SlideShare a Scribd company logo
1 of 31
OUTLINE
1
3.
Results
2.
Study of
viscoelastic
splitter plate
behind the
cylinder
4.
Conclusions
and Future
Work
1.
Work
Presented in
APS I and II
2
Work Presented in
APS-I and II
1
3
Study of vortex-induced-vibration(VIV) of
a viscoelastic splitter plate behind a
cylinder
WORK PRESENTED IN APS-I
4
 Vortex induced vibration (VIV) is suppressed when the splitter plate
length is large
 The VIV decreases with decreasing of flexibility of splitter plate at
critical length.
 The investigations on the effect of VIV using splitter plate
composed of viscoelastic material is still untouched.
 To study the effect on VIV using linear viscoelastic model (standard linear
solid) of splitter plate
 To perform the simulation using nonlinear viscoelastic models (Reese-
Govindjee Model)
 Linear Viscoelastic models
5
WORK PRESENTED IN APS-I I
 Maxwell Body:
 Voigt Body:
 Standard Linear Solid:
η E
1 0 1
d d
p q q
dt dt
 
 
  
1 0 1
p , 0,
q q
E


  
1 0 1, 1
p 0,q E q 
  
1
1 0 1, 1
2 2
p , (1 )
E
q E q
E E


   
 Study of static and dynamic behaviour of
Viscoelastic material
 Validation of creep and relaxation using structure
solver (Tahoe) with derived analytical solution
 Comparison of 2D Elastic and Viscoelastic splitter
plate behind cylinder
6
WORK PRESENTED IN APS-I I
 Applications
 Literature Review
 Objectives of the present work
 Finite Strain Viscoelastic
7
Study of Viscoelastic splitter plate behind the cylinder
2
Snoring
Printing process
8
Auregan et al. 1995
Watanabe , 2002
FPCL, JHU
Phonation
Piezoelectric Energy
Harvesting
InTechOpen
• Chen et al. (2011). Analyzed the flutter . Either increasing the
structure-to-fluid ratio or decreasing dimensionless bending
stiffness ( )causes the system transits from periodic to
chaotic.
• Chen et al.(2014). Increase of either elastic or viscous component
of flag stabilizes the system.
• Tang et al. (2007) considered Kelvin-Voigt model , flutter amplitude
decreases with the increase of the material damping.
• Purohit et al. (2016). At lower flexibility forcing field of flowing field
dominates the vibration plate, as the plate stiffer plate response is
effected by elastic inertial force.
9
2 3
EI
u L

• The investigations of effect of flag material finite strain
viscoelastic model is scarce.
• Few studies has been done using Kelvin –Voigt model. Standard
linear solid model is very few.
• To study the stability of viscoelastic splitter plate attached behind
the cylinder.
• To study the effect on vibration amplitude with viscoelastic
parameters
10
Based on the multiplicative decomposition of deformation gradient into elastic and inelastic part
In thermodynamic equilibrium spring of maxwell element is relaxed , ,hence
Stress
For equilibrium and non equilibrium parts of material neo-Hookean model has been implemented
11
Second Piola-Kirchho stress tensor, 2
is strain energy density function, E Lagrangian strain tensor, C right Cauchy-Green deforformation tensor
ij
ij ij
ij ij
W W
S
E C
W
 
 
 
2
2 /3 2 2 2 2 2 2 2 2 2 2 2 2
1 1 2 3 2 1 2 2 3 1 3 3 1 2 3
2 2 2
1 2 3
W= ( 3) ( 1 1ln( )
4
, shear and bulk modulus, , invarients as I , ,
, , is Eigen values (principal stretch ratios) of Green deform
i
i i
k
I J J
k I J I I I I

            
  

   
       
2 2 2
1 2 3
ation tensor Cij, J=  
2 2
1 2
1 1
Split of free energy, ( ) ( )
2 2
e eq neq e
E E
   
      
0
e
  ( )
eq 
  
2
The ansatz, ( ) ( ), elastic right Cauchy-Green tensor (loosly speaking strain E )
eq neq e e
C C C
    
1
2 +2F F = , F deformation gradient of dashpot in fig
eq neq T
eq neq i i i
e
S S S
C C C
 
  
  
