SlideShare a Scribd company logo
1 of 75
Doctoral Seminar - II
Effect of Nanofertlizers on Fruit Crops
Presented by:
Warang Omkar Sunil
Reg. No.: 1080119003
Ph.D. (Hort.) Fruit Science
4Th Semester
Major Guide
Dr. N. I. Shah
Principal & Dean
College of Horticulture,
AAU, Anand 388 110
Minor Guide
Dr. N. J. Jadav
Professor & Head
Dept. of Soil Science & Agril. Chemistry
B. A. College of Agriculture
AAU, Anand 388 110
Content
• Introduction
• Classification of nanofertilizers
• Production of nanofertilizers
• Mechanisms of nanofertilizers action
• Methods of application of nanofertilizers
• Benefits of nanofertilizers
• Regulation and translocation of nanoparticles
• Limitations of nanofertilizers
• Review of research work
• Summary
• Conclusion
Nanotechnology
A group of emerging technologies in which the structure
of the matter is controlled at the nanometre scale to
produce materials having unique properties.
The term “Nano” is derived from the
Greek word nanos meaning ‘DWARF’
Nanoparticles: Particles with size in the
range of 1-100 nm. Small objects which
behave as a whole unit Types:
i. Incidental nanoparticles
ii. Engineered nanoparticles
Norio Taniguchi coined termed
Nanotechnology (1974)
1
Unique Properties of Nanoparticles
• Smaller size
• Large surface area
• Large surface to volume ratio
• Slow release
• Specific release
• Many nanoparticles have a special properties that
differ from the bulk parent material.
2
INTRODUCTION
• Nanofertilizers are the nanomaterial of 1–100 nm size that
supply at least one or more types of nutrients to the plants.
• A nanofertilizer is any product that is made with nanoparticles
or uses nanotechnology to improve nutrient efficiency.
• The various types of nanotechnological materials such as
carbon nanotubes, copper, manganese, molybdenum, zinc, iron,
silicon, their oxides and nanoformulations of commercially used
agricultural inputs like urea, phosphorus and sulfur are
available.
• Based on plant nutrient requirements, nanoparticles can be
classified as macro nanofertilizers, micro nanofertilizers, nano
biofertilizers, nano particulate fertilizers and nano coatings or
packaging materials.
3
Macro-nanofertilizers
Macronutrients combined with nanomaterials to
deliver a precise amount of nutrients to the plants
Reduce the bulk requirements as well as
decreasing purchase and transportation cost
Examples:-
1) Nano-ultra-fertilizer
2) Nanocapsules
3) N + P nanofertilizers.
4) IFFCO Nano Nitrogen
5) Biozar Nano K
4
Micro-nanofertilizers
Micronutrients are required in less quantities by plants.
Nanofertilizers providing essential micro-nutrients.
They are essential to maintain crucial metabolic
processes in the plants.
Examples:
1)Nano-micronutrient(EcoStar)
2)IFFECO Nano Copper
3)IFFECO Nano Zinc
4)Biozar Nano Iron
5
Nano-biofertilizers
Materials are made up of interaction
between nanoparticles and microorganisms.
Improve the shelf life of bio-
fertilizers and its delivery.
Example:-
1) Biozar nanofertilizers:- it
contain free and non-
symbiotic nitrogen fixing
bacteria and phosphorus
solubilizing bacteria.
6
Nanoparticulate fertilizers
The consolidation formulation of nanotubes and nanoparticles
leads to form new complex materials that are active in nature and
act as nanofertilizers.
Examples:-
1) Carbon nanotubes
2) Silicon dioxide nanoparticles
(SiO2 NPs)
3) Silver nanoparticles (Ag NPs)
4) Zinc oxide nanoparticles (ZnO
NPs)
7
Nanocoating Material
Nanocoating is the thin layer material that helps to increase
the shelf life of fresh commodity.
Examples:-
1) Chitosan/nano-silica
2) Nanotitanium dioxide-low-
density polyethylene (TiO2-LDPE)
8
Production of nanofertilizers
• Nanomaterials or nanoparticles for nanofertilizers can be synthesized
by different approaches, top-down, bottom-up or using biological
approaches.
• Top down:-
1) based on the reduction of size to nanoscale
2) physical method based on milling materials.
3) low control in the size of nanoparticles and a greater quantity of
impurities.
• Bottom up:-
1) begins at the atomic or molecular scale to build up nanoparticles
using chemical reactions.
2) chemically controlled synthetic process, therefore, this method
controls the particle size better and reduces impurities.
9
Cont….
• Biological approach:-
1) nanoparticles can be synthesized biologically.
2) several natural sources for this purpose, like plants, fungi and bacteria
based.
3) Greater control of the toxicity and size of the particle.
10
Mechanisms of nanofertilizers
action
• Nanofertilizers have been advocated owing to higher NUE as
plants cell walls have small pore sizes (up to 20 nm) which
result in higher nutrient uptake.
• Plant roots are porous to nanomaterials compared to
conventional fertilizers.
• Nano-pores and stomatal openings in leaves felicitate
nanomaterials uptake and their penetration deep inside
leaves.
• Higher transport and delivery of nutrients through
plasmodesmata which are nanosized (50–60 nm) channels
for transportation of ions between cells.
11
Methods of Application of
Nanofertilizers
• Nanofertilizers can be applied through various modes of
applications:
1) Soil application
2) Injection to the plant and
3) in vitro application
4) Foliar application
• The foliar application of nutrients has been proved as a
quick way to rectify nutrient deficiencies and ameliorate
crop productivity
12
Benefits of Nanofertilizers
• Efficiently regulate the delivery of nutrients to plants and
targeted sites, guaranteeing the minimal usage of
agrochemicals.
• Increase crop yield by increasing fertilizer nutrient
availability in soil and nutrient uptake by plants.
• Reduce the negative environmental impact of conventional
agricultural practices.
• Improve the leaf area, fruit size and yield.
• Improve the quality and shelf life of fruits.
• Improve the abiotic stress tolerance: salinity and drought.
• Efficient use of nutrients and water: less leaching loss.
13
Benefits of Nanofertilizers application
14
Table 1. Nanofertilizers vs. Conventional fertilizers
Index Nanofertilizers Conventional fertilizers
Solubility High Low
Dispersion of mineral
nutrient
Improved dispersion of
insoluble nutrients
Lower solubility due to
large particle size
Soil adsorption and
fixation
Reduced High
Efficiency of nutrient
uptake
High Low
Controlled release Release rate and
pattern precisely
controlled
Excess release leading
to toxicity and
imbalance
Loss rate Reduced loss of
fertilizer nutrients
High loss rate due to
leaching, drifting and
runoff
15
WHY WE WANT TO USE NANO-FERTILIZERS ?
1) Three-times increase in Nutrient Use Efficiency (NUE)
2) 80-100 times less requirement to chemical fertilizers
3) 10 times more stress tolerant by the crop
4) 30% more nutrient mobilization by the plants
5) 17-54 % improvement in the crop yield.
6) Nano-fertilizers are more beneficial as compared to
chemical fertilizers
16
Regulation and Translocation of
Nanoparticles
• It varies from plant to plant, species to species, climatic
factors, age of plant species, biological activity of the plant
and the method of application of nanoparticles.
• The nanoparticles penetrate into the cell wall and cell
membrane of root epidermis accompanied by a complex
series of events to enter plant vascular bundle (xylem).
• Xylem serves as the key carrier in the regulation and
translocation of nanoparticles.
• After entry of nanoparticles into the cell, it can move via
apoplastic or symplastic pathways.
17
Limitations of Nanofertilizers
• Nanomaterial phytotoxicity is also an issue in this regard
since different plants respond differently to various
nanomaterials in a dose-dependent manner.
• Reactivity and variability of these materials are also a
concern. This raises safety concerns for farm workers who
may become exposed to xenobiotic during their application.
• Among the various issues, the most important might be the
accumulation of nanoparticles in plants and their food parts.
18
Toxicity issues of nanoparticles in plants, soil microflora and human being
19
Review of Research Work
Mango
20
Treatments
Shoot length
(cm)
Leaf area
(cm2)
Leaf B
(ppm)
Yield
(Kg/tree)
Control 41.9 70.9 3.9 15.5
Normal B 50 ppm 43.0 72.6 4.2 19.8
Normal B 100 ppm 44.7 74.3 4.5 23.4
Normal B 200 ppm 45.0 74.4 4.6 23.9
Nano B 5 ppm 46.3 76.9 5.0 28.6
Nano B 10 ppm 48.0 78.6 5.3 32.1
Nano B 20 ppm 48.3 78.7 5.4 32.6
LSD @ 5% 0.9 1.2 0.2 2.6
Table 1. Effect of normal and nano boron on growth, leaf boron concentration and
yield of mango cv. Keitt.
Farouk et al., (2019)
Giza, Egypt
Note:- Spraying three times the first spray at growth start (last week of Feb.), the second just
after fruit setting ( last week of Apr.) and the third at one month later (last week of May).
21
Treatments
Fruit weight
(g)
T.S.S
(%)
Total sugars
(%)
Acidity
(%)
Control 351.2 9.9 7.0 0.916
Normal B 50 ppm 360.9 10.6 7.4 0.890
Normal B 100 ppm 371.9 11.1 7.8 0.870
Normal B 200 ppm 372.7 11.2 7.9 0.868
Nano B 5 ppm 380.9 11.6 8.6 0.850
Nano B 10 ppm 391.9 12.1 8.9 0.829
Nano B 20 ppm 392.3 12.2 9.0 0.824
LSD @ 5% 7.7 0.4 0.3 0.011
Table 1.1. Effect of normal and nano boron on fruit quality of mango cv. Keitt.
Farouk et al., (2019)
Giza, Egypt
Note:- Spraying three times the first spray at growth start (last week of Feb.), the second just
after fruit setting ( last week of Apr.) and the third at one month later (last week of May).
22
Treatments
Shoot length
(cm)
Leaf area
(cm2)
Yield
(Kg/tree)
Fruit weight
(g)
Control 39.9 74.1 26.1 355.0
Normal NPKMg 0.5 % 43.8 77.6 30.0 381.0
Nano NPKMg 0.05 % 45.9 80.8 33.0 410.0
Nano NPKMg 0.1 % 48.9 82.0 38.0 451.9
Nano NPKMg 0.2 % 49.0 82.2 38.2 452.0
Nano NPKMg 0.4 % 49.1 82.3 38.5 454.1
LSD @ 5% 1.0 1.1 1.3 11.5
Table 2. Effect of normal and nano NPKMg on growth, yield and fruit weight of
mango cv. Keitt.
Saied (2018)
Aswan, Egypt
Note:- Spraying four times at middle of Feb., Mar., Apr. and May
23
Treatments
Leaf N
(%)
Leaf P
(%)
Leaf K
(%)
Leaf Mg
(%)
Control 1.61 0.139 1.41 0.56
Normal NPKMg 0.5 % 1.72 0.152 1.51 0.62
Nano NPKMg 0.05 % 1.84 0.172 1.59 0.68
Nano NPKMg 0.1 % 1.85 0.184 1.64 0.73
Nano NPKMg 0.2 % 1.91 0.185 1.65 0.71
Nano NPKMg 0.4 % 1.92 0.186 1.66 0.75
LSD @ 5% 0.05 0.008 0.04 0.04
Table 2.1. Effect of normal and nano NPKMg on leaf nutrient concentrations of
mango cv. Keitt.
Saied (2018)
Aswan, Egypt
Note:- Spraying four times at middle of Feb., Mar., Apr. and May
24
Cultivars Treatments
Yield
(Kg/tree)
Fruit wt.
(g)
T.S.S
(%)
Acidity
(%)
Zebda
0.5 g/l 36.1 500.8 20.7 1.150
1 g/l 43.3 505.3 20.8 1.050
Control 28.5 390.7 17.8 1.000
Ewasy
0.5 g/l 51.1 259.5 26.5 1.300
1 g/l 59.3 281.7 25.7 1.333
Control 36.7 248.2 21.8 1.417
LSD @ 5% 3.3 16.1 2.2 NS
Table 3. Effect of nano zinc on yield and quality of fruits of mango cultivars.
Zagzog and Gad (2017)
Egypt
Note:- Spraying once before flowering at 15 February.
25
Grapes
26
Treatments
Shoot length
(m)
Leaf Area
(cm2)
Leaf K
(%)
100% of recommended dose of K
(Control)
1.68 82.4 2.52
75% K + 1000 ppm nano K 1.94 11.45 3.83
75% K + 500 ppm nano K 1.73 11.58 3.47
75% K + 250 ppm nano K 2.27 10.90 3.61
50% K + 1000 ppm Nano K 1.84 10.62 3.87
50% K + 500 ppm nano K 1.83 10.95 2.66
50% K + 250 ppm nano K 1.91 11.64 4.17
1000 ppm nano K 1.97 11.26 4.05
LSD 5% 0.39 0.79 0.05
Table 4. Effect of nano K on shoot length, leaf area and leaf K concentration of
Grapes cv. Flame Seedless.
Doaa et al., (2019)
Egypt
Recommended dose of P supplied through soil application of potassium sulphate (60 g/vine).
Nano K applied as foliar spray three times at the beginning of vegetative growth, after fruit
set stage and at the véraison stage.
27
Treatments
Yield
(Kg/vine)
Cluster weight
(g)
100% of recommended dose of K (Control) 8.76 377.7
75% K + 1000 ppm nano K 13.85 483.4
75% K + 500 ppm nano K 14.64 534.6
75% K + 250 ppm nano K 11.24 452.9
50% K + 1000 ppm Nano K 15.49 554.1
50% K + 500 ppm nano K 13.58 521.6
50% K + 250 ppm nano K 14.82 559.0
1000 ppm nano K 11.87 526.8
LSD 5% 0.90 67.44
Table 4.1. Effect of nano K on yield parameters of Grapes cv. Flame Seedless.
Doaa et al., (2019)
Egypt
Recommended dose of P supplied through soil application of potassium sulphate.
Nano K applied as foliar spray three times at the beginning of vegetative growth, after fruit
set stage and at the véraison stage.
28
Treatments
TSS
(%)
Acidity
(%)
TSS:Acid
Ratio
