (1-j)/2; -W2 = W6=j and -W3 = W7 = b = (1+j)/2 1
  • 33. The matrix equation of the slide is: • Note the symmetry between 1st and 3rd partition and 2nd and 4th partition of system matrix. X 0 ( ) X 1 ( ) X 2 ( ) X 3 ( ) X 4 ( ) X 5 ( ) X 6 ( ) X 7 ( )                        1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 0 0 1  0 0 0 0 a 0 0 0 a  0 0 0 0 j  0 0 0 j 0 0 0 0 b  0 0 0 b                       X 0 0 ( ) X o 1 ( ) X o 2 ( ) X 0 3 ( ) X 1 0 ( ) X 1 1 ( ) X 1 2 ( ) X 1 3 ( )                                
  • 34. N=8-point radix-2 DIT-FFT: N-point DFT N/2 point DFT N/4 point DFT X[0] X[1] X[2] X[3] X[4] X[5] X[6] X[7] x[0] x[4] x[2] x[6] x[1] x[5] x[3] x[7] -1 -1 -1 -1 -1 -1 -1 -1 w2 w2 w2 w1 w3 -1 -1 -1 -1
  • 35. System Matrix for N/2 point DFT Block Note that partitions 2 and 3 are null matrices while partitions 1 and 4 are identical. Also note that subpartitions 1st and 3rd are I matrices and 2nd and 4th sub-partitions have sign difference. Cross diagonals in either case are zero. X 0 0 ( ) X o 1 ( ) X o 2 ( ) X 0 3 ( ) X 1 0 ( ) X 1 1 ( ) X 1 2 ( ) X 1 3 ( )                               1 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 1  0 0 0 0 0 0 j  0 j 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 1  0 0 0 0 0 0 j  0 j                       x 0 ( ) x 4 ( )  x 0 ( ) x 4 ( )  x 2 ( ) x 6 ( )  x 2 ( ) x 6 ( )  x 1 ( ) x 5 ( )  x 1 ( ) x 5 ( )  x 3 ( ) x 7 ( )  x 3 ( ) x 7 ( )                         
  • 36. System Matrix for N/4 block Again see the simile between 1and 4 partitions. Note that 2 and 3 s are null matrices. Further note the sub-partition matrices. They also follow the same rule. All the elements are real. x 0 ( ) x 4 ( )  x 0 ( ) x 4 ( )  x 2 ( ) x 6 ( )  x 2 ( ) x 6 ( )  x 1 ( ) x 5 ( )  x 1 ( ) x 5 ( )  x 3 ( ) x 7 ( )  x 3 ( ) x 7 ( )                        1 1 0 0 0 0 0 0 1 1  0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1  0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1  0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1                        x 1 ( ) x 4 ( ) x 2 ( ) x 6 ( ) x 1 ( ) x 5 ( ) x 3 ( ) x 7 ( )                        
  • 37. Signal flow graph for decimation of 8 point DFT N-point DFT N/2 point DFT N/4 point DFT X[0] X[1] X[2] X[3] X[4] X[5] X[6] X[7] x[0] x[4] x[2] x[6] x[1] x[5] x[3] x[7] -1 -1 -1 -1 -1 -1 -1 -1 w2 w2 w2 w1 w3 -1 -1 -1 -1