SlideShare a Scribd company logo
OUTLINE
1
3.
Results
2.
Study of
viscoelastic
splitter plate
behind the
cylinder
4.
Conclusions
and Future
Work
1.
Work
Presented in
APS I and II
2
Work Presented in
APS-I and II
1
3
Study of vortex-induced-vibration(VIV) of
a viscoelastic splitter plate behind a
cylinder
WORK PRESENTED IN APS-I
4
 Vortex induced vibration (VIV) is suppressed when the splitter plate
length is large
 The VIV decreases with decreasing of flexibility of splitter plate at
critical length.
 The investigations on the effect of VIV using splitter plate
composed of viscoelastic material is still untouched.
 To study the effect on VIV using linear viscoelastic model (standard linear
solid) of splitter plate
 To perform the simulation using nonlinear viscoelastic models (Reese-
Govindjee Model)
 Linear Viscoelastic models
5
WORK PRESENTED IN APS-I I
 Maxwell Body:
 Voigt Body:
 Standard Linear Solid:
η E
1 0 1
d d
p q q
dt dt
 
 
  
1 0 1
p , 0,
q q
E


  
1 0 1, 1
p 0,q E q 
  
1
1 0 1, 1
2 2
p , (1 )
E
q E q
E E


   
 Study of static and dynamic behaviour of
Viscoelastic material
 Validation of creep and relaxation using structure
solver (Tahoe) with derived analytical solution
 Comparison of 2D Elastic and Viscoelastic splitter
plate behind cylinder
6
WORK PRESENTED IN APS-I I
 Applications
 Literature Review
 Objectives of the present work
 Finite Strain Viscoelastic
7
Study of Viscoelastic splitter plate behind the cylinder
2
Snoring
Printing process
8
Auregan et al. 1995
Watanabe , 2002
FPCL, JHU
Phonation
Piezoelectric Energy
Harvesting
InTechOpen
• Chen et al. (2011). Analyzed the flutter . Either increasing the
structure-to-fluid ratio or decreasing dimensionless bending
stiffness ( )causes the system transits from periodic to
chaotic.
• Chen et al.(2014). Increase of either elastic or viscous component
of flag stabilizes the system.
• Tang et al. (2007) considered Kelvin-Voigt model , flutter amplitude
decreases with the increase of the material damping.
• Purohit et al. (2016). At lower flexibility forcing field of flowing field
dominates the vibration plate, as the plate stiffer plate response is
effected by elastic inertial force.
9
2 3
EI
u L

• The investigations of effect of flag material finite strain
viscoelastic model is scarce.
• Few studies has been done using Kelvin –Voigt model. Standard
linear solid model is very few.
• To study the stability of viscoelastic splitter plate attached behind
the cylinder.
• To study the effect on vibration amplitude with viscoelastic
parameters
10
Based on the multiplicative decomposition of deformation gradient into elastic and inelastic part
In thermodynamic equilibrium spring of maxwell element is relaxed , ,hence
Stress
For equilibrium and non equilibrium parts of material neo-Hookean model has been implemented
11
Second Piola-Kirchho stress tensor, 2
is strain energy density function, E Lagrangian strain tensor, C right Cauchy-Green deforformation tensor
ij
ij ij
ij ij
W W
S
E C
W
 
 
 
2
2 /3 2 2 2 2 2 2 2 2 2 2 2 2
1 1 2 3 2 1 2 2 3 1 3 3 1 2 3
2 2 2
1 2 3
W= ( 3) ( 1 1ln( )
4
, shear and bulk modulus, , invarients as I , ,
, , is Eigen values (principal stretch ratios) of Green deform
i
i i
k
I J J
k I J I I I I

            
  

   
       
2 2 2
1 2 3
ation tensor Cij, J=  
2 2
1 2
1 1
Split of free energy, ( ) ( )
2 2
e eq neq e
E E
   
      
0
e
  ( )
eq 
  
2
The ansatz, ( ) ( ), elastic right Cauchy-Green tensor (loosly speaking strain E )
eq neq e e
C C C
    
1
2 +2F F = , F deformation gradient of dashpot in fig
eq neq T
eq neq i i i
e
S S S
C C C
 
  
  
