SlideShare a Scribd company logo
1 of 61
1 
TTHHEERRMMOOCCHHEEMMIISSTTRRYY 
TThheerrmmooddyynnaammiiccss 
TThhee ssttuuddyy ooff HHeeaatt aanndd WWoorrkk 
aanndd SSttaattee FFuunnccttiioonnss 
bbyy-- SSaauurraavv KK.. RRaawwaatt 
((RRaawwaatt DDAA GGrreeaatttt))
EEEEnnnneeeerrrrggggyyyy &&&& CCCChhhheeeemmmmiiiissssttttrrrryyyy 2 
EENNEERRGGYY iiss tthhee ccaappaacciittyy ttoo 
ddoo wwoorrkk oorr ttrraannssffeerr hheeaatt.. 
HHEEAATT iiss tthhee ffoorrmm ooff eenneerrggyy 
tthhaatt fflloowwss bbeettwweeeenn 22 
oobbjjeeccttss bbeeccaauussee ooff tthheeiirr 
ddiiffffeerreennccee iinn tteemmppeerraattuurree.. 
OOtthheerr ffoorrmmss ooff eenneerrggyy —— 
• lliigghhtt 
• eelleeccttrriiccaall 
• kkiinneettiicc aanndd ppootteennttiiaall
EEnneerrggyy && CChheemmiissttrryy 3 
• Burning ppeeaannuuttss 
ssuuppppllyy ssuuffffiicciieenntt 
eenneerrggyy ttoo bbooiill aa ccuupp 
ooff wwaatteerr.. 
• BBuurrnniinngg ssuuggaarr 
((ssuuggaarr rreeaaccttss wwiitthh 
KKCCllOO33,, aa ssttrroonngg 
ooxxiiddiizziinngg aaggeenntt))
EEnneerrggyy && CChheemmiissttrryy 4 
• TThheessee rreeaaccttiioonnss aarree PPRROODDUUCCTT 
FFAAVVOORREEDD 
• TThheeyy pprroocceeeedd aallmmoosstt ccoommpplleetteellyy 
ffrroomm rreeaaccttaannttss ttoo pprroodduuccttss,, ppeerrhhaappss 
wwiitthh ssoommee oouuttssiiddee aassssiissttaannccee..
EEnneerrggyy && CChheemmiissttrryy 5 
22 HH22((gg)) ++ OO22((gg)) ---->> 
22 HH22OO((gg)) ++ hheeaatt aanndd lliigghhtt 
TThhiiss ccaann bbee sseett uupp ttoo pprroovviiddee 
EELLEECCTTRRIICC EENNEERRGGYY iinn aa 
ffuueell cceellll.. 
OOxxiiddaattiioonn:: 
22 HH22 ------>> 44 HH++ ++ 44 ee-- 
RReedduuccttiioonn:: 
44 ee-- ++ OO22 ++ 22 HH22OO ------>> 44 OOHH-- CCR, page 845
6 
PPPPooootttteeeennnnttttiiiiaaaallll &&&& KKKKiiiinnnneeeettttiiiicccc EEEEnnnneeeerrrrggggyyyy 
Potential 
energy —— 
energy a 
motionless 
body has by 
virtue of its 
position.
7 
PPootteennttiiaall EEnneerrggyy 
oonn tthhee AAttoommiicc SSccaallee 
• Positive and 
negative particles 
(ions) attract one 
another. 
• Two atoms can 
bond 
• As the particles 
attract they have a 
lower potential 
energy 
NNaaCCll —— ccoommppoosseedd ooff 
NNaa++ aanndd CCll-- iioonnss..
8 
PPootteennttiiaall EEnneerrggyy 
oonn tthhee AAttoommiicc SSccaallee 
• Positive and 
negative particles 
(ions) attract one 
another. 
• Two atoms can 
bond 
• As the particles 
attract they have a 
lower potential 
energy
9 
PPPPooootttteeeennnnttttiiiiaaaallll &&&& KKKKiiiinnnneeeettttiiiicccc EEEEnnnneeeerrrrggggyyyy 
Kinetic energy 
—— energy of 
motion 
•• Translation
PPPPooootttteeeennnnttttiiiiaaaallll &&&& KKKKiiiinnnneeeettttiiiicccc EEEEnnnneeeerrrrggggyyyy 10 
Kinetic energy 
—— energy of 
motion. 
translate 
rotate 
vibrate 
translate 
rotate 
vibrate
11 
IInntteerrnnaall EEnneerrggyy ((EE)) 
• PPEE ++ KKEE == IInntteerrnnaall eenneerrggyy ((EE oorr UU)) 
• IInntt.. EE ooff aa cchheemmiiccaall ssyysstteemm 
ddeeppeennddss oonn 
• nnuummbbeerr ooff ppaarrttiicclleess 
• ttyyppee ooff ppaarrttiicclleess 
• tteemmppeerraattuurree
12 
IInntteerrnnaall EEnneerrggyy ((EE)) 
• PPEE ++ KKEE == IInntteerrnnaall eenneerrggyy ((EE oorr UU)) 
QuickTime™ and a 
Graphics decompressor 
are needed to see this picture.
13 
IInntteerrnnaall EEnneerrggyy ((EE)) 
• TThhee hhiigghheerr tthhee TT 
tthhee hhiigghheerr tthhee 
iinntteerrnnaall eenneerrggyy 
• SSoo,, uussee cchhaannggeess 
iinn TT ((ΔΔTT)) ttoo 
mmoonniittoorr cchhaannggeess 
iinn EE ((ΔΔEE))..
14 
TThheerrmmooddyynnaammiiccss 
• Thermodynamics is the science of heat 
(energy) transfer. 
HHeeaatt eenneerrggyy iiss aassssoocciiaatteedd 
wwiitthh mmoolleeccuullaarr mmoottiioonnss.. 
Heat transfers until thermal equilibrium is 
established.
15 DDiirreeccttiioonnaalliittyy ooff HHeeaatt TTrraannssffeerr 
• Heat always transfer from hotter object to 
cooler one. 
• EXOthermic: heat transfers from SYSTEM to 
SURROUNDINGS. 
TT((ssyysstteemm)) ggooeess ddoowwnn 
TT((ssuurrrr)) ggooeess uupp
16 DDiirreeccttiioonnaalliittyy ooff HHeeaatt TTrraannssffeerr 
• Heat always transfer from hotter object to 
cooler one. 
• ENDOthermic: heat transfers from 
SURROUNDINGS to the SYSTEM. 
TT((ssyysstteemm)) ggooeess uupp 
TT ((ssuurrrr)) ggooeess ddoowwnn
17 
EEnneerrggyy && CChheemmiissttrryy 
AAllll ooff tthheerrmmooddyynnaammiiccss ddeeppeennddss 
oonn tthhee llaaww ooff 
CCOONNSSEERRVVAATTIIOONN OOFF EENNEERRGGYY.. 
• TThhee ttoottaall eenneerrggyy iiss uunncchhaannggeedd 
iinn aa cchheemmiiccaall rreeaaccttiioonn.. 
• IIff PPEE ooff pprroodduuccttss iiss lleessss tthhaann 
rreeaaccttaannttss,, tthhee ddiiffffeerreennccee mmuusstt 
bbee rreelleeaasseedd aass KKEE..
EEnneerrggyy CChhaannggee iinn 18 
CChheemmiiccaall PPrroocceesssseess 
Reactants 
Kinetic 
Energy 
Products 
PE 
PPEE ooff ssyysstteemm ddrrooppppeedd.. KKEE iinnccrreeaasseedd.. TThheerreeffoorree,, 
yyoouu oofftteenn ffeeeell aa TT iinnccrreeaassee..
UUUUNNNNIIIITTTTSSSS OOOOFFFF EEEENNNNEEEERRRRGGGGYYYY 19 
11 ccaalloorriiee == hheeaatt rreeqquuiirreedd ttoo 
rraaiissee tteemmpp.. ooff 11..0000 gg ooff 
HH22OO bbyy 11..00 ooCC.. 
11000000 ccaall == 11 kkiillooccaalloorriiee == 11 
kkccaall 
11 kkccaall == 11 CCaalloorriiee ((aa ffoooodd 
““ccaalloorriiee””)) 
BBuutt wwee uussee tthhee uunniitt ccaalllleedd 
tthhee JJOOUULLEE 
11 ccaall == 44..118844 jjoouulleess 
JJaammeess JJoouullee 
11881188--11888899
20 
HHEEAATT CCAAPPAACCIITTYY 
The heat required to raise an 
object’s T by 1 ˚C. 
WWhhiicchh hhaass tthhee llaarrggeerr hheeaatt ccaappaacciittyy??
SSSSppppeeeecccciiiiffffiiiicccc HHHHeeeeaaaatttt CCCCaaaappppaaaacccciiiittttyyyy 21 
How much energy is 
transferred due to T 
difference? 
The heat ((qq)) ““lost”” or ““gained”” 
is related to 
a) sample mass 
b) change in T and 
c) specific heat capacity 
Specific heat capacity = 
heat lost or gained by substance (J) 
(mass, g)(T change ,K)
SSSSppppeeeecccciiiiffffiiiicccc HHHHeeeeaaaatttt CCCCaaaappppaaaacccciiiittttyyyy 22 
SSuubbssttaannccee SSppeecc.. HHeeaatt ((JJ//gg••KK)) 
HH22OO 44..118844 
EEtthhyylleennee ggllyyccooll 22..3399 
AAll 00..889977 
ggllaassss 00..8844 
AAlluummiinnuumm
23 
SSSSppppeeeecccciiiiffffiiiicccc HHHHeeeeaaaatttt CCCCaaaappppaaaacccciiiittttyyyy 
