SlideShare a Scribd company logo
1 of 23
Download to read offline
Wind farm Connections
Syndicate Project Report
University of Queensland
Julius Quezada - Lakshan Fernando - G Sunil Varma - Chengjun He - Daniel Bensberg
Sayura Kairbekova - Quentin Melul
27/05/2014

1WIND FARM CONNECTIONS
Contents
Figures and Tables ————————————————————————————— 3
Introduction ——————————————————————————————— 4
1. Purpose —————————————————————————————— 5
2. Scope ——————————————————————————————— 5
3. Wind Farm Connection Process ———————————————————— 5
3.1 Network connections ————————————————————————— 5
3.2 Role of Powerlink —————————————————————————— 5
3.3 Involvement of AEMO in the connection application process ————————— 6
3.3.1 Preliminary stage ————————————————————————— 6
3.3.2 Application to connect ———————————————————————— 7
3.3.3 Agreement stage —————————————————————————— 7
3.3.4 Construction stage ————————————————————————— 7
3.3.5 Participation ———————————————————————————— 8
3.4 Stages involved in establishing a new wind farm —————————————— 8
3.4.1 Stage 1, Pre-feasibility ———————————————————————— 9
3.4.2 Stage 2, Enquiry —————————————————————————— 9
3.4.3 Stage 3, Application ————————————————————————— 10
3.4.4 Stage 4, Contracts —————————————————————————— 11
3.4.5 Stage 5, Construction ————————————————————————— 11
3.4.6 Stage 6, Completion ————————————————————————— 12
3.5 Timeline for the process ———————————————————————— 13
3.6 Process Overview —————————————————————————— 14
4. Risks and challenges of wind farm connections —————————————— 15
4.1 Wind variability ——————————————————————————— 15
4.2 Transient stability ——————————————————————————— 16
4.3 System inertia and rate of change of frequency ——————————————— 16
4.4 Availability of FCAS ————————————————————————— 17
4.5 Power system fault levels ———————————————————————— 17
4.6 Load balancing ———————————————————————————— 18
4.7 Capacity margins ——————————————————————————— 18
4.8 Voltage Stability ——————————————————————————— 19
4.9 Socio-economic and environmental challenges ——————————————— 20
Conclusion ———————————————————————————————— 21
References ———————————————————————————————— 22
Acronyms ————————————————————————————————— 23
2WIND FARM CONNECTIONS
Figures and Tables
Figures
Figure 1 Connection process ——————————————————————— 6
Figure 2 Stages involved in a new wind farm installation ——————————— 8
Figure 3 Connection process map ————————————————————— 14
Figure 4 Risks and challenges ——————————————————————— 15
Figure 5 Wind power output 2009 ————————————————————— 15
Figure 6 Power world system (wind farm at bus 7) —————————————— 19
Figure 7 QV curve (no wind farm) ————————————————————— 19
Figure 8 QV curve (wind farm at bus 7) ——————————————————— 20
Figure 9 Cumulative generation capacity additions and reductions ——————— 21
Tables
Table 1 Wind bubble sensivity factors for critical transient stability limits ———— 16
Table 2 Table of FCAS capability —————————————————————— 17
Table 3 Minimum fault level required for 100MW generator —————————— 17
3WIND FARM CONNECTIONS
Introduction
After the choice of location has been made to be Queensland, the process for new wind farm
connection in Queensland should be as per the guidelines of Australian Energy Market Operator
Limited (AEMO). The Market Operator provides the information about the process of new
generator connection applications, as at the date of publication.
As per the Data available, since the start of the National Electricity Market in 1998, approximately
8,000 MW of new generation has been connected to the south-east Australian electricity grid.
Generating units have ranged in size from a few megawatts to hundreds of megawatts and include
coal, gas-fired diesel units and wind farms. [j5]
The number of units connected to the power system is large – around 500, and this number is
growing. Thus, the interactions between generation and the rest of the power system must be
coordinated so that levels of quality, reliability of supply and power system security can be
maintained.
4WIND FARM CONNECTIONS
1. Purpose
For the above reason, the National Electricity Rules (Rules) include processes to coordinate the
technical interaction between new generation and the power system. The principles and process of
connecting a new generator and changes to an existing generator are outlined in Chapter 5 of the
National Electricity Rules (Rules) and for certain changes to generators in Chapter 4. [j5]
According to the process described, the aim of this project is to explore the technical, regulatory
and commercial challenges associated with connecting wind generation to the Electricity grid
Queensland.
2. Scope
The scope of the report addresses the following:
• Process to establish a new wind farm transmission connection.
• Timeframe associated with each stage of the process.
• Requirements of Wind Generator per NER
• Risks and challenges of Wind farm connections
3. Wind Farm Connection Process
3.1 Network Connections
As defined by AEMO, network connections are electricity networks that support the NEM [j1]. The
network connections includes the following [j1]:
• Electricity loads connections for transmission and distribution networks
• Distribution network interconnection with the transmission network
• Inter-network connections (Interconnection of two separate transmission networks that are
owned by different TNSPs)
The connection process differs by the geographic location, voltage of connection, type of
connection applicant, new or transferring of a connection. In this report, the content is concentrated
on obtaining a new wind farm connection in the NEM outside of Victoria.
The TNSP for Queensland is responsible for new generator transmission connections in the NEM.
They are also the main contact for connection applicants and manage the overall process. AEMO is
involved in the assessment of proposed performance standards, negotiation of proposed standards
(i.e “AEMO advisory matters” NER Clause 5.3.4A), processing of the applications for registration
and the completion stage of the process such as reviewing of commissioning and post-
commissioning data [j2].
5WIND FARM CONNECTIONS
3.2 Role of Powerlink
The Transmission Network Service Provider for Queensland is Powerlink. As owners of the QLD
HV transmission network, Powerlink are required to plan for, develop, operate and maintain this
system [j3]. They are responsible for the connections of generators and loads to the high voltage
grid. They are also required to provide NEM members secure, open and fair-minded access to the
Queensland high voltage grid for trade of electricity. Powerlink assess the network capability to
meet increased loads, and works with equivalent bodies of other states and NEMMCO to determine
the power flow in between the states [j3].
Grid Australia is the organisation representing most of transmission organisations in the NEM, and
Powerlink is a member of Grid Australia [j2]. Grid Australia is the main node which publishes
relevant contact details and connection guides behalf of transmission organisations.
3.3 Involvement of AEMO in the connection application process
Figure 1 – Connection process
3.3.1 Preliminary Stage
This initial state involves a new generation company approaching the TNSP for a connection
inquiry. During this stage, the generating company details the type, size and the timing of the
6WIND FARM CONNECTIONS
proposed connection. In some scenarios, the local TNSP may recommend an involvement of
another NSP or more than one NSP for the connection enquiry [j4].
After the enquiry, the local NSP will communicate with other NSPs in order to determine the
effects of the new generation on the current connection agreements [j4]. Then the NSP will provide
the proponent, contracts with the other parties, initial program for connection, relevant technical
requirements and standards. At this stage, the proponent can adopt applicable plant standards that
may be used instead of the NSP proposed standards. This stage also involves comprehensive
analysis of the power system, to assess the operating impacts, which takes several years to finalise
[j4].
3.3.2 Application to Connect
After finalising the information provided by the NSP, the proponent can submit the application to
connect [j4]. This includes, technical data, commercial information and application fees required by
the NSP. If there is an involvement of several NSPs, separate applications would be required for
each NSP.
In the case where the proponent does not meet the access standards, it can propose standards which
should meet at least the minimum access standards specified in the Rules document [j4]. These
proposed standards should be confirmed by the proponent, TNSP and AEMO.
3.3.3 Agreement Stage
The three parties (proponent, TNSP and AEMO) should agree with all the proposed standards,
technical and commercial issues. NSP will have several guidelines from AEMO for technical
performance or additional requirements as part of the application process [j4]. After the agreement
of standards for the generator, the proponent and the TNSP submits an offer to connect to AEMO.
Before confirming a connection agreement, AEMO completes a comprehensive review to satisfy
the technical requirements addressed in the Rules document of AEMO. Where there is insufficient
information provided at the time of application, AEMO will carry out additional checks at the time
of registration.
If a generator satisfies the minimum standards, there would be a high risk of network interruptions,
limited participation in the supply of ancillary services, and formulation and operation of network
constraints by AEMO [j4].
During finalisation of the agreement, the proponent may be required to obtain environmental or
planning approvals. Additionally, AEMO will advise any metering arrangements required as for the
Generator Registration Guide.
3.3.4 Construction Stage
This stage involves the construction of the wind farm and associated work which will be completed
by the proponent. The interconnection works and expansion of any network will be carried out by
the TNSP. The wind farm will be registered with AEMO. The commissioning tests and model
validation will be executed by relevant organisations.
7WIND FARM CONNECTIONS
• Registration
The proponents must ensure that their generating unit meets the technical requirements required by
AEMO. In order to assess this, proponents should provide suitable models including source code,
datasheets, and the user guide for the generator. If AEMO investigates even a minor issue with not
meeting the technical requirements, AEMO will decline the application for registration [j4].
AEMO states that a proponent may take up to three months to prepare documentation and AEMO
requires around 15 working days to process the completed application [j4]. Initial grid
synchronisation cannot be executed until the registration of the generator is finalised.
• Inspection and Testing
A connection agreement covers ongoing inspection and testing of equipment in order to confirm
compliance. Prior to the implementation of a compliance program, it is the requirement of the
proponent to confirm that the generating units conform technical requirements and the connection
agreement. Before commissioning, equipment settings, and control system along with relevant
design reports and models should be approved by AEMO and TNSP [j4].
Proponents should generate a compliance monitoring program to ensure ongoing compliance of the
generating units with the technical requirements, standards and connection agreement [j4].
• Commissioning
Commissioning and testing of the generating units is carried out in order to confirm compliance.
This phase includes reporting of the results and resolving of non-compliance. Commissioning
information such as detailed design data and commissioning programs are required by AEMO and
TNSP in order to model the generator to investigate any impacts. This data should be provided by
the proponent at least three months before the commissioning program [j4]. The commissioning
program should be provided before three months for a generator unit connected to a transmission
network [4].
The commissioning program allows all three parties to manage activities conducted by proponent
with other activities of the power system [j4]. It is a requirement of AEMO and TNSP to make
changes to validate power system security, agree with the projected commissioning program, and
confirm whether the generating units conform to standards within a given timeframe.
3.3.5 Participation
Once all of the above stages are completed, the generator can participate in the NEM in accordance
with rules and registration with AEMO. The percentage of participation may vary from limited to