  
12
Results
3
 Free vibration of cantilever beam under time varying sinusoidal l
 Vortex induced vibration of viscoelastic splitter plate behind a cy
13
 P1=7.125 N, P2=6.84 ( 50 nodes with 0.285 per node, p1 25, p2 24 nodes)
 L=10 m , f(t) = sin(0.2t), density 10 kg/m3
 Viscoelastic parameters
 Kneq, Keq are bulk modulus corresponding to E2 and E1
 Sneq, Seq are shear modulus for E2, E1 in N/m2
 Relaxation time (sec)
 A: tip (point A) vibration amplitude
 Standard linear solid
2
/ E
 

cas
e
Keq Kneq Seq Sneq R.
time
A
1 2333.33 2333.33 500 500 0.1 9
2 2333.33 2333.33 500 500 1 8
3 2333.33 2333.33 500 500 2 6.6
4 2333.33 2333.33 500 500 10 4.7
5 2333.33 2333.33 500 500 100 4.5
6 2333.33 233333.33 500 50000 0.1 2.85
7 2333.33 233333.33 500 50000 1 0.3
8 2333.33 233333.33 500 50000 10 .07
9 233333.33 2333.33 50000 500 1 0.5
Variation of amplitude with relaxation time
Variation of amplitude with relaxation time
cas
e
Keq Kneq Seq Sneq R.
time
A
1 2333.33 2333.33 500 500 0.1 9
2 2333.33 2333.33 500 500 1 8
3 2333.33 2333.33 500 500 2 6.6
4 2333.33 2333.33 500 500 10 4.7
5 2333.33 2333.33 500 500 100 4.5
6 2333.33 233333.33 500 50000 0.1 2.85
7 2333.33 233333.33 500 50000 1 0.3
8 2333.33 233333.33 500 50000 10 .07
9 233333.33 2333.33 50000 500 1 0.5
× 100
Effect of Kneq and Sneq on amplitude
Amplitude decreases with increase of
relaxation time
cas
e
Keq Kneq Seq Sneq R.
time
A
1 2333.33 2333.33 500 500 0.1 9
2 2333.33 2333.33 500 500 1 8
3 2333.33 2333.33 500 500 2 6.6
4 2333.33 2333.33 500 500 10 4.7
5 2333.33 2333.33 500 500 100 4.5
6 2333.33 233333.33 500 50000 0.1 2.85
7 2333.33 233333.33 500 50000 1 0.3
8 2333.33 233333.33 500 50000 10 .07
9 233333.33 2333.33 50000 500 1 0.5
× 100
Effect of Keq and Seq on amplitude
 Amplitude decreases with increase of modulus
 Structure vibrates with the forcing frequency
18
19
case Keq Kneq Seq Seq R. time A
1 2333.33 2333.33 500 500 0.1 2.17
2 2333.33 2333.33 500 500 1 2.25
3 2333.33 2333.33 500 500 2 2.98
4 2333.33 2333.33 500 500 10 2.89
5 2333.33 2333.33 500 500 20 2.96
6 2333.33 2333.33 500 500 100 2.97
 Amplitude almost constant
 Structure vibrates with forcing frequency
 (w=0.2, f=.05)
 Time to achieve steady state decreases with increase of Relaxation time.
 ( relaxation time =100 has different behavior)
20
 Re=100,

21
case Keq Kneq Seq Seq Relaxation
time
A
1 2333.33 2333.33 500 500 0.1 1.02
2 2333.33 2333.33 500 500 1 0.18
3 2333.33 2333.33 500 500 2 0.53
4 2333.33 2333.33 500 500 10 0.6
5 2333.33 2333.33 500 500 100 0.9
6 233.33 233.33 50 50 1 chaotic
7 2333.33 233333.33 500 50000 1 No vibration
8 2333.33 23333.33 500 5000 1 No vibration
/ 10, 1400, 0.4
s f E
  
  
Amplitude is not monotonic with Modulus as here fluid and
structure both play role
22
tau=2
tau=100
tau=1
tau=0.1
Time for steady state is not
monotonic, increases and then
tau=10
23
Symmetry breaking bifurcation which oscillates in upper or lower part of cylinder wake
24
Case 6, chaotic Case 7,
 Amplitude increases with increase of relaxation time
25
case Keq Kneq Seq Sneq R. time A
1 2333.33 2333.33 500 500 0.1 .017
2 2333.33 2333.33 500 500 0.5 0.00005
3 2333.33 2333.33 500 500 1 0.19
4 2333.33 2333.33 500 500 2 .47
5 2333.33 2333.33 500 500 10 0.00005
6 2333.33 2333.33 500 500 20 0.6
7 2333.33 2333.33 500 500 100 0.7
8 233.33 233.33 50 50 1 chaotic
9 233.33 23333.33 50 5000 1 No vibration
10 2333.33 233333.33 500 50000 1 No vibration
11 4666.66 4666.66 1000 1000 1 No vibration
12 2333.33 23333.33 500 5000 1 No vibration
13 2333.33 4666.66 500 1000 1 0.48
26
Steady state time increases with relaxation then further increasing the
relaxation time steady state time decreases
27
Damped to small amplitude vibration
28
Conclusions and Future Work
5
For constant modulus
 amplitude decreases with increase of viscosity
 Steady state time decreases with decrease of viscosity
 Steady state time increases with relaxation then further increasing the
relaxation time steady state time decreases
 Amplitude increases with increase of relaxation time
29
 The four dimensionless governing parameters for viscoelastic FSI are structure-to-
fuid density ratio, Young modulus (equilibrium and non equilibrium) , viscosity of
structure
 Current study structure-to-fuid density ratio kept constant. Its effect also need to be
investigated.
 Solving an FSI problem contrasting the behavior of hyperelastic vs. viscoelastic
solid using interaction of two splitter plates mounted on cylinders in cross flow.
As in hyperelastic vortex of one plate helps to enhance the amplitude and vice
versa. Its effect when damping is present in structure needs to be studied.
30
 THANK YOU
31

