SlideShare a Scribd company logo
1 of 1
Download to read offline
Reyan Coskun1, Regis Saliba1, Nicola L.B. Pohl1
1Indiana University, Department of Chemistry, Bloomington, IN 47405, USA
Toward Efficient Chemoenzymatic Syntheses of Sialyl-α-2,3-Lactose/Lactosamine
Assisted by a Fluorous-Tag Purification
Retrosynthesis
Fluorous Tag Synthesis
O
OHHO
O
OH
O O
OH
HO
NHAc
O
HOOC
HO
AcHN
HO
HO HO
OLinker
Enzyme
O
COOH
OH
Enzymatic
O
COOH
OH
OH+CTP
OCMP + O O
O OLinker
NHAc
OH
HO
HO
OH
OH
Galactoycation/
Deprotection
OOHO
OLinker
NHAc
OAc
AcO AcO
AcO
OAc
OH
OAc
OLG
+
NHAc
AcHN
HO
HO OH
HO
HO OH
Lac-R SLac-R
Neu5Ac
CTP
PmST
NmCSS
(NH4)2CO3 100 mM
pH = 8.5
37oC
Entry R Changed Conditions Conversion (by
mass)?
1 Buffering (pH 8.5) 0%
2 Triton-X
DMSO
0%
4 No Linker 100%
O
O
C8F17
O
O
C8F17
O Ph
OH I C8F17+
AIBN
55%
C8F17 OH
I EtO2
LiAlH4
C8F17 OH
C8F17 OMs O OHC8F17
MsCl
NEt3
CH2Cl2
KOH
Bu4NBr
DMF
73% 98%
72%
GluNAc Synthesis
O
PivO
NHAc
O
O
C8F17
HO
OPiv
O
OAc
AcO
AcO
AcO
O CCl3
NH
BF3.OEt2
DCM
+
28%
O
OAcAcO
OAc
O O
OPiv
PivO
NHAc
O
C8F17
AcO
Na
MeOH
O
OHOH
OH
O O
OPiv
PivO
NHAc
O
C8F17
HO
53%
O
OH
HO
HO
ClH.H2N
OH NaOH
O
OH
HO
HO
N
OH
OMe
O
OMe
in water
O
OAc
AcO
AcO
N
OAc
Ac2O
OMe
O
HCl
O
OAc
AcO
AcO
NH2HCl
OAc
AcCl
NET3
O
OAc
AcO
AcO
NHAc
OAc
Linker
Yb(OTF)3
DCM, ∆
O
OAc
AcO
AcO
NHAc
OLinkerDCM
Na
MeOH
O
OH
HO
HO
NHAc
OLinker
O
OH
HO
AcO
NHAc
OLinker
85%
pyridine
81%
83%
83% 30%
2 steps
O
OPiv
HO
PivO
NHAc
OLinker
1)(Bu)2Si(OTF)3, DMF, 32%
2) Ac2O, pyridine, 29%
3) NEt3.3HF, THF, 18%
(Bu)2Si(OTF)3
DCM
32%
pyridine
O
OAc
HO
AcO
NHAc
OLinker
Ph3Bi(OTF)2
DCM
+ O
OAc
OAc
AcO
AcO SET
O O
O OLinker
NHAc
OH
AcOAcO
HO
O OO OLinker
NHAc
OH
AcOHO
HO
TRIS.HCl
pH 8.8
37°C
OH
OH
OH
OH
O
OHHO
O
OH
O O
OH
HO
NHAc
O
HOOC
HO
AcHN
HO
HO HO
OLinker
Na
MeOH
NMCSS
PmST
MgCl2
α-2,3 SLacNAc Synthesis
LacNAc Synthesis Optimization
O
OHHO
O
OH
O O
OH
HO
NHAc
OHO
HOOC
HO
AcHN
HO
HO HO
O
HO
OH
O O
OH
HO
NHAc
OH
OO
HOOC
HO
AcHN
HO
HO HO
HO
α-2,3-linkage
α-2,6-linkage
Background
ConclusionReferences
α-2,3 and α-2,6-linkage SLacNAc in H2
HA Human Receptors
Future Directions
(1)
(2)
α-2,3 (1) and α-2,6 (2) linkage SLacNAc
Influenza A virus subtype H3N2 has been the cause of a type 2
pandemic (Hong Kong flu, 1968-1969), and as a seasonal
influenza, kills over 36,000 people in the U.S. every year (Lin, Y.
P., et al, 2012). After passing from pigs to birds, the transfer of the
virus from avian to human represents a critical infection period.
H3N2 is passed on from birds to humans when influenza
hemagglutinin’s binding preference mutates from sialyl-α-2,3-
lactosamine (SLacNAc)-receptors found in avian intestinal tracks
to sialyl-α-2,6-lactosamine-receptors found in human airway
