SlideShare a Scribd company logo
1 of 23
Download to read offline
FiniteOrder
Vector
Spaces
By
Rajesh Bandari Yadav
Dr. K. Sarada
Finite order vectorspaces by Rajesh bandari yadav ,
K.Sarada is licensed under a Creative Commons
Attribution-NonCommercial 4.0 International License.
Finite order vector spaces
Contents
Introduction........................................................ 2
More about vector spaces..................................................3
Infinite order vector space ..................3
Finite order vector space................................ 4
2 SUBSPACES
Subspace .............................................................4
Properties of subspace
3
Linear combination & linear span .............................................5
Linear dependent & linear independent.......................................5
Basis & Dimension .........................................................5
4 Non-isomorphic finite order vector spaces & Properties
1-Order vector space.....................................6
2-Order vector space.....................................6
3-order vector space............................................. 6
4-Order vector space................................................................7
5-Order vector space..........................................................................8
7-Order vector space........................................................9
8-Order vector space.........................................9
9-order vector space.................................................... 11
11-Order vector space.....................................12
13-Order vector space......................................................13
16-Order vector space.................................................................13
17-Order vector space.........................................15
19-order vector space............................................. 16
4.14.Conclusion ..............................................................17
5. MATLAB programing for finding Non-Isomorphic finite order vectorspaces .............18
References.................................................................................... 21
Page1
Finite order vector spaces
Introduction:
Def: Vector Space:
Let V be a non-empty set, (F, +, .) is a Field.
(V, +, .) is said to be vector space over the field F(denoted as V(F) ). If
i) (V, +) is an Abelian Group
• u+vϵV for all u,vϵV
• (u+v)+w=u+(v+w) for all u,v,wϵV
• 0ϵV such that 0+u=u+0=u for all uϵV
• For every uϵV their exist a unique vϵV such that u+v=v+u=0
• u+v=v+u for all u,vϵV
ii) a.uϵV for all aϵF,uϵV (Scalar multiplication)
iii) a.(u+v)=a.u+a.v for all aϵF, for all u,vϵV
iv) (a+b).v=a.v+b.v for all a,bϵF, for all vϵV
v) a.(b.v)=(a.b).v for all a,bϵF,for all vϵV
vi) for all vϵV such that 1.v=v where ‘1’ is unity in F. Ex:
R2={(x,y) ; x ,yϵR} is a vector space over the Filed (R,+ , .).
FINITE ORDER VECTOR SPACES
Page2
Finite order vector spaces
R2 is a vector space over the field R
MORE ABOUT VECTOR SPACE:
i) Let (F, +, .) be a field.
➢ F (F) is a vector space
➢ Fn(F) is a vector space for n(≥1)ϵN.
➢ V=Mmxn[F] is vector space over the filed F.
➢ Let X be a non-empty set, V=FX is set of functions from X to F is a vector space over
the filed F.
ii) Let (F, +,.) and (E,+, .) are two fields such that ‘F’ is the sub field of ‘E’.
➢ E(F) is a vector space
➢ En(F) is a vector space for n(≥1)ϵN.
➢ V=Mmxn[E] is a vector space over the filed F.
➢ Let X be a non-empty set, V=EX is set functions from X to E is a Vector space over the
field F.
iii)
Vector Space
Infinite order
vector space
Finite
Dimensional
vector space
Infinite
Dimensional
vector space
Finite order
vector space
Finite
Dimensional
vector space
Infinite order Vector space:
A Vector space is said to be infinite order vector space if the vector space has
infinite elements.
Ex: Qn(Q) ,Rn(R), Cn(C)
Let (F, +, .) is the infinite order field
• V= Mmxn[F] is a v.s over F.
• V=FF is set of all function from F to F is a v.s over F.
• V=P[x] is the set of all polynomials whose coefficients belongs to F is a v.s over F
Page3
Finite order vector spaces
𝑖=1
Finite order Vector space:
A Vector space is said to be finite order vector space if it has finite number of elements.
Examples:
• V={0} is a vector space (Null Space) of order 1 over any field F.
• V=(Z2 ,+2,x2) is a vector space of order 2 over the field (Z2 ,+2 ,x2) .
• Let ‘P’ be a prime
V=(ZP , +P ,xP) is a vector space over the filed (ZP ,+P ,xP) of order P.
• V=ZPXZPX…….XZP is a vector space over the filed (Zp, +p, xP) of orderPn.
‘n’ times
• V=Mmxn[ZP] is a vector space over the filed (ZP,+P, xP) of order Pmn.
• V=Pn[X] is set of all polynomials whose degree ≤n and coefficients are belongs ZP
is a vector space of order pn+1.
Note: Suppose V be a finite order vector space then |V|=P (or) Pn where P is a prime.
Sub Spaces:
Let V be vector space over the filed F, W be the any subset of V is said to be Subspace of V if
W is a vector space over the field F.
Properties of Subspace:
Let V be a vector space over the field F.
• W is the sub space of V iff a.u+b.vϵW for all a,bϵF, u,vϵV.
• W={0} is sub space of every vector space.
• If W is subspace of finite order vector space V then O(W)|O(V).
i.e If V is finite order vector space of order Pn then the proper subspace W of order is Pm
where m<n.
• W1, W2,………..Wk are subspaces of V then ⋂ 𝑘
• Union of two subspaces need not subspace of V.
𝑊𝑖 is subspace of V.
Page4
Finite order vector spaces
Linear Combination & Linear span:
V be a vector space over the F,
Let S={v1, v2, …….vk} subset of V and vϵV .
Suppose ‘v’ can be written as v=a1v1+a2v2+------akvk then we say that ‘v’ is
linear combination of v1,v2,……..vk. where a1, a2, …..ak ϵF
Linearly independent & Linearly dependent:
A set S of vectors in a vector space is said to be linearly dependent if there exists a
vector ‘v’ in S such that ‘v’ belongs to the span of S-{v}.
S is linearly independent if S is NOT linearly dependent, that is, if ‘v’ does not belongs to
the span of S-{v} for each vϵS.
Basis & Dimension:
A subset S of Vector space V is said to be basis of V,if S is linearly independent and
L(S)=V.
Number of elements in basis is called dimension of V.
• Suppose V is a finite order vector space over the finite order filed ‘F ’with finite
dimension then o(V)=o(F)Dim(V)
• Let V is finite dimensional vector space of order Pn
i) The number distinct bases of V are
(Pn-1)(Pn-P)(Pn-P2)…….(Pn-Pn-1)
n!
ii)The number of k-dimensional subspaces of V is
(Pn-1)(Pn-1-1)………(Pn-k+1-1)
(Pk-1)(Pk-1-1)……(P-1)
• Suppose V be vector space over the fields (E,+,.) and (F,+,*) where F is the sub field of
E. then
Dim (V)=n over E
V E
Dim (V)=n.m over F Dim(E)=m over F
F
Page5
Finite order vector spaces
• Two vector spaces have the same dimension over the same field then they are
isomorphic.
4.NON-ISOMORPHIC FINITE ORDER VECTOR SPACES & PROPERTIES
1-order vector space:
• V={0} is vector space of order 1 over any field F.
1. Subspaces: One and only one subspace.
2. Basis: empty set
3. Dimension: 0
2-Order vector space:
• V=(Z2 ,+2 ,X2) is a vector space over the field (Z2 ,+2 ,x2).
i. Properties:
• Every vector space of order 2 is isomorphic to (Z2 ,+2 ,X2).
• Number of non-isomorphic vector spaces of order 2 is only ONE.
ii. Subspaces:
• V has only trivial sub spaces
iii. Basis:
• B={1} is the basis of (Z2 ,+2 ,X2) over the field (Z2 ,+2 ,X2).
iv. Dimension: 1
3-Order vector space:
• V= (Z3 ,+3 ,X3) is vector space of order 3 over the field (Z3 ,+3 ,X3).
i. Caylay diagram:
ii. Properties:
• Every vector space of order 3 is isomorphic to V= (Z3, +3 ,X3).
• Number of non-isomorphic vector spaces of 3 is only ONE.
iii. Subspaces:
Page6
Finite order vector spaces
• V has only trivial subspaces
iv. Basis:
• B1={1} ,B2={2} are two basis of V
v. Dimension: 1
4-Order vector space:
i)V1=(Z2XZ2 ,+, X) is a vector space of order 4 over the (Z2 ,+2, X2).
ii)Let (E,+,*) is a Field of order 4,
V2=(E,+ ,*) is a vector space of order 4 over the field (E.+,*).
i. Caylay diagram:
V= Z2XZ2
ii. Properties:
• Every vector space of order 4 is isomorphic to either V1 (or) V2 .
• Number of non-isomorphic vector space of order 4 is TWO.
iii. Subspaces:
a) Subspaces of V1=Z2XZ2 over Z2
V1=Z2XZ2
W 2={(0,0) , (0,1)} W3={(0,0) , (1,0) } W4={(0,0) , (1,1) }
W4= {(0, 0)}
Number total of subspaces are 5.
b) V2 has trivial subspaces.
c) Number of total subspaces are two.
Page7
Finite order vector spaces
iv. Basis:
Basis of V1:
• B1={(1,0),(0,1)}
• B2={(1,0),(1,1)} are basis of V1=Z2XZ2
• B3={(0,1),(1,1)}
Basis of V2:
• Let a(≠0)ϵV2,the set B1={a} is the basis of V2 over the field(E,+,*)
v. Dimension:
• Dim(V1)=2
• Dim(V2)=1
5-order vector space:
V= (Z5, +5 ,X5) is vector space of order 5 over the field (Z5 ,+5 ,X5)
i. Caylay diagram:
ii. Properties:
• Every vector space of order 5 is isomorphic to V=(Z5 ,+5 ,X5).
• Number of non-isomorphic vector spaces of order 5 is ONE.
iii. Subspaces:
• V has only trivial subspaces.
iv. Basis:
• Let a(≠0)ϵV ,the set B={a} is the basis of V.
v. Dimension:
• Dim(V)=1
Page8
Finite order vector spaces
4.6.7-Order vector space:
• V= (Z7, +7 ,X7) is vector space of order 7 over the field (Z7 ,+7 ,X7)
i. Caylay diagram:
ii. Properties:
• Every vector space of order 5 is isomorphic to V=(Z7 ,+7 ,X7).
• Number of non-isomorphic vector spaces of order 7 is ONE.
iii. Subspaces:
• V has only trivial subspaces.
iv. Basis:
• Let a(≠0)ϵV ,the set B={a} is the basis of V.
v. Dimension:
• Dim(V)=1
8-Order vector space:
• V1=(Z2XZ2XZ2 , +, X) is a vector space of order 8,over the field (Z2 ,+2 ,X2).
• Let (F,+,*) is filed of order 8,
V2=(F,+,*) is a vector space of order 8,over the field (F,+,*).
i. Caylay diagram: Page9
Finite order vector spaces
ii. Properties:
• Every 8-order vector space is isomorphic to one of V1 , V2 .
• Number of non-isomorphic vector spaces of order 8 is TWO.
iii. Subspaces:
• The sub spaces of V1=Z2XZ2XZ2 over the field Z2 are
8-Order subspaces is One
4-Order subspaces are 7.
W={(0,0,0),(0,1,1),(1,1,0),(1,0,1)
}
W={(0,0,0),(0,1,1),(0,1,0),(0,0,1)}
W={(0,0,0),(0,1,1),(1,1,1),(1,0,0)}
W={(0,0,0),(0,1,0),(1,1,0),(1,0,0)}
W={(0,0,0),(0,0,1),(1,1,0),(1,1,1)}
W={(0,0,0),(0,0,1),(1,1,0),(1,1,1)}
W={(0,0,0),(0,0,1),(1,0,1),(1,0,0)}
2-Order subspaces are
7. W={(0,0,0),(1,0,0)}
W={(0,0,0) ,(0,1 ,1)}
W={(0,0,0), (0,1,0)}
W={(0,0,0),(1,0,1)}
W={(0,0,0),(1,1,1)}
W={(0,0,0),(1,1,0)}
W={(0,0,0),(0,0,1)}
1-order subspace is
One W={(0,0,0)}
Hence total number of subspaces are 15 .
• The subspaces of V2 are only Two(Trivial)
iv. Basis:
• B={(1,0,0),(0,1,0),(0,0,1)} is basis of V1
Page10
Finite order vector spaces
• B={a} where a(≠0)ϵV2 is the basis of V2.
v. Dimension:
• Dim(V1)=3
• Dim(V2)=1
9-Order vector space:
i)V1=(Z3XZ3 ,+, X) is a vector space of order 9 over the (Z3 ,+3, X3).
ii)Let (E,+,*) is a Field of order 9,
V2=(E,+ ,*) is a vector space of order 9 over the field (E.+,*)
i. Caylay diagram:
ii. Properties:
• Every vector space of order 9 is isomorphic to either V1 (or) V2 .
• Number of non-isomorphic vector space of order 9 is TWO.
iii. Subspaces:
a)Subspaces of V1=Z3XZ3 over Z3
Page11
Finite order vector spaces
V1=Z3XZ3
W 2={(0,0) , (0,1) (0,2)} W3={(0,0) , (1,0),(2,0) } W4={(0,0) , (1,1),(2,2) } W5={(0,0),(2,1),(1,2)}
W6= {(0, 0)}
Number total of subspaces are
6. b)V2 has trivial subspaces.
c) Number of total subspaces are two.
iv. Basis:
Basis of V1:
• B1={(1,0),(0,1)}
• B2={(1,0),(1,1)} are basis of V1=Z3XZ3
• B3={(0,1),(1,1)}
• B4={(2,0),(0,2)}
• B5={(2,0),(0,1)}
• B6={(1,1),(0,2)}
Basis of V2:
