SlideShare a Scribd company logo
1 of 14
Download to read offline
International Journal of Advanced Research in
Engineering and Applied Sciences ISSN: 2278-6252
Vol. 3 | No. 2 | February 2014 www.garph.co.uk IJAREAS | 11
IMPROVING BOILER EFFICIENCY BY USING AIR PREHEATER
V. Mallikarjuna*
N. Jashuva**
B. Rama Bhupal Reddy***
Abstract: Air pre-heater is a heat transfer surface in which air temperature is raised by
transferring heat from other media such as flue gas .Hot air is necessary for rapid
combustion in the furnace and also for drying coal in milling plants. So an essential boiler
accessory which serves this purpose is air pre-heater. The air pre-heater are not essential for
operation of steam generator, but they are used where a study of cost indicates that money
can be saved or efficient combustion can be obtained by their use. The decision for its
adoption can be made when the financial advantages is weighed against the capital cost of
heater in the present paper we have taken up the operation and performance analysis of
LJUNGSTROM AIRPREHEATER27VITM 1900 of 2x210 MW capacity Rayalaseema Thermal
Power Plant, Kalamala and compare with Rothemuhle air pre-heater. In analysis of
performance preventive measures for corrosion of heating elements has been studied, and
also air heater leakage, corrected gas outlet temperature and finally gas efficiency has been
calculated.
Key words: Thermal power plant, energy, air pre heater, Rothemuhle air pre-heater
*Assistant Professor, Department of Mechanical Engineering, Global College of Engineering,
Science & Technology, Kadapa, A.P., India.
**Assistant Professor, Department of Humanities, Bharat College of Engineering &
Technology for Women, Kadapa, A.P., India.
*** Associate Professor, Department of Mathematics, K.S.R.M. College of Engineering,
Kadapa, A.P., India.
International Journal of Advanced Research in
Engineering and Applied Sciences ISSN: 2278-6252
Vol. 3 | No. 2 | February 2014 www.garph.co.uk IJAREAS | 12
1. INTRODUCTON
The place where the heat energy of fuel is converted into Electrical Energy is called Thermal
Power Plant.
Energy Conversion: This part of the lesion outlines the various conversion processes which
are carried out at power station indicating where possible the efficiency of the conversion
process or in other words, indicating how successful the operation is of converting one form
of energy into another. Remember, energy cannot be destroyed, but its conversion incurs
difficulties, which results in not all the energy being usefully converted
Chemical Energy to Heat Energy: Chemical energy is stored in coal is converted into heat by
the process known as combustion. The carbon and other combustible elements in coal are
made to unite with Oxygen of air in furnaces. This process converts chemical energy into
heat energy. Many pieces of equipment are used for this first conversion, including chain
grate stroke, pulverized fuel furnaces, forced and induced draught fans, chimney stacks and
many other items of boiler house plant.
2. WORKING PRINCIPLE
As the name implies the tri-sector pre-heater design has three sections. Use for flue gas.
One for primary air (used for drying and transport of coal through mill to the burner)
another for secondary air (additional air for combustion around the burners). These helps in
avoiding wastage of heat pick up by air due to primary air flow and also help in selecting
different temperatures for primary air and secondary air. Whatever is not utilized in primary
air can be picked up by secondary air stream. Thousands of these high efficiency elements
are spaced compactly arranged with in 12 sectors shaped compartments for heater size
from 24.2 to 27 inches, and 24 sector shaped compartments for heater size from 28 to 33 of
radially divided cylindrical shell called the rotor. The housing surrounding the rotor is
provided with duct connections at both ends and is adequately sealed by radial and axial
sealing members forming an air passage through one half of the pre-heater and a gas
passage through the other. As the rotor slowly revolves the mass of the elements
alternatively through the air and gas passage, heat is absorbed by the element surfaces
passing through the hot gas stream. These are the same surfaces are carried through the air
stream. They released the stored up heat thus increasing the temperature of the incoming
combustion or process air.
International Journal of Advanced Research in
Engineering and Applied Sciences ISSN: 2278-6252
Vol. 3 | No. 2 | February 2014 www.garph.co.uk IJAREAS | 13
Figure 1: 3-D View of Ljungstrom Air pre-heater
The Ljungstrom air pre-heater is more widely used than any other type of heat exchanger
for comparable service. The reasons for this world wide acceptance are its proven
performance and reliability, effective leakage control, and its adaptability to most, any fuel
burning process. It is both designed and built to operate over extend periods with durable,
uninterrupted service. Simplicity of design also makes it easy and economical to maintain
while in operation and at scheduled outages.
Applications of Air Pre-Heaters: Available in a broad range of sizes, arrangements and
materials, LJUNGSTROM Air pre-heaters are custom engineer to meet the specific
requirements and operating conditions of a variety of applications.
 Electric power generating plants
 Fluidized bed and marine boilers
 Package and large industrial boilers
 Hydro-carbon and chemical processes
 Flue gas and other re heating systems
 Heat transfer surface
3. IMPROVEMENT IN THERMAL PERFORMANCE
Leakage Reduction: The seal setting done under better supervision should reduce the
leakage. Seals are to be set, not only to be fitted.
International Journal of Advanced Research in
Engineering and Applied Sciences ISSN: 2278-6252