IIff 2255..00 gg ooff AAll ccooooll ffrroomm 
331100 ooCC ttoo 3377 ooCC,, hhooww 
mmaannyy jjoouulleess ooff hheeaatt 
eenneerrggyy aarree lloosstt bbyy 
tthhee AAll?? 
Specific heat capacity = 
heat lost or gained by substance (J) 
(mass, g)(T change ,K)
24 
SSSSppppeeeecccciiiiffffiiiicccc HHHHeeeeaaaatttt CCCCaaaappppaaaacccciiiittttyyyy 
IIff 2255..00 gg ooff AAll ccooooll ffrroomm 331100 ooCC ttoo 3377 ooCC,, hhooww mmaannyy 
jjoouulleess ooff hheeaatt eenneerrggyy aarree lloosstt bbyy tthhee AAll?? 
heat gain/lose = q = (sp. ht.)(mass)(ΔT) 
wwhheerree ΔΔTT == TTffiinnaall -- TTiinniittiiaall 
qq == ((00..889977 JJ//gg••KK))((2255..00 gg))((3377 -- 331100))KK 
qq == -- 66112200 JJ 
Notice that the negative sign on q signals 
heat ““lost by”” or transferred OUT of Al.
HHeeaatt TTrraannssffeerr 25 
NNoo CChhaannggee iinn SSttaattee 
q transferred = (sp. ht.)(mass)(ΔT)
26 
HHeeaatt TTrraannssffeerr wwiitthh 
CChhaannggee ooff SSttaattee 
CChhaannggeess ooff ssttaattee iinnvvoollvvee eenneerrggyy ((aatt ccoonnssttaanntt TT)) 
IIccee ++ 333333 JJ//gg ((hheeaatt ooff ffuussiioonn)) ---------->> LLiiqquuiidd wwaatteerr 
qq == ((hheeaatt ooff ffuussiioonn))((mmaassss))
27 
HHeeaatt TTrraannssffeerr aanndd 
CChhaannggeess ooff SSttaattee 
Requires energy 
(heat). 
This is the reason 
a) you cool down after 
swimming 
b) you use water to put 
out a fire. 
+ energy 
Liquid ---> Vapor
28 
HHeeaattiinngg//CCoooolliinngg CCuurrvvee ffoorr WWaatteerr 
HHeeaatt wwaatteerr 
EEvvaappoorraattee wwaatteerr 
MMeelltt iiccee 
NNoottee tthhaatt TT iiss 
ccoonnssttaanntt aass iiccee mmeellttss
29 
HHHHeeeeaaaatttt &&&& CCCChhhhaaaannnnggggeeeessss ooooffff SSSSttttaaaatttteeee 
What quantity of heat is required to 
melt 500. g of ice and heat the 
water to steam at 100 oC? 
Heat of fusion of ice = 333 J/g 
Specific heat of water = 4.2 J/g••K 
Heat of vaporization = 2260 J/g 
Heat of fusion of ice = 333 J/g 
Specific heat of water = 4.2 J/g••K 
Heat of vaporization = 2260 J/g 
++333333 JJ//gg ++22226600 JJ//gg
30 
HHHHeeeeaaaatttt &&&& CCCChhhhaaaannnnggggeeeessss ooooffff SSSSttttaaaatttteeee 
How much heat is required to melt 500. g of 
ice and heat the water to steam at 100 oC? 
1. To melt ice 
q = (500. g)(333 J/g) = 1.67 x 105 J 
2. To raise water from 0 oC to 100 oC 
q = (500. g)(4.2 J/g••K)(100 - 0)K = 2.1 x 
105 J 
3. To evaporate water at 100 oC 
q = (500. g)(2260 J/g) = 1.13 x 106 J 
4. Total heat energy = 1.51 x 106 J = 
1510 kJ
CChheemmiiccaall RReeaaccttiivviittyy 31 
What drives chemical reactions? How do they 
occur? 
The first is answered by TTHHEERRMMOODDYYNNAAMMIICCSS 
and the second by KKIINNEETTIICCSS. 
Have already seen a number of ““driving 
forces”” for reactions that are PRODUCT-FAVORED. 
•• formation of a precipitate 
•• gas formation 
•• H2O formation (acid-base reaction) 
•• electron transfer in a battery
CChheemmiiccaall RReeaaccttiivviittyy 32 
But energy transfer also allows us to predict 
reactivity. 
IInn ggeenneerraall,, rreeaaccttiioonnss tthhaatt ttrraannssffeerr eenneerrggyy 
ttoo tthheeiirr ssuurrrroouunnddiinnggss aarree pprroodduucctt-- 
ffaavvoorreedd.. 
So, let us consider heat transfer in chemical processes.
33 
HHeeaatt EEnneerrggyy TTrraannssffeerr iinn 
aa PPhhyyssiiccaall PPrroocceessss 
CO2 (s, -78 oC) ---> CO2 (g, -78 oC) 
Heat transfers from surroundings to system in endothermic process.
34 
HHeeaatt EEnneerrggyy TTrraannssffeerr iinn 
aa PPhhyyssiiccaall PPrroocceessss 
• CO2 (s, -78 oC) ---> 
CO2 (g, -78 oC) 
• A regular array of 
molecules in a 
solid 
-----> gas phase 
molecules. 
• Gas molecules 
have higher kinetic 
energy.
35 
EEnneerrggyy LLeevveell DDiiaaggrraamm 
ffoorr HHeeaatt EEnneerrggyy 
TTrraannssffeerr 
CCOO22 ggaass 
ΔE = E(final) - E(initial) 
= E(gas) - E(solid) 
CCOO22 ssoolliidd
HHeeaatt EEnneerrggyy TTrraannssffeerr iinn 36 
PPhhyyssiiccaall CChhaannggee 
CCOO22 ((ss,, --7788 ooCC)) ------>> CCOO22 ((gg,, --7788 ooCC)) 
TTwwoo tthhiinnggss hhaavvee hhaappppeenneedd!! 
• GGaass mmoolleeccuulleess hhaavvee hhiigghheerr 
kkiinneettiicc eenneerrggyy.. 
• AAllssoo,, WWOORRKK iiss ddoonnee bbyy tthhee 
ssyysstteemm iinn ppuusshhiinngg aassiiddee tthhee 
aattmmoosspphheerree..
37 
FFIIRRSSTT LLAAWW OOFF 
TTHHEERRMMOODDYYNNAAMMIICCSS 
hheeaatt eenneerrggyy ttrraannssffeerrrreedd 
ΔΔE = q + w 
eenneerrggyy 
cchhaannggee 
wwoorrkk ddoonnee 
bbyy tthhee 
ssyysstteemm 
EEnneerrggyy iiss ccoonnsseerrvveedd!!
38 
hheeaatt ttrraannssffeerr oouutt 
((eexxootthheerrmmiicc)),, --qq 
hheeaatt ttrraannssffeerr iinn 
((eennddootthheerrmmiicc)),, ++qq 
SSYYSSTTEEMM 
ΔE = q + w 
ww ttrraannssffeerr iinn 
((++ww)) 
ww ttrraannssffeerr oouutt 
((--ww))
39 
EENNTTHHAALLPPYY 
MMoosstt cchheemmiiccaall rreeaaccttiioonnss ooccccuurr aatt ccoonnssttaanntt PP,, ssoo 
Heat transferred at constant P = qp 
qp = ΔΔH where H = enthalpy 
aanndd ssoo ΔΔEE == ΔΔHH ++ ww ((aanndd ww iiss uussuuaallllyy ssmmaallll)) 
ΔΔHH == hheeaatt ttrraannssffeerrrreedd aatt ccoonnssttaanntt PP ≈≈ ΔΔEE 
ΔΔHH == cchhaannggee iinn hheeaatt ccoonntteenntt ooff tthhee ssyysstteemm 
ΔΔHH == HHffiinnaall -- HHiinniittiiaall
40 
EENNTTHHAALLPPYY 
ΔΔH = Hfinal - Hinitial 
If Hfinal > Hinitial then ΔΔH is positive 
Process is ENDOTHERMIC 
If Hfinal > Hinitial then ΔΔH is positive 
Process is ENDOTHERMIC 
If Hfinal < Hinitial then ΔΔH is negative 
If Hfinal < Hinitial then ΔΔH is negative 
Process is EXOTHERMIC 
Process is EXOTHERMIC
41 
UUSSIINNGG EENNTTHHAALLPPYY 
Consider the formation of water 
H2(g) + 1/2 O2(g) --> H2O(g) + 241.8 
kJ 
Exothermic reaction —— heat is a ““product”” 
and ΔΔH = –– 241.8 kJ
42 
UUSSIINNGG EENNTTHHAALLPPYY 
Making liquid H2O from H2 
+ O2 involves two 
exothermic steps. 
H2 + O2 gas 
H2O vapor Liquid H2O
43 
UUSSIINNGG EENNTTHHAALLPPYY 
Making H2O from H2 involves two steps. 
H2(g) + 1/2 O2 (g) ---> H2O(g) + 242 kJ 
H2O(g) ---> H2O(liq) + 44 kJ 
------------------------------------------------------------------ 
----- 
H2(g) + 1/2 O2 (g) --> H2O(liq) + 286 kJ 
Example of HHEESSSS’’SS LLAAWW—— 
IIff aa rrxxnn.. iiss tthhee ssuumm ooff 22 oorr mmoorree 