• Let a(≠0)ϵV2,the set B1={a} is the basis of V2 over the field(E,+,*)
v. Dimension:
• Dim(V1)=2
• Dim(V2)=1
4.9.11-Order vector space:
• V= (Z11, +11 ,X11) is vector space of order 11 over the field (Z11 ,+11 ,X11)
i. Caylay diagram: Page12
Finite order vector spaces
ii. Properties:
• Every vector space of order 11 is isomorphic to V=(Z11 ,+11 ,X11).
• Number of non-isomorphic vector spaces of order 11 is ONE.
iii. Subspaces:
• V has only trivial subspaces.
iv. Basis:
• Let a(≠0)ϵV ,the set B={a} is the basis of V.
v. Dimension:
• Dim(V)=1
13-Order vector space:
• V= (Z13, +13 ,X13) is vector space of order 13 over the field (Z13 ,+13 ,X13)
i. Cayley digram:
ii. Properties:
• Every vector space of order 11 is isomorphic to V=(Z13 ,+13 ,X13).
Page13
Finite order vector spaces
• Number of non-isomorphic vector spaces of order 11 is ONE.
iii. Subspaces:
• V has only trivial subspaces.
iv. Basis:
• Let a(≠0)ϵV ,the set B={a} is the basis of V.
v. Dimension:
• Dim(V)=1
16-Order Vector space:
• V1=(Z2XZ2XZ2XZ2 ,+ ,X) is a vector space over the field (Z2 ,+2 ,X2).
• Let (E,+,*) be a field of order 16,(F,+ ,*) is subfield of E of order
4. V2=(E,+,*) is a vector space of order over the filed (F,+,*) .
• Let (K,+,*) be a field of order 16,
V3=(K,+,*) is a vector space of order 16 over the filed (K,+,*).
i. Properties:
• Every vector space of order 8 is isomorphic to one of V1 ,V2,V3
• Number of non-isomorphic vector spaces of order 16 is THREE.
ii. Cayley diagram:
iii. Subspaces:
a)Sub spaces of V1:
Page14
Finite order vector spaces
• 8-order subspaces of V1 are 15.
• 4-order subspaces of V1 are35.
• 2-order subspaces of V1 are 15.
• 1-order subspaces are
one Total subspaces of V1 are
66.
b)Sub spaces of V3: Only trivial subspaces.
iv. Dimension:
• Dim(V1)=4
• Dim(V2)=2
• Dim(V3)=1
17-Order Vector space:
• Every vector space of order 17 is isomorphic to V=(Z17 ,+17 ,X17).
i. Caylay diagram:
Page15
Finite order vector spaces
ii. Properties:
• Every vector space of order 17 is isomorphic to V=(Z17 ,+17 ,X17).
• Number of non-isomorphic vector spaces of order 17 is ONE.
iii. Subspaces:
• V has only trivial subspaces.
iv. Basis:
• Let a(≠0)ϵV ,the set B={a} is the basis of V.
v. Dimension:
• Dim(V)=1
19-Order vector space:
• Every vector space of order 19 is isomorphic to V=(Z19 ,+19 ,X19).
i. Caylay diagram:
ii. Properties:
• Every vector space of order 19 is isomorphic to V=(Z19 ,+19 ,X19).
• Number of non-isomorphic vector spaces of order 19 is ONE.
iii. Subspaces:
• V has only trivial subspaces.
iv. Basis:
• Let a(≠0)ϵV ,the set B={a} is the basis of V.
v. Dimension:
• Dim(V)=1
Page16
Finite order vector spaces
Counlcision :
Let V be a finite order vector space of order Pn
over the any finite order field F.
“The number of Non-Isomorphic Vector spaces of Pn
are Number of divisiors of n’’.
S.No Order of the Vector space Number of Non-isomorphic Vector spaces
1 1 1
2 2 1
3 3 1
4 4 2
5 5 1
6 7 1
7 8 2
8 9 2
9 11 1
10 13 1
11 16 3
12 17 1
13 19 1
14 23 1
15 25 2
16 27 2
17 29 1
18 31 1
19 32 2
20 37 1
21 41 1
22 43 1
23 47 1
Page17
Finite order vector spaces
24 49 2
25 53 1
26 59 1
27 61 1
27 64 4
28 67 1
29 71 1
30 73 1
31 79 1
32 81 3
33 83 1
34 87 1
35 89 1
36 97 1
Number of non-isomorphic v.s of order below 100
5.MATLAB programing for finding Non-Isomorphic
finite order vectorspaces:
%CLASIFICATION OF FINITE ORDER VECTOR SPACES
disp('CLASIFICATION OF FINITE ORDER VECTOR SPACES')
k=1;
n=input('Give order of the vector space');
m=input('Give order of the field');
a=factor(n);b=factor(m);
if(isprime(n)&&isprime(m))
if(n==m)
fprintf('Their exist ONLY ONE NON-ISOMORPHIC Vector space over the
field')
fprintf('n')
disp(' S.No V.S Field Dim')
disp(' order order ')
disp(' ')
t1(:,1)=1;t1(:,2)=n;t1(:,3)=m;t1(:,4)=1;
disp(t1)
else
fprintf('Their does not exist vector space of order %i over the
field of order %i',n,m)
end
else
if(max(a)==min(a)&&max(b)==min(b))
x1=length(a);x2=length(b);
if(mod(n,m)==0 && mod(x1,x2)==0)
i=1:x1;
y=i(rem(x1,i)==0);
z=length(y);
fprintf('Their exist %i non-isomorphic vactor spaces of
order %i',z,n)
fprintf('n')
disp(' S.No V.S Field Dim')
Page18
Finite order vector spaces
disp(' order order ')
disp(' ')
t2(:,1)=(1:z)';
t2(:,2)=(n*ones(1,z))';
t2(:,3)=(max(a).^y)';
t2(:,4)=rot90(y);
disp(t2)
else
fprintf('Their does not exist vector space of order %i over the
field of order %i ',n,m)
end
else
if(isprime(n)==0||isprime(m)==0)
fprintf('Their does not exist vector space of order %i over the
field of order %i',n,m)
end
end
end
s=input('n Do you want know number of linear operetor on a vectorspaces
,n press-1 n For Exit press-0');
if(s==1)
v1=input('Give vector space order');
F=input('Give order of the field');
E1=v1;
if(isprime(v1)&&isprime(F))
if(v1==F)
E2=v1-1;
fprintf('Their exist %i linear oparetos on given vectorspace ',E1)
fprintf('Their exist %i bijective linear oparetors on given vector
space',E2)
end
else
a1=factor(v1);a2=length(a1);a3=1;a4=(max(a1))^(a2*a2);
if(max(a1)==min(a1)&&max(a1)==F)
for i=0:(a2-1)
a3=a3*((max(a1))^a2-(max(a1))^i);
end
end
space',a4)
fprintf('Their exist %i linear opretors on given vector
fprintf('n Their exist %i bijective linear opretors on given
vector space',a3)
end
end
Output of the program
Page19
Finite order vector spaces
Page20
Finite order vector spaces
Page21
Finite order vector spaces
References:
• A.Ramachandra Rao,P.Bhimasankaram-Linear Alebra
• Gilbert_Strang_Linear_Algebra_and_Its_Application( 4th edition).
• schaums's Linear algebra
• David C Lay -Linear Algebra And Its Applications
• I.N. Herstein-Topic in algebra
• Joseph Gallian -Contemporary Abstract Algebra 2009
• P. B. Bhattacharya, S. K. Jain, S. R. Nagpaul-Basic Abstract Algebra-
Cambridge University Press (1994)
• Imeage sourse-Group Exploer software
Page22