100% of recommended dose of K
(Control)
17.17 0.870 19.73
75% K + 1000 ppm nano K 19.00 0.707 26.88
75% K + 500 ppm nano K 19.67 0.750 26.23
75% K + 250 ppm nano K 19.83 0.737 26.92
50% K + 1000 ppm Nano K 19.67 0.713 27.58
50% K + 500 ppm nano K 19.67 0.670 29.59
50% K + 250 ppm nano K 20.00 0.617 32.50
1000 ppm nano K 19.33 0.670 28.90
LSD 5% 1.06 0.048 2.48
Table 4.2. Effect of nano K on quality parameters of Grapes cv. Flame Seedless.
Doaa et al., (2019)
Egypt
Recommended dose of P supplied through soil application of potassium sulphate.
Nano K applied as foliar spray three times at the beginning of vegetative growth, after fruit
set stage and at the véraison stage.
29
Treatments
Leaf Area
(cm2)
Intenode length
(cm)
Internode Thickness
(cm)
100 g Nano potassium
sulphate/vine
116.95 7.66 0.81
150 g Nano potassium
sulphate/vine
122.36 9.33 1.42
200 g Nano potassium
sulphate/vine
156.17 9.67 1.50
200 g potassium
sulphate/vine
119.69 8.85 1.08
LSD 5% 1.80 0.37 0.15
Table 5. Effect of normal and nano potassium sulphate on vegetative growth of
grapes cv. Crimson Seedless.
Shalan (2020)
Mansoura, Egypt
Soil application in three equal splits:- 1) first part divided into two equal quantities first at
first bloom and second at full bloom, 2) second part divided into two equal quantities at
buckshot berries stage and bunch closure stage 3) third part divided into four equal
quantities at first week of veraison and remaining successively at 10 days interval.
30
Treatments
Cluster weight
(g)
Berry weight
(g)
Yield
(kg/vine)
100 g Nano potassium
sulphate/vine
277.10 3.20 6.00
150 g Nano potassium
sulphate/vine
336.90 3.61 9.66
200 g Nano potassium
sulphate/vine
416.25 3.79 15.81
200 g potassium
sulphate/vine
315.75 3.50 6.33
LSD 5% 5.19 0.05 0.74
Table 5.1. Effect of normal and nano potassium sulphate on yield parameters of
grapes cv. Crimson Seedless.
Shalan (2020)
Mansoura, Egypt
Soil application in three equal splits:- 1) first part divided into two equal quantities first at
first bloom and second at full bloom, 2) second part divided into two equal quantities at
buckshot berries stage and bunch closure stage 3) third part divided into four equal
quantities at first week of veraison and remaining successively at 10 days interval.
31
Treatments
TSS
(%)
Acidity
(%)
TSS:Acidity
Ratio
100 g Nano potassium
sulphate/vine
19.23 0.33 58.27
150 g Nano potassium
sulphate/vine
21.40 0.30 71.33
200 g Nano potassium
sulphate/vine
21.76 0.28 77.71
200 g potassium
sulphate/vine
21.10 0.32 65.94
LSD 5% 0.74 0.02 4.10
Table 5.2. Effect of normal and nano potassium sulphate on quality parameters of
grapes cv. Crimson Seedless.
Shalan (2020)
Mansoura, Egypt
Soil application in three equal splits:- 1) first part divided into two equal quantities first at
first bloom and second at full bloom, 2) second part divided into two equal quantities at
buckshot berries stage and bunch closure stage 3) third part divided into four equal
quantities at first week of veraison and remaining successively at 10 days interval.
32
Treatments
Shoot Length
(cm)
Leaf area
(cm2)
Leaf fresh wt.
(g)
Leaf Zn
(ppm)
Control 26.66 d 129.36 c 1.5 c 22.56 c
ZnSO4 565 ppm 43.33 c 169.60 b 2.6 b 55.93 b
Zn EDTA 140 ppm 42.66 c 174.23 b 2.6 b 56.26 b
Nano Zn 0.4 ppm 52.00 a 195.83 a 3.8 a 66.00 a
Nano Zn 0.8 ppm 54.66 a 176.30 b 2.8 b 69.30 a
Nano Zn 1.2 ppm 48.66 b 175.46 b 2.9 b 69.30 a
Table 6. Effect of nano Zn on growth parameters and leaf zinc concentration of
Grapes cv. Flame Seedless.
Abd El-Hak et al., (2019)
Gharbia, Egypt
Vines were sprayed three times first at full opening stage of the eyes, second at one month
later and third at one month after second spray.
33
Treatments
No. of clusters/vine Cluster Weight
(g)
Yield
(kg/vine)
Control 14.0 b 261.66 d 3.60 d
ZnSO4 565 ppm 27.0 b 361.33 c 9.79 c
Zn EDTA 140 ppm 32.0 a 374.66 c 11.99 b
Nano Zn 0.4 ppm 33.6 a 426.66 b 14.34 a
Nano Zn 0.8 ppm 33.3 a 455.33 a 15.18 a
Nano Zn 1.2 ppm 31.6 a 465.00 a 14.72 a
Table 6.1. Effect of nano Zn on yield parameters of Grapes cv. Flame Seedless.
Abd El-Hak et al., (2019)
Gharbia, Egypt
Vines were sprayed three times first at full opening stage of the eyes, second at one month
later and third at one month after second spray.
34
Treatments
TSS
(%)
Acidity
(%)
Anthocyanin
(%)
Control 16.33 c 0.73 a 29.74 c
ZnSO4 565 ppm 17.33 b 0.70 a 28.13 c
Zn EDTA 140 ppm 17.66 a 0.66 a 28.05 c
Nano Zn 0.4 ppm 17.33 b 0.66 a 30.13 b
Nano Zn 0.8 ppm 17.33 b 0.63 a 33.37 a
Nano Zn 1.2 ppm 17.33 b 0.63 a 28.44 c
Table 6.2. Effect of nano Zn on quality parameters of Grapes cv. Flame Seedless.
Abd El-Hak et al., (2019)
Gharbia, Egypt
Vines were sprayed three times first at full opening stage of the eyes, second at one month
later and third at one month after second spray.
35
Treatment
Shoot length
(cm)
Leaf area
(cm2)
Total Chlorophyll
(mg/100 g F.W)
Control 111.7 117.4 5.7
Orgland 0.1% 133.0 136.1 8.0
Orgland 0.2% 133.3 137.0 8.0
Active iron 0.1% 127.1 132.4 7.5
Active iron 0.2% 128.0 133.0 7.6
Amino Zn 0.1% 120.0 125.5 6.9
Amino Zn 0.2% 120.4 126.0 7.1
B-10 0.1% 123.0 129.0 7.2
B-10 0.2% 123.0 129.2 7.2
Amino minerals 0.1% 138.0 139.0 8.3
Amino minerals 0.2% 138.0 139.7 8.5
Super Fe 0.1% 114.0 118.1 6.8
Super Fe 0.1% 114.0 119.1 6.9
LSD 5% 1.8 1.8 0.4
Table 7. Effect of nano nutrients on growth parameters and leaf pigment of Grapes cv. Flame Seedless.
Wassel et al., (2017)
Minia, Egypt 36
1) Orgland (4% Fe, 2% Mn, 2 % Zn, 0.2% B and 0.1% Mg)
2) Active – Fe (10 amino acids , 2% Algae extract , 1% vitamins
and 6% Fe)
3) amino –Zn (10% Amino acids, 1% vitamins and 6% Zn)
4) Boron -10 (10% Amino acids, 1% vitamins and 10% B)
5) Amino-minerals (5% Amino acids, 5% algae extract, 1%
vitamins, 8% N, 5% P, 3% K and 10% micro nutrients)
6) Super –Fe (6% Fe)
37
Treatment
N
(%)
P
(%)
K
(%)
Zn
(ppm)
Fe
(ppm)
Control 1.69 0.13 1.17 49.0 54.0
Orgland 0.1% 2.16 0.32 1.50 61.4 66.3
Orgland 0.2% 2.17 0.33 1.51 61.5 67.7
Active iron 0.1% 2.00 0.27 1.44 59.0 90.0
Active iron 0.2% 2.09 0.29 1.45 59.0 91.0
Amino Zn 0.1% 1.84 0.21 1.33 91.5 60.0
Amino Zn 0.2% 1.86 0.22 1.34 92.0 60.0
B-10 0.1% 1.92 0.26 1.38 55.0 71.0
B-10 0.2% 1.93 0.27 1.38 56.0 71.1
Amino minerals 0.1% 2.27 0.39 1.56 69.0 70.0
Amino minerals 0.2% 2.28 0.40 1.57 69.0 72.0
Super Fe 0.1% 1.75 0.18 1.22 52.0 80.0
Super Fe 0.1% 1.76 0.19 1.23 52.3 81.0
LSD 5% 0.05 0.02 0.03 2.0 1.7
Table 7.1. Effect of nano nutrients on leaf nutrient content of Grapes cv. Flame Seedless.
Wassel et al., (2017)
Minia, Egypt 38
Treatment
No. of
clusters/vine
Cluster weight
(g)
Yield
(kg/vine)
Control 23.0 282.0 6.5
Orgland 0.1% 32.0 341.0 10.9
Orgland 0.2% 32.0 342.0 10.9
Active iron 0.1% 30.0 334.0 10.0
Active iron 0.2% 30.0 335.0 10.1
Amino Zn 0.1% 26.0 305.0 7.9
Amino Zn 0.2% 26.0 306.0 8.0
B-10 0.1% 28.0 322.0 9.0
B-10 0.2% 28.0 323.0 9.0
Amino minerals 0.1% 34.0 371.0 12.6
Amino minerals 0.2% 34.0 371.5 12.6
Super Fe 0.1% 24.0 292.0 7.0
Super Fe 0.1% 24.0 292.0 7.0
LSD 5% 1.0 7.9 0.4
Table 7.2. Effect of nano nutrients on yield paameters of Grapes cv. Flame Seedless.
Wassel et al., (2017)
Minia, Egypt 39
Treatment
TSS
(%)
Acidity
(%)
TSS:Acid
ratio
Control 16.9 0.681 24.8
Orgland 0.1% 20.5 0.574 35.7
Orgland 0.2% 20.5 0.571 35.9
Active iron 0.1% 19.7 0.589 33.5
Active iron 0.2% 19.7 0.588 33.5
Amino Zn 0.1% 18.6 0.637 29.2
Amino Zn 0.2% 18.6 0.636 29.2
B-10 0.1% 19.2 0.617 31.1
B-10 0.2% 19.2 0.614 31.3
Amino minerals 0.1% 21.0 0.550 38.2
Amino minerals 0.2% 21.2 0.548 38.7
Super Fe 0.1% 17.8 0.659 27.0
Super Fe 0.1% 17.9 0.658 27.2
LSD 5% 0.5 0.018 1.3
Table 7.3. Effect of nano nutrients on quality parameters of Grapes cv. Flame Seedless.
Wassel et al., (2017)
Minia, Egypt 40
Pomegranate
41
Treatments
Fe
(mg/kg)
Yield
(kg/tree)
Fruits/tree
Aril juice
(ml)
Control 118.0 c 16.2 c 55.3 c 62.5 b
nFe1 141.9 ab 18.1 ab 59.5 bc 65.3 ab
nFe2 150.0 a 19.5 a 64.0 a 66.9 a
cFe1 130.0 bc 17.7 bc 58.3 bc 63.0 b
cFe2 137.5 ab 17.9 b 60.3 ab 63.9 ab
Table 8. Effect of foliar application of nano FeSO4 (nFe) and Fe(III)-EDDHA (cFe) on
leaf Fe content, yield per tree, fruits per tree and aril juice of pomegranate
cv. Ardestani.
Davarpanah et al., (2020)
Mashhad, Iran
Note:- Nano FeSO4 was used at rates of 72 (nF1) and 144 (nF2) mg Fe/L and Fe(III)-EDDHA
was used at rates of 60 (cF1) and 120 (cF2) mg Fe/L.
Foliar fertilization was carried out first at full bloom and again one month later.
42
Treatments
TSS
(Brix)
Acidity
(%)
TSS : Acidity
Ratio
Total sugars
(g/100 g)
Control 16.8 c 1.74 a 9.65 d 14.18 b
nFe1 17.6 bc 1.64 a 10.72 b 15.11 a
nFe2 18.0 a 1.54 b 11.70 a 15.15 a
cFe1 17.0 bc 1.72 a 9.88 cd 14.21 b
cFe2 17.7 ab 1.68 a 10.54 bc 14.85 ab
Table 8.1. Effect of foliar application of nano FeSO4 (nFe) and Fe(III)-EDDHA (cFe) on
quality parameters of pomegranate cv. Ardestani.
Note:- Nano FeSO4 was used at rates of 72 (nFe1) and 144 (nFe2) mg Fe/L and Fe(III)-
EDDHA was used at rates of 60 (cFe1) and 120 (cFe2) mg Fe/L.
Foliar fertilization was carried out first at full bloom and again one month later.
Davarpanah et al., (2020)
Mashhad, Iran 43
Treatments
N
(%)
Yield
(Kg/tree)
No. of
fruits/tree
Fruit wt.
(g)
Control 1.75 c 16.2 c 55.3 c 293.0 b
nN1 1.87 bc 18.9 b 64.5 b 293.1 b
nN2 2.04 ab 21.9 a 70.1 a 311.1 ab
U1 2.13 a 21.2 a 65.0 b 326.1 a
U2 2.22 a 19.1 b 63.8 b 299.4 b
Table 9. Effects of foliar applications of nano-N (nN) and urea (U) fertilizers on leaf N
and Ca content and yield parameters of pomegranate cv. Ardestani.
Note:- The nN fertilizer was used at rates of 0.25 (nN1) and 0.50 (nN2) g N/L, and urea was
used at rates of 4.60 (U1) and 9.20 (U2) g N/L, respectively.
Foliar fertilization was carried out first at full bloom and again one month later.
Davarpanah et al., (2017)
Mashhad, Iran 44
Treatments
TSS
(%)
Acidity
(%)
Total sugars
(g/100 g juice)
Control 16.8 c 1.74 c 14.18 c
nN1 17.5 bc 1.84 ab 14.56 bc
nN2 18.6 a 1.89 b 15.54 ab
U1 18.1 ab 1.90 a 15.76 a
U2 17.4 bc 1.84 ab 14.59 bc
Table 9.1. Effects of foliar applications of nano-N (nN) and urea (U) fertilizers on
quality parameters of pomegranate cv. Ardestani.
Note:- The nN fertilizer was used at rates of 0.25 (nN1) and 0.50 (nN2) g N/L, and urea was
used at rates of 4.60 (U1) and 9.20 (U2) g N/L, respectively.
Foliar fertilization was carried out first at full bloom and again one month later.
Davarpanah et al., (2017)
Mashhad, Iran 45
Treatment
Zn
(mg/kg)
B
(mg/kg)
Yield
(kg/tree)
No. of
fruits/tree
Zn0 + B0 13.3 e 21.1 b 13.8 e 50.6 d
Zn1 + B0 15.7 cde 21.3 b 14.3 de 52.7 cd
Zn2 + B0 17.6 bc 21.7 b 15.8 bc 57.6 bc
Zn0 + B1 14.7 de 22.3 b 14.4 de 52.2 cd
Zn1 + B1 18.2 bc 23.0 b 15.0 cd 51.3 d
Zn2 + B1 21.4 a 22.9 b 16.2 b 58.7 b
Zn0 + B2 16.4 cd 25.3 a 18.0 a 64.4 a
Zn1 + B2 17.9 bc 25.0 a 18.5 a 65.9 a
Zn2 + B2 19.6 ab 25.1 a 18.4 a 63.0 ab
Table 10. Effects of nano Zn and B foliar fertilizers on leaf Zn and B content and yield
parameters of pomegranate cv. Ardestani.
Davarpanah et al., (2016)
Mashhad, Iran
Zn0, Zn1 and Zn2 are 0, 60 and 120 mg Zn/L, and B0, B1 and B2 are 0, 3.25 and 6.5 mg
B/L, respectively.
Trees were sprayed only once, one week before the first full bloom,
46
Treatment
TSS
(%)
Acidity
(%)
TSS : Acidity
ratio
Total sugars
(g/100 g)
Zn0 + B0 15.85 d 1.89 a 8.49 c 14.26 d
Zn1 + B0 15.97 d 1.81 ab 8.85 c 14.28 d
Zn2 + B0 16.30 cd 1.59 c 10.24 c 14.43 bcd
Zn0 + B1 15.96 d 1.71 bc 9.43 bc 14.37 cd
Zn1 + B1 16.26 cd 1.43 d 11.51 a 14.54 bc
Zn2 + B1 16.96 ab 1.37 d 12.37 a 14.63 b
Zn0 + B2 16.14 cd 1.39 d 11.71 a 14.43 bcd
Zn1 + B2 16.56 bc 1.34 d 12.34 a 14.60 bc
Zn2 + B2 17.06 a 1.37 d 12.41 a 14.93 a
Table 10.1. Effects of nano Zn and B foliar fertilizers on quality parameters of pomegranate
cv. Ardestani.
Davarpanah et al., (2016)
Mashhad, Iran
Zn0, Zn1 and Zn2 are 0, 60 and 120 mg Zn/L, and B0, B1 and B2 are 0, 3.25 and 6.5 mg
B/L, respectively.
Trees were sprayed only once, one week before the first full bloom,
47
Treatments
Leaf area
(cm2)
No. of fruits/tree
Yield
(kg/tree)
Control 4.69 d 45.80 d 21.60 cd
N-Se 1µM 4.80 cd 49.17 c 22.50 bc
N-Se 2µM 5.86 a 59.02 a 25.17 a
Se 1µM 5.52 b 56.10 b 23.33 b
Se 2µM 4.92 c 49.93 c 21.53 d
Table 11. Effect of nano-selenium (N-Se) and selenium (Se) foliar spray on leaf area,
number of fruits and yield of pomegranate cv. Malase Saveh.
Zahedi et al., (2019)
Namahil, Iran
Trees sprayed once at full bloom stage.
48
Treatments
TSS
(%)
Acidity