ootthheerrss, tthhee nneett ΔΔHH iiss tthhee ssuumm ooff tthhee 
ΔΔHH’’ss ooff tthhee ootthheerr rrxxnnss..
HHeessss’’ss LLaaww 44 
&& EEnneerrggyy LLeevveell DDiiaaggrraammss 
Forming H2O can occur in a 
single step or in a two 
steps. 
ΔHtotal is the same no matter 
which path is followed.
HHeessss’’ss LLaaww 45 
&& EEnneerrggyy LLeevveell DDiiaaggrraammss 
Forming CO2 can occur in a 
single step or in a two steps. 
ΔHtotal is the same no matter 
which path is followed.
46 
S ΔΔHH aalloonngg oonnee ppaatthh == 
S ΔΔHH aalloonngg oonnee ppaatthh == 
S ΔΔHH aalloonngg aannootthheerr ppaatthh 
S ΔΔHH aalloonngg aannootthheerr ppaatthh 
• TThhiiss eeqquuaattiioonn iiss vvaalliidd bbeeccaauussee 
ΔΔHH iiss aa SSTTAATTEE FFUUNNCCTTIIOONN 
• TThheessee ddeeppeenndd oonnllyy oonn tthhee ssttaattee 
ooff tthhee ssyysstteemm aanndd nnoott oonn hhooww 
tthhee ssyysstteemm ggoott tthheerree.. 
• VV,, TT,, PP,, eenneerrggyy —— aanndd yyoouurr bbaannkk 
aaccccoouunntt!! 
• UUnnlliikkee VV,, TT,, aanndd PP,, oonnee ccaannnnoott 
mmeeaassuurree aabbssoolluuttee HH.. CCaann oonnllyy 
mmeeaassuurree ΔΔHH..
47 
SSttaannddaarrdd EEnntthhaallppyy VVaalluueess 
Most ΔΔH values are labeled ΔΔHo 
Measured under ssttaannddaarrdd ccoonnddiittiioonnss 
P = 1 bar = 105 Pa = 1 atm / 
1.01325 Concentration = 1 
mol/L 
T = usually 25 oC 
with all species in standard states 
e.g., C = graphite and O2 = gas
EEnntthhaallppyy VVaalluueess 48 
Depend on how the reaction is written and on phases 
of reactants and products 
HH22((gg)) ++ 11//22 OO22((gg)) ---->> HH22OO((gg)) 
ΔΔHH˚ == --224422 kkJJ 
22 HH22((gg)) ++ OO22((gg)) ---->> 22 HH22OO((gg)) 
ΔΔHH˚ == --448844 kkJJ 
HH22OO((gg)) ------>> HH22((gg)) ++ 11//22 OO22((gg)) 
ΔΔHH˚ == ++224422 kkJJ 
HH22((gg)) ++ 11//22 OO22((gg)) ---->> HH22OO((lliiqquuiidd)) 
ΔΔHH˚ == --228866 kkJJ
49 
SSttaannddaarrdd EEnntthhaallppyy VVaalluueess 
NIST (Nat’’l Institute for Standards and 
Technology) gives values of 
ΔΔHHoo ff 
== ssttaannddaarrdd mmoollaarr eenntthhaallppyy ooff 
ffoorrmmaattiioonn 
—— the enthalpy change when 1 mol of 
compound is formed from elements 
under standard conditions. 
See Table 6.2
ΔΔHH oo,, ssttaannddaarrdd mmoollaarr 
50 ff 
eenntthhaallppyy ooff ffoorrmmaattiioonn 
Enthalpy change when 1 mol of 
compound is formed from the 
corresponding elements under 
standard conditions 
HH22((gg)) ++ 11//22 OO22((gg)) ---->> HH22OO((gg)) 
ΔΔHHff 
oo ((HH22OO,, gg))== --224411..88 kkJJ//mmooll 
BByy ddeeffiinniittiioonn,, 
ΔΔHHf 
oo 
== 00 ffoorr eelleemmeennttss iinn tthheeiirr ssttaannddaarrdd 
ssttaatteess..
UUssiinngg SSttaannddaarrdd EEnntthhaallppyy VVaalluueess 51 
Use ΔΔH˚’’s to calculate enthalpy change 
for 
H2O(g) + C(graphite) --> H2(g) + CO(g) 
(product is called ““water gas””)
UUssiinngg SSttaannddaarrdd EEnntthhaallppyy VVaalluueess 52 
H2O(g) + C(graphite) --> H2(g) + CO(g) 
From reference books we find 
• H2(g) + 1/2 O2(g) --> H2O(g) ΔΔHf˚ = - 242 
kJ/mol 
• C(s) + 1/2 O2(g) --> CO(g) ΔΔHf˚ = - 111 
kJ/mol
UUssiinngg SSttaannddaarrdd EEnntthhaallppyy VVaalluueess 53 
HO(g) --> H(g) + 1/2 O(g) ΔΔHo = +242 
222kJ 
C(s) + 1/2 O(g) --> CO(g) ΔΔHo = -111 
2HkJ 
2O(g) + C(graphite) --> H2 (g) + CO(g) 
22 ----------------------------------------------------------------------- 
ΔΔHo 
net = +131 kJ 
--------- 
net To convert 1 mol of water to 1 mol each 
of Hand CO requires 131 kJ of energy. 
2 The ““water gas”” reaction is ENDOthermic.
54 
UUssiinngg SSttaannddaarrdd EEnntthhaallppyy VVaalluueess 
IInn ggeenneerraall,, wwhheenn AALLLL 
eenntthhaallppiieess ooff ffoorrmmaattiioonn aarree 
kknnoowwnn:: 
CCaallccuullaattee ΔΔHH ooff 
rreeaaccttiioonn?? 
rxn f 
f 
ΔΔHo 
rxn = S ΔΔHf 
o (products) - S ΔΔHf 
o (reactants) 
Remember that Δ always = final – initial
55 
UUssiinngg SSttaannddaarrdd EEnntthhaallppyy VVaalluueess 
CCaallccuullaattee tthhee hheeaatt ooff ccoommbbuussttiioonn ooff 
mmeetthhaannooll,, ii..ee..,, ΔΔHHoo 
rrxxnn ffoorr 
CCHH33OOHH((gg)) ++ 33//22 OO22((gg)) ---->> CCOO22((gg)) ++ 22 HH22OO((gg)) 
ΔΔHHoo 
rrxxnn == S ΔΔHHff 
oo 
((pprroodd)) -- S ΔΔHHff 
oo 
((rreeaacctt))
UUssiinngg SSttaannddaarrdd EEnntthhaallppyy VVaalluueess 56 
CH3OH(g) + 3/2 O2(g) --> CO2(g) + 2 H2O(g) 
ΔΔHo 
ΔΔHHoo 
rxn = S ΔΔHf 
rrxxnn == ΔΔHHff 
o (prod) - S ΔΔHf 
oo 
((CCOO22)) ++ 22 ΔΔHHff 
oo 
((HH22OO)) 
-- {{33//22 ΔΔHHff 
oo 
((OO22)) ++ ΔΔHHff 
o (react) 
oo 
((CCHH33OOHH))}} 
== ((--339933..55 kkJJ)) ++ 22 ((--224411..88 kkJJ)) 
-- {{00 ++ ((--220011..55 kkJJ))}} 
ΔΔHHoo 
rrxxnn == --67755..6 kkJJ ppeerr mmooll ooff mmeetthhaannooll
57 
CCAALLOORRIIMMEETTRRYY 
Measuring Heats of Reaction 
Constant Volume 
“Bomb” Calorimeter 
• Burn combustible 
sample. 
• Measure heat evolved 
in a reaction. 
• Derive ΔE for 
reaction.
CCaalloorriimmeettrryy 58 
Some heat from reaction warms 
water 
qwater = (sp. ht.)(water mass)(ΔT) 
Some heat from reaction warms 
“bomb” 
qbomb = (heat capacity, J/K)(ΔT) 
Total heat evolved = qtotal = qwater + qbomb
59 
MMeeaassuurriinngg HHeeaattss ooff RReeaaccttiioonn 
MMeeaassuurriinngg HHeeaattss ooff RReeaaccttiioonn 
CCAALLOORRIIMMEETTRRYY 
CCAALLOORRIIMMEETTRRYY 
Calculate heat ooff ccoommbbuussttiioonn ooff ooccttaannee.. 
CC88HH1188 ++ 2255//22 OO22 ---->> 88 CCOO22 ++ 99 HH22OO 
•• BBuurrnn 11..0000 gg ooff ooccttaannee 
• TTeemmpp rriisseess ffrroomm 2255..0000 ttoo 3333..2200 ooCC 
• CCaalloorriimmeetteerr ccoonnttaaiinnss 11220000 gg wwaatteerr 
• HHeeaatt ccaappaacciittyy ooff bboommbb == 883377 JJ//KK
60 
MMeeaassuurriinngg HHeeaattss ooff RReeaaccttiioonn 
MMeeaassuurriinngg HHeeaattss ooff RReeaaccttiioonn 
CCAALLOORRIIMMEETTRRYY 
CCAALLOORRIIMMEETTRRYY 
Step 1 Calc. heat transferred from reaction to 
water. 
q = (4.184 J/g••K)(1200 g)(8.20 K) = 41,170 J 
Step 2 Calc. heat transferred from reaction to 
bomb. 
q = (bomb heat capacity)(ΔΔT) 
= (837 J/K)(8.20 K) = 6860 J 
Step 3 Total heat evolved 
41,170 J + 6860 J = 48,030 J 
Heat of combustion of 1.00 g of octane = - 48.0 kJ
Rawat’s Creation-rwtdgreat@ 
gmail.com 
rwtdgreat@yahoo.co.uk 
RawatDAgreatt/LinkedIn 
www.slideshare.net/ 
RawatDAgreatt 
Google+/blogger/Facebook/ 
Twitter-@RawatDAgreatt 
+919808050301 
+919958249693