Vol. 3 | No. 2 | February 2014 www.garph.co.uk IJAREAS | 14
Soft Touch Seal: A new concept has been developed to minimize the seal leak. As an
introduction, this ‘Soft Touch Seal’ is provided for hot end radial seal only. This can be
extended to axial seal also. Soft touch seal has flexile end that cannot escape air from one
basket to another basket. That can be reduces the percentage of air leak to flue gas. Heat
transfer is effectively utilized from flue gas to Primary Air and Secondary Air.
Double Sealing: In double sealing an additional radial and axial seals are introduced along
with the existing seals. This will reduce the overall leakage y 1.5% to 2% recently even triple
seals have been introduced.
Double Sealing is adapted in the recent design. For old air pre-heaters, this can be
retrofitted. This modification will call for the change of all baskets dimensions
Figure 2: Incorporation of soft touch seal Figure 3: View of soft touch seal
Diaphragm Plate Protection Sheets: In the conventional air pre-heater, the hot end of the
diaphragm plate is exposed to the gas flow. Due to erosive ash particles, the diaphragm
plate edges erode fast. In course of time, the erosion extends to the radial seal fixing hole,
thereby distributing the fixing and setting of radial seals. The diaphragm plate edge can e
protected by the erosive resistant cover plates with the change of seals, these protective
sheets also can be changed.
Figure 4: Installation of soft touch seal
International Journal of Advanced Research in
Engineering and Applied Sciences ISSN: 2278-6252
Vol. 3 | No. 2 | February 2014 www.garph.co.uk IJAREAS | 15
Figure 5: Before and After sealing
Figure 6: Insertion of diaphragm protection sheets
Cast ‘T’ Bar: Currently rolled ‘T’ bars are used for bypass sealing. This rolled ‘T’ has more
variation in the radius. After setting it gives more leakage through bypass seal. Whatever
correction is made at site could not control the radius variations. The cast ‘T’ bars keep the
radius with controlled dimension, thus reducing the leakage across bypass seals.
Figure 7: Reducing gaps by casted T-Bars
Change of Profile for cold end Baskets: In old air pre-heaters, the cold end baskets are
provided with 1.2 mm thick elements of NF6 profile. For Indian operating conditions, this
International Journal of Advanced Research in
Engineering and Applied Sciences ISSN: 2278-6252
Vol. 3 | No. 2 | February 2014 www.garph.co.uk IJAREAS | 16
can be changed to 0.8 mm DU profile. This will increase the heat transfer area, thereby
reducing the flue as outlet temperature. It is calculated that by changing the profile as
suggested, the as outlet temperature will decrease by 40
C, that means 0.2% improvement in
efficiency. This change has already been incorporated in the current design. Still some of
the air pre-heaters are operating with cold end NF6 profile. This can be changed.
New Profiles: A highly efficient element profiles are available to improve the thermal
performance. Case Study-I is presented to show the performance changes with the
introduction of new profiles. With the introduction of new profile, the gas outlet
temperature can be achieved to 135.60
C.
Figure 8: Change of profiles
Figure 9: New profiles
4. OVERHAULING OF THE PLANT AFTER INCORPORATING SOFT SEALS:
OVERHAUL PERIOD - (15/11/2012 - 15/12/2012)
S.No. PARAMETERSUNITS BEFORE OVERHAUL AFTER OVERHAUL
APH-A APH-B APH-A APH-B
1. UNITLOAD MW 205 - 210 -
2. Fuel
consumption
T/hr 115.3 - 113 -
3. PD fan current amps 198 178 181 188
4. FD fan current amps 171 164 157 141
5. ID fan current amps 278 311 236 238
International Journal of Advanced Research in
Engineering and Applied Sciences ISSN: 2278-6252
Vol. 3 | No. 2 | February 2014 www.garph.co.uk IJAREAS | 17
4.1 Profits Gained After Overhauling
A) Cost saving per hour:
1. Fuel saving = 115.3 - 113 = 2.3 T/Hr
2. Assuming coal cost as = Rs 2000 per MT
3. Cost saving per hour = 2000 X 2.3 = Rs 4600
4. Cost of fuel saving per year = 4600X24X365 = Rs 40, 29,600
B) Cost benefit due to fan loading:
1. Total fan loading before overhauling = 1300 amps
2. Total fan loading after overhauling = 1141 amps
3. Total saving in current = 159 amps
4. Power saved = 1.73 X 3.3 X 159 X 0.86
= 782.00KWhr = 0.782MWhr
5. Energy saved per year = 6,850,320
6. Power cost = Rs 2.60 per unit
7. Saving per year = 6850320 X 2.60 = Rs 1,78,10,832
C) Total savings per year = 4,02,96,000 + 1,78,10,832
= Rs 5,81,06,832
5. COMPARING LJUNGSTROM WITH ROTHEMUHLE
Calculations of Ljungstrom air pre-heater
The method determines air pre-heater as per this procedure is the volumetric method this is
an empirical approximation of air heaters leakage with an accuracy of + / - 1%.
( )
( ) 1009.0
21 2
22
××
−
−
=
gl
gegl
O
OO
AL
Collected Data:
AL – Air heater leakage
O2gl – Percentage of O2 in gas entering air heater: 3.5
O2ge – Percentage of O2 in as leaving air heater: 5.0
Secondary air (SA) leaving air heater = 2990
c
Primary air (PA) leaving air heater = 3040
c
International Journal of Advanced Research in
Engineering and Applied Sciences ISSN: 2278-6252
Vol. 3 | No. 2 | February 2014 www.garph.co.uk IJAREAS | 18
Calculations:
Air leakage
( )
( )
1009.0
0.521
5.30.5
××
−
−
=AL = 8.437 %
Gas Side Efficiency:
The gas efficiency is defined as the ratio of the temperature drop. Corrected leakage to the
temperature head, expressed as a percentage. Temperature drop is obtained y subtracting
the corrected gas outlet temperature from the gas inlet temperature. Temperature head is
obtained y subtracting air inlet temperature from the gas inlet temperature. The corrected
gas outlet temperature is defined as outlet gas temperature calculated for ‘no air heater
leakage’ and is given y following equation.
( )
( ) gl
pg
aegl
pagnl T
C
TT
CALT +