epithelia. Presently, it has been observed that the virus mutates
based on the linkage present. Thus, very little is known about how
this change happens. Synthesizing the α-2,3-SLacNAc found in
birds could help elucidate the particularities of the virus’s starting
mutation, and on the particularities of this specific linkage to
preventing the influenza from transmission across species.
(1) Chen, G.-S. and N. L. Pohl (2008). "Synthesis of Fluorous Tags for Incorporation of Reducing Sugars into a Quantitative Microarray Platform." Organic
Letters 10(5): 785-788.
(2) Myszka, H., et al. (2003). "Synthesis and induction of apoptosis in B cell chronic leukemia by diosgenyl 2-amino-2-deoxy-beta-D-glucopyranoside
hydrochloride and its derivatives." Carbohydrate Research 338(2): 133-141.
(3) Liu, J., et al. (2009). "Structures of receptor complexes formed by hemagglutinins from the Asian Influenza pandemic of 1957." Proceedings of the National
Academy of Sciences 106(40): 17175-17180.
(4) Lin, Y. P., et al. (2012). "Evolution of the receptor binding properties of the influenza A(H3N2) hemagglutinin." Proceedings of the National Academy of
Sciences 109(52): 21474-21479.
(5) Stencel-Baerenwald, J. E., et al. (2014). "The sweet spot: defining virus-sialic acid interactions." Nat Rev Micro 12(11): 739-749.
α-2,3 and α-2,6-linked SLacNAc interacts with avian H2 hemagglutinin receptors (trans
conformation). (A) A/dk/Ontario/77 H2 HA, in complex with α-2,3-linked SLacNAc. (B)
A/Singapore/1/57 H2 HA, in complex with α-2,6-linked SLacNAc.
• Sialylation is chemically challenging. Enzymatically, the
sialylation is a more preferable reaction.
• But through enzymatic glycosylation, there are many other
compounds that are difficult to purify.
• The fluorous linker, using FSPE techniques and affinity
chromatography, can be purified easier because only
compounds with the fluorous tag (just the target sugar)
passes through.
Proc Natl Acad Sci U S A. 2009 Oct 6; 106(40): 17175–17180.
The initial SLacNac synthesis saw little conversion by mass from LacNAc to SLacNAc
maybe due to the fluorous tag incompatibility and insolubility. After trying different R groups
and conditions, future directions involve further spacer additions and smaller fluorous tags.
Current results showed that the CMP-Neu5Ac synthetase’s (CSS) sialylation of LacNAc +
the C8F17 linker with Neu5Ac did not proceeded. The main observed problem was the
potential LacNAc + C8F17 linker’s solubility and pH incompatibly with enzymatic
glycosylation. Overall, future trials involve optimization for these conditions and running the
reactions on an automated platform.
(1)
(2)

