SlideShare a Scribd company logo
1 of 83
‫تتتتت‬ ‫تتتتت‬
‫تتتتتتت‬
20132013
ALB
Dr. Eng. ALaa Ali Bashandy
Menufiya Unv.
Design of Reinforced ConcreteDesign of Reinforced Concrete
StructuresStructures
Design of R. C. Beams
Dr. ALaa Ali Bashandy
RR.. CC.. BBeeaammss
ALB
Design of R. C. Beams
Dr. Eng. ALaa Ali Bashandy
BeamsBeams
ALB
Design of R. C. Beams
Dr. Eng. ALaa Ali Bashandy
ALB Dr. Eng. ALaa Ali Bashandy
Members
of
Concrete
Construction
Members
of
Concrete
Construction
Slabs
Beams
Column
Footing
Shallow found.
Deep found.
Solid Slabs
Hollow Block Slabs
Flat Slabs
Paneled Beam system
Isolated Footing
Combined Footing
Strip Footing
Raft/ Mat found.
Friction Pile
Bearing Pile
Axially Loaded Col. Eccentric Loaded Col.or
Simple Beam Continuous Be. Cantilever Beamoror
Dropped Beam Inverted Beam Hidden Beamor or
Long Column Short Columnor
Rectangular Column Circular Columnor
Braced Column Unbraced Columnor
Structural
Sys.
Position ref.
to slab
Loads
Design
Section
Bracing
Design of R. C. Beams
BeamsBeams
Cantilever BeamSimple Beam
ALB
Continuous Beam
Continuous Beam
- one end -
Continuous Beam
- two ends -
Simple Beam Cantilever Beam
Design of R. C. Beams
Dr. Eng. ALaa Ali Bashandy
ALB
Cross Sections of BeamsCross Sections of Beams
Design of R. C. Beams
Dr. Eng. ALaa Ali Bashandy
BeamsBeams
Referring to its position comparing to slabsReferring to its position comparing to slabs
ALB
Hidden BeamDropped Beam Inverted Beam
bb
slabslab
Design of R. C. Beams
Dr. Eng. ALaa Ali Bashandy
BeamsBeams
Referring to its position comparing to slabsReferring to its position comparing to slabs
BeamsBeams
Referring to its position comparing to slabsReferring to its position comparing to slabs
ALB
Hidden BeamHidden BeamDropped BeamDropped Beam Inverted BeamInverted Beam
Dr. Eng. ALaa Ali Bashandy
21
Sec. 2Sec. 1
1 1 2 2
Design of R. C. Beams
Dr. Eng. ALaa Ali Bashandy
Sec. 2Sec. 1
T – Sec.((
211 1 2 2
R – Sec.((
Design of R. C. Beams
Dr. Eng. ALaa Ali Bashandy
211 1 2 2
Sec. 2Sec. 1
Design of R. C. Beams
Dr. Eng. ALaa Ali Bashandy
Sec. 2Sec. 1
L – Sec.((
211 1 2 2
R – Sec.((
Design of R. C. Beams
Dr. Eng. ALaa Ali Bashandy
SS44
SS11
SS55
SS66
SS99
SS88
SS77
SS22
SS33
Load DistributionLoad Distribution
ALB
Design of R. C. Beams
Dr. Eng. ALaa Ali Bashandy
SS44
SS11
SS55
SS66
SS99
SS88
SS77
SS22
SS33
ALB
Design of R. C. Beams
Dr. Eng. ALaa Ali Bashandy
Different Cases for One-way SlabDifferent Cases for One-way Slab
Cantilever one-way slabCantilever one-way slab
2.0
L
L
S
≥
LLSS
LL
LLSS LLCC
Load DistributionLoad Distribution from one-way slabfrom one-way slab
One-way slabOne-way slab
One directionOne direction
22--sidessides
One directionOne direction
22--sidessides
One directionOne direction
11--sideside
Design of R. C. Beams
Dr. Eng. ALaa Ali Bashandy
One-way S.
Slab
2.00
L
L
s
≥
B1
B2
L
Ls
B1
L









 ++





=
WallB1
S
1B
WO.Wtx1.4
2
L
xWuW S
B2 Ls
L
Ls
Lc
Cantilever Slab
WB2 = 1.4 ( O. Wt B2 + Wwall ) t/m
B1
[ ] 








 ++++





=
WallB1C
S
1B
WO.Wtx4.1Lx
s
Wu
2
L
x
s
WuW
B2
Ls
WB2 = 1.4 ( O. Wt B2 + Wwall ) t/m
B2
B1
L
Design of R. C. Beams
Dr. Eng. ALaa Ali Bashandy
Load DistributionLoad Distribution from one-way slabfrom one-way slab
Load DistributionLoad Distribution from two-way slabfrom two-way slab
Design of R. C. Beams
Dr. Eng. ALaa Ali Bashandy
Load from slab
L
B1
B2Ls
Two-way S.
Slab
2.00
L
L
s
<
L
Ls
B1
B2
Two-way S. Slab 2.00
L
L
s
<
L
Ls
B1
B2
L
B1
Wa
L
L
We
Equivalent load forEquivalent load for ShearShear (Wa or Wβ(
Equivalent load forEquivalent load for MomentMoment ( We or Wα(
Momentfor))L/L(
3
1
-1(Cα
Shearfor))L/L(
2
1
-1(Cβ
2
se
sa
==
==
for Trapezoidal Load only
t/m( )[ ]WallS O.WtO.Wtx1.4Cax
2
L
Wu B1
s
XB1Wa ++





=
t/m
Load DistributionLoad Distribution from two-way slabfrom two-way slab
( )[ ]WallS O.WtO.Wtx1.4Cex
2
L
Wu B1
s
xB1We ++





=
Design of R. C. Beams
Dr. Eng. ALaa Ali Bashandy
L
Ls
B1
B2
Wa
LS
LS
We
Equivalent load forEquivalent load for ShearShear (Wa or Wβ(
Equivalent load f orEquivalent load f or MomentMoment (We or Wα(
for Triangle Load only
t/m
t/m
B2
Ls
Momentfor32Cα
Shearfor21Cβ
e
a
==
==
( )[ ]WallS O.WtO.Wtx1.4Cax
2
L
Wu B2
s
x2BWa ++





=
( )[ ]WallS O.WtO.Wtx4.1Cex
2
L
Wu B2
s
x2BWe ++





=
Design of R. C. Beams
Dr. Eng. ALaa Ali Bashandy
2
L
L1 >1.1.
L
L
L1
( )













++=
==
wall
W
B
O.Wtx1.4sx Wu
L
Area
ShearforLoadMomentforLoadWB
2
L
L1 <22..
L1 L1
LL
L1
L
Special Cases of LoadingSpecial Cases of Loading
L
L1
( )















++=
==
wall
W
B
O.Wtx1.4sx Wu
L
Area
ShearforLoadMomentforLoadW
1
B
oror
oror
WB
WB
Design of R. C. Beams
Dr. Eng. ALaa Ali Bashandy
44..
33..
( )