×
−
×=
100
Collected Data:
Tgnl – Gas outlet temperature corrected for no leakage.
Cpa – The mean specific heat between temperature Tae and Tgl = 1.023 KJ / kg 0
k
Cpg - The mean specific heat between temperature Tgl and Tae = 1.109 KJ / kg 0
k
Tae – Temperature of air entering air heater = 400
c
Tge – Temperature of gas entering air heater = 3310
c
Tgl – Temperature of gas leaving air heater = 1540
c
Calculations:
( )
( ) gl
pg
aegl
pagnl T
C
TT
CALT +








×
−
×=
100
( )
( )
154
109.1100
40154
023.1437.8 +





×
−
××=gnlT = 162.870
c
Air heater Gas side efficiency:
Gas side efficiency
( )
( ) 100×








−
−
=
aege
ngnlge
TT
TT
GSE 100
40331
87.162331
×



−
−
= = 57.77%
X- Ratio: Ratio of heat capacity of air passing through the air heater to the heat capacity of
flue gas passing through the air heater.
X-Ratio (Xr.) = Gas Side Efficiency / Air Side Efficiency
International Journal of Advanced Research in
Engineering and Applied Sciences ISSN: 2278-6252
Vol. 3 | No. 2 | February 2014 www.garph.co.uk IJAREAS | 19
Air Side Efficiency (SA & PA): Ratio of air temperature gain across the air heater corrected
from no leakage to the temperature head.
Air Side Efficiency =
( )
( ) 100×








−
−
aege
aeal
TT
TT
Collected Data:
Tae – Temperature of air entering air heater = 400
c
Tal – Temperature of air leaving air heater = 3020
c
Tge – Temperature of gas entering air heater = 3310
c
Calculations:
Air Side Efficiency =
( )
( ) 100×








−
−
aege
aeal
TT
TT
=
( )
( )
100
40331
40302
×





−
−
= 90.03%
X-Ratio (Xr.) = Gas Side Efficiency / Air Side Efficiency 641.0
03.90
77.57
==rX
Gas leaving temperature without leakage ( )aealrgegl TTXTT −−=
= 331 – 0.641 (302 – 40) = 163.050
c
Pre heater Air side efficiency (SA & PA):
Air side efficiency (SA & PA)=
( )
( ) 100×