More Related Content

Similar to APS_repeat.pptx

Thesis
ThesisThesis
Thesis
ThesisThesis
94 pei 01
94 pei 0194 pei 01
94 pei 01
chenna raidu c
 
94 pei 01
94 pei 0194 pei 01
94 pei 01
chenna raidu c
 
Lecture15
Lecture15Lecture15
Lecture15
Lecture15Lecture15
Lec5 torsion of thin walled beams
Lec5 torsion of thin walled beamsLec5 torsion of thin walled beams
Lec5 torsion of thin walled beams
Mahdi Damghani
 
Lec5 torsion of thin walled beams
Lec5 torsion of thin walled beamsLec5 torsion of thin walled beams
Lec5 torsion of thin walled beams
Mahdi Damghani
 
Ветровое волнение океана и волны-убийцы. Владимир Захаров
Ветровое волнение океана и волны-убийцы. Владимир ЗахаровВетровое волнение океана и волны-убийцы. Владимир Захаров
Ветровое волнение океана и волны-убийцы. Владимир Захаров
Alexander Dubynin
 
Ветровое волнение океана и волны-убийцы. Владимир Захаров
Ветровое волнение океана и волны-убийцы. Владимир ЗахаровВетровое волнение океана и волны-убийцы. Владимир Захаров
Ветровое волнение океана и волны-убийцы. Владимир Захаров
Alexander Dubynin
 
Paper carr
Paper carrPaper carr
Paper carr
dennysalvaro
 
Paper carr
Paper carrPaper carr
Paper carr
dennysalvaro
 
Pulse laser depostion of thin film
Pulse laser depostion of thin filmPulse laser depostion of thin film
Pulse laser depostion of thin film
Abdalla Darwish
 
Pulse laser depostion of thin film
Pulse laser depostion of thin filmPulse laser depostion of thin film
Pulse laser depostion of thin film
Abdalla Darwish
 
Sensors 13-17176
Sensors 13-17176Sensors 13-17176
Sensors 13-17176
hesam hajheidari
 
Sensors 13-17176
Sensors 13-17176Sensors 13-17176
Sensors 13-17176
hesam hajheidari
 
Periodic_Forcing.pdf
Periodic_Forcing.pdfPeriodic_Forcing.pdf
Periodic_Forcing.pdf
luc faucheux
 
Periodic_Forcing.pdf
Periodic_Forcing.pdfPeriodic_Forcing.pdf
Periodic_Forcing.pdf
luc faucheux
 
Heterogeneous relaxation dynamics in amorphous materials under cyclic loading
Heterogeneous relaxation dynamics in amorphous materials under cyclic loadingHeterogeneous relaxation dynamics in amorphous materials under cyclic loading
Heterogeneous relaxation dynamics in amorphous materials under cyclic loading
Nikolai Priezjev
 
Heterogeneous relaxation dynamics in amorphous materials under cyclic loading
Heterogeneous relaxation dynamics in amorphous materials under cyclic loadingHeterogeneous relaxation dynamics in amorphous materials under cyclic loading
Heterogeneous relaxation dynamics in amorphous materials under cyclic loading
Nikolai Priezjev
 

Similar to APS_repeat.pptx (20)

Thesis
ThesisThesis
Thesis
 
Thesis
ThesisThesis
Thesis
 
94 pei 01
94 pei 0194 pei 01
94 pei 01
 
94 pei 01
94 pei 0194 pei 01
94 pei 01
 
Lecture15
Lecture15Lecture15
Lecture15
 
Lecture15
Lecture15Lecture15
Lecture15
 
Lec5 torsion of thin walled beams
Lec5 torsion of thin walled beamsLec5 torsion of thin walled beams
Lec5 torsion of thin walled beams
 