++∑===
wall
W
beam
O.Wtx1.4sx Wu
Span
Area
ShearforLoadMomentforLoadWB
1/2Ca =
1/3Ce =
1/2Ca =
2/3Ce =
1/2Ca =
1/2Ce =
sx Wu
Span
Area
L
WB
WB
WB
WB
WB
Design of R. C. Beams
Dr. Eng. ALaa Ali Bashandy
L L
ALB
Main and SecondaryMain and Secondary
BeamsBeams
Design of R. C. Beams
Dr. Eng. ALaa Ali Bashandy
BeamsBeams
Secondary BeamMain Beam
ALB
Design of R. C. Beams
Dr. Eng. ALaa Ali Bashandy
Main BeamsMain Beams
Main BeamMain Beam
Design of R. C. Beams
Dr. Eng. ALaa Ali Bashandy
SecondarySecondary
BeamBeam
Secondary BeamsSecondary Beams
Design of R. C. Beams
Dr. Eng. ALaa Ali Bashandy
Col.Col.Col.Col.
Col.
Beam
Col.
Col.
Col.
Col.
Beam
Beam
Col.
Col.
Col.Col.
Col.
Col.Beam
BeamBeam
B1
B2
B2’
B3
B4
B5
B6
Main and Secondary BeamsMain and Secondary Beams
Design of R. C. Beams
Dr. Eng. ALaa Ali Bashandy
Col.Col.Col.Col.
Col.
Beam
Col.
Col.
Col.
Col.
Beam
Beam
Col.
Col.
Col.Col.
Col.
Col.Beam
BeamBeam
B1
B2
B2’
B3
B4
B5
B6
Load from Slabs on BeamsLoad from Slabs on Beams
Design of R. C. Beams
Dr. Eng. ALaa Ali Bashandy
ALB
Design of BeamsDesign of Beams
Design of R. C. Beams
Dr. Eng. ALaa Ali Bashandy
WBeam (t/m’
) = (Wall Wt. + O. Wt.Beam ) x 1.4 + Wus (From slab)
1.Dead Load (D.L)
22
3
P.C
3
R.C
R.C
ConcreteR.Concrete
t/m0.15kg/m150C.FL.
t/m2.2γ&t/m2.5γ
γ*1.0x1.0xt
x γVW
)F.C(coverfloor-2
(O.Wt)slabofOwn weight-1
s
==
==
=
=
2.Live Load ( L .L)
3.Total Load ( T.L)
Load ValuesLoad Values
1.00m
ts
1.00m
From SlabFrom Slab
From BeamFrom Beam
R.CBConcreteR.Concrete
γxbxtxVW
)W(BeamofOwn weight-1
γWt.O
Wt.O
==B
B
From WallsFrom Walls
( )
cm2512b3t/m15001200
xhxbxtxVW
wWall
Wall
wwWallwallwall
γ
γγ
→=→
==
=
Design of R. C. Beams
Dr. Eng. ALaa Ali Bashandy
according to code
Live Load ValuesLive Load Values According to Egyptian CodeAccording to Egyptian Code
Design of R. C. Beams
Dr. Eng. ALaa Ali Bashandy
tB min = 40 cm
Cantilever Beam
Estimation of tEstimation of tBB
t B min = Leff / 16 Leff / 18 Leff / 21 Lc / 5
it is required to check deflection if the span < 10 m
for High Tensile Steel 400/600 (H.T.S)
t B min = previous values ÷ ( 0.4 + fy / 650)
for any other steel type fy / fu
Simple Slab
Continuous Slab
From tow side
Continuous Slab
From one side
Design of R. C. Beams
Dr. Eng. ALaa Ali Bashandy
but not less thanbut not less than 40 cm40 cm
Cantilever Beam
Value of tValue of tBB
t B = span / 10 span / 12 Lc / 5
GenerallyGenerally
Simple Slab
Continuous Slab
From tow side
Continuous Slab
From one side
Design of R. C. Beams
Dr. Eng. ALaa Ali Bashandy
LLSS
WWuu t/mt/m
/24WL2
/24WL2
/24LW
2
22
/24LW 2
11
/8WL2
/9WL2
/11LW
2
11 /11LW
2
22
/10WL2
/12LW
2
11 /16LW
2
22
/12WL2
/16LW
2
33
/24LW 2
11
minmin MM + ve+ ve==
8
LxuW 2
Moment ValuesMoment Values
Simply supportedSimply supported continuous two spanscontinuous two spans
continuous more than two spanscontinuous more than two spans
Empirical values for B.MEmpirical values for B.M (Max difference in(Max difference in loadload && spanspan ≤≤ 20%20% and D.L >L.L )and D.L >L.L )
Dr. Eng. ALaa Ali Bashandy
Design of R. C. Beams
MM supportsupport
Design of R. C. Beams
Dr. Eng. ALaa Ali Bashandy
)L'L'(8.5
L'WL'W
21
3
22
3
11
supportMLoadUniform
+
+
=
)L'L'(
L'PkL'Pk
21
2
222
2
111
supportMLoadedConcentrat
+
+
=
L1
m
W2
L2
m
W1
L1
m
L2
m
P1 P2
a1 a2
L m
L’ = L
L m
L’ = 0.8L
a1 / L1 & a2 / L2 0.3 0.4 0.5 0.6 0.7
K1 & k2 0.168 0.182 0.176 0.158 0.128
In case of:In case of: difference indifference in loadload oror spanspan ≥≥ 20%20%
Shear ValuesShear Values
Simply supported beamSimply supported beam
Continuous two spansContinuous two spans
Continuous more than two spansContinuous more than two spans
Dr. Eng. ALaa Ali Bashandy
Design of R. C. Beams
Lm
a b
0.5 W L
S.F.D
+
0.5 W L
-
L1
m
a
0.4 W1 L1
+
0.6 W1 L1
-
L2
m
C
0.6 W2 L2
S.F.D +
0.4 W2 L2
-
b
L1
m
a
0.4 W1 L1
+
0.6 W1 L1
-
L2
m
C
0.5 W2 L2
+
0.5 W2 L2
-
b
-
L3
m
0.5 W3 L3
S.F.D
+
Possible cases of bPossible cases of b
Estimation of bEstimation of b
Design of R. C. Beams
Dr. Eng. ALaa Ali Bashandy
Rectangular sectionRectangular section R-sec.R-sec.
T - sec. → internal beamT - sec. → internal beam
L - sec. → edge beamL - sec. → edge beam
R - sec.R - sec.
T - sec.T - sec. L - sec.L - sec.
::Values of bValues of b
16 t16 t ss + b+ b
LL22 / 5 + b/ 5 + b
CL. to CL.CL. to CL.
6 t6 t ss + b+ b
LL22 / 10 + b/ 10 + b
½½ CL. to CL.CL. to CL.
bb
LL22 = L= L LL22 = 0.8 L= 0.8 L LL22 = 0.7 L= 0.7 L LL22 = 2 L= 2 L
b.F
M
Cd
cu
u
1=
Least of :Least of :
Given : M u , t s , b =100 cm , Fcu , Fy
Req. : As
d = ts - c (cover) c = 20 - 50 mm(cover) c = 20 - 50 mm
AS min = 0.15 % Ac H.T.S 360/520
= 0.25 % Ac for Mild steel 240/350
.....J.....C
b.F
M
Cd 1
cu
u
1 ===
m′== /cm........
f.d.J
Mu
As 2
y
Ac = b x d
Design of SectionDesign of Section
Design of R. C. Beams
Dr. Eng. ALaa Ali Bashandy
AS max = 0.4 % Ac recommended
CC1 & J& J
Design of R. C. Beams
Dr. Eng. ALaa Ali Bashandy
ALB
Shear Behavior of BeamsShear Behavior of Beams
Design of R. C. Beams
Dr. Eng. ALaa Ali Bashandy
Choice of Shear ValuesChoice of Shear Values
Simply supported beamSimply supported beam
Continuous two spansContinuous two spans
Continuous more than two spansContinuous more than two spans
Dr. Eng. ALaa Ali Bashandy
Design of R. C. Beams
S.F.D
Chose the larger value of shear along the beam span - axisChose the larger value of shear along the beam span - axis Qmax
Lm
a b
0.5 W L
S.F.D
+
0.5 W L
-
Q1
Q2
L1
m
a
0.4 W1 L1
+
0.6 W1 L1
-
L2
m
C
0.6 W2 L2
S.F.D +
0.4 W2 L2
-
b
Q1
Q2
Q3
Q4
L1
m
a
0.4 W1 L1
+
0.6 W1 L1
-
L2
m
C
0.5 W2 L2
+
0.5 W2 L2
-
b
-
L3
m
0.5 W3 L3
+
Q5
Q4Q2
Q3
Q1
Critical Sections of ShearCritical Sections of Shear
Design of R. C. Beams
Dr. Eng. ALaa Ali Bashandy
Shear Limitations of BeamsShear Limitations of Beams
Design of R. C. Beams
Dr. Eng. ALaa Ali Bashandy
Check of ShearCheck of Shear
Design of R. C. Beams
Dr. Eng. ALaa Ali Bashandy
Cases of qCases of quu
Design of R. C. Beams
Dr. Eng. ALaa Ali Bashandy
Check of ShearCheck of Shear
Design of R. C. Beams
Dr. Eng. ALaa Ali Bashandy
Design of R. C. Beams
Dr. Eng. ALaa Ali Bashandy
Design of R. C. Beams
Dr. Eng. ALaa Ali Bashandy
Design of R. C. Beams
Dr. Eng. ALaa Ali Bashandy
ALB
Reinforcing RebarsReinforcing Rebars
Design of R. C. Beams
Dr. Eng. ALaa Ali Bashandy
Simple BeamSimple Beam
44++22
Design of R. C. Beams
Dr. Eng. ALaa Ali Bashandy
22++22++22
Simple BeamSimple Beam
Design of R. C. Beams
Dr. Eng. ALaa Ali Bashandy
Simple BeamSimple Beam
11
22
33
44
55
66
77
Design of R. C. Beams
Dr. Eng. ALaa Ali Bashandy
Cantilever BeamCantilever Beam
11
22
33
55
66
77
Design of R. C. Beams
Dr. Eng. ALaa Ali Bashandy
Design of R. C. Beams
Dr. Eng. ALaa Ali Bashandy
Design of R. C. Beams
Dr. Eng. ALaa Ali Bashandy
ALB
Reinforcement DetailingReinforcement Detailing
Design of R. C. Beams
Dr. Eng. ALaa Ali Bashandy
UsingUsing StraightStraight RebarsRebars
Simple BeamSimple Beam
Design of R. C. Beams
Dr. Eng. ALaa Ali Bashandy
Using Straight RebarsUsing Straight Rebars
22--spans Beamspans Beam
Design of R. C. Beams
Dr. Eng. ALaa Ali Bashandy
Using Straight RebarsUsing Straight Rebars
More than 2-spans BeamMore than 2-spans Beam
Design of R. C. Beams
Dr. Eng. ALaa Ali Bashandy
Using Straight RebarsUsing Straight Rebars
Over hanging BeamOver hanging Beam
Design of R. C. Beams
Dr. Eng. ALaa Ali Bashandy
Using Straight RebarsUsing Straight Rebars
Cantilever BeamCantilever Beam
Design of R. C. Beams
Dr. Eng. ALaa Ali Bashandy
Using Bent RebarsUsing Bent Rebars
Simple BeamSimple Beam
Design of R. C. Beams
Dr. Eng. ALaa Ali Bashandy
Using Bent RebarsUsing Bent Rebars
22--spans Beamspans Beam
Design of R. C. Beams
Dr. Eng. ALaa Ali Bashandy
Using Bent RebarsUsing Bent Rebars
More than 2-spans BeamMore than 2-spans Beam
Design of R. C. Beams
Dr. Eng. ALaa Ali Bashandy
Using Bent RebarsUsing Bent Rebars
Cantilever BeamCantilever Beam
Design of R. C. Beams
Dr. Eng. ALaa Ali Bashandy
Design of R. C. Beams
Dr. Eng. ALaa Ali Bashandy
ExampleExample::
For the given plan it is required to:
Calculate loads for slabs & Beams
Data:
FL.C = 150 kg/m2
L.L = 300 kg/m2
Steel Grade 360/520
SolutionSolution::
Slabs
D.L = (0.12 m * 2.5 t/m3
)+ 0.15 t/m2
= 0.45 t/m2
L.L = 0.3 t/m2
Design of R. C. Beams
Dr. Eng. ALaa Ali Bashandy
Wus = 1.4 x 0.45 t/m2
+ 1.6 x 0.3 t/m2
= 1.11 t/m2
To have slab thickness ts
S1 → ts = 400/40 = 10 cm
S2 → ts = 300/45 = 6.67 cm
S3 → ts = 500/45 = 11.1 cm
take ts = 12 cm
Design of R. C. Beams
Dr. Eng. ALaa Ali Bashandy
1.5
4
6
r ==For S1
→trapezoidal Ca = 0.67 & Ce = 0.85
→triangle Ca = 1/2 & Ce = 2/3
1.33
3
4
r ==For S2
→trapezoidal Ca = 0.63 & Ce = 0.81
→triangle Ca = 1/2 & Ce = 2/3
1.2
5
6
r ==For S3
→trapezoidal Ca = 0.582 & Ce = 0.769
→triangle Ca = 1/2 & Ce = 2/3
1.67
3
5
r ==For S4
→trapezoidal Ca = 0.701 & Ce = 0.881
→triangle Ca = 1/2 & Ce = 2/3
Design of R. C. Beams
Dr. Eng. ALaa Ali Bashandy
W4 ( Wa & We) t/m
6m
B1 B2
BeamsBeams
O. wt. of beam = 0.25 x 0.6 x 2.5 t/m3
= 0.375 t/m
( ) ( )
t/m'2.951.2x1.4t/m0.375x1.4
2
m1.5
xt/m1.11
x W4.1wt.O.x1.4
2
L
xWuWW
2
wall
s
s4e4a
=++