(%)
TSS : Acidity
Ratio
Control 16.43 d 2.11 a 7.79 c
N-Se 1µM 16.53 d 2.04 ab 8.12 ab
N-Se 2µM 18.20 a 2.16 a 8.52 abc
Se 1µM 17.70 b 2.06 ab 8.61 ab
Se 2µM 16.83 c 1.85 b 9.08 a
Table 11.1. Effect of nano-selenium (N-Se) and selenium (Se) foliar spray on quality
parameters of pomegranate cv. Malase Saveh.
Zahedi et al., (2019)
Namahil, Iran
Trees sprayed once at full bloom stage.
49
Date palm
50
Treatments
Fruit retention
(%)
Bunch wt.
(kg)
Yield
(kg/palm)
Vinasse spraying 4.5 L/palm 51.33 15.70 149.9
Nano K2SO4 application 75 g/palm 52.11 16.77 150.9
Nano K2SO4 spraying 35 g/palm 51.18 16.93 153.9
Potassin spraying 300 ml/palm 51.56 16.90 152.4
K2SO4 application 1.5 kg/palm
(Control) Recommended dose of K
48.32 16.10 144.0
LSD 5% 2.78 0.55 3.12
Table 12. Effect of vinasse, nano-potassium and potassin on fruit retention, bunch
weight and yield/palm of Zaghloul date palm.
El-Salhy et al., (2021)
Quena, Egypt
c
51
Treatments
TSS
(%)
Acidity
(%)
Total sugars
(%)
Vinasse spraying 4.5 L/palm 31.8 0.207 23.5
Nano K2SO4 application 75 g/palm 33.4 0.198 24.6
Nano K2SO4 spraying 35 g/palm 33.6 0.200 24.7
Potassin spraying 300 ml/palm 33.2 0.193 24.5
K2SO4 application 1.5 kg/palm
(Control) Recommended dose of K
30.8 0.231 22.7
LSD 5% 0.91 0.016 0.68
Table 12.1. Effect of vinasse, nano-potassium and potassin on quality parameters of
Zaghloul date palm.
El-Salhy et al., (2021)
Quena, Egypt
Vinasse contain 2% K, Potassin contain 30% K, K2SO4 contain 48% K.
All treatments were applied after fruit set and 30 days after fruit set.
52
Treatment
Bunch wt.
(kg)
Fruit wt.
(g)
Yield
(kg/palm)
Control 10.8 27.0 108.0
WSSE 0.5% 14.2 29.0 142.0
WSSE 1.0% 15.3 29.6 153.0
WSSE 2.0% 15.4 30.0 154.0
Nano B 0.025% 12.2 27.6 122.0
Nano B 0.05% 13.2 28.5 132.0
Nano B 0.1% 13.3 28.5 133.0
Both at low 16.3 31.0 163.0
Both at mid 17.3 33.3 173.0
Both at high 17.4 33.5 179.0
LSD 5% 1.0 0.4 6.4
Table 13. Effect of some wheat seed sprout extract and nano- boron treatments on yield parameters of
Date palm cv. Zaghloul.
Refaai (2014)
Giza
sprayed four times at growth start (1st week of Mar.), just after fruit setting (last week of
Apr.) and at three week intervals.
Wheat seed sprout extract content (mg/100 gm FW):- K-644, P- 600, Mg-391, Ca-292, Fe-
511, Zn-218.
53
Treatment
TSS
(%)
Acidity
(%)
Total sugars
(%)
Control 26.5 0.368 18.8
WSSE 0.5% 29.6 0.301 20.8
WSSE 1.0% 30.2 0.277 21.4
WSSE 2.0% 30.3 0.276 21.5
Nano B 0.025% 28.1 0.347 19.3
Nano B 0.05% 29.0 0.326 19.8
Nano B 0.1% 29.1 0.325 20.0
Both at low 31.9 0.252 22.5
Both at mid 33.0 0.226 22.9
Both at high 33.1 0.225 23.0
LSD 5% 0.5 0.018 0.4
Table 13.1. Effect of some wheat seed sprout extract and nano- boron treatments on quality parameters
of Date palm cv. Zaghloul.
Refaai (2014)
Giza
sprayed four times at growth start (1st week of Mar.), just after fruit setting (last week of
Apr.) and at three week intervals.
54
Treatments
Fruit wt.
(g)
Bunch wt.
(kg)
Fruit ripening
(%)
Control 8.18 d 4.87 e 57.16 d
Nano super 1 g 9.12 b 6.40 b 76.21 a
Nano super 2 g 9.15 b 6.44 b 66.75 b
NPK 1 g 8.32 cd 5.47 d 62.11 c
NPK 2 g 8.36 c 5.63 c 63.04 c
Nano super 1g + NPK 1g 9.67 a 7.28 a 66.30 b
Table 14. Effect of foliar application of traditional and nano-fertilizer on fruit
weight, bunch weight and fruit ripening of date palm cv. Hillawi
Shareef et al., (2020)
Iraq
Nano super:- N 5%, P 3%, K 3%, Mn 0.7%, Mg 6%, Ca 6%, Fe 4.5%, Zn 8%, Mo 0.1%, B 0.65%, and
Cu 0.65% .
NPK:- N 20%, P 20%, K 20%.
Spraying was done twice on the 1st of April and May.
55
Treatments
Water content
(%)
Dry matter
(%)
TSS
(%)
Control 60.37 b 39.63 d 41.75 c
Nano super 1 g 54.10 e 45.89 a 44.67 a
Nano super 2 g 57.31 d 42.69 b 42.89 b
NPK 1 g 59.03 c 40.96 c 41.98 c
NPK 2 g 60.30 b 39.69 d 36.73 e
Nano super 1g + NPK 1g 64.08 a 35.91 e 38.48 d
Table 14.1. Effect of foliar application of traditional and nano-fertilizer on fruit
quality of date palm cv. Hillawi.
Shareef et al., (2020)
Iraq
Nano super:- N 5%, P 3%, K 3%, Mn 0.7%, Mg 6%, Ca 6%, Fe 4.5%, Zn 8%, Mo 0.1%, B 0.65%, and
Cu 0.65% .
NPK:- N 20%, P 20%, K 20%.
Spraying was done twice on the 1st of April and May.
56
Treatments
Yield
(kg/palm)
Bunch weight
(kg)
Fruit weight
(g)
Control 72.0 7.2 8.06
Normal Zn Fe Mn B at 0.05% 76.0 7.6 8.19
Nano Zn Fe Mn B at 0.005% 79.0 7.9 8.33
Nano Zn Fe Mn B at 0.01% 82.0 8.2 8.46
Nano Zn Fe Mn B at 0.02% 82.0 8.2 8.47
Nano Zn Fe Mn B at 0.04% 82.0 8.2 8.48
New L.S.D. at 5% 2.0 0.8 0.12
Table 15. Effect of spraying normal and nano Zn Fe Mn B fertilizers on yield parameters of
date palm cv. Sakkoti.
sprayed three times before hand pollination ( 2nd week of Feb.), just after fruit setting (Last
week Mar.) and at one month later.
El-Sayed (2018)
Egypt 57
Treatments
TSS
(%)
Acidity
(%)
Total sugars
(%)
Control 72.0 0.301 60.0
Normal Zn Fe Mn B at 0.05% 73.0 0.280 61.0
Nano Zn Fe Mn B at 0.005% 74.5 0.258 61.9
Nano Zn Fe Mn B at 0.01% 75.9 0.238 63.0
Nano Zn Fe Mn B at 0.02% 76.0 0.237 63.1
Nano Zn Fe Mn B at 0.04% 76.1 0.236 63.2
New L.S.D. at 5% 0.6 0.017 0.4
Table 15.1. Effect of spraying normal and nano Zn Fe Mn B fertilizers on quality parameters
of date palm cv. Sakkoti.
sprayed three times before hand pollination ( 2nd week of Feb.), just after fruit setting (Last
week Mar.) and at one month later.
El-Sayed (2018)
Egypt 58
Apple
59
Treatments Yield (t/ha)
Nano Nitrogen
Control 22.35
100 ppm 25.78
200 ppm 28.16
300 ppm 29.89
Nano phosphorus
Control 22.34
30 ppm 26.78
40 ppm 27.83
50 ppm 28.85
Nano potassium
Contro 22.38
100 ppm 26.15
150 ppm 27.55
200 ppm 28.54
CD 5% 0.92
Table 16. Effect of N, P and K nano-fertilizers on yield of apple cv. Red Delicious
Khan et al., (2019)
Jammu, India 60
Treatments Cost of
cultivation
Total returns Net returns B:C ratio
Control 229959.31 1338600 1108640.69 4.82
Nano N 100 ppm 436543.47 2772000 2335456.53 5.35
Nano N 200 ppm 449043.12 3029400 2580356.88 5.75
Nano N 300 ppm 461542.77 3192200 2730657.23 5.92
Nano P 30 ppm 423634.11 2884750 2461115.89 5.81
Nano P 40 ppm 424467.42 2997500 2573032.58 6.06
Nano P 50 ppm 425161.84 3106400 2681238.16 6.31
Nano K 100 ppm 423335.51 2817100 2393764.49 5.65
Nano K 150 ppm 426668.75 2968350 2541681.25 5.96
Nano K 200 ppm 430140.87 3075600 2645459.13 6.15
Table 16.1. Effect of N, P and K nano-fertilizers on cost of cultivation of apple cv. Red
Delicious.
Khan et al., (2019)
Jammu, India 61
Treatments
Starch
(g/100 g DW)
Total sugars
(g/100 g DW)
TSS
(%)
Acidity
(%)
Control 27.20 e 16.15 a 15.70 a 0.29 e
CaCl2 (1.5%) 34.19 d 14.23 b 14.60 b 0.37 d
CaCl2 (2%) 38.76 c 13.06 c 14.10 c 0.42 c
N Ca (1.5%) 43.19 b 11.71 d 13.60 d 0.46 b
N Ca (2%) 47.11 a 10.30 e 13.10 e 0.49 a
Table 17. Effect of nano-calcium (NCa) and calcium chloride (CaCl2) treatment on starch, total
sugar, total soluble solids (TSS), and acidity of ‘Red Delicious’ apples.
Ranjbar et al., (2019)
Shiraz, Iran
The spraying procedure was conducted five times at 2-week intervals. The treatment
period was from July 12 to September 6, 2015.
62
Treatments
TPC
(mg/100 g FW)
AA
(%DPPH)
TAC
(µg/g FW)
Control 343.19 e 33.36 e 38.90 a
CaCl2 (1.5%) 386.21 d 43.14 d 32.28 b
CaCl2 (2%) 409.71 c 48.49 c 29.03 c
N Ca (1.5%) 432.17 b 54.58 b 26.26 d
N Ca (2%) 466.38 a 56.87 a 23.93 e
Table 17.1. Effect of nano-calcium (NCa) and calcium chloride (CaCl2) treatment on total
phenolic content (TPC), antioxidant activity (AA), and total anthocyanin content
(TAC) of ‘Red Delicious’ apples.
Ranjbar et al., (2019)
Shiraz, Iran
The spraying procedure was conducted five times at 2-week intervals. The treatment
period was from July 12 to September 6, 2015.
63
Olive
64
Treatments
Fruit set
(%)
Yield
(Kg/tree)
Fruit weight
(g)
B0 (0 mg B/L) 0.84 d 18.50 e 26.97 e
B1 (180 mg B/L) 3.08 a 52.58 b 35.17 c
B2 (270 mg B/L) 2.14 c 42.10 d 30.05 d
Nano-B1 (180 mg B/L) 2.45 b 47.65 c 41.99 a
Nano-B2 (270 mg B/L) 3.13 a 61.01 a 41.02 b
Table 18. The effect of Boric acid and nano-Boron foliar applications on yield parameters of
olive cv. Zard.
Vishekaii et al., (2019)
Iran
Sprayed at three times; the bud-swelling stage, before blooming and shortly before the
harvest.
65
Treatments
Leaf Boron
(mg/kg)
August October
B0 (0 mg B/L) 16.50 d 23.50 c
B1 (180 mg B/L) 33.16 b 41.73 b
B2 (270 mg B/L) 32.00 c 41.91 b
Nano-B1 (180 mg B/L) 31.66 c 42.36 b
Nano-B2 (270 mg B/L) 37.66 a 50.30 a
Table 18.1. The effect of Boric acid and nano-Boron foliar applications on leaf boron content
of olive cv. Zard.
Vishekaii et al., (2019)
Iran
Sprayed at three times; the bud-swelling stage, before blooming and shortly before the
harvest.
66
Treatment
Fruit set
(%)
Yield
(kg/tree)
Control 15.90 g 17.10 f
nano-boron at 10 ppm 17.49 f 17.20 f
nano-boron at 20 ppm 18.53 de 17.63 f
nano-zinc at 100 ppm 17.60 ef 19.23 e
nano-zinc at 200 ppm 18.50 de 20.33 d
nano-boron at 10 ppm + nano-zinc at 100 ppm 18.73 d 20.50 d
nano-boron at 10 ppm + nano-zinc at 200 ppm 21.97 b 23.00 b
nano-boron at 20 ppm + nano-zinc at 100 ppm 20.75 c 22.13 c
nano-boron at 20 ppm + nano-zinc at 200 ppm 23.91 a 23.87 a
Table 19. Effect of foliar application of B2O3 and ZnO nanoparticles on fruit yield traits of
olive cv. Picual.
Genaidy et al., (2020)
Egypt
All treatments were applied at three different dates, i.e., the first one at mid of December,
the second before the flowering (during March), and the third one during full bloom (April).
67
Treatment
Zn
(ppm)
B
(ppm)
Control 30.26 cd 35.18 c
nano-boron at 10 ppm 29.83 de 35.26 c
nano-boron at 20 ppm 30.93 c 38.50 a
nano-zinc at 100 ppm 30.80 c 28.57 f
nano-zinc at 200 ppm 33.30 ab 35.11 c
nano-boron at 10 ppm + nano-zinc at 100 ppm 30.23 cd 32.97 d
nano-boron at 10 ppm + nano-zinc at 200 ppm 29.20 e 33.07 d
nano-boron at 20 ppm + nano-zinc at 100 ppm 34.09 a 31.65 e
nano-boron at 20 ppm + nano-zinc at 200 ppm 32.86 b 37.50 b
Table 19.1. Effect of foliar application of B2O3 and ZnO nanoparticles on leaf nutrient content
of olive cv. Picual.
Genaidy et al., (2020)
Egypt
All treatments were applied at three different dates, i.e., the first one at mid of December,
the second before the flowering (during March), and the third one during full bloom (April).
68
Summary
Fruit crop Nanofertilizer
Method of
application
Remark
Mango
Nano B 10 ppm Foliar Increases shoot length, leaf area, leaf B
content, yield and fruit quality
Nano NPKMg 0.4% Foliar Increases shoot length, leaf area, yield, leaf N,
P, K and Mg content.
Nano Zn 1 g/L Foliar Increases fruit weight and yield.
Grapes
50 % RDF of K + 1000
ppm Nano K
RDF through
soil + Foliar
Nano K
Increases yield.
200 g Nano potassium
sulphate/vine
Soil Increases leaf area, berry weight and yield and
improve berry quality.
Nano Zn 1.2 ppm Foliar Increases cluster weight and yield.
Nano amino minerals
0.1 %
Foliar Increases shoot length, leaf area, leaf N, P and
K content and yield with improved quality.
Pomegranate Nano Fe 144 mg Fe/L Foliar Increases leaf Fe content, yield, aril juice and
fruit quality.
Nano N 0.50 g N/L Foliar Increases fruit yield and TSS.
69
Fruit crop Nanofertilizer
Method of
application
Remark
Pomegranate
Nano Zn 60 mg Zn/L +
Nano B 25 mg Zn/L
Foliar Increases yield.
Nano selenium 2 µM Foliar Increases leaf area, yield and fruit quality.
Date palm
Nano K2SO4 35 g/palm Foliar Increases yield and improve fruit quality.
Wheat seed sprout
extract 2% + Nano B
0.1 %
Foliar Increases yield and improve fruit quality.
Nano super 1 g + NPK
1 g
Foliar Increases the yield.
Nano Zn, Fe, Mn, B
0.04%
Foliar Increases the yield and improve fruit quality.
Apple
Nano N 300 ppm Foliar Increases the yield.
Nano Ca 2% Foliar Increases starch content, acidity, total phenolic
content and antioxidant activity.
Olive
Nano B 270 mg B/L Foliar Increases fruit set, yield and leaf B content.
Nano B 20 ppm +
Nano Zn 200 ppm
Foliar Increases fruit set and yield.
70
Conclusion
• From above discussion it is concluded that use of
nanofertilizers on fruit trees contributes effectively to
improve the fruit quality and increasing the productivity of
trees.
• It reduces environmental pollution by reducing the amount
of fertilizers used, which is positively reflected in the
increased economic return of the farmers.
• When nanofertilizers sprayed at very low concentration on
fruit trees, these compounds have had a direct effect by
increasing the growth, yield and quality of these fruit crops.
71
Thank You