More Related Content

What's hot

Python matplotlib cheat_sheet
Python matplotlib cheat_sheetPython matplotlib cheat_sheet
Python matplotlib cheat_sheetNishant Upadhyay
 
Introduction to XGBoost
Introduction to XGBoostIntroduction to XGBoost
Introduction to XGBoostJoonyoung Yi
 
PRML Chapter 4
PRML Chapter 4PRML Chapter 4
PRML Chapter 4Sunwoo Kim
 
What is a Neural Network | Edureka
What is a Neural Network | EdurekaWhat is a Neural Network | Edureka
What is a Neural Network | EdurekaEdureka!
 
Matrix decomposition and_applications_to_nlp
Matrix decomposition and_applications_to_nlpMatrix decomposition and_applications_to_nlp
Matrix decomposition and_applications_to_nlpankit_ppt
 
Dimensionality reduction with UMAP
Dimensionality reduction with UMAPDimensionality reduction with UMAP
Dimensionality reduction with UMAPJakub Bartczuk
 
PRML Chapter 1
PRML Chapter 1PRML Chapter 1
PRML Chapter 1Sunwoo Kim
 
Convolutional neural networks deepa
Convolutional neural networks deepaConvolutional neural networks deepa
Convolutional neural networks deepadeepa4466
 
Cross-validation Tutorial: What, how and which?
Cross-validation Tutorial: What, how and which?Cross-validation Tutorial: What, how and which?
Cross-validation Tutorial: What, how and which?Pradeep Redddy Raamana
 
Linear discriminant analysis
Linear discriminant analysisLinear discriminant analysis
Linear discriminant analysisBangalore
 
A brief history of machine learning
A brief history of  machine learningA brief history of  machine learning
A brief history of machine learningRobert Colner
 
Convolutional Neural Network - CNN | How CNN Works | Deep Learning Course | S...
Convolutional Neural Network - CNN | How CNN Works | Deep Learning Course | S...Convolutional Neural Network - CNN | How CNN Works | Deep Learning Course | S...
Convolutional Neural Network - CNN | How CNN Works | Deep Learning Course | S...Simplilearn
 
Ml3 logistic regression-and_classification_error_metrics
Ml3 logistic regression-and_classification_error_metricsMl3 logistic regression-and_classification_error_metrics
Ml3 logistic regression-and_classification_error_metricsankit_ppt
 
Deep learning - A Visual Introduction
Deep learning - A Visual IntroductionDeep learning - A Visual Introduction
Deep learning - A Visual IntroductionLukas Masuch
 

What's hot (20)

Knn 160904075605-converted
Knn 160904075605-convertedKnn 160904075605-converted
Knn 160904075605-converted
 
2.03 bayesian estimation
2.03 bayesian estimation2.03 bayesian estimation
2.03 bayesian estimation
 
Python matplotlib cheat_sheet
Python matplotlib cheat_sheetPython matplotlib cheat_sheet
Python matplotlib cheat_sheet
 
Introduction to XGBoost
Introduction to XGBoostIntroduction to XGBoost
Introduction to XGBoost
 
PRML Chapter 4
PRML Chapter 4PRML Chapter 4
PRML Chapter 4
 
What is a Neural Network | Edureka
What is a Neural Network | EdurekaWhat is a Neural Network | Edureka
What is a Neural Network | Edureka
 
Matrix decomposition and_applications_to_nlp
Matrix decomposition and_applications_to_nlpMatrix decomposition and_applications_to_nlp
Matrix decomposition and_applications_to_nlp
 
Dimensionality reduction with UMAP
Dimensionality reduction with UMAPDimensionality reduction with UMAP
Dimensionality reduction with UMAP
 
Machine learning cheat sheet
Machine learning cheat sheetMachine learning cheat sheet
Machine learning cheat sheet
 
PRML Chapter 1
PRML Chapter 1PRML Chapter 1
PRML Chapter 1
 
Convolutional neural networks deepa
Convolutional neural networks deepaConvolutional neural networks deepa
Convolutional neural networks deepa
 
Deep Learning for Computer Vision: Image Classification (UPC 2016)
Deep Learning for Computer Vision: Image Classification (UPC 2016)Deep Learning for Computer Vision: Image Classification (UPC 2016)
Deep Learning for Computer Vision: Image Classification (UPC 2016)
 
Cross-validation Tutorial: What, how and which?
Cross-validation Tutorial: What, how and which?Cross-validation Tutorial: What, how and which?
Cross-validation Tutorial: What, how and which?
 
Linear discriminant analysis
Linear discriminant analysisLinear discriminant analysis
Linear discriminant analysis
 
A brief history of machine learning
A brief history of  machine learningA brief history of  machine learning
A brief history of machine learning
 
Kmeans
KmeansKmeans
Kmeans
 
Convolutional Neural Network - CNN | How CNN Works | Deep Learning Course | S...
Convolutional Neural Network - CNN | How CNN Works | Deep Learning Course | S...Convolutional Neural Network - CNN | How CNN Works | Deep Learning Course | S...
Convolutional Neural Network - CNN | How CNN Works | Deep Learning Course | S...
 
Ml3 logistic regression-and_classification_error_metrics
Ml3 logistic regression-and_classification_error_metricsMl3 logistic regression-and_classification_error_metrics
Ml3 logistic regression-and_classification_error_metrics
 
03 Machine Learning Linear Algebra
03 Machine Learning Linear Algebra03 Machine Learning Linear Algebra
03 Machine Learning Linear Algebra
 
Deep learning - A Visual Introduction
Deep learning - A Visual IntroductionDeep learning - A Visual Introduction
Deep learning - A Visual Introduction
 

Similar to Finite order vector spaces

Vector Space & Sub Space Presentation
Vector Space & Sub Space PresentationVector Space & Sub Space Presentation
Vector Space & Sub Space PresentationSufianMehmood2
 
Vector space interpretation_of_random_variables
Vector space interpretation_of_random_variablesVector space interpretation_of_random_variables
Vector space interpretation_of_random_variablesGopi Saiteja
 
Vector Spaces,subspaces,Span,Basis
Vector Spaces,subspaces,Span,BasisVector Spaces,subspaces,Span,Basis
Vector Spaces,subspaces,Span,BasisRavi Gelani
 
Math for Intelligent Systems - 01 Linear Algebra 01 Vector Spaces
Math for Intelligent Systems - 01 Linear Algebra 01  Vector SpacesMath for Intelligent Systems - 01 Linear Algebra 01  Vector Spaces
Math for Intelligent Systems - 01 Linear Algebra 01 Vector SpacesAndres Mendez-Vazquez
 