=
++





==
B4 tB = span / 10 = 600 / 10 = 60 cm
take tB = 60 cm
Wall weight = Wwall = 0.25 (width) x 2.7 (height) x 1.8 (γwall = 1.2 – 1.8 t/m3
) = 1.2 t/m
2.95 t/m
6m
13.275 m.t
8.85 t 8.85 t
B1 B2
B. M. D.
B1
( ) ( )
( ) ( ) t/m'3.2281.2x1.4t/m'0.3125x1.4
2
1
x
2
m4
xt/m1.11
x W1.4wtO.x1.4Cx
2
L
xWuW
2
walla
s
sa1
=++





=
++





=
( ) ( )
( ) ( ) t/m'3.6051.2x1.4t/m'0.3125x1.4
3
2
x
2
m4
xt/m1.11
x W1.4wtO.x1.4Cx
2
L
xWuW
2
walle
s
se1
=++





=
++





=
Design of R. C. Beams
Dr. Eng. ALaa Ali Bashandy
4 m 5 m 1.5 m
8.85 t
a b c
d
Part ab
Part bc
Part cd
t/m'2.11751.2x1.4t/m'0.3125x1.4WW e3a3 =+==
( ) ( )
( ) ( ) t/m'3.5051.2x1.4t/m'0.3125x1.4
2
1
x
2
m5
xt/m1.11
x W1.4wtO.x1.4Cx
2
L
xWuW
2
walla
s
sa1
=++





=
++





=
( ) ( )
( ) ( ) t/m3.9771.2x1.4t/m'0.3125x1.4
3
2
x
2
m5
xt/m1.11
x W1.4wtO.x1.4Cx
2
L
xWuW
2
walle
s
se1
=++





=
++





=
Design of R. C. Beams
Dr. Eng. ALaa Ali Bashandy
3.228 t/m 3.505 t/m
4 m 5 m
Shear
G2G1 G3
B1
1.5 m
3.605 t/m 3.977 t/m
4 m 5 m
Moment
G2G1 G3
1.5 m
2.1175 t/m
8.85 t
8.85 t
Moment Values of B1
W2L2
2
/9
W1L1
2
/9
or
W1L1
2
/11 W2L2
2
/11
WcLc
2
/ 2
Msupp. = 9.514 m.t
6.214 m.t5.244 m.t
P x Lc + WcLc
2
/ 2 = 15.66 m.t
B. M. D.
O. wt. of beam = 0.25 x 0.5 x 2.5 t/m3
= 0.3125 t/m
( ) ( )
t/m'4.2761.2x1.4t/m'0.3125x1.40.63x
2
m3
xt/m1.11
2
1
x
2
m4
xt/m1.11
x W4.1wt.O.x1.4Cx
2
L
xWuW
22
walla
s
sa2
=++





+





=
++





=
( ) ( )
t/m'4.9541.2x1.4t/m'0.3125x1.40.81x
2
m3
xt/m1.11
3
2
x
2
m4
xt/m1.11
x W1.4O.wtx1.4Cx
2
Ls
xWuW
22
wallese2
=++





+





=
++





=
B2
Design of R. C. Beams
Dr. Eng. ALaa Ali Bashandy
tB = span / 12 = 500 / 12 = 41.67cm
take tB = 50 cm
Part ab
Part bc
t/m'4.4751.2x1.4t/m'0.3125x1.40.582x
2
m3
xt/m1.11
2
1
x
2
m5
xt/m1.11W 22
a2 =++





+





=
t/m'5.2571.2x1.4t/m'0.3125x1.40.769x
2
m3
xt/m1.11
3
2
x
2
m4
xt/m1.11W 22
e2 =++





+





=
4.275 t/m 4.475 t/m
2.1175 t/m
4 m 5 m 1.5 m
Shear
4.954 t/m 5.257 t/m
2.1175 t/m
4 m 5 m 1.5 m
Moment
Part cd
t/m'2.11751.2x1.4t/m0.3125x1.4WW e2a2 =+==
4 m 5 m 1.5 m
R B4
a b c
d
B2
Design of R. C. Beams
Dr. Eng. ALaa Ali Bashandy
4.954 t/m 5.257 t/m
4 m 5 m 1.5 m
8.85 t
2.1175 t/m
0.4x4.276x4 = 6.84 t
0.4x4.475x5 + 8.85 = 17.8 t
L1
m
a
0.4 W1 L1
+
0.6 W1 L1
-
L2
m
C
0.6 W2 L2
S.F.D +
0.4 W2 L2
-
b
Q1
Q2
Q3
Q4
0.6x4.276x4 = 10.26 t
0.6x4.475x5 = 13.43 t
Wc Lc
3.176 t
8.85 t
+ 8.85 t
4.275 t/m 4.475 t/m 2.1175 t/m
4 m 5 m
1.5 m
Shear
G2G1 G3
8.85 t
W2L2
2
/9
W1L1
2
/9
or
W1L1
2
/11 W2L2
2
/11
WcLc
2
/ 2
Moment Values of B2
10.67 m.t6.656 m.t
P x Lc + WcLc
2
/ 2 = 15.66 m.t
Msupp. = 12.734 m.t
B. M. D.
= 8.81 m.t
= 14.61 m.t
B3
( ) ( )
( ) ( ) ( ) t/m'4.2761.2x1.4t/m'0.3125x1.4m1xt/m1.110.63x
2
m3
xt/m1.11
x W1.4wtO.x1.4Cx
2
L
xWuW
22
walla
s
sSpanLefta3
=+++