full participation in central dispatch and spot market settlement [j4]. AER enforces compliance and
AEMO is required to report any non-compliance to AER.
8WIND FARM CONNECTIONS
3.4 Stages involved in establishing a new wind farm – TNSP and Generating Company
A new wind farm connection processes extends to six stages and they are described below. The
timeframe for each stage will be addressed in each section.
Figure 2 – Stages involved in a new wind farm installation
3.4.1 Stage 1 – Pre-feasibility
The connection applicant must perform feasibility studies of their proposed wind farm, and based
on this feasibility report, preliminary discussion would be done with the TNSP, landowners and
respective government authorities in the Queensland State. The data of the transmission network
would be provided by AEMO upon request.
The pre–feasibility stage is meant to be an informal stage prior to commencing the formal process
under the National Electricity Rules .
Applicants must be aware of the roles and responsibilities of different stakeholders, as well as
the regulatory arrangements governing the connection process.
The connection process map of NEM (Outside of Victoria) provides the outline of the activities to
be considered for the pre-feasibility stage by each party for the new generator transmission
connection.
AEMO involvement is limited in this stage, and it can only provide the transmission network data
on request by the potential applicant.
The potential applicant should contact the connecting TNSP and must provide all the data including
location, generating system, intent of connecting the transmission network, and also the land use
planning issues, such as failure to secure land or obtain planning approval in a timely manner will
cause delays and request for earliest opportunity.
The data provided by TNSP can include a variety of connecting information including [j5]:
• an explanation of the connection process and the regulatory framework
• an indicative timeline to process the application
• connection fees and charges
• high-level technical and commercial information
• information that may help in finding the location of the connection.
9WIND FARM CONNECTIONS
Pre-
feasibility
Enquiry Application Contracts
3.4.2 Stage 2 – Enquiry
When the potential applicant submits the connection application to the TNSP, the TNSP will assist
the connection applicant to determine the most suitable point of connection and clarifies with the
information required for formal connection application to be submitted. However, the connection
data can be obtained on request from AEMO.
As an enquiry is the preliminary stage for the formal connection process, clause 5.3 in the NER,
tells that the applicant should be aware of roles and responsibilities of regulatory bodies who
govern the connection process and as well as different stake holders.
❖ Response to Connection Enquiry
The response for a connection enquiry by the connecting TNSP will include:
• requirements in respect of technical studies and access standards;
• further information required to finalise a complete application to connect;
• advice on fees payable to the connecting TNSP to process the application.
Agreed performance standards must match with the access standards detailed in NEM Rules.
The Generator Performance Standards of AEMO are the Guidelines of Assessment by which
AEMO assesses whether the applicant's proposed standards are acceptable. The performance
standards once agreed by AEMO, the applicant should follow the same standards for the system to
be built. [S6]
❖ Scale Efficient Network Extension (SENE)
From June 2011, the Rules enable any person to fund a connecting TNSP to conduct a SENE study.
The purpose of a SENE study is to identify the likelihood of multiple network users accessing
transmission infrastructure and the cost of accommodating those network users. [j5]
Applicants who are interested in funding a SENE study should contact the connecting TNSP at the
enquiry stage. [j5]
3.4.3 Stage 3 – Application
In this stage, the applicant submits the connection application to the connecting TNSP, Thus TNSP
initiate the key activities for a new generator transmission connection.
The potential applicant must submit the “Application for Connection”, with following data attached
with the application:
• technical data (including all data and model requirements);
• commercial information (as per the requirements of TNSP), as well as payment of the
application fee.
10WIND FARM CONNECTIONS
The information provided by the applicant to the TNSP with the connection application is treated as
confidential.
The applicant should be aware of roles and responsibilities of regulatory bodies who govern the
connection process, and have to agree the access standard (for the relevant technical requirement)
which becomes the performance standard.
In this stage the Schedule of fee guide and connection details can be requested from AEMO.
3.4.4 Stage 4 – Contracts
In this stage the potential applicant, TNSP must agree on the access standards applicable. This
agreement would cover both commercial and technical issues [j5].
At the end of this stage, the potential applicant and TNSP will agree on the access standards for the
generator and will include them in an offer to connect. The copy of the offer to connect is sent to
AEMO for information. AEMO will not be part of this contract agreement [j5].
Contractual arrangements other than those that form part of the offer to connect may also be made
between the connecting TNSP, the connection applicant and other organisations [j5].
3.4.5 Stage 5 – Construction
During this stage following works will be completed by the potential customer, TNSP and AEMO
[j5]:
• Potential customer (applicant) does the construction of the generating plant and works;
• TNSP will work on the construction of connection works and any network augmentation.
• The registration of generating plant will be with AEMO;
• Commissioning tests, including R2 model validation tests (previously agreed with the TNSP
and AEMO) will be completed by all relevant parties.
The expected duration of construction varies considerably between projects. During construction,
the applicant should finalise [j5]:
• R1 technical data as described in AEMO's Technical Information Requirements for
Generator Connections;
• simulation models;
• energy conversion model data (for semi-scheduled plant).
The finalisations of the above points will allow the TNSP and AEMO to prepare for the connection
of the generating system. For any material changes in the above model data should be re-assessed
by AEMO and TNSP to meet the performance standards [j5].
During the construction stage itself the applicant should be prepared for commission plans, which
must be accepted by TNSP connecting and AEMO prior to three months of commissioning [j5].
11WIND FARM CONNECTIONS
The applicant should also consider registration requirements, including [j5]:
• SCADA requirements; and
• Obtaining a National Metering Identifier (NMI).
Applicants should contact the connecting TNSP to obtain an NMI for their new connection point/s.
If registration requirements are not met, commissioning may be delayed.
3.4.6 Stage 6 – Completion
AEMO is involved in all parts of the completion stage. The completion stage comprises
registration, commissioning and activities undertaken post - commissioning of new assets.
❖ Registration
Prior to commissioning or operating a generating system connected to the transmission network, a
connection applicant must either be registered with AEMO in respect to the entity operating the
generating system or obtain an exemption. It can take up to three months to prepare the necessary
documentation, and once the documentation has been received, AEMO requires time to process the
registration. AEMO requires a registration application to be submitted no later than three months
prior to commissioning; however, AEMO prefers applicants to consider registration requirements
as early as possible. [j5]
Technical areas that may cause registration delays include:
• incomplete data and simulation models
• plant design that does not meet agreed performance standards
• SCADA not ready for remote monitoring – SCADA must be ready before AEMO allows
first synchronisation.
❖ Commissioning
On site testing will be conducted to make sure that the new plant has been built in accordance with
all the standards, as well as with all regulatory and contractual obligations.
The commission planning must be approved 3 months prior to commissioning as per NER rules.
[j5]
AEMO suggests that applicants consider this requirement as early as possible, because of the time
involved in developing and agreeing commissioning plans.
Each plan must satisfy the following:
• set out the expected timing of activities
• Identify the data that will be provided to the connecting TNSP and AEMO once test results
are available.
12WIND FARM CONNECTIONS
❖ Post-commissioning [S6]
Final and formal Commission report should be submitted by the applicant to the connecting TNSP
and AEMO within three months of completing on-site commissioning, which documents the
generating system meeting the relevant agreed performance standards.
Apart from the report additional document would be required for TNSP to agree upon the
performance standards; Similarly AEMO would also require update model and parameters.
3.5 Timeline for the process
The National Electricity Rules (Rules), AEMO should provide a preliminary program, which shows
the key activities of the applicant with the proposed milestones. However the time required to
process a connection application depends on the size and complexity of the connection project.
Some of the factors which affect the connection application process are :
• Availability of adequate information to proceed with the technical assessment of proposed
performance standards.
• Are there any significant change to the technical information provided (e.g. a change in a
major equipment supplier),
If the one of the above conditions are found, the time taken would be increased, since AEMO needs
to repeat part or all of the analytical work which includes:
• Concurrent connection application for the same location at same, which require additional
analysis to assess potential interactions and any implications for proposed performance
standards. This may require design changes or additional augmentation works.
• Whether inter-network tests are required to assess the impact of a connection on other
network service providers.
13WIND FARM CONNECTIONS
3.6 Process Overview
figure 3 - Connection process map
14WIND FARM CONNECTIONS
4. Risks and Challenges of Wind Farm Connections
The success of wind farm connections is disadvantaged by risks and challenges associated with
wind technology, making them a controversial capital investment for proponents. Wind generation
in QLD is comparatively undeveloped compared to other states. In a form of incipiency, AEMO has
reported 266MW of wind farm capacity in the SWQ wind zone to be connected at 275kV lines at
Blackstone and Greenbank [j6]. As wind penetration develops, risks to power system and society
are exacerbated thus a risk assessment of various challenges for proponents of wind farm ventures
is warranted.
!
Figure 4 - Risks and Challenges
4.1 Wind Variability
Given the dynamic nature of wind, there is an uncertainty in generating capacity of a wind farm.
QLD wind bubbles (FNQ, NQ, and SWQ) are attractive areas of wind generation [j6]. Wind power
output at these zones will be expected to be dynamically natured as in figure xx.
!
Figure 5 - Wind power output 2009 30-min intervals (SA, VIC, TAS) [j4]
Wind output can vary from 0MW to a peak of 1150MW. This variation means that wind generators
cannot be scheduled or dispatched [j3]. In relation, wind generation can be a system uncertainty
factor [j3] which can lower system security. This variability in power output variability makes it
difficult for AEMO to forecast load balancing and achieve equilibrium in the short term market.
Wind
Variability
Transient
Stability
System
Inertia and
RoCoF
Availability
of FCAS
Fault Levels
and
Protection
Load
Balancing
Capacity
Margins
Voltage
Stability
Socio-
Economic
Environment
15WIND FARM CONNECTIONS
4.2 Transient Stability
In any power system, risk of large contingency events are considered by transient stability of the
network. AEMO has studied the transient stability impact of additional NEM wind generation in
2020, on QNI. Two key transient events are relevant in figure 2, being a fault on the 330kV line
between Bulli Creek and Armidale (event A), and a trip of a Boyne Island potline (event B) [j6].
!
Table 1 – Wind Bubble Sensitivity Factors for Critical Transient Stability Limits