Lec5 torsion of thin walled beams
Lec5 torsion of thin walled beamsLec5 torsion of thin walled beams
Lec5 torsion of thin walled beams
 
Ветровое волнение океана и волны-убийцы. Владимир Захаров
Ветровое волнение океана и волны-убийцы. Владимир ЗахаровВетровое волнение океана и волны-убийцы. Владимир Захаров
Ветровое волнение океана и волны-убийцы. Владимир Захаров
 
Ветровое волнение океана и волны-убийцы. Владимир Захаров
Ветровое волнение океана и волны-убийцы. Владимир ЗахаровВетровое волнение океана и волны-убийцы. Владимир Захаров
Ветровое волнение океана и волны-убийцы. Владимир Захаров
 
Paper carr
Paper carrPaper carr
Paper carr
 
Paper carr
Paper carrPaper carr
Paper carr
 
Pulse laser depostion of thin film
Pulse laser depostion of thin filmPulse laser depostion of thin film
Pulse laser depostion of thin film
 
Pulse laser depostion of thin film
Pulse laser depostion of thin filmPulse laser depostion of thin film
Pulse laser depostion of thin film
 
Sensors 13-17176
Sensors 13-17176Sensors 13-17176
Sensors 13-17176
 
Sensors 13-17176
Sensors 13-17176Sensors 13-17176
Sensors 13-17176
 
Periodic_Forcing.pdf
Periodic_Forcing.pdfPeriodic_Forcing.pdf
Periodic_Forcing.pdf
 
Periodic_Forcing.pdf
Periodic_Forcing.pdfPeriodic_Forcing.pdf
Periodic_Forcing.pdf
 
Heterogeneous relaxation dynamics in amorphous materials under cyclic loading
Heterogeneous relaxation dynamics in amorphous materials under cyclic loadingHeterogeneous relaxation dynamics in amorphous materials under cyclic loading
Heterogeneous relaxation dynamics in amorphous materials under cyclic loading
 
Heterogeneous relaxation dynamics in amorphous materials under cyclic loading
Heterogeneous relaxation dynamics in amorphous materials under cyclic loadingHeterogeneous relaxation dynamics in amorphous materials under cyclic loading
Heterogeneous relaxation dynamics in amorphous materials under cyclic loading
 

Recently uploaded

学校原版美国波士顿大学毕业证学历学位证书原版一模一样
学校原版美国波士顿大学毕业证学历学位证书原版一模一样学校原版美国波士顿大学毕业证学历学位证书原版一模一样
学校原版美国波士顿大学毕业证学历学位证书原版一模一样
171ticu
 
ACEP Magazine edition 4th launched on 05.06.2024
ACEP Magazine edition 4th launched on 05.06.2024ACEP Magazine edition 4th launched on 05.06.2024
ACEP Magazine edition 4th launched on 05.06.2024
Rahul
 
TIME DIVISION MULTIPLEXING TECHNIQUE FOR COMMUNICATION SYSTEM
TIME DIVISION MULTIPLEXING TECHNIQUE FOR COMMUNICATION SYSTEMTIME DIVISION MULTIPLEXING TECHNIQUE FOR COMMUNICATION SYSTEM
TIME DIVISION MULTIPLEXING TECHNIQUE FOR COMMUNICATION SYSTEM
HODECEDSIET
 
Properties Railway Sleepers and Test.pptx
Properties Railway Sleepers and Test.pptxProperties Railway Sleepers and Test.pptx
Properties Railway Sleepers and Test.pptx
MDSABBIROJJAMANPAYEL
 
ML Based Model for NIDS MSc Updated Presentation.v2.pptx
ML Based Model for NIDS MSc Updated Presentation.v2.pptxML Based Model for NIDS MSc Updated Presentation.v2.pptx
ML Based Model for NIDS MSc Updated Presentation.v2.pptx
JamalHussainArman
 
5214-1693458878915-Unit 6 2023 to 2024 academic year assignment (AutoRecovere...
5214-1693458878915-Unit 6 2023 to 2024 academic year assignment (AutoRecovere...5214-1693458878915-Unit 6 2023 to 2024 academic year assignment (AutoRecovere...
5214-1693458878915-Unit 6 2023 to 2024 academic year assignment (AutoRecovere...
ihlasbinance2003
 
Textile Chemical Processing and Dyeing.pdf
Textile Chemical Processing and Dyeing.pdfTextile Chemical Processing and Dyeing.pdf
Textile Chemical Processing and Dyeing.pdf
NazakatAliKhoso2
 