=
++





=
Design of R. C. Beams
Dr. Eng. ALaa Ali Bashandy
( ) ( )
( ) ( ) ( ) t/m'4.3951.2x1.4t/m'0.3125x1.4m1xt/m1.110.701x
2
m3
xt/m1.11
x W1.4wtO.x1.4Cx
2
L
xWuW
22
walla
s
sSpanRighta3
=+++





=
++





=
Part ab
Part bc
( ) ( )
( ) ( ) ( ) t/m'4.5761.2x1.4t/m'0.3125x1.4m1xt/m1.110.81x
2
m3
xt/m1.11
x W1.4wtO.x1.4Cx
2
L
xWuW
22
walle
s
sSpanLefte3
=+++





=
++





=
( ) ( )
( ) ( ) ( ) t/m'4.6941.2x1.4t/m'0.3125x1.4m1xt/m1.110.881x
2
m3
xt/m1.11
x W1.4wtO.x1.4Cx
2
L
xWuW
22
walle
s
sSpanRighte3
=+++





=
++





=
a b c
Design of R. C. Beams
Dr. Eng. ALaa Ali Bashandy
4.276 t/m 4.395 t/m
4 m 5 m
Shear
G2G1 G3
4.576 t/m 4.694 t/m
4 m 5 m
Moment
G2G1 G3
W2L2
2
/9
W1L1
2
/9
or
W1L1
2
/11 W2L2
2
/11
B3
Moment Values of B3
13.04 m.t
10.67 m.t6.656 m.t
B. M. D.
Main Beams (GirdersMain Beams (Girders))
6.842 t
6.0m 3.0m
G1
RB2 at point a = 0.4 x (4.267 t/m
x 4 m) = 6.842 t
WG1 (wa = we = 3.732 t/m(
( ) ( )
( ) ( ) t/m'3.7321.2x1.4t/m'0.5625x1.4
m9
m1.5xm3x
2
1
m2x
2
m6m2
xt/m1.11
x W1.4wtO.x1.4
Span
Area
WWW
2
wallG1eG1aG1
=++










+










 +
=
++===
∑
RB2
Design of R. C. Beams
Dr. Eng. ALaa Ali Bashandy
O. wt. of main beam/ girder = 0.25 x 0.9 x 2.5 t/m3
= 0.5625 t/m
tG = span / 10 = 900 / 10 = 90 cm
take tG = 90 cm
6.842 t
6.0m 3.0m
WG1 (wa = we = 3.732 t/m(
RB2
Design of R. C. Beams
Dr. Eng. ALaa Ali Bashandy
47.29 m.t
21.36 t19.075 t
Mmax = 48.75 m.t
Distance 5.11 m from left supp.
G1
B. M. D.
G2
WG2 (wa = we = 4.997 t/m
(
6.0m 3.0m
RB2
23.69t
RB2 at point b = Wa2 * L = 4.276 t/m
x 4 m + 4.475 t/m
x 5 m = 23.69 t
( ) ( )
( ) ( ) t/m'4.8841.2x1.4t/m'0.5625x1.4
m9
2xm1.5xm3x
2
1
m2.5x
2
m6m1
m2x
2
m6m2
xt/m1.11
x W1.4wtO.x1.4
Span
Area
WWW
2
wallG2eG2aG2a
=++




















+








 +
+








 +
=
++===
∑
Design of R. C. Beams
Dr. Eng. ALaa Ali Bashandy
WG2 (wa = we = 4.997 t/m(
6.0m 3.0m
RB2
23.69t
Design of R. C. Beams
Dr. Eng. ALaa Ali Bashandy
91.33 m.t
37.77 t29.87 t
G2
B. M. D.
20.455 t
G3
RB2 at point c = 0.4 x W L + P + M/L = 6.842 t
WG3 (wa = we = 4.38 t/m
(
( ) ( )
( ) ( )
t/m'4.38
1.2x1.4t/m'0.5625x1.4
m9
m6x
2
1.5
m1.5xm3x
2
1
m2.5x
2
m6m1
xt/m1.11
x W1.4wtO.x1.4
Span
Area
WWW
2
wallG3eG3aG3
=
++










+



+










 +
=
++===
∑
Design of R. C. Beams
Dr. Eng. ALaa Ali Bashandy
RB2 at point c = 0.4 x 4.475 x 5 + 8.85 + (8.85x1.5 + (2.1175 x (Lc
2
/2))/5) = 20.455 t
Design of R. C. Beams
Dr. Eng. ALaa Ali Bashandy
20.455 t
WG3 (wa = we = 4.38 t/m
(
80.34 m.t
G3
33.35 t26.53 t
B. M. D.
LL
WuWubeambeam t/mt/m
/24WL2
/24WL2
/24WL2
/24WL2
/24WL2
/8WL2
/9WL2
/11WL2
/11WL2
/10WL2
/12WL2 /16WL2
/12WL2
/16WL2
Design of R. C. Beams
Dr. Eng. ALaa Ali Bashandy
Moment Values of beamsMoment Values of beams
ALB
Design of R. C. Beams
Dr. Eng. ALaa Ali Bashandy
Dr. ALaa A. Bashandy
E-Mail : Eng_ ALB@yahoo.com
1.1.ECP 203-2007ECP 203-2007
2.2.2032007.
3.3.2032007.
4.4.Design of R. C. StructuresDesign of R. C. Structures– - Vol. 1, 2, 3Vol. 1, 2, 3

More Related Content

Similar to تصميم الكمرات Dr.alaa bashandy

Welcometothepresentationon 131127120041-phpapp01
Welcometothepresentationon 131127120041-phpapp01Welcometothepresentationon 131127120041-phpapp01
Welcometothepresentationon 131127120041-phpapp01Alemu Workeneh
 
Lec06 Analysis and Design of T Beams (Reinforced Concrete Design I & Prof. Ab...
Lec06 Analysis and Design of T Beams (Reinforced Concrete Design I & Prof. Ab...Lec06 Analysis and Design of T Beams (Reinforced Concrete Design I & Prof. Ab...
Lec06 Analysis and Design of T Beams (Reinforced Concrete Design I & Prof. Ab...Hossam Shafiq II
 
Prsesntation on Commercial building Project
Prsesntation on Commercial building ProjectPrsesntation on Commercial building Project
Prsesntation on Commercial building ProjectMD AFROZ ALAM
 
Conceps of RCC-PCC.pptx
Conceps of RCC-PCC.pptxConceps of RCC-PCC.pptx
Conceps of RCC-PCC.pptxastor11
 
Lec 10-flexural analysis and design of beamns
Lec 10-flexural analysis and design of beamnsLec 10-flexural analysis and design of beamns
Lec 10-flexural analysis and design of beamnsCivil Zone
 
Lecture-7-Detailing-PHG-A1-Rev-10-2-Nov-16-Print.pptx
Lecture-7-Detailing-PHG-A1-Rev-10-2-Nov-16-Print.pptxLecture-7-Detailing-PHG-A1-Rev-10-2-Nov-16-Print.pptx
Lecture-7-Detailing-PHG-A1-Rev-10-2-Nov-16-Print.pptxAbelMulugeta8
 
Bar bending schedule (2)
Bar bending schedule (2)Bar bending schedule (2)
Bar bending schedule (2)ManimaranS17
 
Design of rectangular &amp; t beam using usd
Design of rectangular &amp; t beam using usdDesign of rectangular &amp; t beam using usd
Design of rectangular &amp; t beam using usdTipu Sultan
 
Multistoried R.C.C. Building Structural Design Analysis with Drawing - 2
Multistoried  R.C.C. Building Structural Design Analysis with Drawing - 2Multistoried  R.C.C. Building Structural Design Analysis with Drawing - 2
Multistoried R.C.C. Building Structural Design Analysis with Drawing - 2Port City International University
 
Lec04 Analysis of Rectangular RC Beams (Reinforced Concrete Design I & Prof. ...
Lec04 Analysis of Rectangular RC Beams (Reinforced Concrete Design I & Prof. ...Lec04 Analysis of Rectangular RC Beams (Reinforced Concrete Design I & Prof. ...
Lec04 Analysis of Rectangular RC Beams (Reinforced Concrete Design I & Prof. ...Hossam Shafiq II
 
CE412 FINAL PRRSENTATION-1.pptx
CE412 FINAL PRRSENTATION-1.pptxCE412 FINAL PRRSENTATION-1.pptx
CE412 FINAL PRRSENTATION-1.pptxu1801031
 
Flexural design of beam...PRC-I
Flexural design of beam...PRC-IFlexural design of beam...PRC-I
Flexural design of beam...PRC-IIrfan Malik
 

Similar to تصميم الكمرات Dr.alaa bashandy (20)

Welcometothepresentationon 131127120041-phpapp01
Welcometothepresentationon 131127120041-phpapp01Welcometothepresentationon 131127120041-phpapp01
Welcometothepresentationon 131127120041-phpapp01
 
Lec06 Analysis and Design of T Beams (Reinforced Concrete Design I & Prof. Ab...
Lec06 Analysis and Design of T Beams (Reinforced Concrete Design I & Prof. Ab...Lec06 Analysis and Design of T Beams (Reinforced Concrete Design I & Prof. Ab...
Lec06 Analysis and Design of T Beams (Reinforced Concrete Design I & Prof. Ab...
 