More Related Content

Similar to Thermodynamics and thermochem.

CS201- Introduction to Programming- Lecture 30
CS201- Introduction to Programming- Lecture 30CS201- Introduction to Programming- Lecture 30
CS201- Introduction to Programming- Lecture 30Bilal Ahmed
 
Termoquímica - Setor Leste
Termoquímica - Setor LesteTermoquímica - Setor Leste
Termoquímica - Setor LesteMarianaMartinsR
 
CS201- Introduction to Programming- Lecture 21
CS201- Introduction to Programming- Lecture 21CS201- Introduction to Programming- Lecture 21
CS201- Introduction to Programming- Lecture 21Bilal Ahmed
 
Cataract and implant surgery
Cataract and implant surgeryCataract and implant surgery
Cataract and implant surgeryOther Mother
 
TOP Downloaded Papers (January)--International Journal of Computer Networks &...
TOP Downloaded Papers (January)--International Journal of Computer Networks &...TOP Downloaded Papers (January)--International Journal of Computer Networks &...
TOP Downloaded Papers (January)--International Journal of Computer Networks &...IJCNCJournal
 
ADEWOYE OMONIYI ADEYEMI PR
ADEWOYE OMONIYI ADEYEMI PRADEWOYE OMONIYI ADEYEMI PR
ADEWOYE OMONIYI ADEYEMI PRAdewoye Omoniyi
 
SJS-TEN in Latin America: genetic markers, prognosis, usefulness anti-inflamm...
SJS-TEN in Latin America: genetic markers, prognosis, usefulness anti-inflamm...SJS-TEN in Latin America: genetic markers, prognosis, usefulness anti-inflamm...
SJS-TEN in Latin America: genetic markers, prognosis, usefulness anti-inflamm...Juan Carlos Ivancevich
 
Nguyen kim doanh ta
Nguyen kim doanh taNguyen kim doanh ta
Nguyen kim doanh taDuy Quang
 
Dielectrics lect28
Dielectrics lect28Dielectrics lect28
Dielectrics lect28Joao Tan
 
CS201- Introduction to Programming- Lecture 09
CS201- Introduction to Programming- Lecture 09CS201- Introduction to Programming- Lecture 09
CS201- Introduction to Programming- Lecture 09Bilal Ahmed
 
Circular motion2
Circular motion2Circular motion2
Circular motion2wawanut13
 

Similar to Thermodynamics and thermochem. (20)

CS201- Introduction to Programming- Lecture 30
CS201- Introduction to Programming- Lecture 30CS201- Introduction to Programming- Lecture 30
CS201- Introduction to Programming- Lecture 30
 
Termoquímica - Setor Leste
Termoquímica - Setor LesteTermoquímica - Setor Leste
Termoquímica - Setor Leste
 
CS201- Introduction to Programming- Lecture 21
CS201- Introduction to Programming- Lecture 21CS201- Introduction to Programming- Lecture 21
CS201- Introduction to Programming- Lecture 21
 
PMANIKANDAN CV-E&I
PMANIKANDAN CV-E&I PMANIKANDAN CV-E&I
PMANIKANDAN CV-E&I
 
Cataract and implant surgery
Cataract and implant surgeryCataract and implant surgery
Cataract and implant surgery
 
Industrialisasi Media
Industrialisasi MediaIndustrialisasi Media
Industrialisasi Media
 
Bab1 materi
Bab1 materiBab1 materi
Bab1 materi
 
TOP Downloaded Papers (January)--International Journal of Computer Networks &...
TOP Downloaded Papers (January)--International Journal of Computer Networks &...TOP Downloaded Papers (January)--International Journal of Computer Networks &...
TOP Downloaded Papers (January)--International Journal of Computer Networks &...
 
Dispersions
DispersionsDispersions
Dispersions
 
ADEWOYE OMONIYI ADEYEMI PR
ADEWOYE OMONIYI ADEYEMI PRADEWOYE OMONIYI ADEYEMI PR
ADEWOYE OMONIYI ADEYEMI PR
 
Fund analysis and cash flow analysis
Fund analysis and cash flow analysisFund analysis and cash flow analysis
Fund analysis and cash flow analysis
 
Physics report
Physics reportPhysics report
Physics report
 
SJS-TEN in Latin America: genetic markers, prognosis, usefulness anti-inflamm...
SJS-TEN in Latin America: genetic markers, prognosis, usefulness anti-inflamm...SJS-TEN in Latin America: genetic markers, prognosis, usefulness anti-inflamm...
SJS-TEN in Latin America: genetic markers, prognosis, usefulness anti-inflamm...
 