Linear Algebra for Competitive Exams
Linear Algebra for Competitive ExamsLinear Algebra for Competitive Exams
Linear Algebra for Competitive ExamsKendrika Academy
 
Definition ofvectorspace
Definition ofvectorspaceDefinition ofvectorspace
Definition ofvectorspaceTanuj Parikh
 
Mathematical Foundations for Machine Learning and Data Mining
Mathematical Foundations for Machine Learning and Data MiningMathematical Foundations for Machine Learning and Data Mining
Mathematical Foundations for Machine Learning and Data MiningMadhavRao65
 
ppt on Vector spaces (VCLA) by dhrumil patel and harshid panchal
ppt on Vector spaces (VCLA) by dhrumil patel and harshid panchalppt on Vector spaces (VCLA) by dhrumil patel and harshid panchal
ppt on Vector spaces (VCLA) by dhrumil patel and harshid panchalharshid panchal
 
Linear algebra power of abstraction - LearnDay@Xoxzo #5
Linear algebra power of abstraction - LearnDay@Xoxzo #5Linear algebra power of abstraction - LearnDay@Xoxzo #5
Linear algebra power of abstraction - LearnDay@Xoxzo #5Xoxzo Inc.
 
Chapter 4: Vector Spaces - Part 1/Slides By Pearson
Chapter 4: Vector Spaces - Part 1/Slides By PearsonChapter 4: Vector Spaces - Part 1/Slides By Pearson
Chapter 4: Vector Spaces - Part 1/Slides By PearsonChaimae Baroudi
 
Vcla ppt ch=vector space
Vcla ppt ch=vector spaceVcla ppt ch=vector space
Vcla ppt ch=vector spaceMahendra Patel
 
21EC33 BSP Module 1.pdf
21EC33 BSP Module 1.pdf21EC33 BSP Module 1.pdf
21EC33 BSP Module 1.pdfRavikiran A
 
Chapter 4: Vector Spaces - Part 3/Slides By Pearson
Chapter 4: Vector Spaces - Part 3/Slides By PearsonChapter 4: Vector Spaces - Part 3/Slides By Pearson
Chapter 4: Vector Spaces - Part 3/Slides By PearsonChaimae Baroudi
 

Similar to Finite order vector spaces (20)

Vector Space & Sub Space Presentation
Vector Space & Sub Space PresentationVector Space & Sub Space Presentation
Vector Space & Sub Space Presentation
 
Calculus Homework Help
Calculus Homework HelpCalculus Homework Help
Calculus Homework Help
 
Vector space interpretation_of_random_variables
Vector space interpretation_of_random_variablesVector space interpretation_of_random_variables
Vector space interpretation_of_random_variables
 
Vector Spaces,subspaces,Span,Basis
Vector Spaces,subspaces,Span,BasisVector Spaces,subspaces,Span,Basis
Vector Spaces,subspaces,Span,Basis
 
Math for Intelligent Systems - 01 Linear Algebra 01 Vector Spaces
Math for Intelligent Systems - 01 Linear Algebra 01  Vector SpacesMath for Intelligent Systems - 01 Linear Algebra 01  Vector Spaces
Math for Intelligent Systems - 01 Linear Algebra 01 Vector Spaces
 
Linear Algebra for Competitive Exams
Linear Algebra for Competitive ExamsLinear Algebra for Competitive Exams
Linear Algebra for Competitive Exams
 
Vector space
Vector spaceVector space
Vector space
 
Definition ofvectorspace
Definition ofvectorspaceDefinition ofvectorspace
Definition ofvectorspace
 
Mathematical Foundations for Machine Learning and Data Mining
Mathematical Foundations for Machine Learning and Data MiningMathematical Foundations for Machine Learning and Data Mining
Mathematical Foundations for Machine Learning and Data Mining
 
Vector Space.pptx
Vector Space.pptxVector Space.pptx
Vector Space.pptx
 
ppt on Vector spaces (VCLA) by dhrumil patel and harshid panchal
ppt on Vector spaces (VCLA) by dhrumil patel and harshid panchalppt on Vector spaces (VCLA) by dhrumil patel and harshid panchal
ppt on Vector spaces (VCLA) by dhrumil patel and harshid panchal
 
Linear algebra power of abstraction - LearnDay@Xoxzo #5
Linear algebra power of abstraction - LearnDay@Xoxzo #5Linear algebra power of abstraction - LearnDay@Xoxzo #5
Linear algebra power of abstraction - LearnDay@Xoxzo #5
 
Chapter 4: Vector Spaces - Part 1/Slides By Pearson
Chapter 4: Vector Spaces - Part 1/Slides By PearsonChapter 4: Vector Spaces - Part 1/Slides By Pearson
Chapter 4: Vector Spaces - Part 1/Slides By Pearson
 
Vector spaces
Vector spaces Vector spaces
Vector spaces
 
150490106037
150490106037150490106037
150490106037
 
Vector space
Vector spaceVector space
Vector space
 
Vcla ppt ch=vector space
Vcla ppt ch=vector spaceVcla ppt ch=vector space
Vcla ppt ch=vector space
 
Ch4
Ch4Ch4
Ch4
 
21EC33 BSP Module 1.pdf
21EC33 BSP Module 1.pdf21EC33 BSP Module 1.pdf
21EC33 BSP Module 1.pdf
 
Chapter 4: Vector Spaces - Part 3/Slides By Pearson
Chapter 4: Vector Spaces - Part 3/Slides By PearsonChapter 4: Vector Spaces - Part 3/Slides By Pearson
Chapter 4: Vector Spaces - Part 3/Slides By Pearson
 

Recently uploaded

Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibitjbellavia9
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfPoh-Sun Goh
 
Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseAnaAcapella
 
Fostering Friendships - Enhancing Social Bonds in the Classroom
Fostering Friendships - Enhancing Social Bonds  in the ClassroomFostering Friendships - Enhancing Social Bonds  in the Classroom
Fostering Friendships - Enhancing Social Bonds in the ClassroomPooky Knightsmith
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Jisc
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentationcamerronhm
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxAreebaZafar22
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...Poonam Aher Patil
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.pptRamjanShidvankar
 
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxSKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxAmanpreet Kaur
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfAdmir Softic
 
ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701bronxfugly43
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfagholdier
 
Single or Multiple melodic lines structure
Single or Multiple melodic lines structureSingle or Multiple melodic lines structure
Single or Multiple melodic lines structuredhanjurrannsibayan2
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17Celine George
 
Dyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptxDyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptxcallscotland1987
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxheathfieldcps1
 
Google Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptxGoogle Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptxDr. Sarita Anand
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxVishalSingh1417
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and ModificationsMJDuyan
 

Recently uploaded (20)

Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
 
Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please Practise
 
Fostering Friendships - Enhancing Social Bonds in the Classroom
Fostering Friendships - Enhancing Social Bonds  in the ClassroomFostering Friendships - Enhancing Social Bonds  in the Classroom
Fostering Friendships - Enhancing Social Bonds in the Classroom
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentation
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxSKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
Single or Multiple melodic lines structure
Single or Multiple melodic lines structureSingle or Multiple melodic lines structure
Single or Multiple melodic lines structure
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
Dyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptxDyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptx
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
Google Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptxGoogle Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptx
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and Modifications
 

Finite order vector spaces

  • 1. FiniteOrder Vector Spaces By Rajesh Bandari Yadav Dr. K. Sarada Finite order vectorspaces by Rajesh bandari yadav , K.Sarada is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
  • 2. Finite order vector spaces Contents Introduction........................................................ 2 More about vector spaces..................................................3 Infinite order vector space ..................3 Finite order vector space................................ 4 2 SUBSPACES Subspace .............................................................4 Properties of subspace 3 Linear combination & linear span .............................................5 Linear dependent & linear independent.......................................5 Basis & Dimension .........................................................5 4 Non-isomorphic finite order vector spaces & Properties 1-Order vector space.....................................6 2-Order vector space.....................................6 3-order vector space............................................. 6 4-Order vector space................................................................7 5-Order vector space..........................................................................8 7-Order vector space........................................................9 8-Order vector space.........................................9 9-order vector space.................................................... 11 11-Order vector space.....................................12 13-Order vector space......................................................13 16-Order vector space.................................................................13 17-Order vector space.........................................15 19-order vector space............................................. 16 4.14.Conclusion ..............................................................17 5. MATLAB programing for finding Non-Isomorphic finite order vectorspaces .............18 References.................................................................................... 21 Page1
  • 3. Finite order vector spaces Introduction: Def: Vector Space: Let V be a non-empty set, (F, +, .) is a Field. (V, +, .) is said to be vector space over the field F(denoted as V(F) ). If i) (V, +) is an Abelian Group • u+vϵV for all u,vϵV • (u+v)+w=u+(v+w) for all u,v,wϵV • 0ϵV such that 0+u=u+0=u for all uϵV • For every uϵV their exist a unique vϵV such that u+v=v+u=0 • u+v=v+u for all u,vϵV ii) a.uϵV for all aϵF,uϵV (Scalar multiplication) iii) a.(u+v)=a.u+a.v for all aϵF, for all u,vϵV iv) (a+b).v=a.v+b.v for all a,bϵF, for all vϵV v) a.(b.v)=(a.b).v for all a,bϵF,for all vϵV vi) for all vϵV such that 1.v=v where ‘1’ is unity in F. Ex: R2={(x,y) ; x ,yϵR} is a vector space over the Filed (R,+ , .). FINITE ORDER VECTOR SPACES Page2
  • 4. Finite order vector spaces R2 is a vector space over the field R MORE ABOUT VECTOR SPACE: i) Let (F, +, .) be a field. ➢ F (F) is a vector space ➢ Fn(F) is a vector space for n(≥1)ϵN. ➢ V=Mmxn[F] is vector space over the filed F. ➢ Let X be a non-empty set, V=FX is set of functions from X to F is a vector space over the filed F. ii) Let (F, +,.) and (E,+, .) are two fields such that ‘F’ is the sub field of ‘E’. ➢ E(F) is a vector space ➢ En(F) is a vector space for n(≥1)ϵN. ➢ V=Mmxn[E] is a vector space over the filed F. ➢ Let X be a non-empty set, V=EX is set functions from X to E is a Vector space over the field F. iii) Vector Space Infinite order vector space Finite Dimensional vector space Infinite Dimensional vector space Finite order vector space Finite Dimensional vector space Infinite order Vector space: A Vector space is said to be infinite order vector space if the vector space has infinite elements. Ex: Qn(Q) ,Rn(R), Cn(C) Let (F, +, .) is the infinite order field • V= Mmxn[F] is a v.s over F. • V=FF is set of all function from F to F is a v.s over F. • V=P[x] is the set of all polynomials whose coefficients belongs to F is a v.s over F Page3
  • 5. Finite order vector spaces 𝑖=1 Finite order Vector space: A Vector space is said to be finite order vector space if it has finite number of elements. Examples: • V={0} is a vector space (Null Space) of order 1 over any field F. • V=(Z2 ,+2,x2) is a vector space of order 2 over the field (Z2 ,+2 ,x2) . • Let ‘P’ be a prime V=(ZP , +P ,xP) is a vector space over the filed (ZP ,+P ,xP) of order P. • V=ZPXZPX…….XZP is a vector space over the filed (Zp, +p, xP) of orderPn. ‘n’ times • V=Mmxn[ZP] is a vector space over the filed (ZP,+P, xP) of order Pmn. • V=Pn[X] is set of all polynomials whose degree ≤n and coefficients are belongs ZP is a vector space of order pn+1. Note: Suppose V be a finite order vector space then |V|=P (or) Pn where P is a prime. Sub Spaces: Let V be vector space over the filed F, W be the any subset of V is said to be Subspace of V if W is a vector space over the field F. Properties of Subspace: Let V be a vector space over the field F. • W is the sub space of V iff a.u+b.vϵW for all a,bϵF, u,vϵV. • W={0} is sub space of every vector space. • If W is subspace of finite order vector space V then O(W)|O(V). i.e If V is finite order vector space of order Pn then the proper subspace W of order is Pm where m<n. • W1, W2,………..Wk are subspaces of V then ⋂ 𝑘 • Union of two subspaces need not subspace of V. 𝑊𝑖 is subspace of V. Page4