ONE WAY SLAB DESIGN
ONE WAY SLAB DESIGNONE WAY SLAB DESIGN
ONE WAY SLAB DESIGN
 
Prsesntation on Commercial building Project
Prsesntation on Commercial building ProjectPrsesntation on Commercial building Project
Prsesntation on Commercial building Project
 
Conceps of RCC-PCC.pptx
Conceps of RCC-PCC.pptxConceps of RCC-PCC.pptx
Conceps of RCC-PCC.pptx
 
one-way-slab-design.pptx
one-way-slab-design.pptxone-way-slab-design.pptx
one-way-slab-design.pptx
 
Lec 10-flexural analysis and design of beamns
Lec 10-flexural analysis and design of beamnsLec 10-flexural analysis and design of beamns
Lec 10-flexural analysis and design of beamns
 
Lec 10
Lec 10Lec 10
Lec 10
 
Lecture-7-Detailing-PHG-A1-Rev-10-2-Nov-16-Print.pptx
Lecture-7-Detailing-PHG-A1-Rev-10-2-Nov-16-Print.pptxLecture-7-Detailing-PHG-A1-Rev-10-2-Nov-16-Print.pptx
Lecture-7-Detailing-PHG-A1-Rev-10-2-Nov-16-Print.pptx
 
Bar bending schedule (2)
Bar bending schedule (2)Bar bending schedule (2)
Bar bending schedule (2)
 
Column design.ppt
Column design.pptColumn design.ppt
Column design.ppt
 
Design of rectangular &amp; t beam using usd
Design of rectangular &amp; t beam using usdDesign of rectangular &amp; t beam using usd
Design of rectangular &amp; t beam using usd
 
Multistoried R.C.C. Building Structural Design Analysis with Drawing - 2
Multistoried  R.C.C. Building Structural Design Analysis with Drawing - 2Multistoried  R.C.C. Building Structural Design Analysis with Drawing - 2
Multistoried R.C.C. Building Structural Design Analysis with Drawing - 2
 
10.01.03.153
10.01.03.15310.01.03.153
10.01.03.153
 
Lec04 Analysis of Rectangular RC Beams (Reinforced Concrete Design I & Prof. ...
Lec04 Analysis of Rectangular RC Beams (Reinforced Concrete Design I & Prof. ...Lec04 Analysis of Rectangular RC Beams (Reinforced Concrete Design I & Prof. ...
Lec04 Analysis of Rectangular RC Beams (Reinforced Concrete Design I & Prof. ...
 
CE412 FINAL PRRSENTATION-1.pptx
CE412 FINAL PRRSENTATION-1.pptxCE412 FINAL PRRSENTATION-1.pptx
CE412 FINAL PRRSENTATION-1.pptx
 
Axially Loaded Column
Axially Loaded ColumnAxially Loaded Column
Axially Loaded Column
 
Paper
PaperPaper
Paper
 
Flexural design of beam...PRC-I
Flexural design of beam...PRC-IFlexural design of beam...PRC-I
Flexural design of beam...PRC-I
 
ogee design
ogee designogee design
ogee design
 

Recently uploaded

Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024hassan khalil
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxupamatechverse
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerAnamika Sarkar
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130Suhani Kapoor
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxAsutosh Ranjan
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escortsranjana rawat
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024Mark Billinghurst
 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSRajkumarAkumalla
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxwendy cai
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxpranjaldaimarysona
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSSIVASHANKAR N
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Dr.Costas Sachpazis
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingrakeshbaidya232001
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
Analog to Digital and Digital to Analog Converter
Analog to Digital and Digital to Analog ConverterAnalog to Digital and Digital to Analog Converter
Analog to Digital and Digital to Analog ConverterAbhinavSharma374939
 

Recently uploaded (20)

Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptx
 
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptx
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024
 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptx
 
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINEDJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptx
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
 
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCRCall Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writing
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
 
Analog to Digital and Digital to Analog Converter
Analog to Digital and Digital to Analog ConverterAnalog to Digital and Digital to Analog Converter
Analog to Digital and Digital to Analog Converter
 