The transient stability limit of QLD NSW interconnector (QNI) is especially influenced by
generation in the SWQ wind bubble (South West Queensland), which is the location of the
proposed 266MW capacity. For event A and B, the QNI limit was shown in to increase by 154MW
and 136MW, with high positive sensitivity factors of 0.58 and 0.51, respectively [j6]. Based on
capacities of QNI flow directions (South, North), the transient stability of each network can be
affected. For example if QNI is flowing south the additional wind capacity can lower system
stability in NSW.
4.3 System Inertia and Rate of Change of Frequency
Wind farms can compromise system frequency and inertia, due to their variability and
asynchronous nature of wind turbine technology. System inertia factors into rate of change of
frequency capability (RoCoF). Power system RoCoF is a parameter related to compliance of 50Hz
system frequency [j6]. Suitable amounts of system inertia and generation are usually provided by
synchronous generators [j6]. In the case of wind doubly fed induction generators or those using full
rated power convertors, no inertia is provided to the system causing high RoCoF [j6]. High RoCoF
translates into increased vulnerability to disturbances (e.g removal of large synchronous generator).
Furthermore, wind turbines have low marginal cost, meaning they will be expected run whenever
possible [j6]. Thus it is a challenge to maintain RoCoF since the wind generation is not
controllable, thus FCAS is required.
16WIND FARM CONNECTIONS
4.4 Availability of FCAS
There can be times when wind generation is running at peak capacity, while load is at a minimum,
and synchronous machines are not running. This might occur during a time such as after midnight
to morning. In this scenario, the system inertia will be low however the RoCoF will be higher. As a
remedy, access to FCAS capacity should be on hand. The FCAS available to AEMO is seen below.
!
Table 2 - Table of FCAS Capability (MW) [j6]
QLD has an adequate amount of FCAS, however this will be seen as a cost to AEMO and
subsequently, the customer could find increase in electricity price. Notably, for South Australia
FCAS services are very low, which is attributed to the high wind penetration in that state. Suitable
FCAS facilities could be a challenge to maintain as wind and solar penetration increases in
Queensland.
4.5 Power System Fault Levels
Wind turbines typically produce lower levels of fault current compared to synchronous generators.
Lower fault levels translate to a weaker power system that is much more sensitive to fault
contingencies. For example, the reduction of fault level can be exacerbated by night scenarios when
the wind generation is high and synchronous generators have been displaced [j6]. Furthermore,
fault levels will typically be limited by a SCR. AEMO has SCR parameters by 3 and 5 ratios,
below.
!
Table 3 - Minimum Fault Level Required for 100MW Generator
The SCR will be taken from the point of common coupling (i.e. farm to grid terminals). The SCR is
typically selected to be a certain value that the wind generator can “ride through” a fault and re-
establish operation after the fault is cleared [j6]. To increase fault levels, series reactors can be used.
Full power converter wind technologies are unique in that their response to unbalanced faults
differs to that of synchronous models, especially in the fault impedance parameter. A lower fault
17WIND FARM CONNECTIONS
current, would mean distance protection relays could trip inaccurately, resulting in unneeded loss of
supply. AEMO does not manage or own the network protection systems [j6], meaning it would be
the duty of Powerlink to redesign protection systems as wind penetration moves forward in
Queensland.
4.6 Load Balancing
The requirement of load balancing (so that the consumer's demand for power can be met) means
that:
A power system must have sufficient primary, secondary and tertiary control capacity available in
order to be able to respond to changes in demand. These power plants much always have sufficient
reserve margins to increase the power production to the level required for always meeting the
system demand. The primary control is always system-wide, that is for the whole synchronous
interconnected AC network. The secondary control is often connected to automatic generation
control, with the aim of balancing out changes within each control area.
If wind power is added to such a power system there will be an additional fluctuation source in the
power system. That means the requirement of power system balancing may be increase. However,
the primary, secondary and tertiary control system will still operating in the same way.The
consequence is that there will be more variations that have to be balanced by primary and
secondary control.
4.7 Capacity Margins
An important reliability issue is related to the capacity margin in the given power system (for
example there must be enough capacity available in a power system to cover the peak load). If we
assume a certain power there is always a probability that the available power plants are not
sufficient to cover the peak load. If wind power is introduced in the system, reliability will increase
as there is a certain probability that there will be a certain amount of wind power production during
the peak load situation, which will decrease the risk of capacity deficit. Adding more wind power
capacity to a power system may also allow a decrease in the installed capacity of other power
plants in the system without reducing the system reliability. [j9]
It should also be considered that, in contrast to systems with only varying load, active power
balancing in a system with both wind power and load varying may require more balancing
equipment to keep a certain system reliability level. However the cost-benefit analysis should
consider that, for instance, the largest possible decrease in wind power (which require an increase
production from conventional power plants) can coincide with high wind power production. In
such a situation, other power plants have previously reduced their power generation due to the
increase of wind power production. Those conventional power plants may be able to increase
production if wind power production drops however, the important issue here is, how fast
aggregated wind power production could decrease during times when load levels typically increase
very fast.
18WIND FARM CONNECTIONS
4.8 Voltage Stability
The voltage stability is a type of stability associated with small and large disturbances. Small disturbances
arise due to constantly fluctuation load and in case of wind power generation, fluctuating active power.
Large disturbances arise when there is a loss of generation, faults or contingency event. A Power world
simulation has been created to study the effect of a large dg on the system voltage, which could be viewed as
a large disturbance. The system consists of synchronous generators at bus 12 and 2 with a large wind farm at
4 rated at 150MW, with a DFIG consuming -75MVAR.
!
Figure 6 – Power world System (Wind Farm at Bus 7)
The base case QV curve is seen in figure 7 which is a system of 2 synchronous generators. Figure 6
depicts the QV curve of the system with the wind farm connection at bus 7.
!
Figure 7 - QV Curve (No Wind Farm)
19WIND FARM CONNECTIONS
!
Figure 8 - QV Curve (Wind Farm at Bus 7)
The operating point drops from 0.94pu to 0.8pu. The bus voltage was 66kV indicating a voltage
decline from 62kV to 52.8kV, which is a 9.2kV voltage drop. If the voltage were to drop below
0.6pu the system will become unstable as there will not be enough reactive power driving the
system, resulting in potential for cascaded failure and blackout.
4.9 Socio-Economic and Environmental Challenges
Proponents of wind farms must carry out appropriate landscape and visual assessment. Typically,
the local community will be the stakeholder involved in this consideration. For instance if the wind
farm is visually unappealing or there is an annoyance factor with turbine shadow flicker then the
wind farm could be protested against by the local community near the site[j7].
Another consideration is noise limitations, for instance turbine humming which may vary in
audibility depending wind speed increases. For Queensland, the proponent must consider guidance
by the Department of Environment and Resource. A sound power level assessment can ensure the
compliance of this factor [j7]. An ecological assessment should also be undertaken. Take for
example bats. If a wind farm is constructed at a location with significant populations or threatened
species, there is the risk of bat collision with turbines or barotrauma. If bat populations choose to
live near wind farm sites, there is higher risk of animal deaths and backlash from environmental
opponents [j7].
Wind turbines potentially result in detrimental effects upon other societal industries. For instance,
turbines may obstruct, reflect, or refract electromagnetic waves, thus disturbing telecommunication
systems. Stakeholders involved would be met through the Australia Communications and Media
Authority. Since wind turbines are at such an elevated area, another consideration for site selection
is proximity to air fields and air spaces, thus risk of aircraft collision [j7].
In 2014 the recently elected liberal Australian government put forth a budget, which will see the
abolishment of the Australian Renewable Energy Agency. The potential for new renewable energy
ventures such as wind farms could be greatly decreased, since the government has shown lack of
agenda regarding the renewables industry, especially in QLD where wind generation is
undeveloped.
20WIND FARM CONNECTIONS
Conclusion
In order to reduce the carbon price, Australia tends to foster renewable energies. The National
Transmission Network Development Plan (NTNDP) gives the outlines of energy development in
Australia over a 25-year outlook period.
The short- to medium-term outlook to 2020 is as following :
figure 9 - Cumulative generation capacity additions and reductions [j8]
The shorter-term outlook to 2020 is characterised by an increase in new renewable generation,
generation retirements, and a need to focus on improved utilisation of the existing transmission
network. All new generation to 2020 is expected to be renewable, with wind comprising 84%. [j8]
For the reason above, the structure and timeframes of new wind farm establishment processes are
key elements in the actual NTNDP. With the implantation of multiple wind farms, it is important to
evaluate the interactions between the electricity network and the new sources of energy. In this
project, we gave a brief overview of the different requirements, risks and challenges involved in
wind farm installations. According to the actual NTNDP, wind farms are a significant asset of the
Australian electricity network and the issues developed in this project are to be studied,
characterized and resolved in order to achieve high future wind penetrations into the electricity
market.
21WIND FARM CONNECTIONS
References
[j1] Electricity market design for facilitating the integration of wind energy: Experience and
prospects with the Australian National Electricity Market,
Energy Policy 2010 Volume 38, Issue 7
[j2] Connecting Australia’s Largest Wind Farm to the Power Grid
http://www.amsc.com/library/COLLGAR_CS_1213_WEB.pdf
[j3] A risk assessment approach for power system with significant penetration levels of wind power
generation
Power Engineering Conference (AUPEC), 2013 Australasian Universities
[j4] generation portfolio analysis for low-carbon future electricity industries with high wind power
penetrations
http://www.ceem.unsw.edu.au/sites/default/files/uploads/publications/PID1691893.pdf
[j5] National Electricity rules
http://www.aemc.gov.au/energy-rules/national-electricity-rules/current-rules
[j6] AEMO wind integration report 2013
http://www.aemo.com.au/Electricity/Planning/Integrating-Renewable-Energy
[j7] Best practices for implementation of wind 2013, Clean Energy Council
https://www.cleanenergycouncil.org.au
[j8] 2013 National Transmission Network Development Plan
http://www.aemo.com.au/Electricity/Planning/National-Transmission-Network-Development-Plan
[j9] Wind Power in Power system, Ackermann, T. (2012)
Acronyms
22WIND FARM CONNECTIONS
• AEMO : Australian Energy Market Operator
• AER: Australian Energy Regulator
• NER: National Electricity Rules
• TNSP: Transmission Network Service Provider
• NSP: Network Service Provider
• NEM: National Electrical Market
• NEMMCO: National Electricity Market Management Company
• NTNDP: National Transmission Network Development Plan
23WIND FARM CONNECTIONS