−
−
aege
aege
TT
TT
=
( )
( )
100
40331
05.163331
×





−
−
= 57.71%
Secondary Air Side Efficiency:
Collected Data:
Tae – Temperature of air entering air heater = 340
c
Tal – Temperature of air leaving air heater = 2990
c
Tge – Temperature of gas entering air heater = 3310
c
Calculations:
Air Side Efficiency =
( )
( ) 100×








−
−
aege
aeal
TT
TT
=
( )
( )
100
34331
34299
×





−
−
= 89.22%
X-Ratio (Xr) = Gas Side Efficiency / Air Side Efficiency
647.0
22.89
77.57
==rX
Gas leaving temperature without leakage
Tgl = Tge – Xr (Tal – Tae) = 331 – 0.647(299 – 34) = 159.540
c
International Journal of Advanced Research in
Engineering and Applied Sciences ISSN: 2278-6252
Vol. 3 | No. 2 | February 2014 www.garph.co.uk IJAREAS | 20
Pre heater Secondary Air side efficiency:
Secondary Air side efficiency =
( )
( ) 100×








−
−
aege
aege
TT
TT
=
( )
( )
100
34331
54.159331
×





−
−
= 57.73%
Primary Air Side Efficiency:
Collected Data:
Tae – Temperature of air entering air heater = 460
c
Tal – Temperature of air leaving air heater = 3040
c
Tge – Temperature of gas entering air heater = 3310
c
Calculations:
Air Side Efficiency =
( )
( ) 100×








−
−
aege
aeal
TT
TT
=
( )
( )
100
46331
46304
×





−
−
= 90.52%
X-Ratio (Xr) = Gas Side Efficiency / Air Side Efficiency
638.0
52.90
77.57
==rX
Gas leaving temperature without leakage
Tgl = Tge – Xr (Tal – Tae) = 331 – 0.638(304 – 46) = 166.390
c
Pre heater Primary Air side efficiency:
Primary Air side efficiency =
( )
( ) 100×








−
−
aege
aege
TT
TT
=
( )
( )
100
46331
39.166331
×





−
−
= 57.75%
5.1 Rothemuhle air pre-heater:
The heating plate elements in this type of regenerative air pre-heater are also installed in a
casing, but the heating plate elements are stationary rather than rotating. Instead the air
ducts in the pre-heater are rotated so as to alternatively expose sections of the heating
plate elements to the up flowing cool air. As indicated in the adjacent drawing, there are
rotating inlet air ducts at the bottom of the stationary plates similar to the rotating outlet air
ducts at the top of the stationary plates. Stationary-plate regenerative air pre-heaters are
also known as Rothemuhle pre-heaters.
International Journal of Advanced Research in
Engineering and Applied Sciences ISSN: 2278-6252
Vol. 3 | No. 2 | February 2014 www.garph.co.uk IJAREAS | 21
Figure 10: Rothemuhle air pre-heater
1009.0
0.521
5.30.7
××





−
−
Calculations of Rothemuhle Air Pre-Heater:
Collected data:
AL – Air heater leakage
O2gl – Percentage of O2 in gas entering air heater: 3.5
O2ge – Percentage of O2 in as leaving air heater: 7.0
Air leaving air preheater = 2950
c
Air leakage (AL) = = 22.5%
Gas Side Efficiency: The gas efficiency is defined as the ratio of the temperature drop.
Corrected leakage, to the temperature head, expressed as a percentage. Temperature drop
is obtained by subtracting the corrected gas outlet temperature from the gas inlet
temperature. Temperature head is obtained by subtracting air inlet temperature from the
gas inlet temperature. The corrected gas outlet temperature is defined as outlet gas
temperature calculated for ‘no air heater leakage’ and is given by following equation.
( )
( ) gl
pg
aegl
pagnl T
C
TT
CALT +








×
−
×=
100
Collected Data:
Tgnl – Gas outlet temperature corrected for no leakage.
Cpa – The mean specific heat between temperature Tae and Tgl = 1.023 KJ / kg 0
k
International Journal of Advanced Research in
Engineering and Applied Sciences ISSN: 2278-6252
Vol. 3 | No. 2 | February 2014 www.garph.co.uk IJAREAS | 22
Cpg - The mean specific heat between temperature Tgl and Tae = 1.109 KJ / kg 0
k
Tae – Temperature of air entering air heater = 400
c
Tge – Temperature of gas entering air heater = 3310
c
Tgl – Temperature of gas leaving air heater = 1750
c
Calculation:
( )
( ) gl
pg
aegl
pagnl T
C
TT
CALT +