Presentation of IEEE Slovenia CIS (Computational Intelligence Society) Chapte...
Presentation of IEEE Slovenia CIS (Computational Intelligence Society) Chapte...Presentation of IEEE Slovenia CIS (Computational Intelligence Society) Chapte...
Presentation of IEEE Slovenia CIS (Computational Intelligence Society) Chapte...
University of Maribor
 
Embedded machine learning-based road conditions and driving behavior monitoring
Embedded machine learning-based road conditions and driving behavior monitoringEmbedded machine learning-based road conditions and driving behavior monitoring
Embedded machine learning-based road conditions and driving behavior monitoring
IJECEIAES
 
Engine Lubrication performance System.pdf
Engine Lubrication performance System.pdfEngine Lubrication performance System.pdf
Engine Lubrication performance System.pdf
mamamaam477
 
Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...
Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...
Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...
IJECEIAES
 
DEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODEL
DEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODELDEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODEL
DEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODEL
gerogepatton
 
Modelagem de um CSTR com reação endotermica.pdf
Modelagem de um CSTR com reação endotermica.pdfModelagem de um CSTR com reação endotermica.pdf
Modelagem de um CSTR com reação endotermica.pdf
camseq
 
basic-wireline-operations-course-mahmoud-f-radwan.pdf
basic-wireline-operations-course-mahmoud-f-radwan.pdfbasic-wireline-operations-course-mahmoud-f-radwan.pdf
basic-wireline-operations-course-mahmoud-f-radwan.pdf
NidhalKahouli2
 
Eric Nizeyimana's document 2006 from gicumbi to ttc nyamata handball play
Eric Nizeyimana's document 2006 from gicumbi to ttc nyamata handball playEric Nizeyimana's document 2006 from gicumbi to ttc nyamata handball play
Eric Nizeyimana's document 2006 from gicumbi to ttc nyamata handball play
enizeyimana36
 
Recycled Concrete Aggregate in Construction Part III
Recycled Concrete Aggregate in Construction Part IIIRecycled Concrete Aggregate in Construction Part III
Recycled Concrete Aggregate in Construction Part III
Aditya Rajan Patra
 
spirit beverages ppt without graphics.pptx
spirit beverages ppt without graphics.pptxspirit beverages ppt without graphics.pptx
spirit beverages ppt without graphics.pptx
Madan Karki
 
Manufacturing Process of molasses based distillery ppt.pptx
Manufacturing Process of molasses based distillery ppt.pptxManufacturing Process of molasses based distillery ppt.pptx
Manufacturing Process of molasses based distillery ppt.pptx
Madan Karki
 
Engineering Drawings Lecture Detail Drawings 2014.pdf
Engineering Drawings Lecture Detail Drawings 2014.pdfEngineering Drawings Lecture Detail Drawings 2014.pdf
Engineering Drawings Lecture Detail Drawings 2014.pdf
abbyasa1014
 
ISPM 15 Heat Treated Wood Stamps and why your shipping must have one
ISPM 15 Heat Treated Wood Stamps and why your shipping must have oneISPM 15 Heat Treated Wood Stamps and why your shipping must have one
ISPM 15 Heat Treated Wood Stamps and why your shipping must have one
Las Vegas Warehouse
 

Recently uploaded (20)

学校原版美国波士顿大学毕业证学历学位证书原版一模一样
学校原版美国波士顿大学毕业证学历学位证书原版一模一样学校原版美国波士顿大学毕业证学历学位证书原版一模一样
学校原版美国波士顿大学毕业证学历学位证书原版一模一样
 
ACEP Magazine edition 4th launched on 05.06.2024
ACEP Magazine edition 4th launched on 05.06.2024ACEP Magazine edition 4th launched on 05.06.2024
ACEP Magazine edition 4th launched on 05.06.2024
 
TIME DIVISION MULTIPLEXING TECHNIQUE FOR COMMUNICATION SYSTEM
TIME DIVISION MULTIPLEXING TECHNIQUE FOR COMMUNICATION SYSTEMTIME DIVISION MULTIPLEXING TECHNIQUE FOR COMMUNICATION SYSTEM
TIME DIVISION MULTIPLEXING TECHNIQUE FOR COMMUNICATION SYSTEM
 
Properties Railway Sleepers and Test.pptx
Properties Railway Sleepers and Test.pptxProperties Railway Sleepers and Test.pptx
Properties Railway Sleepers and Test.pptx
 
ML Based Model for NIDS MSc Updated Presentation.v2.pptx
ML Based Model for NIDS MSc Updated Presentation.v2.pptxML Based Model for NIDS MSc Updated Presentation.v2.pptx
ML Based Model for NIDS MSc Updated Presentation.v2.pptx
 
5214-1693458878915-Unit 6 2023 to 2024 academic year assignment (AutoRecovere...
5214-1693458878915-Unit 6 2023 to 2024 academic year assignment (AutoRecovere...5214-1693458878915-Unit 6 2023 to 2024 academic year assignment (AutoRecovere...
5214-1693458878915-Unit 6 2023 to 2024 academic year assignment (AutoRecovere...
 