More Related Content

What's hot

Load Forecasting
Load ForecastingLoad Forecasting
Load ForecastingPowerEDGE
 
Solar net metering policy
Solar net metering policySolar net metering policy
Solar net metering policyJay Ranvir
 
Differential game approach for the analysis of two area load frequency control
Differential game approach for the analysis of two area load frequency controlDifferential game approach for the analysis of two area load frequency control
Differential game approach for the analysis of two area load frequency controlIRJET Journal
 
Congestion management using facts devices in deregulated power system
Congestion management using facts devices in deregulated power systemCongestion management using facts devices in deregulated power system
Congestion management using facts devices in deregulated power systemeSAT Journals
 
Intelligent methods in load forecasting
Intelligent methods in load forecastingIntelligent methods in load forecasting
Intelligent methods in load forecastingprj_publication
 
What is availability tariff
What is availability tariffWhat is availability tariff
What is availability tariffJay Ranvir
 
A New approach for controlling the power flow in a transmission system using ...
A New approach for controlling the power flow in a transmission system using ...A New approach for controlling the power flow in a transmission system using ...
A New approach for controlling the power flow in a transmission system using ...IJMER
 
Available transfer capability computations in the indian southern e.h.v power...
Available transfer capability computations in the indian southern e.h.v power...Available transfer capability computations in the indian southern e.h.v power...
Available transfer capability computations in the indian southern e.h.v power...eSAT Publishing House
 
POWER SYSTEM PLANNING AND DESIGN
POWER SYSTEM PLANNING AND DESIGNPOWER SYSTEM PLANNING AND DESIGN
POWER SYSTEM PLANNING AND DESIGNHardik Pandya
 
Voltage Stability & Power Quality Assessment of Distributed Generation Based ...
Voltage Stability & Power Quality Assessment of Distributed Generation Based ...Voltage Stability & Power Quality Assessment of Distributed Generation Based ...
Voltage Stability & Power Quality Assessment of Distributed Generation Based ...ijsrd.com
 
The Cost of Losses for Future Network Investment
The Cost of Losses for Future Network Investment The Cost of Losses for Future Network Investment
The Cost of Losses for Future Network Investment Leonardo ENERGY
 
Power system planning & operation [eceg 4410]
Power system planning & operation [eceg 4410]Power system planning & operation [eceg 4410]
Power system planning & operation [eceg 4410]Sifan Welisa
 
Reliability Impacts of Behind the Meter Distributed Energy Resources on Trans...
Reliability Impacts of Behind the Meter Distributed Energy Resources on Trans...Reliability Impacts of Behind the Meter Distributed Energy Resources on Trans...
Reliability Impacts of Behind the Meter Distributed Energy Resources on Trans...Power System Operation
 
Electric Load Forecasting
Electric Load ForecastingElectric Load Forecasting
Electric Load Forecastinginventy
 

What's hot (18)

Grid code
Grid codeGrid code
Grid code
 
Load Forecasting
Load ForecastingLoad Forecasting
Load Forecasting
 
A novel fast MPPT strategy used for grid-connected residential PV system appl...
A novel fast MPPT strategy used for grid-connected residential PV system appl...A novel fast MPPT strategy used for grid-connected residential PV system appl...
A novel fast MPPT strategy used for grid-connected residential PV system appl...
 
Solar net metering policy
Solar net metering policySolar net metering policy
Solar net metering policy
 
Differential game approach for the analysis of two area load frequency control
Differential game approach for the analysis of two area load frequency controlDifferential game approach for the analysis of two area load frequency control
Differential game approach for the analysis of two area load frequency control
 
Main paper
Main paperMain paper
Main paper
 
Congestion management using facts devices in deregulated power system
Congestion management using facts devices in deregulated power systemCongestion management using facts devices in deregulated power system
Congestion management using facts devices in deregulated power system
 
Intelligent methods in load forecasting
Intelligent methods in load forecastingIntelligent methods in load forecasting
Intelligent methods in load forecasting
 
What is availability tariff
What is availability tariffWhat is availability tariff
What is availability tariff
 
A New approach for controlling the power flow in a transmission system using ...
A New approach for controlling the power flow in a transmission system using ...A New approach for controlling the power flow in a transmission system using ...
A New approach for controlling the power flow in a transmission system using ...
 
Available transfer capability computations in the indian southern e.h.v power...
Available transfer capability computations in the indian southern e.h.v power...Available transfer capability computations in the indian southern e.h.v power...
Available transfer capability computations in the indian southern e.h.v power...
 
POWER SYSTEM PLANNING AND DESIGN
POWER SYSTEM PLANNING AND DESIGNPOWER SYSTEM PLANNING AND DESIGN
POWER SYSTEM PLANNING AND DESIGN
 
Indian Electricity Grid Code
Indian Electricity Grid CodeIndian Electricity Grid Code
Indian Electricity Grid Code
 
Voltage Stability & Power Quality Assessment of Distributed Generation Based ...
Voltage Stability & Power Quality Assessment of Distributed Generation Based ...Voltage Stability & Power Quality Assessment of Distributed Generation Based ...
Voltage Stability & Power Quality Assessment of Distributed Generation Based ...
 
The Cost of Losses for Future Network Investment
The Cost of Losses for Future Network Investment The Cost of Losses for Future Network Investment
The Cost of Losses for Future Network Investment
 
Power system planning & operation [eceg 4410]
Power system planning & operation [eceg 4410]Power system planning & operation [eceg 4410]
Power system planning & operation [eceg 4410]
 
Reliability Impacts of Behind the Meter Distributed Energy Resources on Trans...
Reliability Impacts of Behind the Meter Distributed Energy Resources on Trans...Reliability Impacts of Behind the Meter Distributed Energy Resources on Trans...
Reliability Impacts of Behind the Meter Distributed Energy Resources on Trans...
 
Electric Load Forecasting
Electric Load ForecastingElectric Load Forecasting
Electric Load Forecasting
 

Viewers also liked

subission report
subission reportsubission report
subission reportManoj Kumar
 
Review on stability analysis of grid connected wind power generating system1
Review on stability analysis of grid connected wind power generating system1Review on stability analysis of grid connected wind power generating system1
Review on stability analysis of grid connected wind power generating system1prjpublications
 
Steady state stability analysis and enhancement of three machine nine bus pow...
Steady state stability analysis and enhancement of three machine nine bus pow...Steady state stability analysis and enhancement of three machine nine bus pow...
Steady state stability analysis and enhancement of three machine nine bus pow...eSAT Journals
 
Power system Stability, Equal area criteria
Power system Stability, Equal area criteriaPower system Stability, Equal area criteria
Power system Stability, Equal area criteriaAbha Tripathi
 
Wind Power Presentation
Wind Power PresentationWind Power Presentation
Wind Power PresentationRob Garrone
 
Challenges & opportunities for renewable energy in india
Challenges & opportunities for renewable energy in indiaChallenges & opportunities for renewable energy in india
Challenges & opportunities for renewable energy in indiaSoumyadeep Bhunia
 
TRANSIENT STABILITY ENHANCEMENT OF WIND FARMS USING POWER ELECTRONICS AND FAC...
TRANSIENT STABILITY ENHANCEMENT OF WIND FARMS USING POWER ELECTRONICS AND FAC...TRANSIENT STABILITY ENHANCEMENT OF WIND FARMS USING POWER ELECTRONICS AND FAC...
TRANSIENT STABILITY ENHANCEMENT OF WIND FARMS USING POWER ELECTRONICS AND FAC...University of South Carolina
 
Wind Farms
Wind FarmsWind Farms
Wind Farmsakkaa
 
Definition & Classification Of Power System Stability
Definition & Classification Of Power System StabilityDefinition & Classification Of Power System Stability
Definition & Classification Of Power System StabilityShahab Khan
 
Renewable energy & its furure prospects in india
Renewable energy & its furure prospects in indiaRenewable energy & its furure prospects in india
Renewable energy & its furure prospects in indiaSurabhi Pal
 
Power system voltage stability
Power system voltage stabilityPower system voltage stability
Power system voltage stabilityAkash Choudhary
 
Reactive power compensation using STATCOM
Reactive power compensation using STATCOMReactive power compensation using STATCOM
Reactive power compensation using STATCOMBhushan Kumbhalkar
 
Statcom control scheme for power quality improvement of grid connected wind e...
Statcom control scheme for power quality improvement of grid connected wind e...Statcom control scheme for power quality improvement of grid connected wind e...
Statcom control scheme for power quality improvement of grid connected wind e...Kinnera Kin
 
Power system stability
Power system  stabilityPower system  stability
Power system stabilityDeepak John
 

Viewers also liked (17)

subission report
subission reportsubission report
subission report
 
Review on stability analysis of grid connected wind power generating system1
Review on stability analysis of grid connected wind power generating system1Review on stability analysis of grid connected wind power generating system1
Review on stability analysis of grid connected wind power generating system1
 
Steady state stability analysis and enhancement of three machine nine bus pow...
Steady state stability analysis and enhancement of three machine nine bus pow...Steady state stability analysis and enhancement of three machine nine bus pow...
Steady state stability analysis and enhancement of three machine nine bus pow...
 
Power system Stability, Equal area criteria
Power system Stability, Equal area criteriaPower system Stability, Equal area criteria
Power system Stability, Equal area criteria
 
Wind Power Presentation
Wind Power PresentationWind Power Presentation
Wind Power Presentation
 
Challenges & opportunities for renewable energy in india
Challenges & opportunities for renewable energy in indiaChallenges & opportunities for renewable energy in india
Challenges & opportunities for renewable energy in india
 
TRANSIENT STABILITY ENHANCEMENT OF WIND FARMS USING POWER ELECTRONICS AND FAC...
TRANSIENT STABILITY ENHANCEMENT OF WIND FARMS USING POWER ELECTRONICS AND FAC...TRANSIENT STABILITY ENHANCEMENT OF WIND FARMS USING POWER ELECTRONICS AND FAC...
TRANSIENT STABILITY ENHANCEMENT OF WIND FARMS USING POWER ELECTRONICS AND FAC...
 
Presentation
PresentationPresentation
Presentation
 
Presentation On Wind Power
Presentation On Wind PowerPresentation On Wind Power
Presentation On Wind Power
 
Wind Farms
Wind FarmsWind Farms
Wind Farms
 
Definition & Classification Of Power System Stability
Definition & Classification Of Power System StabilityDefinition & Classification Of Power System Stability
Definition & Classification Of Power System Stability
 
Renewable energy & its furure prospects in india
Renewable energy & its furure prospects in indiaRenewable energy & its furure prospects in india
Renewable energy & its furure prospects in india
 
Power system voltage stability
Power system voltage stabilityPower system voltage stability
Power system voltage stability
 
Reactive power compensation using STATCOM
Reactive power compensation using STATCOMReactive power compensation using STATCOM
Reactive power compensation using STATCOM
 
Statcom control scheme for power quality improvement of grid connected wind e...
Statcom control scheme for power quality improvement of grid connected wind e...Statcom control scheme for power quality improvement of grid connected wind e...
Statcom control scheme for power quality improvement of grid connected wind e...
 