More Related Content

What's hot

JOC-Liu-1987
JOC-Liu-1987JOC-Liu-1987
JOC-Liu-1987Paul Liu
 
The (2, 3) witting rearrangement
The (2, 3) witting rearrangementThe (2, 3) witting rearrangement
The (2, 3) witting rearrangementrajenderkarnekanti
 
UW Madison REU Poster (Full Size)
UW Madison REU Poster (Full Size)UW Madison REU Poster (Full Size)
UW Madison REU Poster (Full Size)Jordan Brown
 
55701 mcr1 a (5)
55701 mcr1 a (5)55701 mcr1 a (5)
55701 mcr1 a (5)Elangovan N
 
6_Poster_Bassam_Hb
6_Poster_Bassam_Hb6_Poster_Bassam_Hb
6_Poster_Bassam_HbRasha Bassam
 
Sulfonium-Ion Glycosidase Inhibitors and Their Derivatives
Sulfonium-Ion Glycosidase Inhibitors and Their DerivativesSulfonium-Ion Glycosidase Inhibitors and Their Derivatives
Sulfonium-Ion Glycosidase Inhibitors and Their DerivativesAndeChennaiah
 
Computational and Experimental Studies of MTO Catalyzed Olefin Hydrogenation
Computational and Experimental Studies of MTO Catalyzed Olefin HydrogenationComputational and Experimental Studies of MTO Catalyzed Olefin Hydrogenation
Computational and Experimental Studies of MTO Catalyzed Olefin HydrogenationKaram Idrees
 
pvdq_1
pvdq_1pvdq_1
pvdq_1Rui Wu
 
As 03 Enzymes
As 03 EnzymesAs 03 Enzymes
As 03 Enzymesscuffruff
 
Research talk Montpellier 28 November 2013
Research talk Montpellier 28 November 2013Research talk Montpellier 28 November 2013
Research talk Montpellier 28 November 2013Samuele Staderini
 
2014. Pietkiewicz, Wahyudi. Synthesis of macrocycles that inhibit protein syn...
2014. Pietkiewicz, Wahyudi. Synthesis of macrocycles that inhibit protein syn...2014. Pietkiewicz, Wahyudi. Synthesis of macrocycles that inhibit protein syn...
2014. Pietkiewicz, Wahyudi. Synthesis of macrocycles that inhibit protein syn...Adrian Pietkiewicz
 
Lipases - Ester Hydrolysis
Lipases - Ester HydrolysisLipases - Ester Hydrolysis
Lipases - Ester Hydrolysisyuvraj404
 

What's hot (19)

org lett tbt
org lett tbtorg lett tbt
org lett tbt
 
bace1-alzheimers paper
bace1-alzheimers paperbace1-alzheimers paper
bace1-alzheimers paper
 
Shukla et al
Shukla et alShukla et al
Shukla et al
 
JOC-Liu-1987
JOC-Liu-1987JOC-Liu-1987
JOC-Liu-1987
 
The (2, 3) witting rearrangement
The (2, 3) witting rearrangementThe (2, 3) witting rearrangement
The (2, 3) witting rearrangement
 
Cheng 2015
Cheng 2015Cheng 2015
Cheng 2015
 
Kawabata1997
Kawabata1997Kawabata1997
Kawabata1997
 
UW Madison REU Poster (Full Size)
UW Madison REU Poster (Full Size)UW Madison REU Poster (Full Size)
UW Madison REU Poster (Full Size)
 
55701 mcr1 a (5)
55701 mcr1 a (5)55701 mcr1 a (5)
55701 mcr1 a (5)
 
6_Poster_Bassam_Hb
6_Poster_Bassam_Hb6_Poster_Bassam_Hb
6_Poster_Bassam_Hb
 
Sulfonium-Ion Glycosidase Inhibitors and Their Derivatives
Sulfonium-Ion Glycosidase Inhibitors and Their DerivativesSulfonium-Ion Glycosidase Inhibitors and Their Derivatives
Sulfonium-Ion Glycosidase Inhibitors and Their Derivatives
 
Computational and Experimental Studies of MTO Catalyzed Olefin Hydrogenation
Computational and Experimental Studies of MTO Catalyzed Olefin HydrogenationComputational and Experimental Studies of MTO Catalyzed Olefin Hydrogenation
Computational and Experimental Studies of MTO Catalyzed Olefin Hydrogenation
 
pvdq_1
pvdq_1pvdq_1
pvdq_1
 
As 03 Enzymes
As 03 EnzymesAs 03 Enzymes
As 03 Enzymes
 
Research talk Montpellier 28 November 2013
Research talk Montpellier 28 November 2013Research talk Montpellier 28 November 2013
Research talk Montpellier 28 November 2013
 