Nguyen kim doanh ta
Nguyen kim doanh taNguyen kim doanh ta
Nguyen kim doanh ta
 
Chapter 6 testbench
Chapter 6 testbenchChapter 6 testbench
Chapter 6 testbench
 
Dielectrics lect28
Dielectrics lect28Dielectrics lect28
Dielectrics lect28
 
CS201- Introduction to Programming- Lecture 09
CS201- Introduction to Programming- Lecture 09CS201- Introduction to Programming- Lecture 09
CS201- Introduction to Programming- Lecture 09
 
Circular motion2
Circular motion2Circular motion2
Circular motion2
 
Glaucoma
GlaucomaGlaucoma
Glaucoma
 
Keseimbangan cairan&elektrolit
Keseimbangan cairan&elektrolitKeseimbangan cairan&elektrolit
Keseimbangan cairan&elektrolit
 

More from Rawat DA Greatt

Periodic classification class 10th by jfc
Periodic classification class 10th by jfcPeriodic classification class 10th by jfc
Periodic classification class 10th by jfcRawat DA Greatt
 
Solid state main part by rawat sir (jfc)
Solid state main part by rawat sir (jfc)Solid state main part by rawat sir (jfc)
Solid state main part by rawat sir (jfc)Rawat DA Greatt
 
Properties of solids (solid state) by Rawat's JFC
Properties of solids (solid state) by Rawat's JFCProperties of solids (solid state) by Rawat's JFC
Properties of solids (solid state) by Rawat's JFCRawat DA Greatt
 
Crystal defects by jfc (solid state)
Crystal defects by jfc (solid state)Crystal defects by jfc (solid state)
Crystal defects by jfc (solid state)Rawat DA Greatt
 
Name reactions organic chemistry for class 12 rawat's jfc
Name reactions organic chemistry for class 12 rawat's jfcName reactions organic chemistry for class 12 rawat's jfc
Name reactions organic chemistry for class 12 rawat's jfcRawat DA Greatt
 
Thermo notes by jfc class 11
Thermo notes by jfc class 11Thermo notes by jfc class 11
Thermo notes by jfc class 11Rawat DA Greatt
 
Haloalkanes and haloarenes notes by rawat sir
Haloalkanes and haloarenes notes by rawat sirHaloalkanes and haloarenes notes by rawat sir
Haloalkanes and haloarenes notes by rawat sirRawat DA Greatt
 
Atomic structure notes from jfc by rawat sir
Atomic structure notes from jfc by rawat sirAtomic structure notes from jfc by rawat sir
Atomic structure notes from jfc by rawat sirRawat DA Greatt
 
Bonding by rawat sir jfc
Bonding by rawat sir jfcBonding by rawat sir jfc
Bonding by rawat sir jfcRawat DA Greatt
 
Determination of some heavy metal levels in soft drinks
Determination of some heavy metal levels in soft drinksDetermination of some heavy metal levels in soft drinks
Determination of some heavy metal levels in soft drinksRawat DA Greatt
 
A project report on tea2
A project report on tea2A project report on tea2
A project report on tea2Rawat DA Greatt
 
A project report on fruit juices
A project report on fruit juicesA project report on fruit juices
A project report on fruit juicesRawat DA Greatt
 
A project report on alcohol 2
A project report on alcohol 2A project report on alcohol 2
A project report on alcohol 2Rawat DA Greatt
 
Basicity of heterocyclics pdf
Basicity of heterocyclics pdfBasicity of heterocyclics pdf
Basicity of heterocyclics pdfRawat DA Greatt
 
A project report on alcohol by rawat
A project report on alcohol by rawatA project report on alcohol by rawat
A project report on alcohol by rawatRawat DA Greatt
 
Visible and ultraviolet spectroscopy
Visible and ultraviolet spectroscopyVisible and ultraviolet spectroscopy
Visible and ultraviolet spectroscopyRawat DA Greatt
 
Transition metal complex
Transition metal complexTransition metal complex
Transition metal complexRawat DA Greatt
 

More from Rawat DA Greatt (20)

Periodic classification class 10th by jfc
Periodic classification class 10th by jfcPeriodic classification class 10th by jfc
Periodic classification class 10th by jfc
 
Solid state main part by rawat sir (jfc)
Solid state main part by rawat sir (jfc)Solid state main part by rawat sir (jfc)
Solid state main part by rawat sir (jfc)
 
Properties of solids (solid state) by Rawat's JFC
Properties of solids (solid state) by Rawat's JFCProperties of solids (solid state) by Rawat's JFC
Properties of solids (solid state) by Rawat's JFC
 
Crystal defects by jfc (solid state)
Crystal defects by jfc (solid state)Crystal defects by jfc (solid state)
Crystal defects by jfc (solid state)
 
Name reactions organic chemistry for class 12 rawat's jfc
Name reactions organic chemistry for class 12 rawat's jfcName reactions organic chemistry for class 12 rawat's jfc
Name reactions organic chemistry for class 12 rawat's jfc
 
Thermo notes by jfc class 11
Thermo notes by jfc class 11Thermo notes by jfc class 11
Thermo notes by jfc class 11
 
Haloalkanes and haloarenes notes by rawat sir
Haloalkanes and haloarenes notes by rawat sirHaloalkanes and haloarenes notes by rawat sir
Haloalkanes and haloarenes notes by rawat sir
 
Atomic structure notes from jfc by rawat sir
Atomic structure notes from jfc by rawat sirAtomic structure notes from jfc by rawat sir
Atomic structure notes from jfc by rawat sir
 
Coordination notes
Coordination notesCoordination notes
Coordination notes
 
Bonding by rawat sir jfc
Bonding by rawat sir jfcBonding by rawat sir jfc
Bonding by rawat sir jfc
 
Determination of some heavy metal levels in soft drinks
Determination of some heavy metal levels in soft drinksDetermination of some heavy metal levels in soft drinks
Determination of some heavy metal levels in soft drinks
 
A project report on tea2
A project report on tea2A project report on tea2
A project report on tea2
 
A project report on fruit juices
A project report on fruit juicesA project report on fruit juices
A project report on fruit juices
 
A project report on alcohol 2
A project report on alcohol 2A project report on alcohol 2
A project report on alcohol 2
 
Basicity of heterocyclics pdf
Basicity of heterocyclics pdfBasicity of heterocyclics pdf
Basicity of heterocyclics pdf
 
A project report on alcohol by rawat
A project report on alcohol by rawatA project report on alcohol by rawat
A project report on alcohol by rawat
 
Visible and ultraviolet spectroscopy
Visible and ultraviolet spectroscopyVisible and ultraviolet spectroscopy
Visible and ultraviolet spectroscopy
 
Uv visible
Uv visibleUv visible
Uv visible
 
Uv vis
Uv visUv vis
Uv vis
 
Transition metal complex
Transition metal complexTransition metal complex
Transition metal complex
 

Thermodynamics and thermochem.