×
−
×=
100
( )
( )
175
109.1100
40175
023.15.22 +





×
−
××=gnlT = 2030
c
Air heater Gas side efficiency:
Gas side efficiency
( )
( ) 100×








−
−
=
aege
ngnlge
TT
TT
GSE 100
40331
203331
×





−
−
= = 43.920
c
Air Side Efficiency (SA & PA):
Ratio of air temperature gain across the air heater corrected from no leakage to the
temperature head.
Air Side Efficiency =
( )
( ) 100×








−
−
aege
aeal
TT
TT
Collected Data:
Tae – Temperature of air entering air heater = 400
c
Tal – Temperature of air leaving air heater = 2950
c
Tge – Temperature of gas entering air heater = 3310
c
Calculation:
Air Side Efficiency =
( )
( ) 100×








−
−
aege
aeal
TT
TT
=
( )
100
40331
40295
×





−
−
= 87.62%
X-Ratio (Xr) = Gas Side Efficiency / Air Side Efficiency
5.0
62.87
92.43
==rX
Gas leaving temperature without leakage
Tgl = Tge – Xr (Tal – Tae) = 331 – 0.5(295– 40) = 203.50
C
International Journal of Advanced Research in
Engineering and Applied Sciences ISSN: 2278-6252
Vol. 3 | No. 2 | February 2014 www.garph.co.uk IJAREAS | 23
Pre heater Air side efficiency (SA & PA):
Air side efficiency (SA & PA) =
( )
( ) 100×








−
−
aege
alge
TT
TT
=
( )
( )
100
40331
5.203331
×





−
−
= 43.8%
From this comparison air leakages in Rothemuhle are higher than Ljungstrom and air side,
gas side efficiencies are less in Rothemuhle
Ljungstrom APH
57
58
59
60
61
62
63
64
65
66
290 300 310 320 330 340
Air outlet Temperature
Efficiency
Y-Values
Rothemuhle APH
30
32
34
36
38
40
42
44
46
240 250 260 270 280 290 300
Air outlet Temperature
Efficiency
Y-Values
Figure 11: Pre heater Air side efficiency
CONCLUSIONS
 The Thermal performance of the air preheater is improved
 Load on the fans are reduced thus power consumption is reduced and cost is
reduced
 Fuel consumption is also reduced, thus fuel is saved and cost is reduced
 By comparing Rothemuhle with Ljungstrom air leakages are more, gas side efficiency
and air side efficiencies are less in Rothemuhle air pre-heater
 The Thermal performance of the Ljungstrom air pre-heater is better than
Rothemuhle
REFERENCES
[1] Driscoll, J.M. et. al, “ASME Performance Test Codes Test Code for Air Heaters”, USA,
1968.
[2] Hewitt, G.F., Shires, G.L. and Bott, T.R., “Process Heat Transfer”, Boca Raton, CRC
Press, USA, 1994.
International Journal of Advanced Research in
Engineering and Applied Sciences ISSN: 2278-6252
Vol. 3 | No. 2 | February 2014 www.garph.co.uk IJAREAS | 24
[3] Incropera, F.P. and Dewitt, D.P., “Introduction to Heat Transfer”, 4th
edition, John
Wiley & Sons Inc., USA, 2002.
[4] Shah, R.K., Sekulic, D.P., “Fundamentals of Heat Exchanger Design”, John Wiley &
Sons Inc., Canada, 2003.
[5] Juangjandee, P. and Sucharitakul, T., “Performance Evaluation of Cross-Flow Heat
Exchanger in Coal-Fired Power Plant under Particulate Condition”, 18th
Conference of
Mechanical Engineering Network of Thailand, Khon Kaen University, Thailand, 2004.
[6] Juangjandee, P. and Sucharitakul, T., “Performance Evaluation of Leakage Cross-Flow
Heat Exchanger in Coal-Fired Power Plant”, 19th
Conference of Mechanical
Engineering Network of Thailand, Phuket, Thailand, 2005.
[7] Juangjandee, P. and Sucharitakul, T., “Effect of High Ash Content Lignite on Cross-
Flow Heat Exchanger Performance in Mae Moh Lignite-Fired Power Plant”, HAPUA
Fuel Procurement & Utilisation Forum, Kuala Lumpur, Malaysia, 2006.
[8] Juangjandee, P. and Sucharitakul, T., “Air Heater Performance and Enhancement
under Low-Rank Coal”, 16th
Conference of Electric Power Supply Industry, Mumbai,
India, 2006.