Power system stability
Power system  stabilityPower system  stability
Power system stability
 
PPT ON POWER SYSTEM STABILITY
PPT ON POWER SYSTEM STABILITYPPT ON POWER SYSTEM STABILITY
PPT ON POWER SYSTEM STABILITY
 

Similar to Wind farm connections

Determining Multiple Fault Ride-Through Requirements for Generating Systems i...
Determining Multiple Fault Ride-Through Requirements for Generating Systems i...Determining Multiple Fault Ride-Through Requirements for Generating Systems i...
Determining Multiple Fault Ride-Through Requirements for Generating Systems i...Power System Operation
 
Aemo victoria to new south wales interconnector upgrade rit t padr 2019
Aemo victoria to new south wales interconnector upgrade rit t padr 2019Aemo victoria to new south wales interconnector upgrade rit t padr 2019
Aemo victoria to new south wales interconnector upgrade rit t padr 2019Power System Operation
 
The fundamental aspects of system reliability
The fundamental aspects of system reliabilityThe fundamental aspects of system reliability
The fundamental aspects of system reliabilityPower System Operation
 
Detection of Power Grid Synchronization Failure on Sensing Frequency and Volt...
Detection of Power Grid Synchronization Failure on Sensing Frequency and Volt...Detection of Power Grid Synchronization Failure on Sensing Frequency and Volt...
Detection of Power Grid Synchronization Failure on Sensing Frequency and Volt...IRJET Journal
 
IRJET- Generation Planning using WASP Software
IRJET- Generation Planning using WASP SoftwareIRJET- Generation Planning using WASP Software
IRJET- Generation Planning using WASP SoftwareIRJET Journal
 
Wind Prospect Poster 023 - Optimising Facility Power Curve Calculations in So...
Wind Prospect Poster 023 - Optimising Facility Power Curve Calculations in So...Wind Prospect Poster 023 - Optimising Facility Power Curve Calculations in So...
Wind Prospect Poster 023 - Optimising Facility Power Curve Calculations in So...Matthew Behrens
 
A deterministic method of distributed generation hosting capacity calculatio...
A deterministic method of distributed generation hosting  capacity calculatio...A deterministic method of distributed generation hosting  capacity calculatio...
A deterministic method of distributed generation hosting capacity calculatio...IJECEIAES
 
Design of Low-Voltage Distributed Photovoltaic Systems Oriented to Improve ...
Design of Low-Voltage Distributed Photovoltaic Systems Oriented to   Improve ...Design of Low-Voltage Distributed Photovoltaic Systems Oriented to   Improve ...
Design of Low-Voltage Distributed Photovoltaic Systems Oriented to Improve ...IRJET Journal
 
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...IJERD Editor
 
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...IJERD Editor
 
Economical and Reliable Expansion Alternative of Composite Power System under...
Economical and Reliable Expansion Alternative of Composite Power System under...Economical and Reliable Expansion Alternative of Composite Power System under...
Economical and Reliable Expansion Alternative of Composite Power System under...IJECEIAES
 
Grid diagnostic study Philippines - ETP.pdf
Grid diagnostic study Philippines - ETP.pdfGrid diagnostic study Philippines - ETP.pdf
Grid diagnostic study Philippines - ETP.pdfOECD Environment
 
Critical Review of Different Methods for Siting and Sizing Distributed-genera...
Critical Review of Different Methods for Siting and Sizing Distributed-genera...Critical Review of Different Methods for Siting and Sizing Distributed-genera...
Critical Review of Different Methods for Siting and Sizing Distributed-genera...TELKOMNIKA JOURNAL
 
IRJET- Optimization of Renewable Energy Sources for DC Microgrid
IRJET-  	  Optimization of Renewable Energy Sources for DC MicrogridIRJET-  	  Optimization of Renewable Energy Sources for DC Microgrid
IRJET- Optimization of Renewable Energy Sources for DC MicrogridIRJET Journal
 
IRJET- Improved Electrical Power Supply to Trans-Amadi Industrial Layout, Por...
IRJET- Improved Electrical Power Supply to Trans-Amadi Industrial Layout, Por...IRJET- Improved Electrical Power Supply to Trans-Amadi Industrial Layout, Por...
IRJET- Improved Electrical Power Supply to Trans-Amadi Industrial Layout, Por...IRJET Journal
 
IRJET- Control for Grid Connected and Intentional Islanding Operation of ...
IRJET-  	  Control for Grid Connected and Intentional Islanding Operation of ...IRJET-  	  Control for Grid Connected and Intentional Islanding Operation of ...
IRJET- Control for Grid Connected and Intentional Islanding Operation of ...IRJET Journal
 
RELIABILITY EVALUATION OF A WIND POWER PLANT IN THE MID REGION OF KARNATAKA S...
RELIABILITY EVALUATION OF A WIND POWER PLANT IN THE MID REGION OF KARNATAKA S...RELIABILITY EVALUATION OF A WIND POWER PLANT IN THE MID REGION OF KARNATAKA S...
RELIABILITY EVALUATION OF A WIND POWER PLANT IN THE MID REGION OF KARNATAKA S...IRJET Journal
 

Similar to Wind farm connections (20)

Determining Multiple Fault Ride-Through Requirements for Generating Systems i...
Determining Multiple Fault Ride-Through Requirements for Generating Systems i...Determining Multiple Fault Ride-Through Requirements for Generating Systems i...
Determining Multiple Fault Ride-Through Requirements for Generating Systems i...
 
Aemo victoria to new south wales interconnector upgrade rit t padr 2019
Aemo victoria to new south wales interconnector upgrade rit t padr 2019Aemo victoria to new south wales interconnector upgrade rit t padr 2019
Aemo victoria to new south wales interconnector upgrade rit t padr 2019
 
The fundamental aspects of system reliability
The fundamental aspects of system reliabilityThe fundamental aspects of system reliability
The fundamental aspects of system reliability
 
N020698101
N020698101N020698101
N020698101
 
Detection of Power Grid Synchronization Failure on Sensing Frequency and Volt...
Detection of Power Grid Synchronization Failure on Sensing Frequency and Volt...Detection of Power Grid Synchronization Failure on Sensing Frequency and Volt...
Detection of Power Grid Synchronization Failure on Sensing Frequency and Volt...
 
IRJET- Generation Planning using WASP Software
IRJET- Generation Planning using WASP SoftwareIRJET- Generation Planning using WASP Software
IRJET- Generation Planning using WASP Software
 
Wind Prospect Poster 023 - Optimising Facility Power Curve Calculations in So...
Wind Prospect Poster 023 - Optimising Facility Power Curve Calculations in So...Wind Prospect Poster 023 - Optimising Facility Power Curve Calculations in So...
Wind Prospect Poster 023 - Optimising Facility Power Curve Calculations in So...
 
EirGrid NATIONAL CONTROL CENTRE
EirGrid NATIONAL CONTROL CENTREEirGrid NATIONAL CONTROL CENTRE
EirGrid NATIONAL CONTROL CENTRE
 
A deterministic method of distributed generation hosting capacity calculatio...
A deterministic method of distributed generation hosting  capacity calculatio...A deterministic method of distributed generation hosting  capacity calculatio...
A deterministic method of distributed generation hosting capacity calculatio...
 
Design of Low-Voltage Distributed Photovoltaic Systems Oriented to Improve ...
Design of Low-Voltage Distributed Photovoltaic Systems Oriented to   Improve ...Design of Low-Voltage Distributed Photovoltaic Systems Oriented to   Improve ...
Design of Low-Voltage Distributed Photovoltaic Systems Oriented to Improve ...
 
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
 
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
 
Economical and Reliable Expansion Alternative of Composite Power System under...
Economical and Reliable Expansion Alternative of Composite Power System under...Economical and Reliable Expansion Alternative of Composite Power System under...
Economical and Reliable Expansion Alternative of Composite Power System under...
 
Grid diagnostic study Philippines - ETP.pdf
Grid diagnostic study Philippines - ETP.pdfGrid diagnostic study Philippines - ETP.pdf
Grid diagnostic study Philippines - ETP.pdf
 
Critical Review of Different Methods for Siting and Sizing Distributed-genera...
Critical Review of Different Methods for Siting and Sizing Distributed-genera...Critical Review of Different Methods for Siting and Sizing Distributed-genera...
Critical Review of Different Methods for Siting and Sizing Distributed-genera...
 
Eskom - Grid Connectivity
Eskom - Grid ConnectivityEskom - Grid Connectivity
Eskom - Grid Connectivity
 
IRJET- Optimization of Renewable Energy Sources for DC Microgrid
IRJET-  	  Optimization of Renewable Energy Sources for DC MicrogridIRJET-  	  Optimization of Renewable Energy Sources for DC Microgrid
IRJET- Optimization of Renewable Energy Sources for DC Microgrid
 
IRJET- Improved Electrical Power Supply to Trans-Amadi Industrial Layout, Por...
IRJET- Improved Electrical Power Supply to Trans-Amadi Industrial Layout, Por...IRJET- Improved Electrical Power Supply to Trans-Amadi Industrial Layout, Por...
IRJET- Improved Electrical Power Supply to Trans-Amadi Industrial Layout, Por...
 
IRJET- Control for Grid Connected and Intentional Islanding Operation of ...
IRJET-  	  Control for Grid Connected and Intentional Islanding Operation of ...IRJET-  	  Control for Grid Connected and Intentional Islanding Operation of ...
IRJET- Control for Grid Connected and Intentional Islanding Operation of ...
 
RELIABILITY EVALUATION OF A WIND POWER PLANT IN THE MID REGION OF KARNATAKA S...
RELIABILITY EVALUATION OF A WIND POWER PLANT IN THE MID REGION OF KARNATAKA S...RELIABILITY EVALUATION OF A WIND POWER PLANT IN THE MID REGION OF KARNATAKA S...
RELIABILITY EVALUATION OF A WIND POWER PLANT IN THE MID REGION OF KARNATAKA S...
 