  • 6. Finite order vector spaces Linear Combination & Linear span: V be a vector space over the F, Let S={v1, v2, …….vk} subset of V and vϵV . Suppose ‘v’ can be written as v=a1v1+a2v2+------akvk then we say that ‘v’ is linear combination of v1,v2,……..vk. where a1, a2, …..ak ϵF Linearly independent & Linearly dependent: A set S of vectors in a vector space is said to be linearly dependent if there exists a vector ‘v’ in S such that ‘v’ belongs to the span of S-{v}. S is linearly independent if S is NOT linearly dependent, that is, if ‘v’ does not belongs to the span of S-{v} for each vϵS. Basis & Dimension: A subset S of Vector space V is said to be basis of V,if S is linearly independent and L(S)=V. Number of elements in basis is called dimension of V. • Suppose V is a finite order vector space over the finite order filed ‘F ’with finite dimension then o(V)=o(F)Dim(V) • Let V is finite dimensional vector space of order Pn i) The number distinct bases of V are (Pn-1)(Pn-P)(Pn-P2)…….(Pn-Pn-1) n! ii)The number of k-dimensional subspaces of V is (Pn-1)(Pn-1-1)………(Pn-k+1-1) (Pk-1)(Pk-1-1)……(P-1) • Suppose V be vector space over the fields (E,+,.) and (F,+,*) where F is the sub field of E. then Dim (V)=n over E V E Dim (V)=n.m over F Dim(E)=m over F F Page5
  • 7. Finite order vector spaces • Two vector spaces have the same dimension over the same field then they are isomorphic. 4.NON-ISOMORPHIC FINITE ORDER VECTOR SPACES & PROPERTIES 1-order vector space: • V={0} is vector space of order 1 over any field F. 1. Subspaces: One and only one subspace. 2. Basis: empty set 3. Dimension: 0 2-Order vector space: • V=(Z2 ,+2 ,X2) is a vector space over the field (Z2 ,+2 ,x2). i. Properties: • Every vector space of order 2 is isomorphic to (Z2 ,+2 ,X2). • Number of non-isomorphic vector spaces of order 2 is only ONE. ii. Subspaces: • V has only trivial sub spaces iii. Basis: • B={1} is the basis of (Z2 ,+2 ,X2) over the field (Z2 ,+2 ,X2). iv. Dimension: 1 3-Order vector space: • V= (Z3 ,+3 ,X3) is vector space of order 3 over the field (Z3 ,+3 ,X3). i. Caylay diagram: ii. Properties: • Every vector space of order 3 is isomorphic to V= (Z3, +3 ,X3). • Number of non-isomorphic vector spaces of 3 is only ONE. iii. Subspaces: Page6
  • 8. Finite order vector spaces • V has only trivial subspaces iv. Basis: • B1={1} ,B2={2} are two basis of V v. Dimension: 1 4-Order vector space: i)V1=(Z2XZ2 ,+, X) is a vector space of order 4 over the (Z2 ,+2, X2). ii)Let (E,+,*) is a Field of order 4, V2=(E,+ ,*) is a vector space of order 4 over the field (E.+,*). i. Caylay diagram: V= Z2XZ2 ii. Properties: • Every vector space of order 4 is isomorphic to either V1 (or) V2 . • Number of non-isomorphic vector space of order 4 is TWO. iii. Subspaces: a) Subspaces of V1=Z2XZ2 over Z2 V1=Z2XZ2 W 2={(0,0) , (0,1)} W3={(0,0) , (1,0) } W4={(0,0) , (1,1) } W4= {(0, 0)} Number total of subspaces are 5. b) V2 has trivial subspaces. c) Number of total subspaces are two. Page7
  • 9. Finite order vector spaces iv. Basis: Basis of V1: • B1={(1,0),(0,1)} • B2={(1,0),(1,1)} are basis of V1=Z2XZ2 • B3={(0,1),(1,1)} Basis of V2: • Let a(≠0)ϵV2,the set B1={a} is the basis of V2 over the field(E,+,*) v. Dimension: • Dim(V1)=2 • Dim(V2)=1 5-order vector space: V= (Z5, +5 ,X5) is vector space of order 5 over the field (Z5 ,+5 ,X5) i. Caylay diagram: ii. Properties: • Every vector space of order 5 is isomorphic to V=(Z5 ,+5 ,X5). • Number of non-isomorphic vector spaces of order 5 is ONE. iii. Subspaces: • V has only trivial subspaces. iv. Basis: • Let a(≠0)ϵV ,the set B={a} is the basis of V. v. Dimension: • Dim(V)=1 Page8
  • 10. Finite order vector spaces 4.6.7-Order vector space: • V= (Z7, +7 ,X7) is vector space of order 7 over the field (Z7 ,+7 ,X7) i. Caylay diagram: ii. Properties: • Every vector space of order 5 is isomorphic to V=(Z7 ,+7 ,X7). • Number of non-isomorphic vector spaces of order 7 is ONE. iii. Subspaces: • V has only trivial subspaces. iv. Basis: • Let a(≠0)ϵV ,the set B={a} is the basis of V. v. Dimension: • Dim(V)=1 8-Order vector space: • V1=(Z2XZ2XZ2 , +, X) is a vector space of order 8,over the field (Z2 ,+2 ,X2). • Let (F,+,*) is filed of order 8, V2=(F,+,*) is a vector space of order 8,over the field (F,+,*). i. Caylay diagram: Page9
  • 11. Finite order vector spaces ii. Properties: • Every 8-order vector space is isomorphic to one of V1 , V2 . • Number of non-isomorphic vector spaces of order 8 is TWO. iii. Subspaces: • The sub spaces of V1=Z2XZ2XZ2 over the field Z2 are 8-Order subspaces is One 4-Order subspaces are 7. W={(0,0,0),(0,1,1),(1,1,0),(1,0,1) } W={(0,0,0),(0,1,1),(0,1,0),(0,0,1)} W={(0,0,0),(0,1,1),(1,1,1),(1,0,0)} W={(0,0,0),(0,1,0),(1,1,0),(1,0,0)} W={(0,0,0),(0,0,1),(1,1,0),(1,1,1)} W={(0,0,0),(0,0,1),(1,1,0),(1,1,1)} W={(0,0,0),(0,0,1),(1,0,1),(1,0,0)} 2-Order subspaces are 7. W={(0,0,0),(1,0,0)} W={(0,0,0) ,(0,1 ,1)} W={(0,0,0), (0,1,0)} W={(0,0,0),(1,0,1)} W={(0,0,0),(1,1,1)} W={(0,0,0),(1,1,0)} W={(0,0,0),(0,0,1)} 1-order subspace is One W={(0,0,0)} Hence total number of subspaces are 15 . • The subspaces of V2 are only Two(Trivial) iv. Basis: • B={(1,0,0),(0,1,0),(0,0,1)} is basis of V1 Page10
  • 12. Finite order vector spaces • B={a} where a(≠0)ϵV2 is the basis of V2. v. Dimension: • Dim(V1)=3 • Dim(V2)=1 9-Order vector space: i)V1=(Z3XZ3 ,+, X) is a vector space of order 9 over the (Z3 ,+3, X3). ii)Let (E,+,*) is a Field of order 9, V2=(E,+ ,*) is a vector space of order 9 over the field (E.+,*) i. Caylay diagram: ii. Properties: • Every vector space of order 9 is isomorphic to either V1 (or) V2 . • Number of non-isomorphic vector space of order 9 is TWO. iii. Subspaces: a)Subspaces of V1=Z3XZ3 over Z3 Page11