  
12
Results
3
 Free vibration of cantilever beam under time varying sinusoidal l
 Vortex induced vibration of viscoelastic splitter plate behind a cy
13
 P1=7.125 N, P2=6.84 ( 50 nodes with 0.285 per node, p1 25, p2 24 nodes)
 L=10 m , f(t) = sin(0.2t), density 10 kg/m3
 Viscoelastic parameters
 Kneq, Keq are bulk modulus corresponding to E2 and E1
 Sneq, Seq are shear modulus for E2, E1 in N/m2
 Relaxation time (sec)
 A: tip (point A) vibration amplitude
 Standard linear solid
2
/ E
 

cas
e
Keq Kneq Seq Sneq R.
time
A
1 2333.33 2333.33 500 500 0.1 9
2 2333.33 2333.33 500 500 1 8
3 2333.33 2333.33 500 500 2 6.6
4 2333.33 2333.33 500 500 10 4.7
5 2333.33 2333.33 500 500 100 4.5
6 2333.33 233333.33 500 50000 0.1 2.85
7 2333.33 233333.33 500 50000 1 0.3
8 2333.33 233333.33 500 50000 10 .07
9 233333.33 2333.33 50000 500 1 0.5
Variation of amplitude with relaxation time
Variation of amplitude with relaxation time
cas
e
Keq Kneq Seq Sneq R.
time
A
1 2333.33 2333.33 500 500 0.1 9
2 2333.33 2333.33 500 500 1 8
3 2333.33 2333.33 500 500 2 6.6
4 2333.33 2333.33 500 500 10 4.7
5 2333.33 2333.33 500 500 100 4.5
6 2333.33 233333.33 500 50000 0.1 2.85
7 2333.33 233333.33 500 50000 1 0.3
8 2333.33 233333.33 500 50000 10 .07
9 233333.33 2333.33 50000 500 1 0.5
× 100
Effect of Kneq and Sneq on amplitude
Amplitude decreases with increase of
relaxation time
cas
e
Keq Kneq Seq Sneq R.
time
A
1 2333.33 2333.33 500 500 0.1 9
2 2333.33 2333.33 500 500 1 8
3 2333.33 2333.33 500 500 2 6.6
4 2333.33 2333.33 500 500 10 4.7
5 2333.33 2333.33 500 500 100 4.5
6 2333.33 233333.33 500 50000 0.1 2.85
7 2333.33 233333.33 500 50000 1 0.3
8 2333.33 233333.33 500 50000 10 .07
9 233333.33 2333.33 50000 500 1 0.5
× 100
Effect of Keq and Seq on amplitude
 Amplitude decreases with increase of modulus
 Structure vibrates with the forcing frequency
18
19
case Keq Kneq Seq Seq R. time A
1 2333.33 2333.33 500 500 0.1 2.17
2 2333.33 2333.33 500 500 1 2.25
3 2333.33 2333.33 500 500 2 2.98
4 2333.33 2333.33 500 500 10 2.89
5 2333.33 2333.33 500 500 20 2.96
6 2333.33 2333.33 500 500 100 2.97
 Amplitude almost constant
 Structure vibrates with forcing frequency
 (w=0.2, f=.05)
 Time to achieve steady state decreases with increase of Relaxation time.
 ( relaxation time =100 has different behavior)
20
 Re=100,

21
case Keq Kneq Seq Seq Relaxation
time
A
1 2333.33 2333.33 500 500 0.1 1.02
2 2333.33 2333.33 500 500 1 0.18
3 2333.33 2333.33 500 500 2 0.53
4 2333.33 2333.33 500 500 10 0.6
5 2333.33 2333.33 500 500 100 0.9
6 233.33 233.33 50 50 1 chaotic
7 2333.33 233333.33 500 50000 1 No vibration
8 2333.33 23333.33 500 5000 1 No vibration
/ 10, 1400, 0.4
s f E
  