More Related Content

What's hot

Nanotechnology for the improvement of vegetable crops
Nanotechnology for the improvement of vegetable cropsNanotechnology for the improvement of vegetable crops
Nanotechnology for the improvement of vegetable cropsLabiba Shah
 
role of nanotechnology for crop protection in horticultural crops
role of nanotechnology for crop protection in horticultural cropsrole of nanotechnology for crop protection in horticultural crops
role of nanotechnology for crop protection in horticultural cropsgirija kumari
 
Nanotechnology and its use in agriculture
Nanotechnology and its use in agricultureNanotechnology and its use in agriculture
Nanotechnology and its use in agricultureShraddha Maurya
 
NANOTECHNOLOGY: APPLICATION IN CROP NUTRTION
NANOTECHNOLOGY: APPLICATION IN CROP NUTRTIONNANOTECHNOLOGY: APPLICATION IN CROP NUTRTION
NANOTECHNOLOGY: APPLICATION IN CROP NUTRTIONHARISH J
 
Nanotechnology: A new horizon in Agriculture
Nanotechnology: A new horizon in AgricultureNanotechnology: A new horizon in Agriculture
Nanotechnology: A new horizon in Agriculturesireesha sudharani
 
Application of Nano-Technology in Agriculture
Application of Nano-Technology in AgricultureApplication of Nano-Technology in Agriculture
Application of Nano-Technology in Agricultureabbasshoukat
 
Nanotechnology for crop improvement
Nanotechnology for crop improvementNanotechnology for crop improvement
Nanotechnology for crop improvementAbhimadagaja
 
Nano technology in plant pathology
Nano technology in plant pathologyNano technology in plant pathology
Nano technology in plant pathologyKarunakarreddy43
 
ways to increase micronutrient use efficiency
ways to increase micronutrient use efficiencyways to increase micronutrient use efficiency
ways to increase micronutrient use efficiencyPrakash Ranjan Behera
 
Strategic applications of nano-fertilizers for sustainable agriculture : Bene...
Strategic applications of nano-fertilizers for sustainable agriculture : Bene...Strategic applications of nano-fertilizers for sustainable agriculture : Bene...
Strategic applications of nano-fertilizers for sustainable agriculture : Bene...Mohit Kashyap
 
nutrient use efficiency
nutrient use efficiencynutrient use efficiency
nutrient use efficiencyShowkat Eytoo
 
Integarted nutrient management
Integarted nutrient managementIntegarted nutrient management
Integarted nutrient managementAnkush Singh
 
Soil fertility evaluation P K MANI
Soil fertility evaluation  P K MANISoil fertility evaluation  P K MANI
Soil fertility evaluation P K MANIP.K. Mani
 
slow release fertilizer in crop production
 slow  release fertilizer in crop production slow  release fertilizer in crop production
slow release fertilizer in crop productionirfan mohammad
 

What's hot (20)

Nano fertilizer for smart agriculture by parvez kabir (ppt slide )
Nano fertilizer for smart agriculture by parvez kabir (ppt slide )Nano fertilizer for smart agriculture by parvez kabir (ppt slide )
Nano fertilizer for smart agriculture by parvez kabir (ppt slide )
 
Nano- Fertilizer
Nano- Fertilizer Nano- Fertilizer
Nano- Fertilizer
 
Nanotechnology for the improvement of vegetable crops
Nanotechnology for the improvement of vegetable cropsNanotechnology for the improvement of vegetable crops
Nanotechnology for the improvement of vegetable crops
 
role of nanotechnology for crop protection in horticultural crops
role of nanotechnology for crop protection in horticultural cropsrole of nanotechnology for crop protection in horticultural crops
role of nanotechnology for crop protection in horticultural crops
 
Nanotechnology and its use in agriculture
Nanotechnology and its use in agricultureNanotechnology and its use in agriculture
Nanotechnology and its use in agriculture
 
NANOTECHNOLOGY: APPLICATION IN CROP NUTRTION
NANOTECHNOLOGY: APPLICATION IN CROP NUTRTIONNANOTECHNOLOGY: APPLICATION IN CROP NUTRTION
NANOTECHNOLOGY: APPLICATION IN CROP NUTRTION
 
Nanotechnology: A new horizon in Agriculture
Nanotechnology: A new horizon in AgricultureNanotechnology: A new horizon in Agriculture
Nanotechnology: A new horizon in Agriculture
 
Application of Nano-Technology in Agriculture
Application of Nano-Technology in AgricultureApplication of Nano-Technology in Agriculture
Application of Nano-Technology in Agriculture
 
Nanotechnology for crop improvement
Nanotechnology for crop improvementNanotechnology for crop improvement
Nanotechnology for crop improvement
 
Nano technology in plant pathology
Nano technology in plant pathologyNano technology in plant pathology
Nano technology in plant pathology
 
ways to increase micronutrient use efficiency
ways to increase micronutrient use efficiencyways to increase micronutrient use efficiency
ways to increase micronutrient use efficiency
 
Nanopesticides
NanopesticidesNanopesticides
Nanopesticides
 
Strategic applications of nano-fertilizers for sustainable agriculture : Bene...
Strategic applications of nano-fertilizers for sustainable agriculture : Bene...Strategic applications of nano-fertilizers for sustainable agriculture : Bene...
Strategic applications of nano-fertilizers for sustainable agriculture : Bene...
 
Credit seminar 1
Credit seminar 1Credit seminar 1
Credit seminar 1
 
ADVANCED TECHNIQUES TO INCREASE NUTRIENT USE EFFICIENCY
ADVANCED TECHNIQUES TO INCREASE NUTRIENT USE EFFICIENCYADVANCED TECHNIQUES TO INCREASE NUTRIENT USE EFFICIENCY
ADVANCED TECHNIQUES TO INCREASE NUTRIENT USE EFFICIENCY
 
nutrient use efficiency
nutrient use efficiencynutrient use efficiency
nutrient use efficiency
 
Integarted nutrient management
Integarted nutrient managementIntegarted nutrient management
Integarted nutrient management
 
Soil fertility evaluation P K MANI
Soil fertility evaluation  P K MANISoil fertility evaluation  P K MANI
Soil fertility evaluation P K MANI
 
slow release fertilizer in crop production
 slow  release fertilizer in crop production slow  release fertilizer in crop production
slow release fertilizer in crop production
 
Mode of action Mechanism of action of of herbicides
Mode of action Mechanism of action of of herbicidesMode of action Mechanism of action of of herbicides
Mode of action Mechanism of action of of herbicides
 

Similar to Nanofertilizers in fruit crops

Development of a novel myconanomining approach for.pptx
Development of a novel myconanomining approach for.pptxDevelopment of a novel myconanomining approach for.pptx
Development of a novel myconanomining approach for.pptxToobaBatool22
 
Modern Prospects of Nano science and their advancement in plant disease manag...
Modern Prospects of Nano science and their advancement in plant disease manag...Modern Prospects of Nano science and their advancement in plant disease manag...
Modern Prospects of Nano science and their advancement in plant disease manag...sunilsuriya1
 
Nano Technology for UG students of Agriculture
Nano Technology for UG students of AgricultureNano Technology for UG students of Agriculture
Nano Technology for UG students of AgricultureP.K. Mani
 
Revolutionizing Plant Protection:- Nanotech Innovation for precision insect p...
Revolutionizing Plant Protection:- Nanotech Innovation for precision insect p...Revolutionizing Plant Protection:- Nanotech Innovation for precision insect p...
Revolutionizing Plant Protection:- Nanotech Innovation for precision insect p...academickushal83
 
Nanobiotechnology in agriculture note .pdf
Nanobiotechnology in agriculture note .pdfNanobiotechnology in agriculture note .pdf
Nanobiotechnology in agriculture note .pdfyusufzako14
 
Agriculture applications of nanobiotechnology
Agriculture applications of nanobiotechnologyAgriculture applications of nanobiotechnology
Agriculture applications of nanobiotechnologySabahat Ali
 
Nano technology in Agriculture
Nano technology in AgricultureNano technology in Agriculture
Nano technology in Agricultureranganihennayaka
 
Nanotechnology and its use in agriculture.pptx
Nanotechnology and its use in agriculture.pptxNanotechnology and its use in agriculture.pptx
Nanotechnology and its use in agriculture.pptxshivalika6
 
Senior seminar- Nanotechnology in Agriculture
Senior seminar- Nanotechnology in AgricultureSenior seminar- Nanotechnology in Agriculture
Senior seminar- Nanotechnology in AgricultureSolomon Etany
 
Nanotechnology in agriculture ,animal husbandry and food
Nanotechnology in agriculture ,animal husbandry and foodNanotechnology in agriculture ,animal husbandry and food
Nanotechnology in agriculture ,animal husbandry and foodAditya Amrut Pawar
 
Nanotech in plant pathology
Nanotech in plant pathologyNanotech in plant pathology
Nanotech in plant pathologySheevam123
 
Application of nanotechnology in agriculture
Application of  nanotechnology in agriculture Application of  nanotechnology in agriculture
Application of nanotechnology in agriculture Amit Bishnoi
 
Nanotechnology in agriculture
Nanotechnology in agricultureNanotechnology in agriculture
Nanotechnology in agricultureNikunj Aggarwal
 
NANTOTECHNOLOGY IN AGRICULTURE AND FOOD TECHNOLOGY
NANTOTECHNOLOGY IN AGRICULTURE AND  FOOD TECHNOLOGYNANTOTECHNOLOGY IN AGRICULTURE AND  FOOD TECHNOLOGY
NANTOTECHNOLOGY IN AGRICULTURE AND FOOD TECHNOLOGYSaravananM957056
 
credit seminar.pptx Topic-Advances in fungicide delivery for targeted control...
credit seminar.pptx Topic-Advances in fungicide delivery for targeted control...credit seminar.pptx Topic-Advances in fungicide delivery for targeted control...
credit seminar.pptx Topic-Advances in fungicide delivery for targeted control...PriyankaChopra93
 
Effect of plant growth promoting rhizobacterial (PGPR) inoculation on growth ...
Effect of plant growth promoting rhizobacterial (PGPR) inoculation on growth ...Effect of plant growth promoting rhizobacterial (PGPR) inoculation on growth ...
Effect of plant growth promoting rhizobacterial (PGPR) inoculation on growth ...IJEAB
 
Application of Nanotechnology in Agriculture with special reference to Pest M...
Application of Nanotechnology in Agriculture with special reference to Pest M...Application of Nanotechnology in Agriculture with special reference to Pest M...
Application of Nanotechnology in Agriculture with special reference to Pest M...Ramesh Kulkarni
 

Similar to Nanofertilizers in fruit crops (20)

Development of a novel myconanomining approach for.pptx
Development of a novel myconanomining approach for.pptxDevelopment of a novel myconanomining approach for.pptx
Development of a novel myconanomining approach for.pptx
 
Modern Prospects of Nano science and their advancement in plant disease manag...
Modern Prospects of Nano science and their advancement in plant disease manag...Modern Prospects of Nano science and their advancement in plant disease manag...
Modern Prospects of Nano science and their advancement in plant disease manag...
 
Nano Technology for UG students of Agriculture
Nano Technology for UG students of AgricultureNano Technology for UG students of Agriculture
Nano Technology for UG students of Agriculture
 
Revolutionizing Plant Protection:- Nanotech Innovation for precision insect p...
Revolutionizing Plant Protection:- Nanotech Innovation for precision insect p...Revolutionizing Plant Protection:- Nanotech Innovation for precision insect p...
Revolutionizing Plant Protection:- Nanotech Innovation for precision insect p...
 