More Related Content

What's hot

Heat exchanger
Heat exchangerHeat exchanger
Heat exchangerFertiglobe
 
Performance evaluation and optimization of air preheater in thermal power plant
Performance evaluation and optimization of air preheater in thermal power plantPerformance evaluation and optimization of air preheater in thermal power plant
Performance evaluation and optimization of air preheater in thermal power plantIAEME Publication
 
PERFORMANCE EVALUATION AND OPTIMIZATION OF AIR PREHEATER IN THERMAL POWER PLANT
PERFORMANCE EVALUATION AND OPTIMIZATION OF AIR PREHEATER IN THERMAL POWER PLANTPERFORMANCE EVALUATION AND OPTIMIZATION OF AIR PREHEATER IN THERMAL POWER PLANT
PERFORMANCE EVALUATION AND OPTIMIZATION OF AIR PREHEATER IN THERMAL POWER PLANTIAEME Publication
 
TPS EFFICIENCY AND HEAT RATE
TPS EFFICIENCY AND HEAT RATE TPS EFFICIENCY AND HEAT RATE
TPS EFFICIENCY AND HEAT RATE Manohar Tatwawadi
 
Energy adudit methodology for boiler
Energy adudit methodology for boilerEnergy adudit methodology for boiler
Energy adudit methodology for boilerKongkiert Tankayura
 
Cfb boiler basic design, operation and maintenance
Cfb boiler basic design, operation and maintenanceCfb boiler basic design, operation and maintenance
Cfb boiler basic design, operation and maintenancePichai Chaibamrung
 
Boiler Efficiency Calculations
Boiler Efficiency CalculationsBoiler Efficiency Calculations
Boiler Efficiency CalculationsManohar Tatwawadi
 
Cooling towers in thermal power plants
Cooling towers in thermal power plantsCooling towers in thermal power plants
Cooling towers in thermal power plantsManohar Tatwawadi
 
Condenser and cooling tower
Condenser and cooling towerCondenser and cooling tower
Condenser and cooling towerYashvir Singh
 
Basics of Compressor
Basics of CompressorBasics of Compressor
Basics of CompressorSLA1987
 
Large scale energy recovery ppt HRSG
Large scale energy recovery ppt HRSGLarge scale energy recovery ppt HRSG
Large scale energy recovery ppt HRSGlorenzo Monasca
 
Improve plant heat rate with feedwater heater control
Improve plant heat rate with feedwater heater controlImprove plant heat rate with feedwater heater control
Improve plant heat rate with feedwater heater controlHossam Zein
 
Heat rate audit in thermal power plant
Heat rate audit in thermal power plantHeat rate audit in thermal power plant
Heat rate audit in thermal power plantSHIVAJI CHOUDHURY
 
Unit lightup synchronisation & shutdown
Unit lightup synchronisation & shutdownUnit lightup synchronisation & shutdown
Unit lightup synchronisation & shutdownNitin Mahalle
 

What's hot (20)

Heat exchanger
Heat exchangerHeat exchanger
Heat exchanger
 
Boiler light up & loading
Boiler light up & loadingBoiler light up & loading
Boiler light up & loading
 
Performance evaluation and optimization of air preheater in thermal power plant
Performance evaluation and optimization of air preheater in thermal power plantPerformance evaluation and optimization of air preheater in thermal power plant
Performance evaluation and optimization of air preheater in thermal power plant
 
PERFORMANCE EVALUATION AND OPTIMIZATION OF AIR PREHEATER IN THERMAL POWER PLANT
PERFORMANCE EVALUATION AND OPTIMIZATION OF AIR PREHEATER IN THERMAL POWER PLANTPERFORMANCE EVALUATION AND OPTIMIZATION OF AIR PREHEATER IN THERMAL POWER PLANT
PERFORMANCE EVALUATION AND OPTIMIZATION OF AIR PREHEATER IN THERMAL POWER PLANT
 
TPS EFFICIENCY AND HEAT RATE
TPS EFFICIENCY AND HEAT RATE TPS EFFICIENCY AND HEAT RATE
TPS EFFICIENCY AND HEAT RATE
 
Energy adudit methodology for boiler
Energy adudit methodology for boilerEnergy adudit methodology for boiler
Energy adudit methodology for boiler
 
Cfb boiler basic design, operation and maintenance
Cfb boiler basic design, operation and maintenanceCfb boiler basic design, operation and maintenance
Cfb boiler basic design, operation and maintenance
 