  
Amplitude is not monotonic with Modulus as here fluid and
structure both play role
22
tau=2
tau=100
tau=1
tau=0.1
Time for steady state is not
monotonic, increases and then
tau=10
23
Symmetry breaking bifurcation which oscillates in upper or lower part of cylinder wake
24
Case 6, chaotic Case 7,
 Amplitude increases with increase of relaxation time
25
case Keq Kneq Seq Sneq R. time A
1 2333.33 2333.33 500 500 0.1 .017
2 2333.33 2333.33 500 500 0.5 0.00005
3 2333.33 2333.33 500 500 1 0.19
4 2333.33 2333.33 500 500 2 .47
5 2333.33 2333.33 500 500 10 0.00005
6 2333.33 2333.33 500 500 20 0.6
7 2333.33 2333.33 500 500 100 0.7
8 233.33 233.33 50 50 1 chaotic
9 233.33 23333.33 50 5000 1 No vibration
10 2333.33 233333.33 500 50000 1 No vibration
11 4666.66 4666.66 1000 1000 1 No vibration
12 2333.33 23333.33 500 5000 1 No vibration
13 2333.33 4666.66 500 1000 1 0.48
26
Steady state time increases with relaxation then further increasing the
relaxation time steady state time decreases
27
Damped to small amplitude vibration
28
Conclusions and Future Work
5
For constant modulus
 amplitude decreases with increase of viscosity
 Steady state time decreases with decrease of viscosity
 Steady state time increases with relaxation then further increasing the
relaxation time steady state time decreases
 Amplitude increases with increase of relaxation time
29
 The four dimensionless governing parameters for viscoelastic FSI are structure-to-
fuid density ratio, Young modulus (equilibrium and non equilibrium) , viscosity of
structure
 Current study structure-to-fuid density ratio kept constant. Its effect also need to be
investigated.
 Solving an FSI problem contrasting the behavior of hyperelastic vs. viscoelastic
solid using interaction of two splitter plates mounted on cylinders in cross flow.
As in hyperelastic vortex of one plate helps to enhance the amplitude and vice
versa. Its effect when damping is present in structure needs to be studied.
30
 THANK YOU
31

More Related Content

Similar to APS_repeat.pptx

Lec5 torsion of thin walled beams
Lec5 torsion of thin walled beamsLec5 torsion of thin walled beams
Lec5 torsion of thin walled beamsMahdi Damghani
 
Lec5 torsion of thin walled beams
Lec5 torsion of thin walled beamsLec5 torsion of thin walled beams
Lec5 torsion of thin walled beamsMahdi Damghani
 
Ветровое волнение океана и волны-убийцы. Владимир Захаров
Ветровое волнение океана и волны-убийцы. Владимир ЗахаровВетровое волнение океана и волны-убийцы. Владимир Захаров
Ветровое волнение океана и волны-убийцы. Владимир ЗахаровAlexander Dubynin
 
Ветровое волнение океана и волны-убийцы. Владимир Захаров
Ветровое волнение океана и волны-убийцы. Владимир ЗахаровВетровое волнение океана и волны-убийцы. Владимир Захаров
Ветровое волнение океана и волны-убийцы. Владимир ЗахаровAlexander Dubynin
 
Pulse laser depostion of thin film
Pulse laser depostion of thin filmPulse laser depostion of thin film
Pulse laser depostion of thin filmAbdalla Darwish
 
Pulse laser depostion of thin film
Pulse laser depostion of thin filmPulse laser depostion of thin film
Pulse laser depostion of thin filmAbdalla Darwish
 
Periodic_Forcing.pdf
Periodic_Forcing.pdfPeriodic_Forcing.pdf
Periodic_Forcing.pdfluc faucheux
 
Periodic_Forcing.pdf
Periodic_Forcing.pdfPeriodic_Forcing.pdf
Periodic_Forcing.pdfluc faucheux
 
Heterogeneous relaxation dynamics in amorphous materials under cyclic loading
Heterogeneous relaxation dynamics in amorphous materials under cyclic loadingHeterogeneous relaxation dynamics in amorphous materials under cyclic loading
Heterogeneous relaxation dynamics in amorphous materials under cyclic loadingNikolai Priezjev
 
Heterogeneous relaxation dynamics in amorphous materials under cyclic loading
Heterogeneous relaxation dynamics in amorphous materials under cyclic loadingHeterogeneous relaxation dynamics in amorphous materials under cyclic loading
Heterogeneous relaxation dynamics in amorphous materials under cyclic loadingNikolai Priezjev
 

Similar to APS_repeat.pptx (20)

Thesis
ThesisThesis
Thesis
 
Thesis
ThesisThesis
Thesis
 
94 pei 01
94 pei 0194 pei 01
94 pei 01
 
94 pei 01
94 pei 0194 pei 01
94 pei 01
 
Lecture15
Lecture15Lecture15
Lecture15
 
Lecture15
Lecture15Lecture15
Lecture15
 
Lec5 torsion of thin walled beams
Lec5 torsion of thin walled beamsLec5 torsion of thin walled beams
Lec5 torsion of thin walled beams
 
Lec5 torsion of thin walled beams
Lec5 torsion of thin walled beamsLec5 torsion of thin walled beams
Lec5 torsion of thin walled beams
 
Ветровое волнение океана и волны-убийцы. Владимир Захаров
Ветровое волнение океана и волны-убийцы. Владимир ЗахаровВетровое волнение океана и волны-убийцы. Владимир Захаров
Ветровое волнение океана и волны-убийцы. Владимир Захаров
 