2014. Pietkiewicz, Wahyudi. Synthesis of macrocycles that inhibit protein syn...
2014. Pietkiewicz, Wahyudi. Synthesis of macrocycles that inhibit protein syn...2014. Pietkiewicz, Wahyudi. Synthesis of macrocycles that inhibit protein syn...
2014. Pietkiewicz, Wahyudi. Synthesis of macrocycles that inhibit protein syn...
 
N195P_Biochem_2002
N195P_Biochem_2002N195P_Biochem_2002
N195P_Biochem_2002
 
CcPK2_Biochem_1999
CcPK2_Biochem_1999CcPK2_Biochem_1999
CcPK2_Biochem_1999
 
Lipases - Ester Hydrolysis
Lipases - Ester HydrolysisLipases - Ester Hydrolysis
Lipases - Ester Hydrolysis
 

Viewers also liked (20)

Updated Daphnicyclidins
Updated DaphnicyclidinsUpdated Daphnicyclidins
Updated Daphnicyclidins
 
seminar presentation
seminar presentationseminar presentation
seminar presentation
 
Problems1
Problems1Problems1
Problems1
 
Problems II
Problems IIProblems II
Problems II
 
Retrosynthesis
RetrosynthesisRetrosynthesis
Retrosynthesis
 
123.202 Lecture 9 - alkenes
123.202 Lecture 9 - alkenes123.202 Lecture 9 - alkenes
123.202 Lecture 9 - alkenes
 
Organic chemistry and stereoisomers
Organic chemistry and stereoisomersOrganic chemistry and stereoisomers
Organic chemistry and stereoisomers
 
Aromatic Comp. Lec.4
Aromatic Comp. Lec.4Aromatic Comp. Lec.4
Aromatic Comp. Lec.4
 
123713AB lecture03
123713AB lecture03123713AB lecture03
123713AB lecture03
 
123713AB lecture07
123713AB lecture07123713AB lecture07
123713AB lecture07
 
123713AB lecture04
123713AB lecture04123713AB lecture04
123713AB lecture04
 
Lecture1 123713A
Lecture1 123713ALecture1 123713A
Lecture1 123713A
 
Lecture3 123713B
Lecture3 123713BLecture3 123713B
Lecture3 123713B
 
Lecture4 123713B
Lecture4 123713BLecture4 123713B
Lecture4 123713B
 
Problems 1 answers
Problems 1 answersProblems 1 answers
Problems 1 answers
 
Tutorial 1 answers
Tutorial 1 answersTutorial 1 answers
Tutorial 1 answers
 
Lecture2 123713A
Lecture2 123713ALecture2 123713A
Lecture2 123713A
 
Tutorial 2 answers
Tutorial 2 answersTutorial 2 answers
Tutorial 2 answers
 
Tutorial 3 answers
Tutorial 3 answersTutorial 3 answers
Tutorial 3 answers
 
Problems 2 answers
Problems 2 answersProblems 2 answers
Problems 2 answers
 

Similar to STARS Poster (1-2016)

STUDY OF A CATALYST OF CITRIC ACID CROSSLINKING ON LOCUST BEAN GUM
STUDY OF A CATALYST OF CITRIC ACID CROSSLINKING ON LOCUST BEAN GUMSTUDY OF A CATALYST OF CITRIC ACID CROSSLINKING ON LOCUST BEAN GUM
STUDY OF A CATALYST OF CITRIC ACID CROSSLINKING ON LOCUST BEAN GUMUniversitasGadjahMada
 
Poster PRESENTATION
Poster PRESENTATIONPoster PRESENTATION
Poster PRESENTATIONPaulami Bose
 