Air heater
Air heaterAir heater
Air heater
 
Boiler Efficiency Calculations
Boiler Efficiency CalculationsBoiler Efficiency Calculations
Boiler Efficiency Calculations
 
Cooling towers in thermal power plants
Cooling towers in thermal power plantsCooling towers in thermal power plants
Cooling towers in thermal power plants
 
Condenser and cooling tower
Condenser and cooling towerCondenser and cooling tower
Condenser and cooling tower
 
Basics of Compressor
Basics of CompressorBasics of Compressor
Basics of Compressor
 
Large scale energy recovery ppt HRSG
Large scale energy recovery ppt HRSGLarge scale energy recovery ppt HRSG
Large scale energy recovery ppt HRSG
 
Steam generator part 2
Steam generator part 2Steam generator part 2
Steam generator part 2
 
Compressors
CompressorsCompressors
Compressors
 
Air pre heater
Air pre heaterAir pre heater
Air pre heater
 
Improve plant heat rate with feedwater heater control
Improve plant heat rate with feedwater heater controlImprove plant heat rate with feedwater heater control
Improve plant heat rate with feedwater heater control
 
Air cooled condensers
Air cooled condensersAir cooled condensers
Air cooled condensers
 
Heat rate audit in thermal power plant
Heat rate audit in thermal power plantHeat rate audit in thermal power plant
Heat rate audit in thermal power plant
 
Unit lightup synchronisation & shutdown
Unit lightup synchronisation & shutdownUnit lightup synchronisation & shutdown
Unit lightup synchronisation & shutdown
 

Similar to Improving boiler efficiency by using air preheater

Various parameters affecting the performance of a regenerator
Various parameters affecting the performance of a regeneratorVarious parameters affecting the performance of a regenerator
Various parameters affecting the performance of a regeneratorIJESFT
 
Combined Air Refrigeration, Air Conditioning and Water Dispenser Systems
Combined Air Refrigeration, Air Conditioning and Water Dispenser SystemsCombined Air Refrigeration, Air Conditioning and Water Dispenser Systems
Combined Air Refrigeration, Air Conditioning and Water Dispenser SystemsIRJET Journal
 
IRJET-Study of Space Cooling System Consisting of Aluminium Ammonia Heat Pipe...
IRJET-Study of Space Cooling System Consisting of Aluminium Ammonia Heat Pipe...IRJET-Study of Space Cooling System Consisting of Aluminium Ammonia Heat Pipe...
IRJET-Study of Space Cooling System Consisting of Aluminium Ammonia Heat Pipe...IRJET Journal
 
IRJET- Water Cooling With LPG as Refrigerant for Restaurants
IRJET- Water Cooling With LPG as Refrigerant for RestaurantsIRJET- Water Cooling With LPG as Refrigerant for Restaurants
IRJET- Water Cooling With LPG as Refrigerant for RestaurantsIRJET Journal
 
IRJET- Water Cooling With LPG as Refrigerant for Restaurants
IRJET- Water Cooling With LPG as Refrigerant for RestaurantsIRJET- Water Cooling With LPG as Refrigerant for Restaurants
IRJET- Water Cooling With LPG as Refrigerant for RestaurantsIRJET Journal
 
Improving Efficiency of Cooling Coil Chiller Units
Improving Efficiency of Cooling Coil Chiller UnitsImproving Efficiency of Cooling Coil Chiller Units
Improving Efficiency of Cooling Coil Chiller UnitsDr. Amarjeet Singh
 
Thermal analysis of cooling effect on gas turbine blade
Thermal analysis of cooling effect on gas turbine bladeThermal analysis of cooling effect on gas turbine blade
Thermal analysis of cooling effect on gas turbine bladeeSAT Publishing House
 
Thermal analysis of cooling effect on gas turbine blade
Thermal analysis of cooling effect on gas turbine bladeThermal analysis of cooling effect on gas turbine blade
Thermal analysis of cooling effect on gas turbine bladeeSAT Journals
 
Review of Opportunities to Improve Steam Condenser with Nanofluids in Power P...
Review of Opportunities to Improve Steam Condenser with Nanofluids in Power P...Review of Opportunities to Improve Steam Condenser with Nanofluids in Power P...
Review of Opportunities to Improve Steam Condenser with Nanofluids in Power P...IRJET Journal
 
IRJET- Thermal Analysis on Solar Air Heater Duct
IRJET- Thermal Analysis on Solar Air Heater DuctIRJET- Thermal Analysis on Solar Air Heater Duct
IRJET- Thermal Analysis on Solar Air Heater DuctIRJET Journal
 