Ветровое волнение океана и волны-убийцы. Владимир Захаров
Ветровое волнение океана и волны-убийцы. Владимир ЗахаровВетровое волнение океана и волны-убийцы. Владимир Захаров
Ветровое волнение океана и волны-убийцы. Владимир Захаров
 
Paper carr
Paper carrPaper carr
Paper carr
 
Paper carr
Paper carrPaper carr
Paper carr
 
Pulse laser depostion of thin film
Pulse laser depostion of thin filmPulse laser depostion of thin film
Pulse laser depostion of thin film
 
Pulse laser depostion of thin film
Pulse laser depostion of thin filmPulse laser depostion of thin film
Pulse laser depostion of thin film
 
Sensors 13-17176
Sensors 13-17176Sensors 13-17176
Sensors 13-17176
 
Sensors 13-17176
Sensors 13-17176Sensors 13-17176
Sensors 13-17176
 
Periodic_Forcing.pdf
Periodic_Forcing.pdfPeriodic_Forcing.pdf
Periodic_Forcing.pdf
 
Periodic_Forcing.pdf
Periodic_Forcing.pdfPeriodic_Forcing.pdf
Periodic_Forcing.pdf
 
Heterogeneous relaxation dynamics in amorphous materials under cyclic loading
Heterogeneous relaxation dynamics in amorphous materials under cyclic loadingHeterogeneous relaxation dynamics in amorphous materials under cyclic loading
Heterogeneous relaxation dynamics in amorphous materials under cyclic loading
 
Heterogeneous relaxation dynamics in amorphous materials under cyclic loading
Heterogeneous relaxation dynamics in amorphous materials under cyclic loadingHeterogeneous relaxation dynamics in amorphous materials under cyclic loading
Heterogeneous relaxation dynamics in amorphous materials under cyclic loading
 

Recently uploaded

5G and 6G refer to generations of mobile network technology, each representin...
5G and 6G refer to generations of mobile network technology, each representin...5G and 6G refer to generations of mobile network technology, each representin...
5G and 6G refer to generations of mobile network technology, each representin...archanaece3
 
The Entity-Relationship Model(ER Diagram).pptx
The Entity-Relationship Model(ER Diagram).pptxThe Entity-Relationship Model(ER Diagram).pptx
The Entity-Relationship Model(ER Diagram).pptxMANASINANDKISHORDEOR
 
21scheme vtu syllabus of visveraya technological university
21scheme vtu syllabus of visveraya technological university21scheme vtu syllabus of visveraya technological university
21scheme vtu syllabus of visveraya technological universityMohd Saifudeen
 
SLIDESHARE PPT-DECISION MAKING METHODS.pptx
SLIDESHARE PPT-DECISION MAKING METHODS.pptxSLIDESHARE PPT-DECISION MAKING METHODS.pptx
SLIDESHARE PPT-DECISION MAKING METHODS.pptxCHAIRMAN M
 
NEWLETTER FRANCE HELICES/ SDS SURFACE DRIVES - MAY 2024
NEWLETTER FRANCE HELICES/ SDS SURFACE DRIVES - MAY 2024NEWLETTER FRANCE HELICES/ SDS SURFACE DRIVES - MAY 2024
NEWLETTER FRANCE HELICES/ SDS SURFACE DRIVES - MAY 2024EMMANUELLEFRANCEHELI
 
NO1 Best Powerful Vashikaran Specialist Baba Vashikaran Specialist For Love V...
NO1 Best Powerful Vashikaran Specialist Baba Vashikaran Specialist For Love V...NO1 Best Powerful Vashikaran Specialist Baba Vashikaran Specialist For Love V...
NO1 Best Powerful Vashikaran Specialist Baba Vashikaran Specialist For Love V...Amil baba
 
Basics of Relay for Engineering Students
Basics of Relay for Engineering StudentsBasics of Relay for Engineering Students
Basics of Relay for Engineering Studentskannan348865
 
Dynamo Scripts for Task IDs and Space Naming.pptx
Dynamo Scripts for Task IDs and Space Naming.pptxDynamo Scripts for Task IDs and Space Naming.pptx
Dynamo Scripts for Task IDs and Space Naming.pptxMustafa Ahmed
 
analog-vs-digital-communication (concept of analog and digital).pptx
analog-vs-digital-communication (concept of analog and digital).pptxanalog-vs-digital-communication (concept of analog and digital).pptx
analog-vs-digital-communication (concept of analog and digital).pptxKarpagam Institute of Teechnology
 
engineering chemistry power point presentation
engineering chemistry  power point presentationengineering chemistry  power point presentation
engineering chemistry power point presentationsj9399037128
 