Textile Chemical Processing and Dyeing.pdf
Textile Chemical Processing and Dyeing.pdfTextile Chemical Processing and Dyeing.pdf
Textile Chemical Processing and Dyeing.pdf
 
Presentation of IEEE Slovenia CIS (Computational Intelligence Society) Chapte...
Presentation of IEEE Slovenia CIS (Computational Intelligence Society) Chapte...Presentation of IEEE Slovenia CIS (Computational Intelligence Society) Chapte...
Presentation of IEEE Slovenia CIS (Computational Intelligence Society) Chapte...
 
Embedded machine learning-based road conditions and driving behavior monitoring
Embedded machine learning-based road conditions and driving behavior monitoringEmbedded machine learning-based road conditions and driving behavior monitoring
Embedded machine learning-based road conditions and driving behavior monitoring
 
Engine Lubrication performance System.pdf
Engine Lubrication performance System.pdfEngine Lubrication performance System.pdf
Engine Lubrication performance System.pdf
 
Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...
Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...
Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...
 
DEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODEL
DEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODELDEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODEL
DEEP LEARNING FOR SMART GRID INTRUSION DETECTION: A HYBRID CNN-LSTM-BASED MODEL
 
Modelagem de um CSTR com reação endotermica.pdf
Modelagem de um CSTR com reação endotermica.pdfModelagem de um CSTR com reação endotermica.pdf
Modelagem de um CSTR com reação endotermica.pdf
 
basic-wireline-operations-course-mahmoud-f-radwan.pdf
basic-wireline-operations-course-mahmoud-f-radwan.pdfbasic-wireline-operations-course-mahmoud-f-radwan.pdf
basic-wireline-operations-course-mahmoud-f-radwan.pdf
 
Eric Nizeyimana's document 2006 from gicumbi to ttc nyamata handball play
Eric Nizeyimana's document 2006 from gicumbi to ttc nyamata handball playEric Nizeyimana's document 2006 from gicumbi to ttc nyamata handball play
Eric Nizeyimana's document 2006 from gicumbi to ttc nyamata handball play
 
Recycled Concrete Aggregate in Construction Part III
Recycled Concrete Aggregate in Construction Part IIIRecycled Concrete Aggregate in Construction Part III
Recycled Concrete Aggregate in Construction Part III
 
spirit beverages ppt without graphics.pptx
spirit beverages ppt without graphics.pptxspirit beverages ppt without graphics.pptx
spirit beverages ppt without graphics.pptx
 
Manufacturing Process of molasses based distillery ppt.pptx
Manufacturing Process of molasses based distillery ppt.pptxManufacturing Process of molasses based distillery ppt.pptx
Manufacturing Process of molasses based distillery ppt.pptx
 
Engineering Drawings Lecture Detail Drawings 2014.pdf
Engineering Drawings Lecture Detail Drawings 2014.pdfEngineering Drawings Lecture Detail Drawings 2014.pdf
Engineering Drawings Lecture Detail Drawings 2014.pdf
 
ISPM 15 Heat Treated Wood Stamps and why your shipping must have one
ISPM 15 Heat Treated Wood Stamps and why your shipping must have oneISPM 15 Heat Treated Wood Stamps and why your shipping must have one
ISPM 15 Heat Treated Wood Stamps and why your shipping must have one
 