Biomimetic hplc methods to predict in vivo drug distribution
Biomimetic hplc methods to predict in vivo drug distributionBiomimetic hplc methods to predict in vivo drug distribution
Biomimetic hplc methods to predict in vivo drug distributionCathe Barty
 
Trecker_summer_2015_poster
Trecker_summer_2015_posterTrecker_summer_2015_poster
Trecker_summer_2015_posterJohn Trecker
 
BOMCl etherial nature of AGPS
BOMCl etherial nature of AGPSBOMCl etherial nature of AGPS
BOMCl etherial nature of AGPSKendal Ryter
 
J. biol. chem. 1986-fushitani-8414-23
J. biol. chem. 1986-fushitani-8414-23J. biol. chem. 1986-fushitani-8414-23
J. biol. chem. 1986-fushitani-8414-23guestfebc32d
 
DK - PhD Thesis (FINAL)
DK - PhD Thesis (FINAL)DK - PhD Thesis (FINAL)
DK - PhD Thesis (FINAL)Daniel J. Kerr
 
MetabolicAcidosisinA.pdf
MetabolicAcidosisinA.pdfMetabolicAcidosisinA.pdf
MetabolicAcidosisinA.pdfHosneara18
 
Bacterial Periplasmic Binding Proteins as Biosensors in Liposomes
Bacterial Periplasmic Binding Proteins as Biosensors in LiposomesBacterial Periplasmic Binding Proteins as Biosensors in Liposomes
Bacterial Periplasmic Binding Proteins as Biosensors in LiposomesHeather Jordan
 
Bio390 final paper
Bio390 final paperBio390 final paper
Bio390 final paperlcklemm
 
Fluorescence Spectroscopy for Quantifying OH Radicals Produced by
Fluorescence Spectroscopy for Quantifying OH Radicals Produced byFluorescence Spectroscopy for Quantifying OH Radicals Produced by
Fluorescence Spectroscopy for Quantifying OH Radicals Produced byStephanie Hernandez
 

Similar to STARS Poster (1-2016) (20)

ProteinSci2007
ProteinSci2007ProteinSci2007
ProteinSci2007
 
Vashishtha_ABB_2015
Vashishtha_ABB_2015Vashishtha_ABB_2015
Vashishtha_ABB_2015
 
OBC- 2013
OBC- 2013OBC- 2013
OBC- 2013
 
ketoartic_le.pdf
ketoartic_le.pdfketoartic_le.pdf
ketoartic_le.pdf
 
STUDY OF A CATALYST OF CITRIC ACID CROSSLINKING ON LOCUST BEAN GUM
STUDY OF A CATALYST OF CITRIC ACID CROSSLINKING ON LOCUST BEAN GUMSTUDY OF A CATALYST OF CITRIC ACID CROSSLINKING ON LOCUST BEAN GUM
STUDY OF A CATALYST OF CITRIC ACID CROSSLINKING ON LOCUST BEAN GUM
 
Poster PRESENTATION
Poster PRESENTATIONPoster PRESENTATION
Poster PRESENTATION
 
CcP2APX_Biochem_2008
CcP2APX_Biochem_2008CcP2APX_Biochem_2008
CcP2APX_Biochem_2008
 
Biomimetic hplc methods to predict in vivo drug distribution
Biomimetic hplc methods to predict in vivo drug distributionBiomimetic hplc methods to predict in vivo drug distribution
Biomimetic hplc methods to predict in vivo drug distribution
 
Trecker_summer_2015_poster
Trecker_summer_2015_posterTrecker_summer_2015_poster
Trecker_summer_2015_poster
 
BOMCl etherial nature of AGPS
BOMCl etherial nature of AGPSBOMCl etherial nature of AGPS
BOMCl etherial nature of AGPS
 
J. biol. chem. 1986-fushitani-8414-23
J. biol. chem. 1986-fushitani-8414-23J. biol. chem. 1986-fushitani-8414-23
J. biol. chem. 1986-fushitani-8414-23
 
DK - PhD Thesis (FINAL)
DK - PhD Thesis (FINAL)DK - PhD Thesis (FINAL)
DK - PhD Thesis (FINAL)
 