Filters for Electromagnetic Compatibility Applications
Filters for Electromagnetic Compatibility ApplicationsFilters for Electromagnetic Compatibility Applications
Filters for Electromagnetic Compatibility ApplicationsMathias Magdowski
 
Circuit Breakers for Engineering Students
Circuit Breakers for Engineering StudentsCircuit Breakers for Engineering Students
Circuit Breakers for Engineering Studentskannan348865
 
Final DBMS Manual (2).pdf final lab manual
Final DBMS Manual (2).pdf final lab manualFinal DBMS Manual (2).pdf final lab manual
Final DBMS Manual (2).pdf final lab manualBalamuruganV28
 
What is Coordinate Measuring Machine? CMM Types, Features, Functions
What is Coordinate Measuring Machine? CMM Types, Features, FunctionsWhat is Coordinate Measuring Machine? CMM Types, Features, Functions
What is Coordinate Measuring Machine? CMM Types, Features, FunctionsVIEW
 
Interfacing Analog to Digital Data Converters ee3404.pdf
Interfacing Analog to Digital Data Converters ee3404.pdfInterfacing Analog to Digital Data Converters ee3404.pdf
Interfacing Analog to Digital Data Converters ee3404.pdfragupathi90
 
Diploma Engineering Drawing Qp-2024 Ece .pdf
Diploma Engineering Drawing Qp-2024 Ece .pdfDiploma Engineering Drawing Qp-2024 Ece .pdf
Diploma Engineering Drawing Qp-2024 Ece .pdfJNTUA
 
Seismic Hazard Assessment Software in Python by Prof. Dr. Costas Sachpazis
Seismic Hazard Assessment Software in Python by Prof. Dr. Costas SachpazisSeismic Hazard Assessment Software in Python by Prof. Dr. Costas Sachpazis
Seismic Hazard Assessment Software in Python by Prof. Dr. Costas SachpazisDr.Costas Sachpazis
 
CLOUD COMPUTING SERVICES - Cloud Reference Modal
CLOUD COMPUTING SERVICES - Cloud Reference ModalCLOUD COMPUTING SERVICES - Cloud Reference Modal
CLOUD COMPUTING SERVICES - Cloud Reference ModalSwarnaSLcse
 
Developing a smart system for infant incubators using the internet of things ...
Developing a smart system for infant incubators using the internet of things ...Developing a smart system for infant incubators using the internet of things ...
Developing a smart system for infant incubators using the internet of things ...IJECEIAES
 
Tembisa Central Terminating Pills +27838792658 PHOMOLONG Top Abortion Pills F...
Tembisa Central Terminating Pills +27838792658 PHOMOLONG Top Abortion Pills F...Tembisa Central Terminating Pills +27838792658 PHOMOLONG Top Abortion Pills F...
Tembisa Central Terminating Pills +27838792658 PHOMOLONG Top Abortion Pills F...drjose256
 

Recently uploaded (20)

5G and 6G refer to generations of mobile network technology, each representin...
5G and 6G refer to generations of mobile network technology, each representin...5G and 6G refer to generations of mobile network technology, each representin...
5G and 6G refer to generations of mobile network technology, each representin...
 
The Entity-Relationship Model(ER Diagram).pptx
The Entity-Relationship Model(ER Diagram).pptxThe Entity-Relationship Model(ER Diagram).pptx
The Entity-Relationship Model(ER Diagram).pptx
 
21scheme vtu syllabus of visveraya technological university
21scheme vtu syllabus of visveraya technological university21scheme vtu syllabus of visveraya technological university
21scheme vtu syllabus of visveraya technological university
 
SLIDESHARE PPT-DECISION MAKING METHODS.pptx
SLIDESHARE PPT-DECISION MAKING METHODS.pptxSLIDESHARE PPT-DECISION MAKING METHODS.pptx
SLIDESHARE PPT-DECISION MAKING METHODS.pptx
 
NEWLETTER FRANCE HELICES/ SDS SURFACE DRIVES - MAY 2024
NEWLETTER FRANCE HELICES/ SDS SURFACE DRIVES - MAY 2024NEWLETTER FRANCE HELICES/ SDS SURFACE DRIVES - MAY 2024
NEWLETTER FRANCE HELICES/ SDS SURFACE DRIVES - MAY 2024
 
NO1 Best Powerful Vashikaran Specialist Baba Vashikaran Specialist For Love V...
NO1 Best Powerful Vashikaran Specialist Baba Vashikaran Specialist For Love V...NO1 Best Powerful Vashikaran Specialist Baba Vashikaran Specialist For Love V...
NO1 Best Powerful Vashikaran Specialist Baba Vashikaran Specialist For Love V...
 