Recently uploaded

High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escortsranjana rawat
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )Tsuyoshi Horigome
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxDeepakSakkari2
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile servicerehmti665
 
chaitra-1.pptx fake news detection using machine learning
chaitra-1.pptx  fake news detection using machine learningchaitra-1.pptx  fake news detection using machine learning
chaitra-1.pptx fake news detection using machine learningmisbanausheenparvam
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionDr.Costas Sachpazis
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.eptoze12
 
Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girlsssuser7cb4ff
 
Introduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptxIntroduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptxvipinkmenon1
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSKurinjimalarL3
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxwendy cai
 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx959SahilShah
 
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130Suhani Kapoor
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerAnamika Sarkar
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...VICTOR MAESTRE RAMIREZ
 
power system scada applications and uses
power system scada applications and usespower system scada applications and uses
power system scada applications and usesDevarapalliHaritha
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxpurnimasatapathy1234
 

Recently uploaded (20)

High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptx
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile service
 
chaitra-1.pptx fake news detection using machine learning
chaitra-1.pptx  fake news detection using machine learningchaitra-1.pptx  fake news detection using machine learning
chaitra-1.pptx fake news detection using machine learning
 
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Serviceyoung call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.
 
Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girls
 
Introduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptxIntroduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptx
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptx
 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx
 
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...
 
power system scada applications and uses
power system scada applications and usespower system scada applications and uses
power system scada applications and uses
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptx
 