11
1111
11
 
MetabolicAcidosisinA.pdf
MetabolicAcidosisinA.pdfMetabolicAcidosisinA.pdf
MetabolicAcidosisinA.pdf
 
Bacterial Periplasmic Binding Proteins as Biosensors in Liposomes
Bacterial Periplasmic Binding Proteins as Biosensors in LiposomesBacterial Periplasmic Binding Proteins as Biosensors in Liposomes
Bacterial Periplasmic Binding Proteins as Biosensors in Liposomes
 
Bio390 final paper
Bio390 final paperBio390 final paper
Bio390 final paper
 
Fluorescence Spectroscopy for Quantifying OH Radicals Produced by
Fluorescence Spectroscopy for Quantifying OH Radicals Produced byFluorescence Spectroscopy for Quantifying OH Radicals Produced by
Fluorescence Spectroscopy for Quantifying OH Radicals Produced by
 
ketoartic_le .pdf
ketoartic_le .pdfketoartic_le .pdf
ketoartic_le .pdf
 
linked in PRESENTATION
linked in PRESENTATIONlinked in PRESENTATION
linked in PRESENTATION
 
Biotech lett
Biotech lettBiotech lett
Biotech lett
 

STARS Poster (1-2016)

  • 1. Reyan Coskun1, Regis Saliba1, Nicola L.B. Pohl1 1Indiana University, Department of Chemistry, Bloomington, IN 47405, USA Toward Efficient Chemoenzymatic Syntheses of Sialyl-α-2,3-Lactose/Lactosamine Assisted by a Fluorous-Tag Purification Retrosynthesis Fluorous Tag Synthesis O OHHO O OH O O OH HO NHAc O HOOC HO AcHN HO HO HO OLinker Enzyme O COOH OH Enzymatic O COOH OH OH+CTP OCMP + O O O OLinker NHAc OH HO HO OH OH Galactoycation/ Deprotection OOHO OLinker NHAc OAc AcO AcO AcO OAc OH OAc OLG + NHAc AcHN HO HO OH HO HO OH Lac-R SLac-R Neu5Ac CTP PmST NmCSS (NH4)2CO3 100 mM pH = 8.5 37oC Entry R Changed Conditions Conversion (by mass)? 1 Buffering (pH 8.5) 0% 2 Triton-X DMSO 0% 4 No Linker 100% O O C8F17 O O C8F17 O Ph OH I C8F17+ AIBN 55% C8F17 OH I EtO2 LiAlH4 C8F17 OH C8F17 OMs O OHC8F17 MsCl NEt3 CH2Cl2 KOH Bu4NBr DMF 73% 98% 72% GluNAc Synthesis O PivO NHAc O O C8F17 HO OPiv O OAc AcO AcO AcO O CCl3 NH BF3.OEt2 DCM + 28% O OAcAcO OAc O O OPiv PivO NHAc O C8F17 AcO Na MeOH O OHOH OH O O OPiv PivO NHAc O C8F17 HO 53% O OH HO HO ClH.H2N OH NaOH O OH HO HO N OH OMe O OMe in water O OAc AcO AcO N OAc Ac2O OMe O HCl O OAc AcO AcO NH2HCl OAc AcCl NET3 O OAc AcO AcO NHAc OAc Linker Yb(OTF)3 DCM, ∆ O OAc AcO AcO NHAc OLinkerDCM Na MeOH O OH HO HO NHAc OLinker O OH HO AcO NHAc OLinker 85% pyridine 81% 83% 83% 30% 2 steps O OPiv HO PivO NHAc OLinker 1)(Bu)2Si(OTF)3, DMF, 32% 2) Ac2O, pyridine, 29% 3) NEt3.3HF, THF, 18% (Bu)2Si(OTF)3 DCM 32% pyridine O OAc HO AcO NHAc OLinker Ph3Bi(OTF)2 DCM + O OAc OAc AcO AcO SET O O O OLinker NHAc OH AcOAcO HO O OO OLinker NHAc OH AcOHO HO TRIS.HCl pH 8.8 37°C OH OH OH OH O OHHO O OH O O OH HO NHAc O HOOC HO AcHN HO HO HO OLinker Na MeOH NMCSS PmST MgCl2 α-2,3 SLacNAc Synthesis LacNAc Synthesis Optimization O OHHO O OH O O OH HO NHAc OHO HOOC HO AcHN HO HO HO O HO OH O O OH HO NHAc OH OO HOOC HO AcHN HO HO HO HO α-2,3-linkage α-2,6-linkage Background ConclusionReferences α-2,3 and α-2,6-linkage SLacNAc in H2 HA Human Receptors Future Directions (1) (2) α-2,3 (1) and α-2,6 (2) linkage SLacNAc Influenza A virus subtype H3N2 has been the cause of a type 2 pandemic (Hong Kong flu, 