  • 1. 1 TTHHEERRMMOOCCHHEEMMIISSTTRRYY TThheerrmmooddyynnaammiiccss TThhee ssttuuddyy ooff HHeeaatt aanndd WWoorrkk aanndd SSttaattee FFuunnccttiioonnss bbyy-- SSaauurraavv KK.. RRaawwaatt ((RRaawwaatt DDAA GGrreeaatttt))
  • 2. EEEEnnnneeeerrrrggggyyyy &&&& CCCChhhheeeemmmmiiiissssttttrrrryyyy 2 EENNEERRGGYY iiss tthhee ccaappaacciittyy ttoo ddoo wwoorrkk oorr ttrraannssffeerr hheeaatt.. HHEEAATT iiss tthhee ffoorrmm ooff eenneerrggyy tthhaatt fflloowwss bbeettwweeeenn 22 oobbjjeeccttss bbeeccaauussee ooff tthheeiirr ddiiffffeerreennccee iinn tteemmppeerraattuurree.. OOtthheerr ffoorrmmss ooff eenneerrggyy —— • lliigghhtt • eelleeccttrriiccaall • kkiinneettiicc aanndd ppootteennttiiaall
  • 3. EEnneerrggyy && CChheemmiissttrryy 3 • Burning ppeeaannuuttss ssuuppppllyy ssuuffffiicciieenntt eenneerrggyy ttoo bbooiill aa ccuupp ooff wwaatteerr.. • BBuurrnniinngg ssuuggaarr ((ssuuggaarr rreeaaccttss wwiitthh KKCCllOO33,, aa ssttrroonngg ooxxiiddiizziinngg aaggeenntt))
  • 4. EEnneerrggyy && CChheemmiissttrryy 4 • TThheessee rreeaaccttiioonnss aarree PPRROODDUUCCTT FFAAVVOORREEDD • TThheeyy pprroocceeeedd aallmmoosstt ccoommpplleetteellyy ffrroomm rreeaaccttaannttss ttoo pprroodduuccttss,, ppeerrhhaappss wwiitthh ssoommee oouuttssiiddee aassssiissttaannccee..
  • 5. EEnneerrggyy && CChheemmiissttrryy 5 22 HH22((gg)) ++ OO22((gg)) ---->> 22 HH22OO((gg)) ++ hheeaatt aanndd lliigghhtt TThhiiss ccaann bbee sseett uupp ttoo pprroovviiddee EELLEECCTTRRIICC EENNEERRGGYY iinn aa ffuueell cceellll.. OOxxiiddaattiioonn:: 22 HH22 ------>> 44 HH++ ++ 44 ee-- RReedduuccttiioonn:: 44 ee-- ++ OO22 ++ 22 HH22OO ------>> 44 OOHH-- CCR, page 845
  • 6. 6 PPPPooootttteeeennnnttttiiiiaaaallll &&&& KKKKiiiinnnneeeettttiiiicccc EEEEnnnneeeerrrrggggyyyy Potential energy —— energy a motionless body has by virtue of its position.
  • 7. 7 PPootteennttiiaall EEnneerrggyy oonn tthhee AAttoommiicc SSccaallee • Positive and negative particles (ions) attract one another. • Two atoms can bond • As the particles attract they have a lower potential energy NNaaCCll —— ccoommppoosseedd ooff NNaa++ aanndd CCll-- iioonnss..
  • 8. 8 PPootteennttiiaall EEnneerrggyy oonn tthhee AAttoommiicc SSccaallee • Positive and negative particles (ions) attract one another. • Two atoms can bond • As the particles attract they have a lower potential energy
  • 9. 9 PPPPooootttteeeennnnttttiiiiaaaallll &&&& KKKKiiiinnnneeeettttiiiicccc EEEEnnnneeeerrrrggggyyyy Kinetic energy —— energy of motion •• Translation
  • 10. PPPPooootttteeeennnnttttiiiiaaaallll &&&& KKKKiiiinnnneeeettttiiiicccc EEEEnnnneeeerrrrggggyyyy 10 Kinetic energy —— energy of motion. translate rotate vibrate translate rotate vibrate
  • 11. 11 IInntteerrnnaall EEnneerrggyy ((EE)) • PPEE ++ KKEE == IInntteerrnnaall eenneerrggyy ((EE oorr UU)) • IInntt.. EE ooff aa cchheemmiiccaall ssyysstteemm ddeeppeennddss oonn • nnuummbbeerr ooff ppaarrttiicclleess • ttyyppee ooff ppaarrttiicclleess • tteemmppeerraattuurree
  • 12. 12 IInntteerrnnaall EEnneerrggyy ((EE)) • PPEE ++ KKEE == IInntteerrnnaall eenneerrggyy ((EE oorr UU)) QuickTime™ and a Graphics decompressor are needed to see this picture.
  • 13. 13 IInntteerrnnaall EEnneerrggyy ((EE)) • TThhee hhiigghheerr tthhee TT tthhee hhiigghheerr tthhee iinntteerrnnaall eenneerrggyy • SSoo,, uussee cchhaannggeess iinn TT ((ΔΔTT)) ttoo mmoonniittoorr cchhaannggeess iinn EE ((ΔΔEE))..
  • 14. 14 TThheerrmmooddyynnaammiiccss • Thermodynamics is the science of heat (energy) transfer. HHeeaatt eenneerrggyy iiss aassssoocciiaatteedd wwiitthh mmoolleeccuullaarr mmoottiioonnss.. Heat transfers until thermal equilibrium is established.
  • 15. 15 DDiirreeccttiioonnaalliittyy ooff HHeeaatt TTrraannssffeerr • Heat always transfer from hotter object to cooler one. • EXOthermic: heat transfers from SYSTEM to SURROUNDINGS. TT((ssyysstteemm)) ggooeess ddoowwnn TT((ssuurrrr)) ggooeess uupp
  • 16. 16 DDiirreeccttiioonnaalliittyy ooff HHeeaatt TTrraannssffeerr • Heat always transfer from hotter object to cooler one. • ENDOthermic: heat transfers from SURROUNDINGS to the SYSTEM. TT((ssyysstteemm)) ggooeess uupp TT ((ssuurrrr)) ggooeess ddoowwnn
  • 17. 17 EEnneerrggyy && CChheemmiissttrryy AAllll ooff tthheerrmmooddyynnaammiiccss ddeeppeennddss oonn tthhee llaaww ooff CCOONNSSEERRVVAATTIIOONN OOFF EENNEERRGGYY.. • TThhee ttoottaall eenneerrggyy iiss uunncchhaannggeedd iinn aa cchheemmiiccaall rreeaaccttiioonn.. • IIff PPEE ooff pprroodduuccttss iiss lleessss tthhaann rreeaaccttaannttss,, tthhee ddiiffffeerreennccee mmuusstt bbee rreelleeaasseedd aass KKEE..
  • 18. EEnneerrggyy CChhaannggee iinn 18 CChheemmiiccaall PPrroocceesssseess Reactants Kinetic Energy Products PE PPEE ooff ssyysstteemm ddrrooppppeedd.. KKEE iinnccrreeaasseedd.. TThheerreeffoorree,, yyoouu oofftteenn ffeeeell aa TT iinnccrreeaassee..
  • 19. UUUUNNNNIIIITTTTSSSS OOOOFFFF EEEENNNNEEEERRRRGGGGYYYY 19 11 ccaalloorriiee == hheeaatt rreeqquuiirreedd ttoo rraaiissee tteemmpp.. ooff 11..0000 gg ooff HH22OO bbyy 11..00 ooCC.. 11000000 ccaall == 11 kkiillooccaalloorriiee == 11 kkccaall 11 kkccaall == 11 CCaalloorriiee ((aa ffoooodd ““ccaalloorriiee””)) BBuutt wwee uussee tthhee uunniitt ccaalllleedd tthhee JJOOUULLEE 11 ccaall == 44..118844 jjoouulleess JJaammeess JJoouullee 11881188--11888899
  • 20. 20 HHEEAATT CCAAPPAACCIITTYY The heat required to raise an object’s T by 1 ˚C. WWhhiicchh hhaass tthhee llaarrggeerr hheeaatt ccaappaacciittyy??
  • 21. SSSSppppeeeecccciiiiffffiiiicccc HHHHeeeeaaaatttt CCCCaaaappppaaaacccciiiittttyyyy 21 How much energy is transferred due to T difference? The heat ((qq)) ““lost”” or ““gained”” is related to a) sample mass b) change in T and c) specific heat capacity Specific heat capacity = heat lost or gained by substance (J) (mass, g)(T change ,K)
  • 22. SSSSppppeeeecccciiiiffffiiiicccc HHHHeeeeaaaatttt CCCCaaaappppaaaacccciiiittttyyyy 22 SSuubbssttaannccee SSppeecc.. HHeeaatt ((JJ//gg••KK)) HH22OO 44..118844 EEtthhyylleennee ggllyyccooll 22..3399 AAll 00..889977 ggllaassss 00..8844 AAlluummiinnuumm