Basics of Relay for Engineering Students
Basics of Relay for Engineering StudentsBasics of Relay for Engineering Students
Basics of Relay for Engineering Students
 
Dynamo Scripts for Task IDs and Space Naming.pptx
Dynamo Scripts for Task IDs and Space Naming.pptxDynamo Scripts for Task IDs and Space Naming.pptx
Dynamo Scripts for Task IDs and Space Naming.pptx
 
analog-vs-digital-communication (concept of analog and digital).pptx
analog-vs-digital-communication (concept of analog and digital).pptxanalog-vs-digital-communication (concept of analog and digital).pptx
analog-vs-digital-communication (concept of analog and digital).pptx
 
engineering chemistry power point presentation
engineering chemistry  power point presentationengineering chemistry  power point presentation
engineering chemistry power point presentation
 
Filters for Electromagnetic Compatibility Applications
Filters for Electromagnetic Compatibility ApplicationsFilters for Electromagnetic Compatibility Applications
Filters for Electromagnetic Compatibility Applications
 
Circuit Breakers for Engineering Students
Circuit Breakers for Engineering StudentsCircuit Breakers for Engineering Students
Circuit Breakers for Engineering Students
 
Final DBMS Manual (2).pdf final lab manual
Final DBMS Manual (2).pdf final lab manualFinal DBMS Manual (2).pdf final lab manual
Final DBMS Manual (2).pdf final lab manual
 
What is Coordinate Measuring Machine? CMM Types, Features, Functions
What is Coordinate Measuring Machine? CMM Types, Features, FunctionsWhat is Coordinate Measuring Machine? CMM Types, Features, Functions
What is Coordinate Measuring Machine? CMM Types, Features, Functions
 
Interfacing Analog to Digital Data Converters ee3404.pdf
Interfacing Analog to Digital Data Converters ee3404.pdfInterfacing Analog to Digital Data Converters ee3404.pdf
Interfacing Analog to Digital Data Converters ee3404.pdf
 
Diploma Engineering Drawing Qp-2024 Ece .pdf
Diploma Engineering Drawing Qp-2024 Ece .pdfDiploma Engineering Drawing Qp-2024 Ece .pdf
Diploma Engineering Drawing Qp-2024 Ece .pdf
 
Seismic Hazard Assessment Software in Python by Prof. Dr. Costas Sachpazis
Seismic Hazard Assessment Software in Python by Prof. Dr. Costas SachpazisSeismic Hazard Assessment Software in Python by Prof. Dr. Costas Sachpazis
Seismic Hazard Assessment Software in Python by Prof. Dr. Costas Sachpazis
 
CLOUD COMPUTING SERVICES - Cloud Reference Modal
CLOUD COMPUTING SERVICES - Cloud Reference ModalCLOUD COMPUTING SERVICES - Cloud Reference Modal
CLOUD COMPUTING SERVICES - Cloud Reference Modal
 
Developing a smart system for infant incubators using the internet of things ...
Developing a smart system for infant incubators using the internet of things ...Developing a smart system for infant incubators using the internet of things ...
Developing a smart system for infant incubators using the internet of things ...
 
Tembisa Central Terminating Pills +27838792658 PHOMOLONG Top Abortion Pills F...
Tembisa Central Terminating Pills +27838792658 PHOMOLONG Top Abortion Pills F...Tembisa Central Terminating Pills +27838792658 PHOMOLONG Top Abortion Pills F...
Tembisa Central Terminating Pills +27838792658 PHOMOLONG Top Abortion Pills F...
 