APS_repeat.pptx

  • 1. OUTLINE 1 3. Results 2. Study of viscoelastic splitter plate behind the cylinder 4. Conclusions and Future Work 1. Work Presented in APS I and II
  • 3. 3 Study of vortex-induced-vibration(VIV) of a viscoelastic splitter plate behind a cylinder WORK PRESENTED IN APS-I
  • 4. 4  Vortex induced vibration (VIV) is suppressed when the splitter plate length is large  The VIV decreases with decreasing of flexibility of splitter plate at critical length.  The investigations on the effect of VIV using splitter plate composed of viscoelastic material is still untouched.  To study the effect on VIV using linear viscoelastic model (standard linear solid) of splitter plate  To perform the simulation using nonlinear viscoelastic models (Reese- Govindjee Model)
  • 5.  Linear Viscoelastic models 5 WORK PRESENTED IN APS-I I  Maxwell Body:  Voigt Body:  Standard Linear Solid: η E 1 0 1 d d p q q dt dt        1 0 1 p , 0, q q E      1 0 1, 1 p 0,q E q     1 1 0 1, 1 2 2 p , (1 ) E q E q E E      
  • 6.  Study of static and dynamic behaviour of Viscoelastic material  Validation of creep and relaxation using structure solver (Tahoe) with derived analytical solution  Comparison of 2D Elastic and Viscoelastic splitter plate behind cylinder 6 WORK PRESENTED IN APS-I I
  • 7.  Applications  Literature Review  Objectives of the present work  Finite Strain Viscoelastic 7 Study of Viscoelastic splitter plate behind the cylinder 2
  • 8. Snoring Printing process 8 Auregan et al. 1995 Watanabe , 2002 FPCL, JHU Phonation Piezoelectric Energy Harvesting InTechOpen
  • 9. • Chen et al. (2011). Analyzed the flutter . Either increasing the structure-to-fluid ratio or decreasing dimensionless bending stiffness ( )causes the system transits from periodic to chaotic. • Chen et al.(2014). Increase of either elastic or viscous component of flag stabilizes the system. • Tang et al. (2007) considered Kelvin-Voigt model , flutter amplitude decreases with the increase of the material damping. • Purohit et al. (2016). At lower flexibility forcing field of flowing field dominates the vibration plate, as the plate stiffer plate response is effected by elastic inertial force. 9 2 3 EI u L 
  • 10. • The investigations of effect of flag material finite strain viscoelastic model is scarce. • Few studies has been done using Kelvin –Voigt model. Standard linear solid model is very few. • To study the stability of viscoelastic splitter plate attached behind the cylinder. • To study the effect on vibration amplitude with viscoelastic parameters 10
  • 11. Based on the multiplicative decomposition of deformation gradient into elastic and inelastic part In thermodynamic equilibrium spring of maxwell element is relaxed , ,hence Stress For equilibrium and non equilibrium parts of material neo-Hookean model has been implemented 11 Second Piola-Kirchho stress tensor, 2 is strain energy density function, E Lagrangian strain tensor, C right Cauchy-Green deforformation tensor ij ij ij ij ij W W S E C W       2 2 /3 2 2 2 2 2 2 2 2 2 2 2 2 1 1 2 3 2 1 2 2 3 1 3 3 1 2 3 2 2 2 1 2 3 W= ( 3) ( 1 1ln( ) 4 , shear and bulk modulus, , invarients as I , , , , is Eigen values (principal stretch ratios) of Green deform i i i k I J J k I J I I I I                               2 2 2 1 2 3 ation tensor Cij, J=   2 2 1 2 1 1 Split of free energy, ( ) ( ) 2 2 e eq neq e E E            0 e   ( ) eq     2 The ansatz, ( ) ( ), elastic right Cauchy-Green tensor (loosly speaking strain E ) eq neq e e C C C      1 2 +2F F = , F deformation gradient of dashpot in fig eq neq T eq neq i i i e S S S C C C           
  • 12. 12 Results 3  Free vibration of cantilever beam under time varying sinusoidal l  Vortex induced vibration of viscoelastic splitter plate behind a cy
  • 13. 13  P1=7.125 N, P2=6.84 ( 50 nodes with 0.285 per node, p1 25, p2 24 nodes)  L=10 m , f(t) = sin(0.2t), density 10 kg/m3  Viscoelastic parameters  Kneq, Keq are bulk modulus corresponding to E2 and E1  Sneq, Seq are shear modulus for E2, E1 in N/m2  Relaxation time (sec)  A: tip (point A) vibration amplitude  Standard linear solid 2 / E   