  • 23. 23 SSSSppppeeeecccciiiiffffiiiicccc HHHHeeeeaaaatttt CCCCaaaappppaaaacccciiiittttyyyy IIff 2255..00 gg ooff AAll ccooooll ffrroomm 331100 ooCC ttoo 3377 ooCC,, hhooww mmaannyy jjoouulleess ooff hheeaatt eenneerrggyy aarree lloosstt bbyy tthhee AAll?? Specific heat capacity = heat lost or gained by substance (J) (mass, g)(T change ,K)
  • 24. 24 SSSSppppeeeecccciiiiffffiiiicccc HHHHeeeeaaaatttt CCCCaaaappppaaaacccciiiittttyyyy IIff 2255..00 gg ooff AAll ccooooll ffrroomm 331100 ooCC ttoo 3377 ooCC,, hhooww mmaannyy jjoouulleess ooff hheeaatt eenneerrggyy aarree lloosstt bbyy tthhee AAll?? heat gain/lose = q = (sp. ht.)(mass)(ΔT) wwhheerree ΔΔTT == TTffiinnaall -- TTiinniittiiaall qq == ((00..889977 JJ//gg••KK))((2255..00 gg))((3377 -- 331100))KK qq == -- 66112200 JJ Notice that the negative sign on q signals heat ““lost by”” or transferred OUT of Al.
  • 25. HHeeaatt TTrraannssffeerr 25 NNoo CChhaannggee iinn SSttaattee q transferred = (sp. ht.)(mass)(ΔT)
  • 26. 26 HHeeaatt TTrraannssffeerr wwiitthh CChhaannggee ooff SSttaattee CChhaannggeess ooff ssttaattee iinnvvoollvvee eenneerrggyy ((aatt ccoonnssttaanntt TT)) IIccee ++ 333333 JJ//gg ((hheeaatt ooff ffuussiioonn)) ---------->> LLiiqquuiidd wwaatteerr qq == ((hheeaatt ooff ffuussiioonn))((mmaassss))
  • 27. 27 HHeeaatt TTrraannssffeerr aanndd CChhaannggeess ooff SSttaattee Requires energy (heat). This is the reason a) you cool down after swimming b) you use water to put out a fire. + energy Liquid ---> Vapor
  • 28. 28 HHeeaattiinngg//CCoooolliinngg CCuurrvvee ffoorr WWaatteerr HHeeaatt wwaatteerr EEvvaappoorraattee wwaatteerr MMeelltt iiccee NNoottee tthhaatt TT iiss ccoonnssttaanntt aass iiccee mmeellttss
  • 29. 29 HHHHeeeeaaaatttt &&&& CCCChhhhaaaannnnggggeeeessss ooooffff SSSSttttaaaatttteeee What quantity of heat is required to melt 500. g of ice and heat the water to steam at 100 oC? Heat of fusion of ice = 333 J/g Specific heat of water = 4.2 J/g••K Heat of vaporization = 2260 J/g Heat of fusion of ice = 333 J/g Specific heat of water = 4.2 J/g••K Heat of vaporization = 2260 J/g ++333333 JJ//gg ++22226600 JJ//gg
  • 30. 30 HHHHeeeeaaaatttt &&&& CCCChhhhaaaannnnggggeeeessss ooooffff SSSSttttaaaatttteeee How much heat is required to melt 500. g of ice and heat the water to steam at 100 oC? 1. To melt ice q = (500. g)(333 J/g) = 1.67 x 105 J 2. To raise water from 0 oC to 100 oC q = (500. g)(4.2 J/g••K)(100 - 0)K = 2.1 x 105 J 3. To evaporate water at 100 oC q = (500. g)(2260 J/g) = 1.13 x 106 J 4. Total heat energy = 1.51 x 106 J = 1510 kJ
  • 31. CChheemmiiccaall RReeaaccttiivviittyy 31 What drives chemical reactions? How do they occur? The first is answered by TTHHEERRMMOODDYYNNAAMMIICCSS and the second by KKIINNEETTIICCSS. Have already seen a number of ““driving forces”” for reactions that are PRODUCT-FAVORED. •• formation of a precipitate •• gas formation •• H2O formation (acid-base reaction) •• electron transfer in a battery
  • 32. CChheemmiiccaall RReeaaccttiivviittyy 32 But energy transfer also allows us to predict reactivity. IInn ggeenneerraall,, rreeaaccttiioonnss tthhaatt ttrraannssffeerr eenneerrggyy ttoo tthheeiirr ssuurrrroouunnddiinnggss aarree pprroodduucctt-- ffaavvoorreedd.. So, let us consider heat transfer in chemical processes.
  • 33. 33 HHeeaatt EEnneerrggyy TTrraannssffeerr iinn aa PPhhyyssiiccaall PPrroocceessss CO2 (s, -78 oC) ---> CO2 (g, -78 oC) Heat transfers from surroundings to system in endothermic process.
  • 34. 34 HHeeaatt EEnneerrggyy TTrraannssffeerr iinn aa PPhhyyssiiccaall PPrroocceessss • CO2 (s, -78 oC) ---> CO2 (g, -78 oC) • A regular array of molecules in a solid -----> gas phase molecules. • Gas molecules have higher kinetic energy.
  • 35. 35 EEnneerrggyy LLeevveell DDiiaaggrraamm ffoorr HHeeaatt EEnneerrggyy TTrraannssffeerr CCOO22 ggaass ΔE = E(final) - E(initial) = E(gas) - E(solid) CCOO22 ssoolliidd
  • 36. HHeeaatt EEnneerrggyy TTrraannssffeerr iinn 36 PPhhyyssiiccaall CChhaannggee CCOO22 ((ss,, --7788 ooCC)) ------>> CCOO22 ((gg,, --7788 ooCC)) TTwwoo tthhiinnggss hhaavvee hhaappppeenneedd!! • GGaass mmoolleeccuulleess hhaavvee hhiigghheerr kkiinneettiicc eenneerrggyy.. • AAllssoo,, WWOORRKK iiss ddoonnee bbyy tthhee ssyysstteemm iinn ppuusshhiinngg aassiiddee tthhee aattmmoosspphheerree..
  • 37. 37 FFIIRRSSTT LLAAWW OOFF TTHHEERRMMOODDYYNNAAMMIICCSS hheeaatt eenneerrggyy ttrraannssffeerrrreedd ΔΔE = q + w eenneerrggyy cchhaannggee wwoorrkk ddoonnee bbyy tthhee ssyysstteemm EEnneerrggyy iiss ccoonnsseerrvveedd!!
  • 38. 38 hheeaatt ttrraannssffeerr oouutt ((eexxootthheerrmmiicc)),, --qq hheeaatt ttrraannssffeerr iinn ((eennddootthheerrmmiicc)),, ++qq SSYYSSTTEEMM ΔE = q + w ww ttrraannssffeerr iinn ((++ww)) ww ttrraannssffeerr oouutt ((--ww))
  • 39. 39 EENNTTHHAALLPPYY MMoosstt cchheemmiiccaall rreeaaccttiioonnss ooccccuurr aatt ccoonnssttaanntt PP,, ssoo Heat transferred at constant P = qp qp = ΔΔH where H = enthalpy aanndd ssoo ΔΔEE == ΔΔHH ++ ww ((aanndd ww iiss uussuuaallllyy ssmmaallll)) ΔΔHH == hheeaatt ttrraannssffeerrrreedd aatt ccoonnssttaanntt PP ≈≈ ΔΔEE ΔΔHH == cchhaannggee iinn hheeaatt ccoonntteenntt ooff tthhee ssyysstteemm ΔΔHH == HHffiinnaall -- HHiinniittiiaall
  • 40. 40 EENNTTHHAALLPPYY ΔΔH = Hfinal - Hinitial If Hfinal > Hinitial then ΔΔH is positive Process is ENDOTHERMIC If Hfinal > Hinitial then ΔΔH is positive Process is ENDOTHERMIC If Hfinal < Hinitial then ΔΔH is negative If Hfinal < Hinitial then ΔΔH is negative Process is EXOTHERMIC Process is EXOTHERMIC
  • 41. 41 UUSSIINNGG EENNTTHHAALLPPYY Consider the formation of water H2(g) + 1/2 O2(g) --> H2O(g) + 241.8 kJ Exothermic reaction —— heat is a ““product”” and ΔΔH = –– 241.8 kJ
  • 42. 42 UUSSIINNGG EENNTTHHAALLPPYY Making liquid H2O from H2 + O2 involves two exothermic steps. H2 + O2 gas H2O vapor Liquid H2O
  • 43. 43 UUSSIINNGG EENNTTHHAALLPPYY Making H2O from H2 involves two steps. H2(g) + 1/2 O2 (g) ---> H2O(g) + 242 kJ H2O(g) ---> H2O(liq) + 44 kJ ------------------------------------------------------------------ ----- H2(g) + 1/2 O2 (g) --> H2O(liq) + 286 kJ Example of HHEESSSS’’SS LLAAWW—— IIff aa rrxxnn.. iiss tthhee ssuumm ooff 22 oorr mmoorree ootthheerrss, tthhee nneett ΔΔHH iiss tthhee ssuumm ooff tthhee ΔΔHH’’ss ooff tthhee ootthheerr rrxxnnss..