APS_repeat.pptx

  • 1. OUTLINE 1 3. Results 2. Study of viscoelastic splitter plate behind the cylinder 4. Conclusions and Future Work 1. Work Presented in APS I and II
  • 3. 3 Study of vortex-induced-vibration(VIV) of a viscoelastic splitter plate behind a cylinder WORK PRESENTED IN APS-I
  • 4. 4  Vortex induced vibration (VIV) is suppressed when the splitter plate length is large  The VIV decreases with decreasing of flexibility of splitter plate at critical length.  The investigations on the effect of VIV using splitter plate composed of viscoelastic material is still untouched.  To study the effect on VIV using linear viscoelastic model (standard linear solid) of splitter plate  To perform the simulation using nonlinear viscoelastic models (Reese- Govindjee Model)
  • 5.  Linear Viscoelastic models 5 WORK PRESENTED IN APS-I I  Maxwell Body:  Voigt Body:  Standard Linear Solid: η E 1 0 1 d d p q q dt dt        1 0 1 p , 0, q q E      1 0 1, 1 p 0,q E q     1 1 0 1, 1 2 2 p , (1 ) E q E q E E      
  • 6.  Study of static and dynamic behaviour of Viscoelastic material  Validation of creep and relaxation using structure solver (Tahoe) with derived analytical solution  Comparison of 2D Elastic and Viscoelastic splitter plate behind cylinder 6 WORK PRESENTED IN APS-I I
  • 7.  Applications  Literature Review  Objectives of the present work  Finite Strain Viscoelastic 7 Study of Viscoelastic splitter plate behind the cylinder 2
  • 8. Snoring Printing process 8 Auregan et al. 1995 Watanabe , 2002 FPCL, JHU Phonation Piezoelectric Energy Harvesting InTechOpen
  • 9. • Chen et al. (2011). Analyzed the flutter . Either increasing the structure-to-fluid ratio or decreasing dimensionless bending stiffness ( )causes the system transits from periodic to chaotic. • Chen et al.(2014). Increase of either elastic or viscous component of flag stabilizes the system. • Tang et al. (2007) considered Kelvin-Voigt model , flutter amplitude decreases with the increase of the material damping. • Purohit et al. (2016). At lower flexibility forcing field of flowing field dominates the vibration plate, as the plate stiffer plate response is effected by elastic inertial force. 9 2 3 EI u L 
  • 10. • The investigations of effect of flag material finite strain viscoelastic model is scarce. • Few studies has been done using Kelvin –Voigt model. Standard linear solid model is very few. • To study the stability of viscoelastic splitter plate attached behind the cylinder. • To study the effect on vibration amplitude with viscoelastic parameters 10
  • 11. Based on the multiplicative decomposition of deformation gradient into elastic and inelastic part In thermodynamic equilibrium spring of maxwell element is relaxed , ,hence Stress For equilibrium and non equilibrium parts of material neo-Hookean model has been implemented 11 Second Piola-Kirchho stress tensor, 2 is strain energy density function, E Lagrangian strain tensor, C right Cauchy-Green deforformation tensor ij ij ij ij ij W W S E C W       2 2 /3 2 2 2 2 2 2 2 2 2 2 2 2 1 1 2 3 2 1 2 2 3 1 3 3 1 2 3 2 2 2 1 2 3 W= ( 3) ( 1 1ln( ) 4 , shear and bulk modulus, , invarients as I , , , , is Eigen values (principal stretch ratios) of Green deform i i i k I J J k I J I I I I                               2 2 2 1 2 3 ation tensor Cij, J=   2 2 1 2 1 1 Split of free energy, ( ) ( ) 2 2 e eq neq e E E            0 e   ( ) eq     2 The ansatz, ( ) ( ), elastic right Cauchy-Green tensor (loosly speaking strain E ) eq neq e e C C C      1 2 +2F F = , F deformation gradient of dashpot in fig eq neq T eq neq i i i e S S S C C C           
  • 12. 12 Results 3  Free vibration of cantilever beam under time varying sinusoidal l  Vortex induced vibration of viscoelastic splitter plate behind a cy
  • 13. 13  P1=7.125 N, P2=6.84 ( 50 nodes with 0.285 per node, p1 25, p2 24 nodes)  L=10 m , f(t) = sin(0.2t), density 10 kg/m3  Viscoelastic parameters  Kneq, Keq are bulk modulus corresponding to E2 and E1  Sneq, Seq are shear modulus for E2, E1 in N/m2  Relaxation time (sec)  A: tip (point A) vibration amplitude  Standard linear solid 2 / E   