تصميم الكمرات Dr.alaa bashandy

  • 1. ‫تتتتت‬ ‫تتتتت‬ ‫تتتتتتت‬ 20132013 ALB Dr. Eng. ALaa Ali Bashandy Menufiya Unv. Design of Reinforced ConcreteDesign of Reinforced Concrete StructuresStructures Design of R. C. Beams Dr. ALaa Ali Bashandy
  • 2. RR.. CC.. BBeeaammss ALB Design of R. C. Beams Dr. Eng. ALaa Ali Bashandy
  • 3. BeamsBeams ALB Design of R. C. Beams Dr. Eng. ALaa Ali Bashandy
  • 4. ALB Dr. Eng. ALaa Ali Bashandy Members of Concrete Construction Members of Concrete Construction Slabs Beams Column Footing Shallow found. Deep found. Solid Slabs Hollow Block Slabs Flat Slabs Paneled Beam system Isolated Footing Combined Footing Strip Footing Raft/ Mat found. Friction Pile Bearing Pile Axially Loaded Col. Eccentric Loaded Col.or Simple Beam Continuous Be. Cantilever Beamoror Dropped Beam Inverted Beam Hidden Beamor or Long Column Short Columnor Rectangular Column Circular Columnor Braced Column Unbraced Columnor Structural Sys. Position ref. to slab Loads Design Section Bracing Design of R. C. Beams
  • 5. BeamsBeams Cantilever BeamSimple Beam ALB Continuous Beam Continuous Beam - one end - Continuous Beam - two ends - Simple Beam Cantilever Beam Design of R. C. Beams Dr. Eng. ALaa Ali Bashandy
  • 6. ALB Cross Sections of BeamsCross Sections of Beams Design of R. C. Beams Dr. Eng. ALaa Ali Bashandy
  • 7. BeamsBeams Referring to its position comparing to slabsReferring to its position comparing to slabs ALB Hidden BeamDropped Beam Inverted Beam bb slabslab Design of R. C. Beams Dr. Eng. ALaa Ali Bashandy
  • 8. BeamsBeams Referring to its position comparing to slabsReferring to its position comparing to slabs BeamsBeams Referring to its position comparing to slabsReferring to its position comparing to slabs ALB Hidden BeamHidden BeamDropped BeamDropped Beam Inverted BeamInverted Beam Dr. Eng. ALaa Ali Bashandy
  • 9. 21 Sec. 2Sec. 1 1 1 2 2 Design of R. C. Beams Dr. Eng. ALaa Ali Bashandy
  • 10. Sec. 2Sec. 1 T – Sec.(( 211 1 2 2 R – Sec.(( Design of R. C. Beams Dr. Eng. ALaa Ali Bashandy
  • 11. 211 1 2 2 Sec. 2Sec. 1 Design of R. C. Beams Dr. Eng. ALaa Ali Bashandy
  • 12. Sec. 2Sec. 1 L – Sec.(( 211 1 2 2 R – Sec.(( Design of R. C. Beams Dr. Eng. ALaa Ali Bashandy
  • 15. Different Cases for One-way SlabDifferent Cases for One-way Slab Cantilever one-way slabCantilever one-way slab 2.0 L L S ≥ LLSS LL LLSS LLCC Load DistributionLoad Distribution from one-way slabfrom one-way slab One-way slabOne-way slab One directionOne direction 22--sidessides One directionOne direction 22--sidessides One directionOne direction 11--sideside Design of R. C. Beams Dr. Eng. ALaa Ali Bashandy
  • 16. One-way S. Slab 2.00 L L s ≥ B1 B2 L Ls B1 L           ++      = WallB1 S 1B WO.Wtx1.4 2 L xWuW S B2 Ls L Ls Lc Cantilever Slab WB2 = 1.4 ( O. Wt B2 + Wwall ) t/m B1 [ ]           ++++      = WallB1C S 1B WO.Wtx4.1Lx s Wu 2 L x s WuW B2 Ls WB2 = 1.4 ( O. Wt B2 + Wwall ) t/m B2 B1 L Design of R. C. Beams Dr. Eng. ALaa Ali Bashandy Load DistributionLoad Distribution from one-way slabfrom one-way slab
  • 17. Load DistributionLoad Distribution from two-way slabfrom two-way slab Design of R. C. Beams Dr. Eng. ALaa Ali Bashandy Load from slab L B1 B2Ls Two-way S. Slab 2.00 L L s < L Ls B1 B2
  • 18. Two-way S. Slab 2.00 L L s < L Ls B1 B2 L B1 Wa L L We Equivalent load forEquivalent load for ShearShear (Wa or Wβ( Equivalent load forEquivalent load for MomentMoment ( We or Wα( Momentfor))L/L( 3 1 -1(Cα Shearfor))L/L( 2 1 -1(Cβ 2 se sa == == for Trapezoidal Load only t/m( )[ ]WallS O.WtO.Wtx1.4Cax 2 L Wu B1 s XB1Wa ++      = t/m Load DistributionLoad Distribution from two-way slabfrom two-way slab ( )[ ]WallS O.WtO.Wtx1.4Cex 2 L Wu B1 s xB1We ++      = Design of R. C. Beams Dr. Eng. ALaa Ali Bashandy
  • 19. L Ls B1 B2 Wa LS LS We Equivalent load forEquivalent load for ShearShear (Wa or Wβ( Equivalent load f orEquivalent load f or MomentMoment (We or Wα( for Triangle Load only t/m t/m B2 Ls Momentfor32Cα Shearfor21Cβ e a == == ( )[ ]WallS O.WtO.Wtx1.4Cax 2 L Wu B2 s x2BWa ++      = ( )[ ]WallS O.WtO.Wtx4.1Cex 2 L Wu B2 s x2BWe ++      = Design of R. C. Beams Dr. Eng. ALaa Ali Bashandy
  • 20. 2 L L1 >1.1. L L L1 ( )              ++= == wall W B O.Wtx1.4sx Wu L Area ShearforLoadMomentforLoadWB 2 L L1 <22.. L1 L1 LL L1 L Special Cases of LoadingSpecial Cases of Loading L L1 ( )                ++= == wall W B O.Wtx1.4sx Wu L Area ShearforLoadMomentforLoadW 1 B oror oror WB WB Design of R. C. Beams Dr. Eng. ALaa Ali Bashandy
  • 21. 44.. 33.. ( )      ++∑=== wall W beam O.Wtx1.4sx Wu Span Area ShearforLoadMomentforLoadWB 1/2Ca = 1/3Ce = 1/2Ca = 2/3Ce = 1/2Ca = 1/2Ce = sx Wu Span Area L WB WB WB WB WB Design of R. C. Beams Dr. Eng. ALaa Ali Bashandy L L
  • 22. ALB Main and SecondaryMain and Secondary BeamsBeams Design of R. C. Beams Dr. Eng. ALaa Ali Bashandy
  • 23. BeamsBeams Secondary BeamMain Beam ALB Design of R. C. Beams Dr. Eng. ALaa Ali Bashandy
  • 24. Main BeamsMain Beams Main BeamMain Beam Design of R. C. Beams Dr. Eng. ALaa Ali Bashandy
  • 25. SecondarySecondary BeamBeam Secondary BeamsSecondary Beams Design of R. C. Beams Dr. Eng. ALaa Ali Bashandy
  • 28. ALB Design of BeamsDesign of Beams Design of R. C. Beams Dr. Eng. ALaa Ali Bashandy
  • 29. WBeam (t/m’ ) = (Wall Wt. + O. Wt.Beam ) x 1.4 + Wus (From slab) 1.Dead Load (D.L) 22 3 P.C 3 R.C R.C ConcreteR.Concrete t/m0.15kg/m150C.FL. t/m2.2γ&t/m2.5γ γ*1.0x1.0xt x γVW )F.C(coverfloor-2 (O.Wt)slabofOwn weight-1 s == == = = 2.Live Load ( L .L) 3.Total Load ( T.L) Load ValuesLoad Values 1.00m ts 1.00m From SlabFrom Slab From BeamFrom Beam R.CBConcreteR.Concrete γxbxtxVW )W(BeamofOwn weight-1 γWt.O Wt.O ==B B From WallsFrom Walls ( ) cm2512b3t/m15001200 xhxbxtxVW wWall Wall wwWallwallwall γ γγ →=→ == = Design of R. C. Beams Dr. Eng. ALaa Ali Bashandy according to code
  • 30. Live Load ValuesLive Load Values According to Egyptian CodeAccording to Egyptian Code Design of R. C. Beams Dr. Eng. ALaa Ali Bashandy
  • 31. tB min = 40 cm Cantilever Beam Estimation of tEstimation of tBB t B min = Leff / 16 Leff / 18 Leff / 21 Lc / 5 it is required to check deflection if the span < 10 m for High Tensile Steel 400/600 (H.T.S) t B min = previous values ÷ ( 0.4 + fy / 650) for any other steel type fy / fu Simple Slab Continuous Slab From tow side Continuous Slab From one side Design of R. C. Beams Dr. Eng. ALaa Ali Bashandy