Nanobiotechnology in agriculture note .pdf
Nanobiotechnology in agriculture note .pdfNanobiotechnology in agriculture note .pdf
Nanobiotechnology in agriculture note .pdf
 
Agriculture applications of nanobiotechnology
Agriculture applications of nanobiotechnologyAgriculture applications of nanobiotechnology
Agriculture applications of nanobiotechnology
 
Nano technology in Agriculture
Nano technology in AgricultureNano technology in Agriculture
Nano technology in Agriculture
 
Nanotechnology and its use in agriculture.pptx
Nanotechnology and its use in agriculture.pptxNanotechnology and its use in agriculture.pptx
Nanotechnology and its use in agriculture.pptx
 
What is nanotec-W.pptx
What is nanotec-W.pptxWhat is nanotec-W.pptx
What is nanotec-W.pptx
 
Senior seminar- Nanotechnology in Agriculture
Senior seminar- Nanotechnology in AgricultureSenior seminar- Nanotechnology in Agriculture
Senior seminar- Nanotechnology in Agriculture
 
Nanotechnology in agriculture ,animal husbandry and food
Nanotechnology in agriculture ,animal husbandry and foodNanotechnology in agriculture ,animal husbandry and food
Nanotechnology in agriculture ,animal husbandry and food
 
Nanotech in plant pathology
Nanotech in plant pathologyNanotech in plant pathology
Nanotech in plant pathology
 
Application of nanotechnology in agriculture
Application of  nanotechnology in agriculture Application of  nanotechnology in agriculture
Application of nanotechnology in agriculture
 
Lec 8.pptx
Lec 8.pptxLec 8.pptx
Lec 8.pptx
 
Nanotechnology in agriculture
Nanotechnology in agricultureNanotechnology in agriculture
Nanotechnology in agriculture
 
NANTOTECHNOLOGY IN AGRICULTURE AND FOOD TECHNOLOGY
NANTOTECHNOLOGY IN AGRICULTURE AND  FOOD TECHNOLOGYNANTOTECHNOLOGY IN AGRICULTURE AND  FOOD TECHNOLOGY
NANTOTECHNOLOGY IN AGRICULTURE AND FOOD TECHNOLOGY
 
Nano fertilizer for smart agriculture by Parvez Kabir (seminar paper)
Nano fertilizer for smart agriculture by Parvez Kabir (seminar paper)Nano fertilizer for smart agriculture by Parvez Kabir (seminar paper)
Nano fertilizer for smart agriculture by Parvez Kabir (seminar paper)
 
credit seminar.pptx Topic-Advances in fungicide delivery for targeted control...
credit seminar.pptx Topic-Advances in fungicide delivery for targeted control...credit seminar.pptx Topic-Advances in fungicide delivery for targeted control...
credit seminar.pptx Topic-Advances in fungicide delivery for targeted control...
 
Effect of plant growth promoting rhizobacterial (PGPR) inoculation on growth ...
Effect of plant growth promoting rhizobacterial (PGPR) inoculation on growth ...Effect of plant growth promoting rhizobacterial (PGPR) inoculation on growth ...
Effect of plant growth promoting rhizobacterial (PGPR) inoculation on growth ...
 
Application of Nanotechnology in Agriculture with special reference to Pest M...
Application of Nanotechnology in Agriculture with special reference to Pest M...Application of Nanotechnology in Agriculture with special reference to Pest M...
Application of Nanotechnology in Agriculture with special reference to Pest M...
 

Recently uploaded

Call Girls in Veraval - 8250092165 Our call girls are sure to provide you wit...
Call Girls in Veraval - 8250092165 Our call girls are sure to provide you wit...Call Girls in Veraval - 8250092165 Our call girls are sure to provide you wit...
Call Girls in Veraval - 8250092165 Our call girls are sure to provide you wit...Sareena Khatun
 
Presentation: Farmer-led climate adaptation - Project launch and overview by ...
Presentation: Farmer-led climate adaptation - Project launch and overview by ...Presentation: Farmer-led climate adaptation - Project launch and overview by ...
Presentation: Farmer-led climate adaptation - Project launch and overview by ...AICCRA
 
Sensual Call Girls in Surajpur { 9332606886 } VVIP NISHA Call Girls Near 5 St...
Sensual Call Girls in Surajpur { 9332606886 } VVIP NISHA Call Girls Near 5 St...Sensual Call Girls in Surajpur { 9332606886 } VVIP NISHA Call Girls Near 5 St...
Sensual Call Girls in Surajpur { 9332606886 } VVIP NISHA Call Girls Near 5 St...kumargunjan9515
 
Russian Call girls in Dubai 0508644382 Dubai Call girls
Russian Call girls in Dubai 0508644382 Dubai Call girlsRussian Call girls in Dubai 0508644382 Dubai Call girls
Russian Call girls in Dubai 0508644382 Dubai Call girlsMonica Sydney
 
Sustainable Recovery and Reconstruction Framework (SURRF)(1).pdf
Sustainable Recovery and Reconstruction Framework  (SURRF)(1).pdfSustainable Recovery and Reconstruction Framework  (SURRF)(1).pdf
Sustainable Recovery and Reconstruction Framework (SURRF)(1).pdfMeruvaLokeshwar
 
How to Reduce Health Risks from Asbestos Dust Not Just limited to Constructio...
How to Reduce Health Risks from Asbestos Dust Not Just limited to Constructio...How to Reduce Health Risks from Asbestos Dust Not Just limited to Constructio...
How to Reduce Health Risks from Asbestos Dust Not Just limited to Constructio...Envirotac Inc.
 
Fuel Cells and Hydrogen in Transportation - An Introduction
Fuel Cells and Hydrogen in Transportation - An IntroductionFuel Cells and Hydrogen in Transportation - An Introduction
Fuel Cells and Hydrogen in Transportation - An IntroductionGlenn Rambach
 
Cyclone Case Study Odisha 1999 Super Cyclone in India.
Cyclone Case Study Odisha 1999 Super Cyclone in India.Cyclone Case Study Odisha 1999 Super Cyclone in India.
Cyclone Case Study Odisha 1999 Super Cyclone in India.cojitesh
 
2024-05-08 Composting at Home 101 for the Rotary Club of Pinecrest.pptx
2024-05-08 Composting at Home 101 for the Rotary Club of Pinecrest.pptx2024-05-08 Composting at Home 101 for the Rotary Club of Pinecrest.pptx
2024-05-08 Composting at Home 101 for the Rotary Club of Pinecrest.pptxEllen Book
 
Presentation: Farmer-led climate adaptation - Project launch and overview by ...
Presentation: Farmer-led climate adaptation - Project launch and overview by ...Presentation: Farmer-led climate adaptation - Project launch and overview by ...
Presentation: Farmer-led climate adaptation - Project launch and overview by ...AICCRA
 
Corporate_Science-based_Target_Setting.pptx
Corporate_Science-based_Target_Setting.pptxCorporate_Science-based_Target_Setting.pptx
Corporate_Science-based_Target_Setting.pptxarnab132
 
Faridabad Call Girl ₹7.5k Pick Up & Drop With Cash Payment 8168257667 Badarpu...
Faridabad Call Girl ₹7.5k Pick Up & Drop With Cash Payment 8168257667 Badarpu...Faridabad Call Girl ₹7.5k Pick Up & Drop With Cash Payment 8168257667 Badarpu...
Faridabad Call Girl ₹7.5k Pick Up & Drop With Cash Payment 8168257667 Badarpu...Hyderabad Escorts Agency
 
Principle of erosion control- Introduction to contouring,strip cropping,conto...
Principle of erosion control- Introduction to contouring,strip cropping,conto...Principle of erosion control- Introduction to contouring,strip cropping,conto...
Principle of erosion control- Introduction to contouring,strip cropping,conto...ZAPPAC1
 
Role of Copper and Zinc Nanoparticles in Plant Disease Management
Role of Copper and Zinc Nanoparticles in Plant Disease ManagementRole of Copper and Zinc Nanoparticles in Plant Disease Management
Role of Copper and Zinc Nanoparticles in Plant Disease ManagementRavikumar Vaniya
 
Yil Me Hu Spring 2024 - Nisqually Salmon Recovery Newsletter
Yil Me Hu Spring 2024 - Nisqually Salmon Recovery NewsletterYil Me Hu Spring 2024 - Nisqually Salmon Recovery Newsletter
Yil Me Hu Spring 2024 - Nisqually Salmon Recovery NewsletterNisqually River Council
 
Call Girl in Faridabad ₹7.5k Pick Up & Drop With Cash Payment #8168257667
Call Girl in Faridabad ₹7.5k Pick Up & Drop With Cash Payment #8168257667Call Girl in Faridabad ₹7.5k Pick Up & Drop With Cash Payment #8168257667
Call Girl in Faridabad ₹7.5k Pick Up & Drop With Cash Payment #8168257667Hyderabad Escorts Agency
 
NO1 Google Kala Jadu Expert Specialist In Qatar Kala Jadu Expert Specialist I...
NO1 Google Kala Jadu Expert Specialist In Qatar Kala Jadu Expert Specialist I...NO1 Google Kala Jadu Expert Specialist In Qatar Kala Jadu Expert Specialist I...
NO1 Google Kala Jadu Expert Specialist In Qatar Kala Jadu Expert Specialist I...Amil baba
 
2,6-Dichlorophenol - Material Safety Data Sheet.pptx
2,6-Dichlorophenol - Material Safety Data Sheet.pptx2,6-Dichlorophenol - Material Safety Data Sheet.pptx
2,6-Dichlorophenol - Material Safety Data Sheet.pptxMunamMeher
 

Recently uploaded (20)

Call Girls in Veraval - 8250092165 Our call girls are sure to provide you wit...
Call Girls in Veraval - 8250092165 Our call girls are sure to provide you wit...Call Girls in Veraval - 8250092165 Our call girls are sure to provide you wit...
Call Girls in Veraval - 8250092165 Our call girls are sure to provide you wit...
 
Presentation: Farmer-led climate adaptation - Project launch and overview by ...
Presentation: Farmer-led climate adaptation - Project launch and overview by ...Presentation: Farmer-led climate adaptation - Project launch and overview by ...
Presentation: Farmer-led climate adaptation - Project launch and overview by ...
 
Sensual Call Girls in Surajpur { 9332606886 } VVIP NISHA Call Girls Near 5 St...
Sensual Call Girls in Surajpur { 9332606886 } VVIP NISHA Call Girls Near 5 St...Sensual Call Girls in Surajpur { 9332606886 } VVIP NISHA Call Girls Near 5 St...
Sensual Call Girls in Surajpur { 9332606886 } VVIP NISHA Call Girls Near 5 St...
 
Russian Call girls in Dubai 0508644382 Dubai Call girls
Russian Call girls in Dubai 0508644382 Dubai Call girlsRussian Call girls in Dubai 0508644382 Dubai Call girls
Russian Call girls in Dubai 0508644382 Dubai Call girls
 
Sustainable Recovery and Reconstruction Framework (SURRF)(1).pdf
Sustainable Recovery and Reconstruction Framework  (SURRF)(1).pdfSustainable Recovery and Reconstruction Framework  (SURRF)(1).pdf
Sustainable Recovery and Reconstruction Framework (SURRF)(1).pdf
 
How to Reduce Health Risks from Asbestos Dust Not Just limited to Constructio...
How to Reduce Health Risks from Asbestos Dust Not Just limited to Constructio...How to Reduce Health Risks from Asbestos Dust Not Just limited to Constructio...
How to Reduce Health Risks from Asbestos Dust Not Just limited to Constructio...
 
Fuel Cells and Hydrogen in Transportation - An Introduction
Fuel Cells and Hydrogen in Transportation - An IntroductionFuel Cells and Hydrogen in Transportation - An Introduction
Fuel Cells and Hydrogen in Transportation - An Introduction
 
Cyclone Case Study Odisha 1999 Super Cyclone in India.
Cyclone Case Study Odisha 1999 Super Cyclone in India.Cyclone Case Study Odisha 1999 Super Cyclone in India.
Cyclone Case Study Odisha 1999 Super Cyclone in India.
 
2024-05-08 Composting at Home 101 for the Rotary Club of Pinecrest.pptx
2024-05-08 Composting at Home 101 for the Rotary Club of Pinecrest.pptx2024-05-08 Composting at Home 101 for the Rotary Club of Pinecrest.pptx
2024-05-08 Composting at Home 101 for the Rotary Club of Pinecrest.pptx
 
Presentation: Farmer-led climate adaptation - Project launch and overview by ...
Presentation: Farmer-led climate adaptation - Project launch and overview by ...Presentation: Farmer-led climate adaptation - Project launch and overview by ...
Presentation: Farmer-led climate adaptation - Project launch and overview by ...
 
Corporate_Science-based_Target_Setting.pptx
Corporate_Science-based_Target_Setting.pptxCorporate_Science-based_Target_Setting.pptx
Corporate_Science-based_Target_Setting.pptx
 
Faridabad Call Girl ₹7.5k Pick Up & Drop With Cash Payment 8168257667 Badarpu...
Faridabad Call Girl ₹7.5k Pick Up & Drop With Cash Payment 8168257667 Badarpu...Faridabad Call Girl ₹7.5k Pick Up & Drop With Cash Payment 8168257667 Badarpu...
Faridabad Call Girl ₹7.5k Pick Up & Drop With Cash Payment 8168257667 Badarpu...
 
Principle of erosion control- Introduction to contouring,strip cropping,conto...
Principle of erosion control- Introduction to contouring,strip cropping,conto...Principle of erosion control- Introduction to contouring,strip cropping,conto...
Principle of erosion control- Introduction to contouring,strip cropping,conto...
 
Role of Copper and Zinc Nanoparticles in Plant Disease Management
Role of Copper and Zinc Nanoparticles in Plant Disease ManagementRole of Copper and Zinc Nanoparticles in Plant Disease Management
Role of Copper and Zinc Nanoparticles in Plant Disease Management
 
Yil Me Hu Spring 2024 - Nisqually Salmon Recovery Newsletter
Yil Me Hu Spring 2024 - Nisqually Salmon Recovery NewsletterYil Me Hu Spring 2024 - Nisqually Salmon Recovery Newsletter
Yil Me Hu Spring 2024 - Nisqually Salmon Recovery Newsletter
 
Green Marketing
Green MarketingGreen Marketing
Green Marketing
 
Call Girl in Faridabad ₹7.5k Pick Up & Drop With Cash Payment #8168257667
Call Girl in Faridabad ₹7.5k Pick Up & Drop With Cash Payment #8168257667Call Girl in Faridabad ₹7.5k Pick Up & Drop With Cash Payment #8168257667
Call Girl in Faridabad ₹7.5k Pick Up & Drop With Cash Payment #8168257667
 
NO1 Google Kala Jadu Expert Specialist In Qatar Kala Jadu Expert Specialist I...
NO1 Google Kala Jadu Expert Specialist In Qatar Kala Jadu Expert Specialist I...NO1 Google Kala Jadu Expert Specialist In Qatar Kala Jadu Expert Specialist I...
NO1 Google Kala Jadu Expert Specialist In Qatar Kala Jadu Expert Specialist I...
 