  • 14. cas e Keq Kneq Seq Sneq R. time A 1 2333.33 2333.33 500 500 0.1 9 2 2333.33 2333.33 500 500 1 8 3 2333.33 2333.33 500 500 2 6.6 4 2333.33 2333.33 500 500 10 4.7 5 2333.33 2333.33 500 500 100 4.5 6 2333.33 233333.33 500 50000 0.1 2.85 7 2333.33 233333.33 500 50000 1 0.3 8 2333.33 233333.33 500 50000 10 .07 9 233333.33 2333.33 50000 500 1 0.5 Variation of amplitude with relaxation time
  • 15. Variation of amplitude with relaxation time
  • 16. cas e Keq Kneq Seq Sneq R. time A 1 2333.33 2333.33 500 500 0.1 9 2 2333.33 2333.33 500 500 1 8 3 2333.33 2333.33 500 500 2 6.6 4 2333.33 2333.33 500 500 10 4.7 5 2333.33 2333.33 500 500 100 4.5 6 2333.33 233333.33 500 50000 0.1 2.85 7 2333.33 233333.33 500 50000 1 0.3 8 2333.33 233333.33 500 50000 10 .07 9 233333.33 2333.33 50000 500 1 0.5 × 100 Effect of Kneq and Sneq on amplitude Amplitude decreases with increase of relaxation time
  • 17. cas e Keq Kneq Seq Sneq R. time A 1 2333.33 2333.33 500 500 0.1 9 2 2333.33 2333.33 500 500 1 8 3 2333.33 2333.33 500 500 2 6.6 4 2333.33 2333.33 500 500 10 4.7 5 2333.33 2333.33 500 500 100 4.5 6 2333.33 233333.33 500 50000 0.1 2.85 7 2333.33 233333.33 500 50000 1 0.3 8 2333.33 233333.33 500 50000 10 .07 9 233333.33 2333.33 50000 500 1 0.5 × 100 Effect of Keq and Seq on amplitude
  • 18.  Amplitude decreases with increase of modulus  Structure vibrates with the forcing frequency 18
  • 19. 19 case Keq Kneq Seq Seq R. time A 1 2333.33 2333.33 500 500 0.1 2.17 2 2333.33 2333.33 500 500 1 2.25 3 2333.33 2333.33 500 500 2 2.98 4 2333.33 2333.33 500 500 10 2.89 5 2333.33 2333.33 500 500 20 2.96 6 2333.33 2333.33 500 500 100 2.97  Amplitude almost constant  Structure vibrates with forcing frequency  (w=0.2, f=.05)
  • 20.  Time to achieve steady state decreases with increase of Relaxation time.  ( relaxation time =100 has different behavior) 20
  • 21.  Re=100,  21 case Keq Kneq Seq Seq Relaxation time A 1 2333.33 2333.33 500 500 0.1 1.02 2 2333.33 2333.33 500 500 1 0.18 3 2333.33 2333.33 500 500 2 0.53 4 2333.33 2333.33 500 500 10 0.6 5 2333.33 2333.33 500 500 100 0.9 6 233.33 233.33 50 50 1 chaotic 7 2333.33 233333.33 500 50000 1 No vibration 8 2333.33 23333.33 500 5000 1 No vibration / 10, 1400, 0.4 s f E       Amplitude is not monotonic with Modulus as here fluid and structure both play role
  • 22. 22 tau=2 tau=100 tau=1 tau=0.1 Time for steady state is not monotonic, increases and then tau=10
  • 23. 23
  • 24. Symmetry breaking bifurcation which oscillates in upper or lower part of cylinder wake 24 Case 6, chaotic Case 7,
  • 25.  Amplitude increases with increase of relaxation time 25 case Keq Kneq Seq Sneq R. time A 1 2333.33 2333.33 500 500 0.1 .017 2 2333.33 2333.33 500 500 0.5 0.00005 3 2333.33 2333.33 500 500 1 0.19 4 2333.33 2333.33 500 500 2 .47 5 2333.33 2333.33 500 500 10 0.00005 6 2333.33 2333.33 500 500 20 0.6 7 2333.33 2333.33 500 500 100 0.7 8 233.33 233.33 50 50 1 chaotic 9 233.33 23333.33 50 5000 1 No vibration 10 2333.33 233333.33 500 50000 1 No vibration 11 4666.66 4666.66 1000 1000 1 No vibration 12 2333.33 23333.33 500 5000 1 No vibration 13 2333.33 4666.66 500 1000 1 0.48
  • 26. 26 Steady state time increases with relaxation then further increasing the relaxation time steady state time decreases
  • 27. 27 Damped to small amplitude vibration
  • 29. For constant modulus  amplitude decreases with increase of viscosity  Steady state time decreases with decrease of viscosity  Steady state time increases with relaxation then further increasing the relaxation time steady state time decreases  Amplitude increases with increase of relaxation time 29
  • 30.  The four dimensionless governing parameters for viscoelastic FSI are structure-to- fuid density ratio, Young modulus (equilibrium and non equilibrium) , viscosity of structure  Current study structure-to-fuid density ratio kept constant. Its effect also need to be investigated.  Solving an FSI problem contrasting the behavior of hyperelastic vs. viscoelastic solid using interaction of two splitter plates mounted on cylinders in cross flow. As in hyperelastic vortex of one plate helps to enhance the amplitude and vice versa. Its effect when damping is present in structure needs to be studied. 30