  • 44. HHeessss’’ss LLaaww 44 && EEnneerrggyy LLeevveell DDiiaaggrraammss Forming H2O can occur in a single step or in a two steps. ΔHtotal is the same no matter which path is followed.
  • 45. HHeessss’’ss LLaaww 45 && EEnneerrggyy LLeevveell DDiiaaggrraammss Forming CO2 can occur in a single step or in a two steps. ΔHtotal is the same no matter which path is followed.
  • 46. 46 S ΔΔHH aalloonngg oonnee ppaatthh == S ΔΔHH aalloonngg oonnee ppaatthh == S ΔΔHH aalloonngg aannootthheerr ppaatthh S ΔΔHH aalloonngg aannootthheerr ppaatthh • TThhiiss eeqquuaattiioonn iiss vvaalliidd bbeeccaauussee ΔΔHH iiss aa SSTTAATTEE FFUUNNCCTTIIOONN • TThheessee ddeeppeenndd oonnllyy oonn tthhee ssttaattee ooff tthhee ssyysstteemm aanndd nnoott oonn hhooww tthhee ssyysstteemm ggoott tthheerree.. • VV,, TT,, PP,, eenneerrggyy —— aanndd yyoouurr bbaannkk aaccccoouunntt!! • UUnnlliikkee VV,, TT,, aanndd PP,, oonnee ccaannnnoott mmeeaassuurree aabbssoolluuttee HH.. CCaann oonnllyy mmeeaassuurree ΔΔHH..
  • 47. 47 SSttaannddaarrdd EEnntthhaallppyy VVaalluueess Most ΔΔH values are labeled ΔΔHo Measured under ssttaannddaarrdd ccoonnddiittiioonnss P = 1 bar = 105 Pa = 1 atm / 1.01325 Concentration = 1 mol/L T = usually 25 oC with all species in standard states e.g., C = graphite and O2 = gas
  • 48. EEnntthhaallppyy VVaalluueess 48 Depend on how the reaction is written and on phases of reactants and products HH22((gg)) ++ 11//22 OO22((gg)) ---->> HH22OO((gg)) ΔΔHH˚ == --224422 kkJJ 22 HH22((gg)) ++ OO22((gg)) ---->> 22 HH22OO((gg)) ΔΔHH˚ == --448844 kkJJ HH22OO((gg)) ------>> HH22((gg)) ++ 11//22 OO22((gg)) ΔΔHH˚ == ++224422 kkJJ HH22((gg)) ++ 11//22 OO22((gg)) ---->> HH22OO((lliiqquuiidd)) ΔΔHH˚ == --228866 kkJJ
  • 49. 49 SSttaannddaarrdd EEnntthhaallppyy VVaalluueess NIST (Nat’’l Institute for Standards and Technology) gives values of ΔΔHHoo ff == ssttaannddaarrdd mmoollaarr eenntthhaallppyy ooff ffoorrmmaattiioonn —— the enthalpy change when 1 mol of compound is formed from elements under standard conditions. See Table 6.2
  • 50. ΔΔHH oo,, ssttaannddaarrdd mmoollaarr 50 ff eenntthhaallppyy ooff ffoorrmmaattiioonn Enthalpy change when 1 mol of compound is formed from the corresponding elements under standard conditions HH22((gg)) ++ 11//22 OO22((gg)) ---->> HH22OO((gg)) ΔΔHHff oo ((HH22OO,, gg))== --224411..88 kkJJ//mmooll BByy ddeeffiinniittiioonn,, ΔΔHHf oo == 00 ffoorr eelleemmeennttss iinn tthheeiirr ssttaannddaarrdd ssttaatteess..
  • 51. UUssiinngg SSttaannddaarrdd EEnntthhaallppyy VVaalluueess 51 Use ΔΔH˚’’s to calculate enthalpy change for H2O(g) + C(graphite) --> H2(g) + CO(g) (product is called ““water gas””)
  • 52. UUssiinngg SSttaannddaarrdd EEnntthhaallppyy VVaalluueess 52 H2O(g) + C(graphite) --> H2(g) + CO(g) From reference books we find • H2(g) + 1/2 O2(g) --> H2O(g) ΔΔHf˚ = - 242 kJ/mol • C(s) + 1/2 O2(g) --> CO(g) ΔΔHf˚ = - 111 kJ/mol
  • 53. UUssiinngg SSttaannddaarrdd EEnntthhaallppyy VVaalluueess 53 HO(g) --> H(g) + 1/2 O(g) ΔΔHo = +242 222kJ C(s) + 1/2 O(g) --> CO(g) ΔΔHo = -111 2HkJ 2O(g) + C(graphite) --> H2 (g) + CO(g) 22 ----------------------------------------------------------------------- ΔΔHo net = +131 kJ --------- net To convert 1 mol of water to 1 mol each of Hand CO requires 131 kJ of energy. 2 The ““water gas”” reaction is ENDOthermic.
  • 54. 54 UUssiinngg SSttaannddaarrdd EEnntthhaallppyy VVaalluueess IInn ggeenneerraall,, wwhheenn AALLLL eenntthhaallppiieess ooff ffoorrmmaattiioonn aarree kknnoowwnn:: CCaallccuullaattee ΔΔHH ooff rreeaaccttiioonn?? rxn f f ΔΔHo rxn = S ΔΔHf o (products) - S ΔΔHf o (reactants) Remember that Δ always = final – initial
  • 55. 55 UUssiinngg SSttaannddaarrdd EEnntthhaallppyy VVaalluueess CCaallccuullaattee tthhee hheeaatt ooff ccoommbbuussttiioonn ooff mmeetthhaannooll,, ii..ee..,, ΔΔHHoo rrxxnn ffoorr CCHH33OOHH((gg)) ++ 33//22 OO22((gg)) ---->> CCOO22((gg)) ++ 22 HH22OO((gg)) ΔΔHHoo rrxxnn == S ΔΔHHff oo ((pprroodd)) -- S ΔΔHHff oo ((rreeaacctt))
  • 56. UUssiinngg SSttaannddaarrdd EEnntthhaallppyy VVaalluueess 56 CH3OH(g) + 3/2 O2(g) --> CO2(g) + 2 H2O(g) ΔΔHo ΔΔHHoo rxn = S ΔΔHf rrxxnn == ΔΔHHff o (prod) - S ΔΔHf oo ((CCOO22)) ++ 22 ΔΔHHff oo ((HH22OO)) -- {{33//22 ΔΔHHff oo ((OO22)) ++ ΔΔHHff o (react) oo ((CCHH33OOHH))}} == ((--339933..55 kkJJ)) ++ 22 ((--224411..88 kkJJ)) -- {{00 ++ ((--220011..55 kkJJ))}} ΔΔHHoo rrxxnn == --67755..6 kkJJ ppeerr mmooll ooff mmeetthhaannooll
  • 57. 57 CCAALLOORRIIMMEETTRRYY Measuring Heats of Reaction Constant Volume “Bomb” Calorimeter • Burn combustible sample. • Measure heat evolved in a reaction. • Derive ΔE for reaction.
  • 58. CCaalloorriimmeettrryy 58 Some heat from reaction warms water qwater = (sp. ht.)(water mass)(ΔT) Some heat from reaction warms “bomb” qbomb = (heat capacity, J/K)(ΔT) Total heat evolved = qtotal = qwater + qbomb
  • 59. 59 MMeeaassuurriinngg HHeeaattss ooff RReeaaccttiioonn MMeeaassuurriinngg HHeeaattss ooff RReeaaccttiioonn CCAALLOORRIIMMEETTRRYY CCAALLOORRIIMMEETTRRYY Calculate heat ooff ccoommbbuussttiioonn ooff ooccttaannee.. CC88HH1188 ++ 2255//22 OO22 ---->> 88 CCOO22 ++ 99 HH22OO •• BBuurrnn 11..0000 gg ooff ooccttaannee • TTeemmpp rriisseess ffrroomm 2255..0000 ttoo 3333..2200 ooCC • CCaalloorriimmeetteerr ccoonnttaaiinnss 11220000 gg wwaatteerr • HHeeaatt ccaappaacciittyy ooff bboommbb == 883377 JJ//KK
  • 60. 60 MMeeaassuurriinngg HHeeaattss ooff RReeaaccttiioonn MMeeaassuurriinngg HHeeaattss ooff RReeaaccttiioonn CCAALLOORRIIMMEETTRRYY CCAALLOORRIIMMEETTRRYY Step 1 Calc. heat transferred from reaction to water. q = (4.184 J/g••K)(1200 g)(8.20 K) = 41,170 J Step 2 Calc. heat transferred from reaction to bomb. q = (bomb heat capacity)(ΔΔT) = (837 J/K)(8.20 K) = 6860 J Step 3 Total heat evolved 41,170 J + 6860 J = 48,030 J Heat of combustion of 1.00 g of octane = - 48.0 kJ
  • 61. Rawat’s Creation-rwtdgreat@ gmail.com rwtdgreat@yahoo.co.uk RawatDAgreatt/LinkedIn www.slideshare.net/ RawatDAgreatt Google+/blogger/Facebook/ Twitter-@RawatDAgreatt +919808050301 +919958249693

Editor's Notes

  1. To play the movies and simulations included, view the presentation in Slide Show Mode.