Deforestation
DeforestationDeforestation
Deforestation
 
2,6-Dichlorophenol - Material Safety Data Sheet.pptx
2,6-Dichlorophenol - Material Safety Data Sheet.pptx2,6-Dichlorophenol - Material Safety Data Sheet.pptx
2,6-Dichlorophenol - Material Safety Data Sheet.pptx
 

Nanofertilizers in fruit crops

  • 1. Doctoral Seminar - II Effect of Nanofertlizers on Fruit Crops Presented by: Warang Omkar Sunil Reg. No.: 1080119003 Ph.D. (Hort.) Fruit Science 4Th Semester Major Guide Dr. N. I. Shah Principal & Dean College of Horticulture, AAU, Anand 388 110 Minor Guide Dr. N. J. Jadav Professor & Head Dept. of Soil Science & Agril. Chemistry B. A. College of Agriculture AAU, Anand 388 110
  • 2. Content • Introduction • Classification of nanofertilizers • Production of nanofertilizers • Mechanisms of nanofertilizers action • Methods of application of nanofertilizers • Benefits of nanofertilizers • Regulation and translocation of nanoparticles • Limitations of nanofertilizers • Review of research work • Summary • Conclusion
  • 3. Nanotechnology A group of emerging technologies in which the structure of the matter is controlled at the nanometre scale to produce materials having unique properties. The term “Nano” is derived from the Greek word nanos meaning ‘DWARF’ Nanoparticles: Particles with size in the range of 1-100 nm. Small objects which behave as a whole unit Types: i. Incidental nanoparticles ii. Engineered nanoparticles Norio Taniguchi coined termed Nanotechnology (1974) 1
  • 4. Unique Properties of Nanoparticles • Smaller size • Large surface area • Large surface to volume ratio • Slow release • Specific release • Many nanoparticles have a special properties that differ from the bulk parent material. 2
  • 5. INTRODUCTION • Nanofertilizers are the nanomaterial of 1–100 nm size that supply at least one or more types of nutrients to the plants. • A nanofertilizer is any product that is made with nanoparticles or uses nanotechnology to improve nutrient efficiency. • The various types of nanotechnological materials such as carbon nanotubes, copper, manganese, molybdenum, zinc, iron, silicon, their oxides and nanoformulations of commercially used agricultural inputs like urea, phosphorus and sulfur are available. • Based on plant nutrient requirements, nanoparticles can be classified as macro nanofertilizers, micro nanofertilizers, nano biofertilizers, nano particulate fertilizers and nano coatings or packaging materials. 3
  • 6. Macro-nanofertilizers Macronutrients combined with nanomaterials to deliver a precise amount of nutrients to the plants Reduce the bulk requirements as well as decreasing purchase and transportation cost Examples:- 1) Nano-ultra-fertilizer 2) Nanocapsules 3) N + P nanofertilizers. 4) IFFCO Nano Nitrogen 5) Biozar Nano K 4
  • 7. Micro-nanofertilizers Micronutrients are required in less quantities by plants. Nanofertilizers providing essential micro-nutrients. They are essential to maintain crucial metabolic processes in the plants. Examples: 1)Nano-micronutrient(EcoStar) 2)IFFECO Nano Copper 3)IFFECO Nano Zinc 4)Biozar Nano Iron 5
  • 8. Nano-biofertilizers Materials are made up of interaction between nanoparticles and microorganisms. Improve the shelf life of bio- fertilizers and its delivery. Example:- 1) Biozar nanofertilizers:- it contain free and non- symbiotic nitrogen fixing bacteria and phosphorus solubilizing bacteria. 6
  • 9. Nanoparticulate fertilizers The consolidation formulation of nanotubes and nanoparticles leads to form new complex materials that are active in nature and act as nanofertilizers. Examples:- 1) Carbon nanotubes 2) Silicon dioxide nanoparticles (SiO2 NPs) 3) Silver nanoparticles (Ag NPs) 4) Zinc oxide nanoparticles (ZnO NPs) 7
  • 10. Nanocoating Material Nanocoating is the thin layer material that helps to increase the shelf life of fresh commodity. Examples:- 1) Chitosan/nano-silica 2) Nanotitanium dioxide-low- density polyethylene (TiO2-LDPE) 8
  • 11. Production of nanofertilizers • Nanomaterials or nanoparticles for nanofertilizers can be synthesized by different approaches, top-down, bottom-up or using biological approaches. • Top down:- 1) based on the reduction of size to nanoscale 2) physical method based on milling materials. 3) low control in the size of nanoparticles and a greater quantity of impurities. • Bottom up:- 1) begins at the atomic or molecular scale to build up nanoparticles using chemical reactions. 2) chemically controlled synthetic process, therefore, this method controls the particle size better and reduces impurities. 9
  • 12. Cont…. • Biological approach:- 1) nanoparticles can be synthesized biologically. 2) several natural sources for this purpose, like plants, fungi and bacteria based. 3) Greater control of the toxicity and size of the particle. 10
  • 13. Mechanisms of nanofertilizers action • Nanofertilizers have been advocated owing to higher NUE as plants cell walls have small pore sizes (up to 20 nm) which result in higher nutrient uptake. • Plant roots are porous to nanomaterials compared to conventional fertilizers. • Nano-pores and stomatal openings in leaves felicitate nanomaterials uptake and their penetration deep inside leaves. • Higher transport and delivery of nutrients through plasmodesmata which are nanosized (50–60 nm) channels for transportation of ions between cells. 11
  • 14. Methods of Application of Nanofertilizers • Nanofertilizers can be applied through various modes of applications: 1) Soil application 2) Injection to the plant and 3) in vitro application 4) Foliar application • The foliar application of nutrients has been proved as a quick way to rectify nutrient deficiencies and ameliorate crop productivity 12
  • 15. Benefits of Nanofertilizers • Efficiently regulate the delivery of nutrients to plants and targeted sites, guaranteeing the minimal usage of agrochemicals. • Increase crop yield by increasing fertilizer nutrient availability in soil and nutrient uptake by plants. • Reduce the negative environmental impact of conventional agricultural practices. • Improve the leaf area, fruit size and yield. • Improve the quality and shelf life of fruits. • Improve the abiotic stress tolerance: salinity and drought. • Efficient use of nutrients and water: less leaching loss. 13
  • 16. Benefits of Nanofertilizers application 14
  • 17. Table 1. Nanofertilizers vs. Conventional fertilizers Index Nanofertilizers Conventional fertilizers Solubility High Low Dispersion of mineral nutrient Improved dispersion of insoluble nutrients Lower solubility due to large particle size Soil adsorption and fixation Reduced High Efficiency of nutrient uptake High Low Controlled release Release rate and pattern precisely controlled Excess release leading to toxicity and imbalance Loss rate Reduced loss of fertilizer nutrients High loss rate due to leaching, drifting and runoff 15
  • 18. WHY WE WANT TO USE NANO-FERTILIZERS ? 1) Three-times increase in Nutrient Use Efficiency (NUE) 2) 80-100 times less requirement to chemical fertilizers 3) 10 times more stress tolerant by the crop 4) 30% more nutrient mobilization by the plants 5) 17-54 % improvement in the crop yield. 6) Nano-fertilizers are more beneficial as compared to chemical fertilizers 16
  • 19. Regulation and Translocation of Nanoparticles • It varies from plant to plant, species to species, climatic factors, age of plant species, biological activity of the plant and the method of application of nanoparticles. • The nanoparticles penetrate into the cell wall and cell membrane of root epidermis accompanied by a complex series of events to enter plant vascular bundle (xylem). • Xylem serves as the key carrier in the regulation and translocation of nanoparticles. • After entry of nanoparticles into the cell, it can move via apoplastic or symplastic pathways. 17
  • 20. Limitations of Nanofertilizers • Nanomaterial phytotoxicity is also an issue in this regard since different plants respond differently to various nanomaterials in a dose-dependent manner. • Reactivity and variability of these materials are also a concern. This raises safety concerns for farm workers who may become exposed to xenobiotic during their application. • Among the various issues, the most important might be the accumulation of nanoparticles in plants and their food parts. 18
  • 21. Toxicity issues of nanoparticles in plants, soil microflora and human being 19
  • 24. Treatments Shoot length (cm) Leaf area (cm2) Leaf B (ppm) Yield (Kg/tree) Control 41.9 70.9 3.9 15.5 Normal B 50 ppm 43.0 72.6 4.2 19.8 Normal B 100 ppm 44.7 74.3 4.5 23.4 Normal B 200 ppm 45.0 74.4 4.6 23.9 Nano B 5 ppm 46.3 76.9 5.0 28.6 Nano B 10 ppm 48.0 78.6 5.3 32.1 Nano B 20 ppm 48.3 78.7 5.4 32.6 LSD @ 5% 0.9 1.2 0.2 2.6 Table 1. Effect of normal and nano boron on growth, leaf boron concentration and yield of mango cv. Keitt. Farouk et al., (2019) Giza, Egypt Note:- Spraying three times the first spray at growth start (last week of Feb.), the second just after fruit setting ( last week of Apr.) and the third at one month later (last week of May). 21
  • 25. Treatments Fruit weight (g) T.S.S (%) Total sugars (%) Acidity (%) Control 351.2 9.9 7.0 0.916 Normal B 50 ppm 360.9 10.6 7.4 0.890 Normal B 100 ppm 371.9 11.1 7.8 0.870 Normal B 200 ppm 372.7 11.2 7.9 0.868 Nano B 5 ppm 380.9 11.6 8.6 0.850 Nano B 10 ppm 391.9 12.1 8.9 0.829 Nano B 20 ppm 392.3 12.2 9.0 0.824 LSD @ 5% 7.7 0.4 0.3 0.011 Table 1.1. Effect of normal and nano boron on fruit quality of mango cv. Keitt. Farouk et al., (2019) Giza, Egypt Note:- Spraying three times the first spray at growth start (last week of Feb.), the second just after fruit setting ( last week of Apr.) and the third at one month later (last week of May). 22
  • 26. Treatments Shoot length (cm) Leaf area (cm2) Yield (Kg/tree) Fruit weight (g) Control 39.9 74.1 26.1 355.0 Normal NPKMg 0.5 % 43.8 77.6 30.0 381.0 Nano NPKMg 0.05 % 45.9 80.8 33.0 410.0 Nano NPKMg 0.1 % 48.9 82.0 38.0 451.9 Nano NPKMg 0.2 % 49.0 82.2 38.2 452.0 Nano NPKMg 0.4 % 49.1 82.3 38.5 454.1 LSD @ 5% 1.0 1.1 1.3 11.5 Table 2. Effect of normal and nano NPKMg on growth, yield and fruit weight of mango cv. Keitt. Saied (2018) Aswan, Egypt Note:- Spraying four times at middle of Feb., Mar., Apr. and May 23
  • 27. Treatments Leaf N (%) Leaf P (%) Leaf K (%) Leaf Mg (%) Control 1.61 0.139 1.41 0.56 Normal NPKMg 0.5 % 1.72 0.152 1.51 0.62 Nano NPKMg 0.05 % 1.84 0.172 1.59 0.68 Nano NPKMg 0.1 % 1.85 0.184 1.64 0.73 Nano NPKMg 0.2 % 1.91 0.185 1.65 0.71 Nano NPKMg 0.4 % 1.92 0.186 1.66 0.75 LSD @ 5% 0.05 0.008 0.04 0.04 Table 2.1. Effect of normal and nano NPKMg on leaf nutrient concentrations of mango cv. Keitt. Saied (2018) Aswan, Egypt Note:- Spraying four times at middle of Feb., Mar., Apr. and May 24
  • 28. Cultivars Treatments Yield (Kg/tree) Fruit wt. (g) T.S.S (%) Acidity (%) Zebda 0.5 g/l 36.1 500.8 20.7 1.150 1 g/l 43.3 505.3 20.8 1.050 Control 28.5 390.7 17.8 1.000 Ewasy 0.5 g/l 51.1 259.5 26.5 1.300 1 g/l 59.3 281.7 25.7 1.333 Control 36.7 248.2 21.8 1.417 LSD @ 5% 3.3 16.1 2.2 NS Table 3. Effect of nano zinc on yield and quality of fruits of mango cultivars. Zagzog and Gad (2017) Egypt Note:- Spraying once before flowering at 15 February. 25
  • 30. Treatments Shoot length (m) Leaf Area (cm2) Leaf K (%) 100% of recommended dose of K (Control) 1.68 82.4 2.52 75% K + 1000 ppm nano K 1.94 11.45 3.83 75% K + 500 ppm nano K 1.73 11.58 3.47 75% K + 250 ppm nano K 2.27 10.90 3.61 50% K + 1000 ppm Nano K 1.84 10.62 3.87 50% K + 500 ppm nano K 1.83 10.95 2.66 50% K + 250 ppm nano K 1.91 11.64 4.17 1000 ppm nano K 1.97 11.26 4.05 LSD 5% 0.39 0.79 0.05 Table 4. Effect of nano K on shoot length, leaf area and leaf K concentration of Grapes cv. Flame Seedless. Doaa et al., (2019) Egypt Recommended dose of P supplied through soil application of potassium sulphate (60 g/vine). Nano K applied as foliar spray three times at the beginning of vegetative growth, after fruit set stage and at the véraison stage. 27
  • 31. Treatments Yield (Kg/vine) Cluster weight (g) 100% of recommended dose of K (Control) 8.76 377.7 75% K + 1000 ppm nano K 13.85 483.4 75% K + 500 ppm nano K 14.64 534.6 75% K + 250 ppm nano K 11.24 452.9 50% K + 1000 ppm Nano K 15.49 554.1 50% K + 500 ppm nano K 13.58 521.6 50% K + 250 ppm nano K 14.82 559.0 1000 ppm nano K 11.87 526.8 LSD 5% 0.90 67.44 Table 4.1. Effect of nano K on yield parameters of Grapes cv. Flame Seedless. Doaa et al., (2019) Egypt Recommended dose of P supplied through soil application of potassium sulphate. Nano K applied as foliar spray three times at the beginning of vegetative growth, after fruit set stage and at the véraison stage. 28