  • 13. Finite order vector spaces V1=Z3XZ3 W 2={(0,0) , (0,1) (0,2)} W3={(0,0) , (1,0),(2,0) } W4={(0,0) , (1,1),(2,2) } W5={(0,0),(2,1),(1,2)} W6= {(0, 0)} Number total of subspaces are 6. b)V2 has trivial subspaces. c) Number of total subspaces are two. iv. Basis: Basis of V1: • B1={(1,0),(0,1)} • B2={(1,0),(1,1)} are basis of V1=Z3XZ3 • B3={(0,1),(1,1)} • B4={(2,0),(0,2)} • B5={(2,0),(0,1)} • B6={(1,1),(0,2)} Basis of V2: • Let a(≠0)ϵV2,the set B1={a} is the basis of V2 over the field(E,+,*) v. Dimension: • Dim(V1)=2 • Dim(V2)=1 4.9.11-Order vector space: • V= (Z11, +11 ,X11) is vector space of order 11 over the field (Z11 ,+11 ,X11) i. Caylay diagram: Page12
  • 14. Finite order vector spaces ii. Properties: • Every vector space of order 11 is isomorphic to V=(Z11 ,+11 ,X11). • Number of non-isomorphic vector spaces of order 11 is ONE. iii. Subspaces: • V has only trivial subspaces. iv. Basis: • Let a(≠0)ϵV ,the set B={a} is the basis of V. v. Dimension: • Dim(V)=1 13-Order vector space: • V= (Z13, +13 ,X13) is vector space of order 13 over the field (Z13 ,+13 ,X13) i. Cayley digram: ii. Properties: • Every vector space of order 11 is isomorphic to V=(Z13 ,+13 ,X13). Page13
  • 15. Finite order vector spaces • Number of non-isomorphic vector spaces of order 11 is ONE. iii. Subspaces: • V has only trivial subspaces. iv. Basis: • Let a(≠0)ϵV ,the set B={a} is the basis of V. v. Dimension: • Dim(V)=1 16-Order Vector space: • V1=(Z2XZ2XZ2XZ2 ,+ ,X) is a vector space over the field (Z2 ,+2 ,X2). • Let (E,+,*) be a field of order 16,(F,+ ,*) is subfield of E of order 4. V2=(E,+,*) is a vector space of order over the filed (F,+,*) . • Let (K,+,*) be a field of order 16, V3=(K,+,*) is a vector space of order 16 over the filed (K,+,*). i. Properties: • Every vector space of order 8 is isomorphic to one of V1 ,V2,V3 • Number of non-isomorphic vector spaces of order 16 is THREE. ii. Cayley diagram: iii. Subspaces: a)Sub spaces of V1: Page14
  • 16. Finite order vector spaces • 8-order subspaces of V1 are 15. • 4-order subspaces of V1 are35. • 2-order subspaces of V1 are 15. • 1-order subspaces are one Total subspaces of V1 are 66. b)Sub spaces of V3: Only trivial subspaces. iv. Dimension: • Dim(V1)=4 • Dim(V2)=2 • Dim(V3)=1 17-Order Vector space: • Every vector space of order 17 is isomorphic to V=(Z17 ,+17 ,X17). i. Caylay diagram: Page15
  • 17. Finite order vector spaces ii. Properties: • Every vector space of order 17 is isomorphic to V=(Z17 ,+17 ,X17). • Number of non-isomorphic vector spaces of order 17 is ONE. iii. Subspaces: • V has only trivial subspaces. iv. Basis: • Let a(≠0)ϵV ,the set B={a} is the basis of V. v. Dimension: • Dim(V)=1 19-Order vector space: • Every vector space of order 19 is isomorphic to V=(Z19 ,+19 ,X19). i. Caylay diagram: ii. Properties: • Every vector space of order 19 is isomorphic to V=(Z19 ,+19 ,X19). • Number of non-isomorphic vector spaces of order 19 is ONE. iii. Subspaces: • V has only trivial subspaces. iv. Basis: • Let a(≠0)ϵV ,the set B={a} is the basis of V. v. Dimension: • Dim(V)=1 Page16
  • 18. Finite order vector spaces Counlcision : Let V be a finite order vector space of order Pn over the any finite order field F. “The number of Non-Isomorphic Vector spaces of Pn are Number of divisiors of n’’. S.No Order of the Vector space Number of Non-isomorphic Vector spaces 1 1 1 2 2 1 3 3 1 4 4 2 5 5 1 6 7 1 7 8 2 8 9 2 9 11 1 10 13 1 11 16 3 12 17 1 13 19 1 14 23 1 15 25 2 16 27 2 17 29 1 18 31 1 19 32 2 20 37 1 21 41 1 22 43 1 23 47 1 Page17
  • 19. Finite order vector spaces 24 49 2 25 53 1 26 59 1 27 61 1 27 64 4 28 67 1 29 71 1 30 73 1 31 79 1 32 81 3 33 83 1 34 87 1 35 89 1 36 97 1 Number of non-isomorphic v.s of order below 100 5.MATLAB programing for finding Non-Isomorphic finite order vectorspaces: %CLASIFICATION OF FINITE ORDER VECTOR SPACES disp('CLASIFICATION OF FINITE ORDER VECTOR SPACES') k=1; n=input('Give order of the vector space'); m=input('Give order of the field'); a=factor(n);b=factor(m); if(isprime(n)&&isprime(m)) if(n==m) fprintf('Their exist ONLY ONE NON-ISOMORPHIC Vector space over the field') fprintf('n') disp(' S.No V.S Field Dim') disp(' order order ') disp(' ') t1(:,1)=1;t1(:,2)=n;t1(:,3)=m;t1(:,4)=1; disp(t1) else fprintf('Their does not exist vector space of order %i over the field of order %i',n,m) end else if(max(a)==min(a)&&max(b)==min(b)) x1=length(a);x2=length(b); if(mod(n,m)==0 && mod(x1,x2)==0) i=1:x1; y=i(rem(x1,i)==0); z=length(y); fprintf('Their exist %i non-isomorphic vactor spaces of order %i',z,n) fprintf('n') disp(' S.No V.S Field Dim') Page18
  • 20. Finite order vector spaces disp(' order order ') disp(' ') t2(:,1)=(1:z)'; t2(:,2)=(n*ones(1,z))'; t2(:,3)=(max(a).^y)'; t2(:,4)=rot90(y); disp(t2) else fprintf('Their does not exist vector space of order %i over the field of order %i ',n,m) end else if(isprime(n)==0||isprime(m)==0) fprintf('Their does not exist vector space of order %i over the field of order %i',n,m) end end end s=input('n Do you want know number of linear operetor on a vectorspaces ,n press-1 n For Exit press-0'); if(s==1) v1=input('Give vector space order'); F=input('Give order of the field'); E1=v1; if(isprime(v1)&&isprime(F)) if(v1==F) E2=v1-1; fprintf('Their exist %i linear oparetos on given vectorspace ',E1) fprintf('Their exist %i bijective linear oparetors on given vector space',E2) end else a1=factor(v1);a2=length(a1);a3=1;a4=(max(a1))^(a2*a2); if(max(a1)==min(a1)&&max(a1)==F) for i=0:(a2-1) a3=a3*((max(a1))^a2-(max(a1))^i); end end space',a4) fprintf('Their exist %i linear opretors on given vector fprintf('n Their exist %i bijective linear opretors on given vector space',a3) end end Output of the program Page19
  • 21. Finite order vector spaces Page20
  • 22. Finite order vector spaces Page21
  • 23. Finite order vector spaces References: • A.Ramachandra Rao,P.Bhimasankaram-Linear Alebra • Gilbert_Strang_Linear_Algebra_and_Its_Application( 4th edition). • schaums's Linear algebra • David C Lay -Linear Algebra And Its Applications • I.N. Herstein-Topic in algebra • Joseph Gallian -Contemporary Abstract Algebra 2009 • P. B. Bhattacharya, S. K. Jain, S. R. Nagpaul-Basic Abstract Algebra- Cambridge University Press (1994) • Imeage sourse-Group Exploer software Page22