  • 14. cas e Keq Kneq Seq Sneq R. time A 1 2333.33 2333.33 500 500 0.1 9 2 2333.33 2333.33 500 500 1 8 3 2333.33 2333.33 500 500 2 6.6 4 2333.33 2333.33 500 500 10 4.7 5 2333.33 2333.33 500 500 100 4.5 6 2333.33 233333.33 500 50000 0.1 2.85 7 2333.33 233333.33 500 50000 1 0.3 8 2333.33 233333.33 500 50000 10 .07 9 233333.33 2333.33 50000 500 1 0.5 Variation of amplitude with relaxation time
  • 15. Variation of amplitude with relaxation time
  • 16. cas e Keq Kneq Seq Sneq R. time A 1 2333.33 2333.33 500 500 0.1 9 2 2333.33 2333.33 500 500 1 8 3 2333.33 2333.33 500 500 2 6.6 4 2333.33 2333.33 500 500 10 4.7 5 2333.33 2333.33 500 500 100 4.5 6 2333.33 233333.33 500 50000 0.1 2.85 7 2333.33 233333.33 500 50000 1 0.3 8 2333.33 233333.33 500 50000 10 .07 9 233333.33 2333.33 50000 500 1 0.5 × 100 Effect of Kneq and Sneq on amplitude Amplitude decreases with increase of relaxation time
  • 17. cas e Keq Kneq Seq Sneq R. time A 1 2333.33 2333.33 500 500 0.1 9 2 2333.33 2333.33 500 500 1 8 3 2333.33 2333.33 500 500 2 6.6 4 2333.33 2333.33 500 500 10 4.7 5 2333.33 2333.33 500 500 100 4.5 6 2333.33 233333.33 500 50000 0.1 2.85 7 2333.33 233333.33 500 50000 1 0.3 8 2333.33 233333.33 500 50000 10 .07 9 233333.33 2333.33 50000 500 1 0.5 × 100 Effect of Keq and Seq on amplitude
  • 18.  Amplitude decreases with increase of modulus  Structure vibrates with the forcing frequency 18
  • 19. 19 case Keq Kneq Seq Seq R. time A 1 2333.33 2333.33 500 500 0.1 2.17 2 2333.33 2333.33 500 500 1 2.25 3 2333.33 2333.33 500 500 2 2.98 4 2333.33 2333.33 500 500 10 2.89 5 2333.33 2333.33 500 500 20 2.96 6 2333.33 2333.33 500 500 100 2.97  Amplitude almost constant  Structure vibrates with forcing frequency  (w=0.2, f=.05)
  • 20.  Time to achieve steady state decreases with increase of Relaxation time.  ( relaxation time =100 has different behavior) 20
  • 21.  Re=100,  21 case Keq Kneq Seq Seq Relaxation time A 1 2333.33 2333.33 500 500 0.1 1.02 2 2333.33 2333.33 500 500 1 0.18 3 2333.33 2333.33 500 500 2 0.53 4 2333.33 2333.33 500 500 10 0.6 5 2333.33 2333.33 500 500 100 0.9 6 233.33 233.33 50 50 1 chaotic 7 2333.33 233333.33 500 50000 1 No vibration 8 2333.33 23333.33 500 5000 1 No vibration / 10, 1400, 0.4 s f E       Amplitude is not monotonic with Modulus as here fluid and structure both play role
  • 22. 22 tau=2 tau=100 tau=1 tau=0.1 Time for steady state is not monotonic, increases and then tau=10
  • 23. 23
  • 24. Symmetry breaking bifurcation which oscillates in upper or lower part of cylinder wake 24 Case 6, chaotic Case 7,
  • 25.  Amplitude increases with increase of relaxation time 25 case Keq Kneq Seq Sneq R. time A 1 2333.33 2333.33 500 500 0.1 .017 2 2333.33 2333.33 500 500 0.5 0.00005 3 2333.33 2333.33 500 500 1 0.19 4 2333.33 2333.33 500 500 2 .47 5 2333.33 2333.33 500 500 10 0.00005 6 2333.33 2333.33 500 500 20 0.6 7 2333.33 2333.33 500 500 100 0.7 8 233.33 233.33 50 50 1 chaotic 9 233.33 23333.33 50 5000 1 No vibration 10 2333.33 233333.33 500 50000 1 No vibration 11 4666.66 4666.66 1000 1000 1 No vibration 12 2333.33 23333.33 500 5000 1 No vibration 13 2333.33 4666.66 500 1000 1 0.48
  • 26. 26 Steady state time increases with relaxation then further increasing the relaxation time steady state time decreases
  • 27. 27 Damped to small amplitude vibration
  • 29. For constant modulus  amplitude decreases with increase of viscosity  Steady state time decreases with decrease of viscosity  Steady state time increases with relaxation then further increasing the relaxation time steady state time decreases  Amplitude increases with increase of relaxation time 29
  • 30.  The four dimensionless governing parameters for viscoelastic FSI are structure-to- fuid density ratio, Young modulus (equilibrium and non equilibrium) , viscosity of structure  Current study structure-to-fuid density ratio kept constant. Its effect also need to be investigated.  Solving an FSI problem contrasting the behavior of hyperelastic vs. viscoelastic solid using interaction of two splitter plates mounted on cylinders in cross flow. As in hyperelastic vortex of one plate helps to enhance the amplitude and vice versa. Its effect when damping is present in structure needs to be studied. 30