  • 32. Treatments TSS (%) Acidity (%) TSS:Acid Ratio 100% of recommended dose of K (Control) 17.17 0.870 19.73 75% K + 1000 ppm nano K 19.00 0.707 26.88 75% K + 500 ppm nano K 19.67 0.750 26.23 75% K + 250 ppm nano K 19.83 0.737 26.92 50% K + 1000 ppm Nano K 19.67 0.713 27.58 50% K + 500 ppm nano K 19.67 0.670 29.59 50% K + 250 ppm nano K 20.00 0.617 32.50 1000 ppm nano K 19.33 0.670 28.90 LSD 5% 1.06 0.048 2.48 Table 4.2. Effect of nano K on quality parameters of Grapes cv. Flame Seedless. Doaa et al., (2019) Egypt Recommended dose of P supplied through soil application of potassium sulphate. Nano K applied as foliar spray three times at the beginning of vegetative growth, after fruit set stage and at the véraison stage. 29
  • 33. Treatments Leaf Area (cm2) Intenode length (cm) Internode Thickness (cm) 100 g Nano potassium sulphate/vine 116.95 7.66 0.81 150 g Nano potassium sulphate/vine 122.36 9.33 1.42 200 g Nano potassium sulphate/vine 156.17 9.67 1.50 200 g potassium sulphate/vine 119.69 8.85 1.08 LSD 5% 1.80 0.37 0.15 Table 5. Effect of normal and nano potassium sulphate on vegetative growth of grapes cv. Crimson Seedless. Shalan (2020) Mansoura, Egypt Soil application in three equal splits:- 1) first part divided into two equal quantities first at first bloom and second at full bloom, 2) second part divided into two equal quantities at buckshot berries stage and bunch closure stage 3) third part divided into four equal quantities at first week of veraison and remaining successively at 10 days interval. 30
  • 34. Treatments Cluster weight (g) Berry weight (g) Yield (kg/vine) 100 g Nano potassium sulphate/vine 277.10 3.20 6.00 150 g Nano potassium sulphate/vine 336.90 3.61 9.66 200 g Nano potassium sulphate/vine 416.25 3.79 15.81 200 g potassium sulphate/vine 315.75 3.50 6.33 LSD 5% 5.19 0.05 0.74 Table 5.1. Effect of normal and nano potassium sulphate on yield parameters of grapes cv. Crimson Seedless. Shalan (2020) Mansoura, Egypt Soil application in three equal splits:- 1) first part divided into two equal quantities first at first bloom and second at full bloom, 2) second part divided into two equal quantities at buckshot berries stage and bunch closure stage 3) third part divided into four equal quantities at first week of veraison and remaining successively at 10 days interval. 31
  • 35. Treatments TSS (%) Acidity (%) TSS:Acidity Ratio 100 g Nano potassium sulphate/vine 19.23 0.33 58.27 150 g Nano potassium sulphate/vine 21.40 0.30 71.33 200 g Nano potassium sulphate/vine 21.76 0.28 77.71 200 g potassium sulphate/vine 21.10 0.32 65.94 LSD 5% 0.74 0.02 4.10 Table 5.2. Effect of normal and nano potassium sulphate on quality parameters of grapes cv. Crimson Seedless. Shalan (2020) Mansoura, Egypt Soil application in three equal splits:- 1) first part divided into two equal quantities first at first bloom and second at full bloom, 2) second part divided into two equal quantities at buckshot berries stage and bunch closure stage 3) third part divided into four equal quantities at first week of veraison and remaining successively at 10 days interval. 32
  • 36. Treatments Shoot Length (cm) Leaf area (cm2) Leaf fresh wt. (g) Leaf Zn (ppm) Control 26.66 d 129.36 c 1.5 c 22.56 c ZnSO4 565 ppm 43.33 c 169.60 b 2.6 b 55.93 b Zn EDTA 140 ppm 42.66 c 174.23 b 2.6 b 56.26 b Nano Zn 0.4 ppm 52.00 a 195.83 a 3.8 a 66.00 a Nano Zn 0.8 ppm 54.66 a 176.30 b 2.8 b 69.30 a Nano Zn 1.2 ppm 48.66 b 175.46 b 2.9 b 69.30 a Table 6. Effect of nano Zn on growth parameters and leaf zinc concentration of Grapes cv. Flame Seedless. Abd El-Hak et al., (2019) Gharbia, Egypt Vines were sprayed three times first at full opening stage of the eyes, second at one month later and third at one month after second spray. 33
  • 37. Treatments No. of clusters/vine Cluster Weight (g) Yield (kg/vine) Control 14.0 b 261.66 d 3.60 d ZnSO4 565 ppm 27.0 b 361.33 c 9.79 c Zn EDTA 140 ppm 32.0 a 374.66 c 11.99 b Nano Zn 0.4 ppm 33.6 a 426.66 b 14.34 a Nano Zn 0.8 ppm 33.3 a 455.33 a 15.18 a Nano Zn 1.2 ppm 31.6 a 465.00 a 14.72 a Table 6.1. Effect of nano Zn on yield parameters of Grapes cv. Flame Seedless. Abd El-Hak et al., (2019) Gharbia, Egypt Vines were sprayed three times first at full opening stage of the eyes, second at one month later and third at one month after second spray. 34
  • 38. Treatments TSS (%) Acidity (%) Anthocyanin (%) Control 16.33 c 0.73 a 29.74 c ZnSO4 565 ppm 17.33 b 0.70 a 28.13 c Zn EDTA 140 ppm 17.66 a 0.66 a 28.05 c Nano Zn 0.4 ppm 17.33 b 0.66 a 30.13 b Nano Zn 0.8 ppm 17.33 b 0.63 a 33.37 a Nano Zn 1.2 ppm 17.33 b 0.63 a 28.44 c Table 6.2. Effect of nano Zn on quality parameters of Grapes cv. Flame Seedless. Abd El-Hak et al., (2019) Gharbia, Egypt Vines were sprayed three times first at full opening stage of the eyes, second at one month later and third at one month after second spray. 35
  • 39. Treatment Shoot length (cm) Leaf area (cm2) Total Chlorophyll (mg/100 g F.W) Control 111.7 117.4 5.7 Orgland 0.1% 133.0 136.1 8.0 Orgland 0.2% 133.3 137.0 8.0 Active iron 0.1% 127.1 132.4 7.5 Active iron 0.2% 128.0 133.0 7.6 Amino Zn 0.1% 120.0 125.5 6.9 Amino Zn 0.2% 120.4 126.0 7.1 B-10 0.1% 123.0 129.0 7.2 B-10 0.2% 123.0 129.2 7.2 Amino minerals 0.1% 138.0 139.0 8.3 Amino minerals 0.2% 138.0 139.7 8.5 Super Fe 0.1% 114.0 118.1 6.8 Super Fe 0.1% 114.0 119.1 6.9 LSD 5% 1.8 1.8 0.4 Table 7. Effect of nano nutrients on growth parameters and leaf pigment of Grapes cv. Flame Seedless. Wassel et al., (2017) Minia, Egypt 36
  • 40. 1) Orgland (4% Fe, 2% Mn, 2 % Zn, 0.2% B and 0.1% Mg) 2) Active – Fe (10 amino acids , 2% Algae extract , 1% vitamins and 6% Fe) 3) amino –Zn (10% Amino acids, 1% vitamins and 6% Zn) 4) Boron -10 (10% Amino acids, 1% vitamins and 10% B) 5) Amino-minerals (5% Amino acids, 5% algae extract, 1% vitamins, 8% N, 5% P, 3% K and 10% micro nutrients) 6) Super –Fe (6% Fe) 37
  • 41. Treatment N (%) P (%) K (%) Zn (ppm) Fe (ppm) Control 1.69 0.13 1.17 49.0 54.0 Orgland 0.1% 2.16 0.32 1.50 61.4 66.3 Orgland 0.2% 2.17 0.33 1.51 61.5 67.7 Active iron 0.1% 2.00 0.27 1.44 59.0 90.0 Active iron 0.2% 2.09 0.29 1.45 59.0 91.0 Amino Zn 0.1% 1.84 0.21 1.33 91.5 60.0 Amino Zn 0.2% 1.86 0.22 1.34 92.0 60.0 B-10 0.1% 1.92 0.26 1.38 55.0 71.0 B-10 0.2% 1.93 0.27 1.38 56.0 71.1 Amino minerals 0.1% 2.27 0.39 1.56 69.0 70.0 Amino minerals 0.2% 2.28 0.40 1.57 69.0 72.0 Super Fe 0.1% 1.75 0.18 1.22 52.0 80.0 Super Fe 0.1% 1.76 0.19 1.23 52.3 81.0 LSD 5% 0.05 0.02 0.03 2.0 1.7 Table 7.1. Effect of nano nutrients on leaf nutrient content of Grapes cv. Flame Seedless. Wassel et al., (2017) Minia, Egypt 38
  • 42. Treatment No. of clusters/vine Cluster weight (g) Yield (kg/vine) Control 23.0 282.0 6.5 Orgland 0.1% 32.0 341.0 10.9 Orgland 0.2% 32.0 342.0 10.9 Active iron 0.1% 30.0 334.0 10.0 Active iron 0.2% 30.0 335.0 10.1 Amino Zn 0.1% 26.0 305.0 7.9 Amino Zn 0.2% 26.0 306.0 8.0 B-10 0.1% 28.0 322.0 9.0 B-10 0.2% 28.0 323.0 9.0 Amino minerals 0.1% 34.0 371.0 12.6 Amino minerals 0.2% 34.0 371.5 12.6 Super Fe 0.1% 24.0 292.0 7.0 Super Fe 0.1% 24.0 292.0 7.0 LSD 5% 1.0 7.9 0.4 Table 7.2. Effect of nano nutrients on yield paameters of Grapes cv. Flame Seedless. Wassel et al., (2017) Minia, Egypt 39
  • 43. Treatment TSS (%) Acidity (%) TSS:Acid ratio Control 16.9 0.681 24.8 Orgland 0.1% 20.5 0.574 35.7 Orgland 0.2% 20.5 0.571 35.9 Active iron 0.1% 19.7 0.589 33.5 Active iron 0.2% 19.7 0.588 33.5 Amino Zn 0.1% 18.6 0.637 29.2 Amino Zn 0.2% 18.6 0.636 29.2 B-10 0.1% 19.2 0.617 31.1 B-10 0.2% 19.2 0.614 31.3 Amino minerals 0.1% 21.0 0.550 38.2 Amino minerals 0.2% 21.2 0.548 38.7 Super Fe 0.1% 17.8 0.659 27.0 Super Fe 0.1% 17.9 0.658 27.2 LSD 5% 0.5 0.018 1.3 Table 7.3. Effect of nano nutrients on quality parameters of Grapes cv. Flame Seedless. Wassel et al., (2017) Minia, Egypt 40
  • 45. Treatments Fe (mg/kg) Yield (kg/tree) Fruits/tree Aril juice (ml) Control 118.0 c 16.2 c 55.3 c 62.5 b nFe1 141.9 ab 18.1 ab 59.5 bc 65.3 ab nFe2 150.0 a 19.5 a 64.0 a 66.9 a cFe1 130.0 bc 17.7 bc 58.3 bc 63.0 b cFe2 137.5 ab 17.9 b 60.3 ab 63.9 ab Table 8. Effect of foliar application of nano FeSO4 (nFe) and Fe(III)-EDDHA (cFe) on leaf Fe content, yield per tree, fruits per tree and aril juice of pomegranate cv. Ardestani. Davarpanah et al., (2020) Mashhad, Iran Note:- Nano FeSO4 was used at rates of 72 (nF1) and 144 (nF2) mg Fe/L and Fe(III)-EDDHA was used at rates of 60 (cF1) and 120 (cF2) mg Fe/L. Foliar fertilization was carried out first at full bloom and again one month later. 42
  • 46. Treatments TSS (Brix) Acidity (%) TSS : Acidity Ratio Total sugars (g/100 g) Control 16.8 c 1.74 a 9.65 d 14.18 b nFe1 17.6 bc 1.64 a 10.72 b 15.11 a nFe2 18.0 a 1.54 b 11.70 a 15.15 a cFe1 17.0 bc 1.72 a 9.88 cd 14.21 b cFe2 17.7 ab 1.68 a 10.54 bc 14.85 ab Table 8.1. Effect of foliar application of nano FeSO4 (nFe) and Fe(III)-EDDHA (cFe) on quality parameters of pomegranate cv. Ardestani. Note:- Nano FeSO4 was used at rates of 72 (nFe1) and 144 (nFe2) mg Fe/L and Fe(III)- EDDHA was used at rates of 60 (cFe1) and 120 (cFe2) mg Fe/L. Foliar fertilization was carried out first at full bloom and again one month later. Davarpanah et al., (2020) Mashhad, Iran 43
  • 47. Treatments N (%) Yield (Kg/tree) No. of fruits/tree Fruit wt. (g) Control 1.75 c 16.2 c 55.3 c 293.0 b nN1 1.87 bc 18.9 b 64.5 b 293.1 b nN2 2.04 ab 21.9 a 70.1 a 311.1 ab U1 2.13 a 21.2 a 65.0 b 326.1 a U2 2.22 a 19.1 b 63.8 b 299.4 b Table 9. Effects of foliar applications of nano-N (nN) and urea (U) fertilizers on leaf N and Ca content and yield parameters of pomegranate cv. Ardestani. Note:- The nN fertilizer was used at rates of 0.25 (nN1) and 0.50 (nN2) g N/L, and urea was used at rates of 4.60 (U1) and 9.20 (U2) g N/L, respectively. Foliar fertilization was carried out first at full bloom and again one month later. Davarpanah et al., (2017) Mashhad, Iran 44
  • 48. Treatments TSS (%) Acidity (%) Total sugars (g/100 g juice) Control 16.8 c 1.74 c 14.18 c nN1 17.5 bc 1.84 ab 14.56 bc nN2 18.6 a 1.89 b 15.54 ab U1 18.1 ab 1.90 a 15.76 a U2 17.4 bc 1.84 ab 14.59 bc Table 9.1. Effects of foliar applications of nano-N (nN) and urea (U) fertilizers on quality parameters of pomegranate cv. Ardestani. Note:- The nN fertilizer was used at rates of 0.25 (nN1) and 0.50 (nN2) g N/L, and urea was used at rates of 4.60 (U1) and 9.20 (U2) g N/L, respectively. Foliar fertilization was carried out first at full bloom and again one month later. Davarpanah et al., (2017) Mashhad, Iran 45
  • 49. Treatment Zn (mg/kg) B (mg/kg) Yield (kg/tree) No. of fruits/tree Zn0 + B0 13.3 e 21.1 b 13.8 e 50.6 d Zn1 + B0 15.7 cde 21.3 b 14.3 de 52.7 cd Zn2 + B0 17.6 bc 21.7 b 15.8 bc 57.6 bc Zn0 + B1 14.7 de 22.3 b 14.4 de 52.2 cd Zn1 + B1 18.2 bc 23.0 b 15.0 cd 51.3 d Zn2 + B1 21.4 a 22.9 b 16.2 b 58.7 b Zn0 + B2 16.4 cd 25.3 a 18.0 a 64.4 a Zn1 + B2 17.9 bc 25.0 a 18.5 a 65.9 a Zn2 + B2 19.6 ab 25.1 a 18.4 a 63.0 ab Table 10. Effects of nano Zn and B foliar fertilizers on leaf Zn and B content and yield parameters of pomegranate cv. Ardestani. Davarpanah et al., (2016) Mashhad, Iran Zn0, Zn1 and Zn2 are 0, 60 and 120 mg Zn/L, and B0, B1 and B2 are 0, 3.25 and 6.5 mg B/L, respectively. Trees were sprayed only once, one week before the first full bloom, 46
  • 50. Treatment TSS (%) Acidity (%) TSS : Acidity ratio Total sugars (g/100 g) Zn0 + B0 15.85 d 1.89 a 8.49 c 14.26 d Zn1 + B0 15.97 d 1.81 ab 8.85 c 14.28 d Zn2 + B0 16.30 cd 1.59 c 10.24 c 14.43 bcd Zn0 + B1 15.96 d 1.71 bc 9.43 bc 14.37 cd Zn1 + B1 16.26 cd 1.43 d 11.51 a 14.54 bc Zn2 + B1 16.96 ab 1.37 d 12.37 a 14.63 b Zn0 + B2 16.14 cd 1.39 d 11.71 a 14.43 bcd Zn1 + B2 16.56 bc 1.34 d 12.34 a 14.60 bc Zn2 + B2 17.06 a 1.37 d 12.41 a 14.93 a Table 10.1. Effects of nano Zn and B foliar fertilizers on quality parameters of pomegranate cv. Ardestani. Davarpanah et al., (2016) Mashhad, Iran Zn0, Zn1 and Zn2 are 0, 60 and 120 mg Zn/L, and B0, B1 and B2 are 0, 3.25 and 6.5 mg B/L, respectively. Trees were sprayed only once, one week before the first full bloom, 47
  • 51. Treatments Leaf area (cm2) No. of fruits/tree Yield (kg/tree) Control 4.69 d 45.80 d 21.60 cd N-Se 1µM 4.80 cd 49.17 c 22.50 bc N-Se 2µM 5.86 a 59.02 a 25.17 a Se 1µM 5.52 b 56.10 b 23.33 b Se 2µM 4.92 c 49.93 c 21.53 d Table 11. Effect of nano-selenium (N-Se) and selenium (Se) foliar spray on leaf area, number of fruits and yield of pomegranate cv. Malase Saveh. Zahedi et al., (2019) Namahil, Iran Trees sprayed once at full bloom stage. 48