  • 32. but not less thanbut not less than 40 cm40 cm Cantilever Beam Value of tValue of tBB t B = span / 10 span / 12 Lc / 5 GenerallyGenerally Simple Slab Continuous Slab From tow side Continuous Slab From one side Design of R. C. Beams Dr. Eng. ALaa Ali Bashandy
  • 33. LLSS WWuu t/mt/m /24WL2 /24WL2 /24LW 2 22 /24LW 2 11 /8WL2 /9WL2 /11LW 2 11 /11LW 2 22 /10WL2 /12LW 2 11 /16LW 2 22 /12WL2 /16LW 2 33 /24LW 2 11 minmin MM + ve+ ve== 8 LxuW 2 Moment ValuesMoment Values Simply supportedSimply supported continuous two spanscontinuous two spans continuous more than two spanscontinuous more than two spans Empirical values for B.MEmpirical values for B.M (Max difference in(Max difference in loadload && spanspan ≤≤ 20%20% and D.L >L.L )and D.L >L.L ) Dr. Eng. ALaa Ali Bashandy Design of R. C. Beams
  • 34. MM supportsupport Design of R. C. Beams Dr. Eng. ALaa Ali Bashandy )L'L'(8.5 L'WL'W 21 3 22 3 11 supportMLoadUniform + + = )L'L'( L'PkL'Pk 21 2 222 2 111 supportMLoadedConcentrat + + = L1 m W2 L2 m W1 L1 m L2 m P1 P2 a1 a2 L m L’ = L L m L’ = 0.8L a1 / L1 & a2 / L2 0.3 0.4 0.5 0.6 0.7 K1 & k2 0.168 0.182 0.176 0.158 0.128 In case of:In case of: difference indifference in loadload oror spanspan ≥≥ 20%20%
  • 35. Shear ValuesShear Values Simply supported beamSimply supported beam Continuous two spansContinuous two spans Continuous more than two spansContinuous more than two spans Dr. Eng. ALaa Ali Bashandy Design of R. C. Beams Lm a b 0.5 W L S.F.D + 0.5 W L - L1 m a 0.4 W1 L1 + 0.6 W1 L1 - L2 m C 0.6 W2 L2 S.F.D + 0.4 W2 L2 - b L1 m a 0.4 W1 L1 + 0.6 W1 L1 - L2 m C 0.5 W2 L2 + 0.5 W2 L2 - b - L3 m 0.5 W3 L3 S.F.D +
  • 36. Possible cases of bPossible cases of b Estimation of bEstimation of b Design of R. C. Beams Dr. Eng. ALaa Ali Bashandy Rectangular sectionRectangular section R-sec.R-sec. T - sec. → internal beamT - sec. → internal beam L - sec. → edge beamL - sec. → edge beam R - sec.R - sec. T - sec.T - sec. L - sec.L - sec. ::Values of bValues of b 16 t16 t ss + b+ b LL22 / 5 + b/ 5 + b CL. to CL.CL. to CL. 6 t6 t ss + b+ b LL22 / 10 + b/ 10 + b ½½ CL. to CL.CL. to CL. bb LL22 = L= L LL22 = 0.8 L= 0.8 L LL22 = 0.7 L= 0.7 L LL22 = 2 L= 2 L b.F M Cd cu u 1= Least of :Least of :
  • 37. Given : M u , t s , b =100 cm , Fcu , Fy Req. : As d = ts - c (cover) c = 20 - 50 mm(cover) c = 20 - 50 mm AS min = 0.15 % Ac H.T.S 360/520 = 0.25 % Ac for Mild steel 240/350 .....J.....C b.F M Cd 1 cu u 1 === m′== /cm........ f.d.J Mu As 2 y Ac = b x d Design of SectionDesign of Section Design of R. C. Beams Dr. Eng. ALaa Ali Bashandy AS max = 0.4 % Ac recommended
  • 38. CC1 & J& J Design of R. C. Beams Dr. Eng. ALaa Ali Bashandy
  • 39. ALB Shear Behavior of BeamsShear Behavior of Beams Design of R. C. Beams Dr. Eng. ALaa Ali Bashandy
  • 40. Choice of Shear ValuesChoice of Shear Values Simply supported beamSimply supported beam Continuous two spansContinuous two spans Continuous more than two spansContinuous more than two spans Dr. Eng. ALaa Ali Bashandy Design of R. C. Beams S.F.D Chose the larger value of shear along the beam span - axisChose the larger value of shear along the beam span - axis Qmax Lm a b 0.5 W L S.F.D + 0.5 W L - Q1 Q2 L1 m a 0.4 W1 L1 + 0.6 W1 L1 - L2 m C 0.6 W2 L2 S.F.D + 0.4 W2 L2 - b Q1 Q2 Q3 Q4 L1 m a 0.4 W1 L1 + 0.6 W1 L1 - L2 m C 0.5 W2 L2 + 0.5 W2 L2 - b - L3 m 0.5 W3 L3 + Q5 Q4Q2 Q3 Q1
  • 41. Critical Sections of ShearCritical Sections of Shear Design of R. C. Beams Dr. Eng. ALaa Ali Bashandy
  • 42. Shear Limitations of BeamsShear Limitations of Beams Design of R. C. Beams Dr. Eng. ALaa Ali Bashandy
  • 43. Check of ShearCheck of Shear Design of R. C. Beams Dr. Eng. ALaa Ali Bashandy
  • 44. Cases of qCases of quu Design of R. C. Beams Dr. Eng. ALaa Ali Bashandy
  • 45. Check of ShearCheck of Shear Design of R. C. Beams Dr. Eng. ALaa Ali Bashandy
  • 46. Design of R. C. Beams Dr. Eng. ALaa Ali Bashandy
  • 47. Design of R. C. Beams Dr. Eng. ALaa Ali Bashandy
  • 48. Design of R. C. Beams Dr. Eng. ALaa Ali Bashandy
  • 49. ALB Reinforcing RebarsReinforcing Rebars Design of R. C. Beams Dr. Eng. ALaa Ali Bashandy
  • 50. Simple BeamSimple Beam 44++22 Design of R. C. Beams Dr. Eng. ALaa Ali Bashandy
  • 51. 22++22++22 Simple BeamSimple Beam Design of R. C. Beams Dr. Eng. ALaa Ali Bashandy
  • 52. Simple BeamSimple Beam 11 22 33 44 55 66 77 Design of R. C. Beams Dr. Eng. ALaa Ali Bashandy
  • 53. Cantilever BeamCantilever Beam 11 22 33 55 66 77 Design of R. C. Beams Dr. Eng. ALaa Ali Bashandy
  • 54. Design of R. C. Beams Dr. Eng. ALaa Ali Bashandy
  • 55. Design of R. C. Beams Dr. Eng. ALaa Ali Bashandy
  • 56. ALB Reinforcement DetailingReinforcement Detailing Design of R. C. Beams Dr. Eng. ALaa Ali Bashandy
  • 57. UsingUsing StraightStraight RebarsRebars Simple BeamSimple Beam Design of R. C. Beams Dr. Eng. ALaa Ali Bashandy
  • 58. Using Straight RebarsUsing Straight Rebars 22--spans Beamspans Beam Design of R. C. Beams Dr. Eng. ALaa Ali Bashandy
  • 59. Using Straight RebarsUsing Straight Rebars More than 2-spans BeamMore than 2-spans Beam Design of R. C. Beams Dr. Eng. ALaa Ali Bashandy
  • 60. Using Straight RebarsUsing Straight Rebars Over hanging BeamOver hanging Beam Design of R. C. Beams Dr. Eng. ALaa Ali Bashandy
  • 61. Using Straight RebarsUsing Straight Rebars Cantilever BeamCantilever Beam Design of R. C. Beams Dr. Eng. ALaa Ali Bashandy
  • 62. Using Bent RebarsUsing Bent Rebars Simple BeamSimple Beam Design of R. C. Beams Dr. Eng. ALaa Ali Bashandy
  • 63. Using Bent RebarsUsing Bent Rebars 22--spans Beamspans Beam Design of R. C. Beams Dr. Eng. ALaa Ali Bashandy
  • 64. Using Bent RebarsUsing Bent Rebars More than 2-spans BeamMore than 2-spans Beam Design of R. C. Beams Dr. Eng. ALaa Ali Bashandy
  • 65. Using Bent RebarsUsing Bent Rebars Cantilever BeamCantilever Beam Design of R. C. Beams Dr. Eng. ALaa Ali Bashandy
  • 66. Design of R. C. Beams Dr. Eng. ALaa Ali Bashandy
  • 67. ExampleExample:: For the given plan it is required to: Calculate loads for slabs & Beams Data: FL.C = 150 kg/m2 L.L = 300 kg/m2 Steel Grade 360/520 SolutionSolution:: Slabs D.L = (0.12 m * 2.5 t/m3 )+ 0.15 t/m2 = 0.45 t/m2 L.L = 0.3 t/m2 Design of R. C. Beams Dr. Eng. ALaa Ali Bashandy Wus = 1.4 x 0.45 t/m2 + 1.6 x 0.3 t/m2 = 1.11 t/m2 To have slab thickness ts S1 → ts = 400/40 = 10 cm S2 → ts = 300/45 = 6.67 cm S3 → ts = 500/45 = 11.1 cm take ts = 12 cm