Wind farm connections

  • 1. Wind farm Connections Syndicate Project Report University of Queensland Julius Quezada - Lakshan Fernando - G Sunil Varma - Chengjun He - Daniel Bensberg Sayura Kairbekova - Quentin Melul 27/05/2014
 1WIND FARM CONNECTIONS
  • 2. Contents Figures and Tables ————————————————————————————— 3 Introduction ——————————————————————————————— 4 1. Purpose —————————————————————————————— 5 2. Scope ——————————————————————————————— 5 3. Wind Farm Connection Process ———————————————————— 5 3.1 Network connections ————————————————————————— 5 3.2 Role of Powerlink —————————————————————————— 5 3.3 Involvement of AEMO in the connection application process ————————— 6 3.3.1 Preliminary stage ————————————————————————— 6 3.3.2 Application to connect ———————————————————————— 7 3.3.3 Agreement stage —————————————————————————— 7 3.3.4 Construction stage ————————————————————————— 7 3.3.5 Participation ———————————————————————————— 8 3.4 Stages involved in establishing a new wind farm —————————————— 8 3.4.1 Stage 1, Pre-feasibility ———————————————————————— 9 3.4.2 Stage 2, Enquiry —————————————————————————— 9 3.4.3 Stage 3, Application ————————————————————————— 10 3.4.4 Stage 4, Contracts —————————————————————————— 11 3.4.5 Stage 5, Construction ————————————————————————— 11 3.4.6 Stage 6, Completion ————————————————————————— 12 3.5 Timeline for the process ———————————————————————— 13 3.6 Process Overview —————————————————————————— 14 4. Risks and challenges of wind farm connections —————————————— 15 4.1 Wind variability ——————————————————————————— 15 4.2 Transient stability ——————————————————————————— 16 4.3 System inertia and rate of change of frequency ——————————————— 16 4.4 Availability of FCAS ————————————————————————— 17 4.5 Power system fault levels ———————————————————————— 17 4.6 Load balancing ———————————————————————————— 18 4.7 Capacity margins ——————————————————————————— 18 4.8 Voltage Stability ——————————————————————————— 19 4.9 Socio-economic and environmental challenges ——————————————— 20 Conclusion ———————————————————————————————— 21 References ———————————————————————————————— 22 Acronyms ————————————————————————————————— 23 2WIND FARM CONNECTIONS
  • 3. Figures and Tables Figures Figure 1 Connection process ——————————————————————— 6 Figure 2 Stages involved in a new wind farm installation ——————————— 8 Figure 3 Connection process map ————————————————————— 14 Figure 4 Risks and challenges ——————————————————————— 15 Figure 5 Wind power output 2009 ————————————————————— 15 Figure 6 Power world system (wind farm at bus 7) —————————————— 19 Figure 7 QV curve (no wind farm) ————————————————————— 19 Figure 8 QV curve (wind farm at bus 7) ——————————————————— 20 Figure 9 Cumulative generation capacity additions and reductions ——————— 21 Tables Table 1 Wind bubble sensivity factors for critical transient stability limits ———— 16 Table 2 Table of FCAS capability —————————————————————— 17 Table 3 Minimum fault level required for 100MW generator —————————— 17 3WIND FARM CONNECTIONS
  • 4. Introduction After the choice of location has been made to be Queensland, the process for new wind farm connection in Queensland should be as per the guidelines of Australian Energy Market Operator Limited (AEMO). The Market Operator provides the information about the process of new generator connection applications, as at the date of publication. As per the Data available, since the start of the National Electricity Market in 1998, approximately 8,000 MW of new generation has been connected to the south-east Australian electricity grid. Generating units have ranged in size from a few megawatts to hundreds of megawatts and include coal, gas-fired diesel units and wind farms. [j5] The number of units connected to the power system is large – around 500, and this number is growing. Thus, the interactions between generation and the rest of the power system must be coordinated so that levels of quality, reliability of supply and power system security can be maintained. 4WIND FARM CONNECTIONS
  • 5. 1. Purpose For the above reason, the National Electricity Rules (Rules) include processes to coordinate the technical interaction between new generation and the power system. The principles and process of connecting a new generator and changes to an existing generator are outlined in Chapter 5 of the National Electricity Rules (Rules) and for certain changes to generators in Chapter 4. [j5] According to the process described, the aim of this project is to explore the technical, regulatory and commercial challenges associated with connecting wind generation to the Electricity grid Queensland. 2. Scope The scope of the report addresses the following: • Process to establish a new wind farm transmission connection. • Timeframe associated with each stage of the process. • Requirements of Wind Generator per NER • Risks and challenges of Wind farm connections 3. Wind Farm Connection Process 3.1 Network Connections As defined by AEMO, network connections are electricity networks that support the NEM [j1]. The network connections includes the following [j1]: • Electricity loads connections for transmission and distribution networks • Distribution network interconnection with the transmission network • Inter-network connections (Interconnection of two separate transmission networks that are owned by different TNSPs) The connection process differs by the geographic location, voltage of connection, type of connection applicant, new or transferring of a connection. In this report, the content is concentrated on obtaining a new wind farm connection in the NEM outside of Victoria. The TNSP for Queensland is responsible for new generator transmission connections in the NEM. They are also the main contact for connection applicants and manage the overall process. AEMO is involved in the assessment of proposed performance standards, negotiation of proposed standards (i.e “AEMO advisory matters” NER Clause 5.3.4A), processing of the applications for registration and the completion stage of the process such as reviewing of commissioning and post- commissioning data [j2]. 5WIND FARM CONNECTIONS
  • 6. 3.2 Role of Powerlink The Transmission Network Service Provider for Queensland is Powerlink. As owners of the QLD HV transmission network, Powerlink are required to plan for, develop, operate and maintain this system [j3]. They are responsible for the connections of generators and loads to the high voltage grid. They are also required to provide NEM members secure, open and fair-minded access to the Queensland high voltage grid for trade of electricity. Powerlink assess the network capability to meet increased loads, and works with equivalent bodies of other states and NEMMCO to determine the power flow in between the states [j3]. Grid Australia is the organisation representing most of transmission organisations in the NEM, and Powerlink is a member of Grid Australia [j2]. Grid Australia is the main node which publishes relevant contact details and connection guides behalf of transmission organisations. 3.3 Involvement of AEMO in the connection application process Figure 1 – Connection process 3.3.1 Preliminary Stage This initial state involves a new generation company approaching the TNSP for a connection inquiry. During this stage, the generating company details the type, size and the timing of the 6WIND FARM CONNECTIONS
  • 7. proposed connection. In some scenarios, the local TNSP may recommend an involvement of another NSP or more than one NSP for the connection enquiry [j4]. After the enquiry, the local NSP will communicate with other NSPs in order to determine the effects of the new generation on the current connection agreements [j4]. Then the NSP will provide the proponent, contracts with the other parties, initial program for connection, relevant technical requirements and standards. At this stage, the proponent can adopt applicable plant standards that may be used instead of the NSP proposed standards. This stage also involves comprehensive analysis of the power system, to assess the operating impacts, which takes several years to finalise [j4]. 3.3.2 Application to Connect After finalising the information provided by the NSP, the proponent can submit the application to connect [j4]. This includes, technical data, commercial information and application fees required by the NSP. If there is an involvement of several NSPs, separate applications would be required for each NSP. In the case where the proponent does not meet the access standards, it can propose standards which should meet at least the minimum access standards specified in the Rules document [j4]. These proposed standards should be confirmed by the proponent, TNSP and AEMO. 3.3.3 Agreement Stage The three parties (proponent, TNSP and AEMO) should agree with all the proposed standards, technical and commercial issues. NSP will have several guidelines from AEMO for technical performance or additional requirements as part of the application process [j4]. After the agreement of standards for the generator, the proponent and the TNSP submits an offer to connect to AEMO. Before confirming a connection agreement, AEMO completes a comprehensive review to satisfy the technical requirements addressed in the Rules document of AEMO. Where there is insufficient information provided at the time of application, AEMO will carry out additional checks at the time of registration. If a generator satisfies the minimum standards, there would be a high risk of network interruptions, limited participation in the supply of ancillary services, and formulation and operation of network constraints by AEMO [j4]. During finalisation of the agreement, the proponent may be required to obtain environmental or planning approvals. Additionally, AEMO will advise any metering arrangements required as for the Generator Registration Guide. 3.3.4 Construction Stage This stage involves the construction of the wind farm and associated work which will be completed by the proponent. The interconnection works and expansion of any network will be carried out by the TNSP. The wind farm will be registered with AEMO. The commissioning tests and model validation will be executed by relevant organisations. 7WIND FARM CONNECTIONS
  • 8. • Registration The proponents must ensure that their generating unit meets the technical requirements required by AEMO. In order to assess this, proponents should provide suitable models including source code, datasheets, and the user guide for the generator. If AEMO investigates even a minor issue with not meeting the technical requirements, AEMO will decline the application for registration [j4]. AEMO states that a proponent may take up to three months to prepare documentation and AEMO requires around 15 working days to process the completed application [j4]. Initial grid synchronisation cannot be executed until the registration of the generator is finalised. • Inspection and Testing A connection agreement covers ongoing inspection and testing of equipment in order to confirm compliance. Prior to the implementation of a compliance program, it is the requirement of the proponent to confirm that the generating units conform technical requirements and the connection agreement. Before commissioning, equipment settings, and control system along with relevant design reports and models should be approved by AEMO and TNSP [j4]. Proponents should generate a compliance monitoring program to ensure ongoing compliance of the generating units with the technical requirements, standards and connection agreement [j4]. • Commissioning Commissioning and testing of the generating units is carried out in order to confirm compliance. This phase includes reporting of the results and resolving of non-compliance. Commissioning information such as detailed design data and commissioning programs are required by AEMO and TNSP in order to model the generator to investigate any impacts. This data should be provided by the proponent at least three months before the commissioning program [j4]. The commissioning program should be provided before three months for a generator unit connected to a transmission network [4]. The commissioning program allows all three parties to manage activities conducted by proponent with other activities of the power system [j4]. It is a requirement of AEMO and TNSP to make changes to validate power system security, agree with the projected commissioning program, and confirm whether the generating units conform to standards within a given timeframe. 3.3.5 Participation Once all of the above stages are completed, the generator can participate in the NEM in accordance with rules and registration with AEMO. The percentage of participation may vary from limited to full participation in central dispatch and spot market settlement [j4]. AER enforces compliance and AEMO is required to report any non-compliance to AER. 8WIND FARM CONNECTIONS
  • 9. 3.4 Stages involved in establishing a new wind farm – TNSP and Generating Company A new wind farm connection processes extends to six stages and they are described below. The timeframe for each stage will be addressed in each section. Figure 2 – Stages involved in a new wind farm installation 3.4.1 Stage 1 – Pre-feasibility The connection applicant must perform feasibility studies of their proposed wind farm, and based on this feasibility report, preliminary discussion would be done with the TNSP, landowners and respective government authorities in the Queensland State. The data of the transmission network would be provided by AEMO upon request. The pre–feasibility stage is meant to be an informal stage prior to commencing the formal process under the National Electricity Rules . Applicants must be aware of the roles and responsibilities of different stakeholders, as well as the regulatory arrangements governing the connection process. The connection process map of NEM (Outside of Victoria) provides the outline of the activities to be considered for the pre-feasibility stage by each party for the new generator transmission connection. AEMO involvement is limited in this stage, and it can only provide the transmission network data on request by the potential applicant. The potential applicant should contact the connecting TNSP and must provide all the data including location, generating system, intent of connecting the transmission network, and also the land use planning issues, such as failure to secure land or obtain planning approval in a timely manner will cause delays and request for earliest opportunity. The data provided by TNSP can include a variety of connecting information including [j5]: • an explanation of the connection process and the regulatory framework • an indicative timeline to process the application • connection fees and charges • high-level technical and commercial information • information that may help in finding the location of the connection. 9WIND FARM CONNECTIONS Pre- feasibility Enquiry Application Contracts
  • 10. 3.4.2 Stage 2 – Enquiry When the potential applicant submits the connection application to the TNSP, the TNSP will assist the connection applicant to determine the most suitable point of connection and clarifies with the information required for formal connection application to be submitted. However, the connection data can be obtained on request from AEMO. As an enquiry is the preliminary stage for the formal connection process, clause 5.3 in the NER, tells that the applicant should be aware of roles and responsibilities of regulatory bodies who govern the connection process and as well as different stake holders. ❖ Response to Connection Enquiry The response for a connection enquiry by the connecting TNSP will include: • requirements in respect of technical studies and access standards; • further information required to finalise a complete application to connect; • advice on fees payable to the connecting TNSP to process the application. Agreed performance standards must match with the access standards detailed in NEM Rules. The Generator Performance Standards of AEMO are the Guidelines of Assessment by which AEMO assesses whether the applicant's proposed standards are acceptable. The performance standards once agreed by AEMO, the applicant should follow the same standards for the system to be built. [S6] ❖ Scale Efficient Network Extension (SENE) From June 2011, the Rules enable any person to fund a connecting TNSP to conduct a SENE study. The purpose of a SENE study is to identify the likelihood of multiple network users accessing transmission infrastructure and the cost of accommodating those network users. [j5] Applicants who are interested in funding a SENE study should contact the connecting TNSP at the enquiry stage. [j5] 3.4.3 Stage 3 – Application In this stage, the applicant submits the connection application to the connecting TNSP, Thus TNSP initiate the key activities for a new generator transmission connection. The potential applicant must submit the “Application for Connection”, with following data attached with the application: • technical data (including all data and model requirements); • commercial information (as per the requirements of TNSP), as well as payment of the application fee. 10WIND FARM CONNECTIONS
  • 11. The information provided by the applicant to the TNSP with the connection application is treated as confidential. The applicant should be aware of roles and responsibilities of regulatory bodies who govern the connection process, and have to agree the access standard (for the relevant technical requirement) which becomes the performance standard. In this stage the Schedule of fee guide and connection details can be requested from AEMO. 3.4.4 Stage 4 – Contracts In this stage the potential applicant, TNSP must agree on the access standards applicable. This agreement would cover both commercial and technical issues [j5]. At the end of this stage, the potential applicant and TNSP will agree on the access standards for the generator and will include them in an offer to connect. The copy of the offer to connect is sent to AEMO for information. AEMO will not be part of this contract agreement [j5]. Contractual arrangements other than those that form part of the offer to connect may also be made between the connecting TNSP, the connection applicant and other organisations [j5]. 3.4.5 Stage 5 – Construction During this stage following works will be completed by the potential customer, TNSP and AEMO [j5]: • Potential customer (applicant) does the construction of the generating plant and works; • TNSP will work on the construction of connection works and any network augmentation. • The registration of generating plant will be with AEMO; • Commissioning tests, including R2 model validation tests (previously agreed with the TNSP and AEMO) will be completed by all relevant parties. The expected duration of construction varies considerably between projects. During construction, the applicant should finalise [j5]: • R1 technical data as described in AEMO's Technical Information Requirements for Generator Connections; • simulation models; • energy conversion model data (for semi-scheduled plant). The finalisations of the above points will allow the TNSP and AEMO to prepare for the connection of the generating system. For any material changes in the above model data should be re-assessed by AEMO and TNSP to meet the performance standards [j5]. During the construction stage itself the applicant should be prepared for commission plans, which must be accepted by TNSP connecting and AEMO prior to three months of commissioning [j5]. 11WIND FARM CONNECTIONS