  • 52. Treatments TSS (%) Acidity (%) TSS : Acidity Ratio Control 16.43 d 2.11 a 7.79 c N-Se 1µM 16.53 d 2.04 ab 8.12 ab N-Se 2µM 18.20 a 2.16 a 8.52 abc Se 1µM 17.70 b 2.06 ab 8.61 ab Se 2µM 16.83 c 1.85 b 9.08 a Table 11.1. Effect of nano-selenium (N-Se) and selenium (Se) foliar spray on quality parameters of pomegranate cv. Malase Saveh. Zahedi et al., (2019) Namahil, Iran Trees sprayed once at full bloom stage. 49
  • 54. Treatments Fruit retention (%) Bunch wt. (kg) Yield (kg/palm) Vinasse spraying 4.5 L/palm 51.33 15.70 149.9 Nano K2SO4 application 75 g/palm 52.11 16.77 150.9 Nano K2SO4 spraying 35 g/palm 51.18 16.93 153.9 Potassin spraying 300 ml/palm 51.56 16.90 152.4 K2SO4 application 1.5 kg/palm (Control) Recommended dose of K 48.32 16.10 144.0 LSD 5% 2.78 0.55 3.12 Table 12. Effect of vinasse, nano-potassium and potassin on fruit retention, bunch weight and yield/palm of Zaghloul date palm. El-Salhy et al., (2021) Quena, Egypt c 51
  • 55. Treatments TSS (%) Acidity (%) Total sugars (%) Vinasse spraying 4.5 L/palm 31.8 0.207 23.5 Nano K2SO4 application 75 g/palm 33.4 0.198 24.6 Nano K2SO4 spraying 35 g/palm 33.6 0.200 24.7 Potassin spraying 300 ml/palm 33.2 0.193 24.5 K2SO4 application 1.5 kg/palm (Control) Recommended dose of K 30.8 0.231 22.7 LSD 5% 0.91 0.016 0.68 Table 12.1. Effect of vinasse, nano-potassium and potassin on quality parameters of Zaghloul date palm. El-Salhy et al., (2021) Quena, Egypt Vinasse contain 2% K, Potassin contain 30% K, K2SO4 contain 48% K. All treatments were applied after fruit set and 30 days after fruit set. 52
  • 56. Treatment Bunch wt. (kg) Fruit wt. (g) Yield (kg/palm) Control 10.8 27.0 108.0 WSSE 0.5% 14.2 29.0 142.0 WSSE 1.0% 15.3 29.6 153.0 WSSE 2.0% 15.4 30.0 154.0 Nano B 0.025% 12.2 27.6 122.0 Nano B 0.05% 13.2 28.5 132.0 Nano B 0.1% 13.3 28.5 133.0 Both at low 16.3 31.0 163.0 Both at mid 17.3 33.3 173.0 Both at high 17.4 33.5 179.0 LSD 5% 1.0 0.4 6.4 Table 13. Effect of some wheat seed sprout extract and nano- boron treatments on yield parameters of Date palm cv. Zaghloul. Refaai (2014) Giza sprayed four times at growth start (1st week of Mar.), just after fruit setting (last week of Apr.) and at three week intervals. Wheat seed sprout extract content (mg/100 gm FW):- K-644, P- 600, Mg-391, Ca-292, Fe- 511, Zn-218. 53
  • 57. Treatment TSS (%) Acidity (%) Total sugars (%) Control 26.5 0.368 18.8 WSSE 0.5% 29.6 0.301 20.8 WSSE 1.0% 30.2 0.277 21.4 WSSE 2.0% 30.3 0.276 21.5 Nano B 0.025% 28.1 0.347 19.3 Nano B 0.05% 29.0 0.326 19.8 Nano B 0.1% 29.1 0.325 20.0 Both at low 31.9 0.252 22.5 Both at mid 33.0 0.226 22.9 Both at high 33.1 0.225 23.0 LSD 5% 0.5 0.018 0.4 Table 13.1. Effect of some wheat seed sprout extract and nano- boron treatments on quality parameters of Date palm cv. Zaghloul. Refaai (2014) Giza sprayed four times at growth start (1st week of Mar.), just after fruit setting (last week of Apr.) and at three week intervals. 54
  • 58. Treatments Fruit wt. (g) Bunch wt. (kg) Fruit ripening (%) Control 8.18 d 4.87 e 57.16 d Nano super 1 g 9.12 b 6.40 b 76.21 a Nano super 2 g 9.15 b 6.44 b 66.75 b NPK 1 g 8.32 cd 5.47 d 62.11 c NPK 2 g 8.36 c 5.63 c 63.04 c Nano super 1g + NPK 1g 9.67 a 7.28 a 66.30 b Table 14. Effect of foliar application of traditional and nano-fertilizer on fruit weight, bunch weight and fruit ripening of date palm cv. Hillawi Shareef et al., (2020) Iraq Nano super:- N 5%, P 3%, K 3%, Mn 0.7%, Mg 6%, Ca 6%, Fe 4.5%, Zn 8%, Mo 0.1%, B 0.65%, and Cu 0.65% . NPK:- N 20%, P 20%, K 20%. Spraying was done twice on the 1st of April and May. 55
  • 59. Treatments Water content (%) Dry matter (%) TSS (%) Control 60.37 b 39.63 d 41.75 c Nano super 1 g 54.10 e 45.89 a 44.67 a Nano super 2 g 57.31 d 42.69 b 42.89 b NPK 1 g 59.03 c 40.96 c 41.98 c NPK 2 g 60.30 b 39.69 d 36.73 e Nano super 1g + NPK 1g 64.08 a 35.91 e 38.48 d Table 14.1. Effect of foliar application of traditional and nano-fertilizer on fruit quality of date palm cv. Hillawi. Shareef et al., (2020) Iraq Nano super:- N 5%, P 3%, K 3%, Mn 0.7%, Mg 6%, Ca 6%, Fe 4.5%, Zn 8%, Mo 0.1%, B 0.65%, and Cu 0.65% . NPK:- N 20%, P 20%, K 20%. Spraying was done twice on the 1st of April and May. 56
  • 60. Treatments Yield (kg/palm) Bunch weight (kg) Fruit weight (g) Control 72.0 7.2 8.06 Normal Zn Fe Mn B at 0.05% 76.0 7.6 8.19 Nano Zn Fe Mn B at 0.005% 79.0 7.9 8.33 Nano Zn Fe Mn B at 0.01% 82.0 8.2 8.46 Nano Zn Fe Mn B at 0.02% 82.0 8.2 8.47 Nano Zn Fe Mn B at 0.04% 82.0 8.2 8.48 New L.S.D. at 5% 2.0 0.8 0.12 Table 15. Effect of spraying normal and nano Zn Fe Mn B fertilizers on yield parameters of date palm cv. Sakkoti. sprayed three times before hand pollination ( 2nd week of Feb.), just after fruit setting (Last week Mar.) and at one month later. El-Sayed (2018) Egypt 57
  • 61. Treatments TSS (%) Acidity (%) Total sugars (%) Control 72.0 0.301 60.0 Normal Zn Fe Mn B at 0.05% 73.0 0.280 61.0 Nano Zn Fe Mn B at 0.005% 74.5 0.258 61.9 Nano Zn Fe Mn B at 0.01% 75.9 0.238 63.0 Nano Zn Fe Mn B at 0.02% 76.0 0.237 63.1 Nano Zn Fe Mn B at 0.04% 76.1 0.236 63.2 New L.S.D. at 5% 0.6 0.017 0.4 Table 15.1. Effect of spraying normal and nano Zn Fe Mn B fertilizers on quality parameters of date palm cv. Sakkoti. sprayed three times before hand pollination ( 2nd week of Feb.), just after fruit setting (Last week Mar.) and at one month later. El-Sayed (2018) Egypt 58
  • 63. Treatments Yield (t/ha) Nano Nitrogen Control 22.35 100 ppm 25.78 200 ppm 28.16 300 ppm 29.89 Nano phosphorus Control 22.34 30 ppm 26.78 40 ppm 27.83 50 ppm 28.85 Nano potassium Contro 22.38 100 ppm 26.15 150 ppm 27.55 200 ppm 28.54 CD 5% 0.92 Table 16. Effect of N, P and K nano-fertilizers on yield of apple cv. Red Delicious Khan et al., (2019) Jammu, India 60
  • 64. Treatments Cost of cultivation Total returns Net returns B:C ratio Control 229959.31 1338600 1108640.69 4.82 Nano N 100 ppm 436543.47 2772000 2335456.53 5.35 Nano N 200 ppm 449043.12 3029400 2580356.88 5.75 Nano N 300 ppm 461542.77 3192200 2730657.23 5.92 Nano P 30 ppm 423634.11 2884750 2461115.89 5.81 Nano P 40 ppm 424467.42 2997500 2573032.58 6.06 Nano P 50 ppm 425161.84 3106400 2681238.16 6.31 Nano K 100 ppm 423335.51 2817100 2393764.49 5.65 Nano K 150 ppm 426668.75 2968350 2541681.25 5.96 Nano K 200 ppm 430140.87 3075600 2645459.13 6.15 Table 16.1. Effect of N, P and K nano-fertilizers on cost of cultivation of apple cv. Red Delicious. Khan et al., (2019) Jammu, India 61
  • 65. Treatments Starch (g/100 g DW) Total sugars (g/100 g DW) TSS (%) Acidity (%) Control 27.20 e 16.15 a 15.70 a 0.29 e CaCl2 (1.5%) 34.19 d 14.23 b 14.60 b 0.37 d CaCl2 (2%) 38.76 c 13.06 c 14.10 c 0.42 c N Ca (1.5%) 43.19 b 11.71 d 13.60 d 0.46 b N Ca (2%) 47.11 a 10.30 e 13.10 e 0.49 a Table 17. Effect of nano-calcium (NCa) and calcium chloride (CaCl2) treatment on starch, total sugar, total soluble solids (TSS), and acidity of ‘Red Delicious’ apples. Ranjbar et al., (2019) Shiraz, Iran The spraying procedure was conducted five times at 2-week intervals. The treatment period was from July 12 to September 6, 2015. 62
  • 66. Treatments TPC (mg/100 g FW) AA (%DPPH) TAC (µg/g FW) Control 343.19 e 33.36 e 38.90 a CaCl2 (1.5%) 386.21 d 43.14 d 32.28 b CaCl2 (2%) 409.71 c 48.49 c 29.03 c N Ca (1.5%) 432.17 b 54.58 b 26.26 d N Ca (2%) 466.38 a 56.87 a 23.93 e Table 17.1. Effect of nano-calcium (NCa) and calcium chloride (CaCl2) treatment on total phenolic content (TPC), antioxidant activity (AA), and total anthocyanin content (TAC) of ‘Red Delicious’ apples. Ranjbar et al., (2019) Shiraz, Iran The spraying procedure was conducted five times at 2-week intervals. The treatment period was from July 12 to September 6, 2015. 63
  • 68. Treatments Fruit set (%) Yield (Kg/tree) Fruit weight (g) B0 (0 mg B/L) 0.84 d 18.50 e 26.97 e B1 (180 mg B/L) 3.08 a 52.58 b 35.17 c B2 (270 mg B/L) 2.14 c 42.10 d 30.05 d Nano-B1 (180 mg B/L) 2.45 b 47.65 c 41.99 a Nano-B2 (270 mg B/L) 3.13 a 61.01 a 41.02 b Table 18. The effect of Boric acid and nano-Boron foliar applications on yield parameters of olive cv. Zard. Vishekaii et al., (2019) Iran Sprayed at three times; the bud-swelling stage, before blooming and shortly before the harvest. 65
  • 69. Treatments Leaf Boron (mg/kg) August October B0 (0 mg B/L) 16.50 d 23.50 c B1 (180 mg B/L) 33.16 b 41.73 b B2 (270 mg B/L) 32.00 c 41.91 b Nano-B1 (180 mg B/L) 31.66 c 42.36 b Nano-B2 (270 mg B/L) 37.66 a 50.30 a Table 18.1. The effect of Boric acid and nano-Boron foliar applications on leaf boron content of olive cv. Zard. Vishekaii et al., (2019) Iran Sprayed at three times; the bud-swelling stage, before blooming and shortly before the harvest. 66
  • 70. Treatment Fruit set (%) Yield (kg/tree) Control 15.90 g 17.10 f nano-boron at 10 ppm 17.49 f 17.20 f nano-boron at 20 ppm 18.53 de 17.63 f nano-zinc at 100 ppm 17.60 ef 19.23 e nano-zinc at 200 ppm 18.50 de 20.33 d nano-boron at 10 ppm + nano-zinc at 100 ppm 18.73 d 20.50 d nano-boron at 10 ppm + nano-zinc at 200 ppm 21.97 b 23.00 b nano-boron at 20 ppm + nano-zinc at 100 ppm 20.75 c 22.13 c nano-boron at 20 ppm + nano-zinc at 200 ppm 23.91 a 23.87 a Table 19. Effect of foliar application of B2O3 and ZnO nanoparticles on fruit yield traits of olive cv. Picual. Genaidy et al., (2020) Egypt All treatments were applied at three different dates, i.e., the first one at mid of December, the second before the flowering (during March), and the third one during full bloom (April). 67
  • 71. Treatment Zn (ppm) B (ppm) Control 30.26 cd 35.18 c nano-boron at 10 ppm 29.83 de 35.26 c nano-boron at 20 ppm 30.93 c 38.50 a nano-zinc at 100 ppm 30.80 c 28.57 f nano-zinc at 200 ppm 33.30 ab 35.11 c nano-boron at 10 ppm + nano-zinc at 100 ppm 30.23 cd 32.97 d nano-boron at 10 ppm + nano-zinc at 200 ppm 29.20 e 33.07 d nano-boron at 20 ppm + nano-zinc at 100 ppm 34.09 a 31.65 e nano-boron at 20 ppm + nano-zinc at 200 ppm 32.86 b 37.50 b Table 19.1. Effect of foliar application of B2O3 and ZnO nanoparticles on leaf nutrient content of olive cv. Picual. Genaidy et al., (2020) Egypt All treatments were applied at three different dates, i.e., the first one at mid of December, the second before the flowering (during March), and the third one during full bloom (April). 68
  • 72. Summary Fruit crop Nanofertilizer Method of application Remark Mango Nano B 10 ppm Foliar Increases shoot length, leaf area, leaf B content, yield and fruit quality Nano NPKMg 0.4% Foliar Increases shoot length, leaf area, yield, leaf N, P, K and Mg content. Nano Zn 1 g/L Foliar Increases fruit weight and yield. Grapes 50 % RDF of K + 1000 ppm Nano K RDF through soil + Foliar Nano K Increases yield. 200 g Nano potassium sulphate/vine Soil Increases leaf area, berry weight and yield and improve berry quality. Nano Zn 1.2 ppm Foliar Increases cluster weight and yield. Nano amino minerals 0.1 % Foliar Increases shoot length, leaf area, leaf N, P and K content and yield with improved quality. Pomegranate Nano Fe 144 mg Fe/L Foliar Increases leaf Fe content, yield, aril juice and fruit quality. Nano N 0.50 g N/L Foliar Increases fruit yield and TSS. 69
  • 73. Fruit crop Nanofertilizer Method of application Remark Pomegranate Nano Zn 60 mg Zn/L + Nano B 25 mg Zn/L Foliar Increases yield. Nano selenium 2 µM Foliar Increases leaf area, yield and fruit quality. Date palm Nano K2SO4 35 g/palm Foliar Increases yield and improve fruit quality. Wheat seed sprout extract 2% + Nano B 0.1 % Foliar Increases yield and improve fruit quality. Nano super 1 g + NPK 1 g Foliar Increases the yield. Nano Zn, Fe, Mn, B 0.04% Foliar Increases the yield and improve fruit quality. Apple Nano N 300 ppm Foliar Increases the yield. Nano Ca 2% Foliar Increases starch content, acidity, total phenolic content and antioxidant activity. Olive Nano B 270 mg B/L Foliar Increases fruit set, yield and leaf B content. Nano B 20 ppm + Nano Zn 200 ppm Foliar Increases fruit set and yield. 70
  • 74. Conclusion • From above discussion it is concluded that use of nanofertilizers on fruit trees contributes effectively to improve the fruit quality and increasing the productivity of trees. • It reduces environmental pollution by reducing the amount of fertilizers used, which is positively reflected in the increased economic return of the farmers. • When nanofertilizers sprayed at very low concentration on fruit trees, these compounds have had a direct effect by increasing the growth, yield and quality of these fruit crops. 71