  • 68. Design of R. C. Beams Dr. Eng. ALaa Ali Bashandy 1.5 4 6 r ==For S1 →trapezoidal Ca = 0.67 & Ce = 0.85 →triangle Ca = 1/2 & Ce = 2/3 1.33 3 4 r ==For S2 →trapezoidal Ca = 0.63 & Ce = 0.81 →triangle Ca = 1/2 & Ce = 2/3 1.2 5 6 r ==For S3 →trapezoidal Ca = 0.582 & Ce = 0.769 →triangle Ca = 1/2 & Ce = 2/3 1.67 3 5 r ==For S4 →trapezoidal Ca = 0.701 & Ce = 0.881 →triangle Ca = 1/2 & Ce = 2/3
  • 69. Design of R. C. Beams Dr. Eng. ALaa Ali Bashandy W4 ( Wa & We) t/m 6m B1 B2 BeamsBeams O. wt. of beam = 0.25 x 0.6 x 2.5 t/m3 = 0.375 t/m ( ) ( ) t/m'2.951.2x1.4t/m0.375x1.4 2 m1.5 xt/m1.11 x W4.1wt.O.x1.4 2 L xWuWW 2 wall s s4e4a =++      = ++      == B4 tB = span / 10 = 600 / 10 = 60 cm take tB = 60 cm Wall weight = Wwall = 0.25 (width) x 2.7 (height) x 1.8 (γwall = 1.2 – 1.8 t/m3 ) = 1.2 t/m 2.95 t/m 6m 13.275 m.t 8.85 t 8.85 t B1 B2 B. M. D.
  • 70. B1 ( ) ( ) ( ) ( ) t/m'3.2281.2x1.4t/m'0.3125x1.4 2 1 x 2 m4 xt/m1.11 x W1.4wtO.x1.4Cx 2 L xWuW 2 walla s sa1 =++      = ++      = ( ) ( ) ( ) ( ) t/m'3.6051.2x1.4t/m'0.3125x1.4 3 2 x 2 m4 xt/m1.11 x W1.4wtO.x1.4Cx 2 L xWuW 2 walle s se1 =++      = ++      = Design of R. C. Beams Dr. Eng. ALaa Ali Bashandy 4 m 5 m 1.5 m 8.85 t a b c d Part ab Part bc Part cd t/m'2.11751.2x1.4t/m'0.3125x1.4WW e3a3 =+== ( ) ( ) ( ) ( ) t/m'3.5051.2x1.4t/m'0.3125x1.4 2 1 x 2 m5 xt/m1.11 x W1.4wtO.x1.4Cx 2 L xWuW 2 walla s sa1 =++      = ++      = ( ) ( ) ( ) ( ) t/m3.9771.2x1.4t/m'0.3125x1.4 3 2 x 2 m5 xt/m1.11 x W1.4wtO.x1.4Cx 2 L xWuW 2 walle s se1 =++      = ++      =
  • 71. Design of R. C. Beams Dr. Eng. ALaa Ali Bashandy 3.228 t/m 3.505 t/m 4 m 5 m Shear G2G1 G3 B1 1.5 m 3.605 t/m 3.977 t/m 4 m 5 m Moment G2G1 G3 1.5 m 2.1175 t/m 8.85 t 8.85 t Moment Values of B1 W2L2 2 /9 W1L1 2 /9 or W1L1 2 /11 W2L2 2 /11 WcLc 2 / 2 Msupp. = 9.514 m.t 6.214 m.t5.244 m.t P x Lc + WcLc 2 / 2 = 15.66 m.t B. M. D.
  • 72. O. wt. of beam = 0.25 x 0.5 x 2.5 t/m3 = 0.3125 t/m ( ) ( ) t/m'4.2761.2x1.4t/m'0.3125x1.40.63x 2 m3 xt/m1.11 2 1 x 2 m4 xt/m1.11 x W4.1wt.O.x1.4Cx 2 L xWuW 22 walla s sa2 =++      +      = ++      = ( ) ( ) t/m'4.9541.2x1.4t/m'0.3125x1.40.81x 2 m3 xt/m1.11 3 2 x 2 m4 xt/m1.11 x W1.4O.wtx1.4Cx 2 Ls xWuW 22 wallese2 =++      +      = ++      = B2 Design of R. C. Beams Dr. Eng. ALaa Ali Bashandy tB = span / 12 = 500 / 12 = 41.67cm take tB = 50 cm Part ab Part bc t/m'4.4751.2x1.4t/m'0.3125x1.40.582x 2 m3 xt/m1.11 2 1 x 2 m5 xt/m1.11W 22 a2 =++      +      = t/m'5.2571.2x1.4t/m'0.3125x1.40.769x 2 m3 xt/m1.11 3 2 x 2 m4 xt/m1.11W 22 e2 =++      +      = 4.275 t/m 4.475 t/m 2.1175 t/m 4 m 5 m 1.5 m Shear 4.954 t/m 5.257 t/m 2.1175 t/m 4 m 5 m 1.5 m Moment Part cd t/m'2.11751.2x1.4t/m0.3125x1.4WW e2a2 =+== 4 m 5 m 1.5 m R B4 a b c d
  • 73. B2 Design of R. C. Beams Dr. Eng. ALaa Ali Bashandy 4.954 t/m 5.257 t/m 4 m 5 m 1.5 m 8.85 t 2.1175 t/m 0.4x4.276x4 = 6.84 t 0.4x4.475x5 + 8.85 = 17.8 t L1 m a 0.4 W1 L1 + 0.6 W1 L1 - L2 m C 0.6 W2 L2 S.F.D + 0.4 W2 L2 - b Q1 Q2 Q3 Q4 0.6x4.276x4 = 10.26 t 0.6x4.475x5 = 13.43 t Wc Lc 3.176 t 8.85 t + 8.85 t 4.275 t/m 4.475 t/m 2.1175 t/m 4 m 5 m 1.5 m Shear G2G1 G3 8.85 t W2L2 2 /9 W1L1 2 /9 or W1L1 2 /11 W2L2 2 /11 WcLc 2 / 2 Moment Values of B2 10.67 m.t6.656 m.t P x Lc + WcLc 2 / 2 = 15.66 m.t Msupp. = 12.734 m.t B. M. D. = 8.81 m.t = 14.61 m.t
  • 74. B3 ( ) ( ) ( ) ( ) ( ) t/m'4.2761.2x1.4t/m'0.3125x1.4m1xt/m1.110.63x 2 m3 xt/m1.11 x W1.4wtO.x1.4Cx 2 L xWuW 22 walla s sSpanLefta3 =+++      = ++      = Design of R. C. Beams Dr. Eng. ALaa Ali Bashandy ( ) ( ) ( ) ( ) ( ) t/m'4.3951.2x1.4t/m'0.3125x1.4m1xt/m1.110.701x 2 m3 xt/m1.11 x W1.4wtO.x1.4Cx 2 L xWuW 22 walla s sSpanRighta3 =+++      = ++      = Part ab Part bc ( ) ( ) ( ) ( ) ( ) t/m'4.5761.2x1.4t/m'0.3125x1.4m1xt/m1.110.81x 2 m3 xt/m1.11 x W1.4wtO.x1.4Cx 2 L xWuW 22 walle s sSpanLefte3 =+++      = ++      = ( ) ( ) ( ) ( ) ( ) t/m'4.6941.2x1.4t/m'0.3125x1.4m1xt/m1.110.881x 2 m3 xt/m1.11 x W1.4wtO.x1.4Cx 2 L xWuW 22 walle s sSpanRighte3 =+++      = ++      = a b c
  • 75. Design of R. C. Beams Dr. Eng. ALaa Ali Bashandy 4.276 t/m 4.395 t/m 4 m 5 m Shear G2G1 G3 4.576 t/m 4.694 t/m 4 m 5 m Moment G2G1 G3 W2L2 2 /9 W1L1 2 /9 or W1L1 2 /11 W2L2 2 /11 B3 Moment Values of B3 13.04 m.t 10.67 m.t6.656 m.t B. M. D.
  • 76. Main Beams (GirdersMain Beams (Girders)) 6.842 t 6.0m 3.0m G1 RB2 at point a = 0.4 x (4.267 t/m x 4 m) = 6.842 t WG1 (wa = we = 3.732 t/m( ( ) ( ) ( ) ( ) t/m'3.7321.2x1.4t/m'0.5625x1.4 m9 m1.5xm3x 2 1 m2x 2 m6m2 xt/m1.11 x W1.4wtO.x1.4 Span Area WWW 2 wallG1eG1aG1 =++           +            + = ++=== ∑ RB2 Design of R. C. Beams Dr. Eng. ALaa Ali Bashandy O. wt. of main beam/ girder = 0.25 x 0.9 x 2.5 t/m3 = 0.5625 t/m tG = span / 10 = 900 / 10 = 90 cm take tG = 90 cm
  • 77. 6.842 t 6.0m 3.0m WG1 (wa = we = 3.732 t/m( RB2 Design of R. C. Beams Dr. Eng. ALaa Ali Bashandy 47.29 m.t 21.36 t19.075 t Mmax = 48.75 m.t Distance 5.11 m from left supp. G1 B. M. D.
  • 78. G2 WG2 (wa = we = 4.997 t/m ( 6.0m 3.0m RB2 23.69t RB2 at point b = Wa2 * L = 4.276 t/m x 4 m + 4.475 t/m x 5 m = 23.69 t ( ) ( ) ( ) ( ) t/m'4.8841.2x1.4t/m'0.5625x1.4 m9 2xm1.5xm3x 2 1 m2.5x 2 m6m1 m2x 2 m6m2 xt/m1.11 x W1.4wtO.x1.4 Span Area WWW 2 wallG2eG2aG2a =++                     +          + +          + = ++=== ∑ Design of R. C. Beams Dr. Eng. ALaa Ali Bashandy
  • 79. WG2 (wa = we = 4.997 t/m( 6.0m 3.0m RB2 23.69t Design of R. C. Beams Dr. Eng. ALaa Ali Bashandy 91.33 m.t 37.77 t29.87 t G2 B. M. D.
  • 80. 20.455 t G3 RB2 at point c = 0.4 x W L + P + M/L = 6.842 t WG3 (wa = we = 4.38 t/m ( ( ) ( ) ( ) ( ) t/m'4.38 1.2x1.4t/m'0.5625x1.4 m9 m6x 2 1.5 m1.5xm3x 2 1 m2.5x 2 m6m1 xt/m1.11 x W1.4wtO.x1.4 Span Area WWW 2 wallG3eG3aG3 = ++           +    +            + = ++=== ∑ Design of R. C. Beams Dr. Eng. ALaa Ali Bashandy RB2 at point c = 0.4 x 4.475 x 5 + 8.85 + (8.85x1.5 + (2.1175 x (Lc 2 /2))/5) = 20.455 t
  • 81. Design of R. C. Beams Dr. Eng. ALaa Ali Bashandy 20.455 t WG3 (wa = we = 4.38 t/m ( 80.34 m.t G3 33.35 t26.53 t B. M. D.
  • 82. LL WuWubeambeam t/mt/m /24WL2 /24WL2 /24WL2 /24WL2 /24WL2 /8WL2 /9WL2 /11WL2 /11WL2 /10WL2 /12WL2 /16WL2 /12WL2 /16WL2 Design of R. C. Beams Dr. Eng. ALaa Ali Bashandy Moment Values of beamsMoment Values of beams
  • 83. ALB Design of R. C. Beams Dr. Eng. ALaa Ali Bashandy Dr. ALaa A. Bashandy E-Mail : Eng_ ALB@yahoo.com 1.1.ECP 203-2007ECP 203-2007 2.2.2032007. 3.3.2032007. 4.4.Design of R. C. StructuresDesign of R. C. Structures– - Vol. 1, 2, 3Vol. 1, 2, 3