  • 12. The applicant should also consider registration requirements, including [j5]: • SCADA requirements; and • Obtaining a National Metering Identifier (NMI). Applicants should contact the connecting TNSP to obtain an NMI for their new connection point/s. If registration requirements are not met, commissioning may be delayed. 3.4.6 Stage 6 – Completion AEMO is involved in all parts of the completion stage. The completion stage comprises registration, commissioning and activities undertaken post - commissioning of new assets. ❖ Registration Prior to commissioning or operating a generating system connected to the transmission network, a connection applicant must either be registered with AEMO in respect to the entity operating the generating system or obtain an exemption. It can take up to three months to prepare the necessary documentation, and once the documentation has been received, AEMO requires time to process the registration. AEMO requires a registration application to be submitted no later than three months prior to commissioning; however, AEMO prefers applicants to consider registration requirements as early as possible. [j5] Technical areas that may cause registration delays include: • incomplete data and simulation models • plant design that does not meet agreed performance standards • SCADA not ready for remote monitoring – SCADA must be ready before AEMO allows first synchronisation. ❖ Commissioning On site testing will be conducted to make sure that the new plant has been built in accordance with all the standards, as well as with all regulatory and contractual obligations. The commission planning must be approved 3 months prior to commissioning as per NER rules. [j5] AEMO suggests that applicants consider this requirement as early as possible, because of the time involved in developing and agreeing commissioning plans. Each plan must satisfy the following: • set out the expected timing of activities • Identify the data that will be provided to the connecting TNSP and AEMO once test results are available. 12WIND FARM CONNECTIONS
  • 13. ❖ Post-commissioning [S6] Final and formal Commission report should be submitted by the applicant to the connecting TNSP and AEMO within three months of completing on-site commissioning, which documents the generating system meeting the relevant agreed performance standards. Apart from the report additional document would be required for TNSP to agree upon the performance standards; Similarly AEMO would also require update model and parameters. 3.5 Timeline for the process The National Electricity Rules (Rules), AEMO should provide a preliminary program, which shows the key activities of the applicant with the proposed milestones. However the time required to process a connection application depends on the size and complexity of the connection project. Some of the factors which affect the connection application process are : • Availability of adequate information to proceed with the technical assessment of proposed performance standards. • Are there any significant change to the technical information provided (e.g. a change in a major equipment supplier), If the one of the above conditions are found, the time taken would be increased, since AEMO needs to repeat part or all of the analytical work which includes: • Concurrent connection application for the same location at same, which require additional analysis to assess potential interactions and any implications for proposed performance standards. This may require design changes or additional augmentation works. • Whether inter-network tests are required to assess the impact of a connection on other network service providers. 13WIND FARM CONNECTIONS
  • 14. 3.6 Process Overview figure 3 - Connection process map 14WIND FARM CONNECTIONS
  • 15. 4. Risks and Challenges of Wind Farm Connections The success of wind farm connections is disadvantaged by risks and challenges associated with wind technology, making them a controversial capital investment for proponents. Wind generation in QLD is comparatively undeveloped compared to other states. In a form of incipiency, AEMO has reported 266MW of wind farm capacity in the SWQ wind zone to be connected at 275kV lines at Blackstone and Greenbank [j6]. As wind penetration develops, risks to power system and society are exacerbated thus a risk assessment of various challenges for proponents of wind farm ventures is warranted. ! Figure 4 - Risks and Challenges 4.1 Wind Variability Given the dynamic nature of wind, there is an uncertainty in generating capacity of a wind farm. QLD wind bubbles (FNQ, NQ, and SWQ) are attractive areas of wind generation [j6]. Wind power output at these zones will be expected to be dynamically natured as in figure xx. ! Figure 5 - Wind power output 2009 30-min intervals (SA, VIC, TAS) [j4] Wind output can vary from 0MW to a peak of 1150MW. This variation means that wind generators cannot be scheduled or dispatched [j3]. In relation, wind generation can be a system uncertainty factor [j3] which can lower system security. This variability in power output variability makes it difficult for AEMO to forecast load balancing and achieve equilibrium in the short term market. Wind Variability Transient Stability System Inertia and RoCoF Availability of FCAS Fault Levels and Protection Load Balancing Capacity Margins Voltage Stability Socio- Economic Environment 15WIND FARM CONNECTIONS
  • 16. 4.2 Transient Stability In any power system, risk of large contingency events are considered by transient stability of the network. AEMO has studied the transient stability impact of additional NEM wind generation in 2020, on QNI. Two key transient events are relevant in figure 2, being a fault on the 330kV line between Bulli Creek and Armidale (event A), and a trip of a Boyne Island potline (event B) [j6]. ! Table 1 – Wind Bubble Sensitivity Factors for Critical Transient Stability Limits The transient stability limit of QLD NSW interconnector (QNI) is especially influenced by generation in the SWQ wind bubble (South West Queensland), which is the location of the proposed 266MW capacity. For event A and B, the QNI limit was shown in to increase by 154MW and 136MW, with high positive sensitivity factors of 0.58 and 0.51, respectively [j6]. Based on capacities of QNI flow directions (South, North), the transient stability of each network can be affected. For example if QNI is flowing south the additional wind capacity can lower system stability in NSW. 4.3 System Inertia and Rate of Change of Frequency Wind farms can compromise system frequency and inertia, due to their variability and asynchronous nature of wind turbine technology. System inertia factors into rate of change of frequency capability (RoCoF). Power system RoCoF is a parameter related to compliance of 50Hz system frequency [j6]. Suitable amounts of system inertia and generation are usually provided by synchronous generators [j6]. In the case of wind doubly fed induction generators or those using full rated power convertors, no inertia is provided to the system causing high RoCoF [j6]. High RoCoF translates into increased vulnerability to disturbances (e.g removal of large synchronous generator). Furthermore, wind turbines have low marginal cost, meaning they will be expected run whenever possible [j6]. Thus it is a challenge to maintain RoCoF since the wind generation is not controllable, thus FCAS is required. 16WIND FARM CONNECTIONS
  • 17. 4.4 Availability of FCAS There can be times when wind generation is running at peak capacity, while load is at a minimum, and synchronous machines are not running. This might occur during a time such as after midnight to morning. In this scenario, the system inertia will be low however the RoCoF will be higher. As a remedy, access to FCAS capacity should be on hand. The FCAS available to AEMO is seen below. ! Table 2 - Table of FCAS Capability (MW) [j6] QLD has an adequate amount of FCAS, however this will be seen as a cost to AEMO and subsequently, the customer could find increase in electricity price. Notably, for South Australia FCAS services are very low, which is attributed to the high wind penetration in that state. Suitable FCAS facilities could be a challenge to maintain as wind and solar penetration increases in Queensland. 4.5 Power System Fault Levels Wind turbines typically produce lower levels of fault current compared to synchronous generators. Lower fault levels translate to a weaker power system that is much more sensitive to fault contingencies. For example, the reduction of fault level can be exacerbated by night scenarios when the wind generation is high and synchronous generators have been displaced [j6]. Furthermore, fault levels will typically be limited by a SCR. AEMO has SCR parameters by 3 and 5 ratios, below. ! Table 3 - Minimum Fault Level Required for 100MW Generator The SCR will be taken from the point of common coupling (i.e. farm to grid terminals). The SCR is typically selected to be a certain value that the wind generator can “ride through” a fault and re- establish operation after the fault is cleared [j6]. To increase fault levels, series reactors can be used. Full power converter wind technologies are unique in that their response to unbalanced faults differs to that of synchronous models, especially in the fault impedance parameter. A lower fault 17WIND FARM CONNECTIONS
  • 18. current, would mean distance protection relays could trip inaccurately, resulting in unneeded loss of supply. AEMO does not manage or own the network protection systems [j6], meaning it would be the duty of Powerlink to redesign protection systems as wind penetration moves forward in Queensland. 4.6 Load Balancing The requirement of load balancing (so that the consumer's demand for power can be met) means that: A power system must have sufficient primary, secondary and tertiary control capacity available in order to be able to respond to changes in demand. These power plants much always have sufficient reserve margins to increase the power production to the level required for always meeting the system demand. The primary control is always system-wide, that is for the whole synchronous interconnected AC network. The secondary control is often connected to automatic generation control, with the aim of balancing out changes within each control area. If wind power is added to such a power system there will be an additional fluctuation source in the power system. That means the requirement of power system balancing may be increase. However, the primary, secondary and tertiary control system will still operating in the same way.The consequence is that there will be more variations that have to be balanced by primary and secondary control. 4.7 Capacity Margins An important reliability issue is related to the capacity margin in the given power system (for example there must be enough capacity available in a power system to cover the peak load). If we assume a certain power there is always a probability that the available power plants are not sufficient to cover the peak load. If wind power is introduced in the system, reliability will increase as there is a certain probability that there will be a certain amount of wind power production during the peak load situation, which will decrease the risk of capacity deficit. Adding more wind power capacity to a power system may also allow a decrease in the installed capacity of other power plants in the system without reducing the system reliability. [j9] It should also be considered that, in contrast to systems with only varying load, active power balancing in a system with both wind power and load varying may require more balancing equipment to keep a certain system reliability level. However the cost-benefit analysis should consider that, for instance, the largest possible decrease in wind power (which require an increase production from conventional power plants) can coincide with high wind power production. In such a situation, other power plants have previously reduced their power generation due to the increase of wind power production. Those conventional power plants may be able to increase production if wind power production drops however, the important issue here is, how fast aggregated wind power production could decrease during times when load levels typically increase very fast. 18WIND FARM CONNECTIONS
  • 19. 4.8 Voltage Stability The voltage stability is a type of stability associated with small and large disturbances. Small disturbances arise due to constantly fluctuation load and in case of wind power generation, fluctuating active power. Large disturbances arise when there is a loss of generation, faults or contingency event. A Power world simulation has been created to study the effect of a large dg on the system voltage, which could be viewed as a large disturbance. The system consists of synchronous generators at bus 12 and 2 with a large wind farm at 4 rated at 150MW, with a DFIG consuming -75MVAR. ! Figure 6 – Power world System (Wind Farm at Bus 7) The base case QV curve is seen in figure 7 which is a system of 2 synchronous generators. Figure 6 depicts the QV curve of the system with the wind farm connection at bus 7. ! Figure 7 - QV Curve (No Wind Farm) 19WIND FARM CONNECTIONS
  • 20. ! Figure 8 - QV Curve (Wind Farm at Bus 7) The operating point drops from 0.94pu to 0.8pu. The bus voltage was 66kV indicating a voltage decline from 62kV to 52.8kV, which is a 9.2kV voltage drop. If the voltage were to drop below 0.6pu the system will become unstable as there will not be enough reactive power driving the system, resulting in potential for cascaded failure and blackout. 4.9 Socio-Economic and Environmental Challenges Proponents of wind farms must carry out appropriate landscape and visual assessment. Typically, the local community will be the stakeholder involved in this consideration. For instance if the wind farm is visually unappealing or there is an annoyance factor with turbine shadow flicker then the wind farm could be protested against by the local community near the site[j7]. Another consideration is noise limitations, for instance turbine humming which may vary in audibility depending wind speed increases. For Queensland, the proponent must consider guidance by the Department of Environment and Resource. A sound power level assessment can ensure the compliance of this factor [j7]. An ecological assessment should also be undertaken. Take for example bats. If a wind farm is constructed at a location with significant populations or threatened species, there is the risk of bat collision with turbines or barotrauma. If bat populations choose to live near wind farm sites, there is higher risk of animal deaths and backlash from environmental opponents [j7]. Wind turbines potentially result in detrimental effects upon other societal industries. For instance, turbines may obstruct, reflect, or refract electromagnetic waves, thus disturbing telecommunication systems. Stakeholders involved would be met through the Australia Communications and Media Authority. Since wind turbines are at such an elevated area, another consideration for site selection is proximity to air fields and air spaces, thus risk of aircraft collision [j7]. In 2014 the recently elected liberal Australian government put forth a budget, which will see the abolishment of the Australian Renewable Energy Agency. The potential for new renewable energy ventures such as wind farms could be greatly decreased, since the government has shown lack of agenda regarding the renewables industry, especially in QLD where wind generation is undeveloped. 20WIND FARM CONNECTIONS
  • 21. Conclusion In order to reduce the carbon price, Australia tends to foster renewable energies. The National Transmission Network Development Plan (NTNDP) gives the outlines of energy development in Australia over a 25-year outlook period. The short- to medium-term outlook to 2020 is as following : figure 9 - Cumulative generation capacity additions and reductions [j8] The shorter-term outlook to 2020 is characterised by an increase in new renewable generation, generation retirements, and a need to focus on improved utilisation of the existing transmission network. All new generation to 2020 is expected to be renewable, with wind comprising 84%. [j8] For the reason above, the structure and timeframes of new wind farm establishment processes are key elements in the actual NTNDP. With the implantation of multiple wind farms, it is important to evaluate the interactions between the electricity network and the new sources of energy. In this project, we gave a brief overview of the different requirements, risks and challenges involved in wind farm installations. According to the actual NTNDP, wind farms are a significant asset of the Australian electricity network and the issues developed in this project are to be studied, characterized and resolved in order to achieve high future wind penetrations into the electricity market. 21WIND FARM CONNECTIONS
  • 22. References [j1] Electricity market design for facilitating the integration of wind energy: Experience and prospects with the Australian National Electricity Market, Energy Policy 2010 Volume 38, Issue 7 [j2] Connecting Australia’s Largest Wind Farm to the Power Grid http://www.amsc.com/library/COLLGAR_CS_1213_WEB.pdf [j3] A risk assessment approach for power system with significant penetration levels of wind power generation Power Engineering Conference (AUPEC), 2013 Australasian Universities [j4] generation portfolio analysis for low-carbon future electricity industries with high wind power penetrations http://www.ceem.unsw.edu.au/sites/default/files/uploads/publications/PID1691893.pdf [j5] National Electricity rules http://www.aemc.gov.au/energy-rules/national-electricity-rules/current-rules [j6] AEMO wind integration report 2013 http://www.aemo.com.au/Electricity/Planning/Integrating-Renewable-Energy [j7] Best practices for implementation of wind 2013, Clean Energy Council https://www.cleanenergycouncil.org.au [j8] 2013 National Transmission Network Development Plan http://www.aemo.com.au/Electricity/Planning/National-Transmission-Network-Development-Plan [j9] Wind Power in Power system, Ackermann, T. (2012) Acronyms 22WIND FARM CONNECTIONS
  • 23. • AEMO : Australian Energy Market Operator • AER: Australian Energy Regulator • NER: National Electricity Rules • TNSP: Transmission Network Service Provider • NSP: Network Service Provider • NEM: National Electrical Market • NEMMCO: National Electricity Market Management Company • NTNDP: National Transmission Network Development Plan 23WIND FARM CONNECTIONS