1968-1969), and as a seasonal influenza, kills over 36,000 people in the U.S. every year (Lin, Y. P., et al, 2012). After passing from pigs to birds, the transfer of the virus from avian to human represents a critical infection period. H3N2 is passed on from birds to humans when influenza hemagglutinin’s binding preference mutates from sialyl-α-2,3- lactosamine (SLacNAc)-receptors found in avian intestinal tracks to sialyl-α-2,6-lactosamine-receptors found in human airway epithelia. Presently, it has been observed that the virus mutates based on the linkage present. Thus, very little is known about how this change happens. Synthesizing the α-2,3-SLacNAc found in birds could help elucidate the particularities of the virus’s starting mutation, and on the particularities of this specific linkage to preventing the influenza from transmission across species. (1) Chen, G.-S. and N. L. Pohl (2008). "Synthesis of Fluorous Tags for Incorporation of Reducing Sugars into a Quantitative Microarray Platform." Organic Letters 10(5): 785-788. (2) Myszka, H., et al. (2003). "Synthesis and induction of apoptosis in B cell chronic leukemia by diosgenyl 2-amino-2-deoxy-beta-D-glucopyranoside hydrochloride and its derivatives." Carbohydrate Research 338(2): 133-141. (3) Liu, J., et al. (2009). "Structures of receptor complexes formed by hemagglutinins from the Asian Influenza pandemic of 1957." Proceedings of the National Academy of Sciences 106(40): 17175-17180. (4) Lin, Y. P., et al. (2012). "Evolution of the receptor binding properties of the influenza A(H3N2) hemagglutinin." Proceedings of the National Academy of Sciences 109(52): 21474-21479. (5) Stencel-Baerenwald, J. E., et al. (2014). "The sweet spot: defining virus-sialic acid interactions." Nat Rev Micro 12(11): 739-749. α-2,3 and α-2,6-linked SLacNAc interacts with avian H2 hemagglutinin receptors (trans conformation). (A) A/dk/Ontario/77 H2 HA, in complex with α-2,3-linked SLacNAc. (B) A/Singapore/1/57 H2 HA, in complex with α-2,6-linked SLacNAc. • Sialylation is chemically challenging. Enzymatically, the sialylation is a more preferable reaction. • But through enzymatic glycosylation, there are many other compounds that are difficult to purify. • The fluorous linker, using FSPE techniques and affinity chromatography, can be purified easier because only compounds with the fluorous tag (just the target sugar) passes through. Proc Natl Acad Sci U S A. 2009 Oct 6; 106(40): 17175–17180. The initial SLacNac synthesis saw little conversion by mass from LacNAc to SLacNAc maybe due to the fluorous tag incompatibility and insolubility. After trying different R groups and conditions, future directions involve further spacer additions and smaller fluorous tags. Current results showed that the CMP-Neu5Ac synthetase’s (CSS) sialylation of LacNAc + the C8F17 linker with Neu5Ac did not proceeded. The main observed problem was the potential LacNAc + C8F17 linker’s solubility and pH incompatibly with enzymatic glycosylation. Overall, future trials involve optimization for these conditions and running the reactions on an automated platform. (1) (2)