Bn32839844
Bn32839844Bn32839844
Bn32839844IJMER
 
IRJET- Experimental Investigation on the Performance of V.C.R. System using R...
IRJET- Experimental Investigation on the Performance of V.C.R. System using R...IRJET- Experimental Investigation on the Performance of V.C.R. System using R...
IRJET- Experimental Investigation on the Performance of V.C.R. System using R...IRJET Journal
 
Waste Heat Recovery From Refrigeration Plant
Waste Heat Recovery From Refrigeration PlantWaste Heat Recovery From Refrigeration Plant
Waste Heat Recovery From Refrigeration PlantIRJET Journal
 
IRJET-Numerical Investigation on Performance of VCR System using Shell and Tu...
IRJET-Numerical Investigation on Performance of VCR System using Shell and Tu...IRJET-Numerical Investigation on Performance of VCR System using Shell and Tu...
IRJET-Numerical Investigation on Performance of VCR System using Shell and Tu...IRJET Journal
 
IRJET- Experimental Analysis on Power Generation Unit using R134a Powered...
IRJET-  	  Experimental Analysis on Power Generation Unit using R134a Powered...IRJET-  	  Experimental Analysis on Power Generation Unit using R134a Powered...
IRJET- Experimental Analysis on Power Generation Unit using R134a Powered...IRJET Journal
 
Aph operation and emergency handling
Aph operation and emergency handlingAph operation and emergency handling
Aph operation and emergency handlingParag Agrawal
 
Modification of Generator In Electrolux Refrigerator
Modification of Generator In Electrolux RefrigeratorModification of Generator In Electrolux Refrigerator
Modification of Generator In Electrolux RefrigeratorIRJET Journal
 
IRJET- A Review of Solar Water Heater Performance Factors
IRJET- A Review of Solar Water Heater Performance FactorsIRJET- A Review of Solar Water Heater Performance Factors
IRJET- A Review of Solar Water Heater Performance FactorsIRJET Journal
 

Similar to Improving boiler efficiency by using air preheater (20)

Various parameters affecting the performance of a regenerator
Various parameters affecting the performance of a regeneratorVarious parameters affecting the performance of a regenerator
Various parameters affecting the performance of a regenerator
 
D046041925
D046041925D046041925
D046041925
 
Combined Air Refrigeration, Air Conditioning and Water Dispenser Systems
Combined Air Refrigeration, Air Conditioning and Water Dispenser SystemsCombined Air Refrigeration, Air Conditioning and Water Dispenser Systems
Combined Air Refrigeration, Air Conditioning and Water Dispenser Systems
 
IRJET-Study of Space Cooling System Consisting of Aluminium Ammonia Heat Pipe...
IRJET-Study of Space Cooling System Consisting of Aluminium Ammonia Heat Pipe...IRJET-Study of Space Cooling System Consisting of Aluminium Ammonia Heat Pipe...
IRJET-Study of Space Cooling System Consisting of Aluminium Ammonia Heat Pipe...
 
IRJET- Water Cooling With LPG as Refrigerant for Restaurants
IRJET- Water Cooling With LPG as Refrigerant for RestaurantsIRJET- Water Cooling With LPG as Refrigerant for Restaurants
IRJET- Water Cooling With LPG as Refrigerant for Restaurants
 
IRJET- Water Cooling With LPG as Refrigerant for Restaurants
IRJET- Water Cooling With LPG as Refrigerant for RestaurantsIRJET- Water Cooling With LPG as Refrigerant for Restaurants
IRJET- Water Cooling With LPG as Refrigerant for Restaurants
 
Improving Efficiency of Cooling Coil Chiller Units
Improving Efficiency of Cooling Coil Chiller UnitsImproving Efficiency of Cooling Coil Chiller Units
Improving Efficiency of Cooling Coil Chiller Units
 
Thermal analysis of cooling effect on gas turbine blade
Thermal analysis of cooling effect on gas turbine bladeThermal analysis of cooling effect on gas turbine blade
Thermal analysis of cooling effect on gas turbine blade
 
Thermal analysis of cooling effect on gas turbine blade
Thermal analysis of cooling effect on gas turbine bladeThermal analysis of cooling effect on gas turbine blade
Thermal analysis of cooling effect on gas turbine blade
 
Review of Opportunities to Improve Steam Condenser with Nanofluids in Power P...
Review of Opportunities to Improve Steam Condenser with Nanofluids in Power P...Review of Opportunities to Improve Steam Condenser with Nanofluids in Power P...
Review of Opportunities to Improve Steam Condenser with Nanofluids in Power P...
 
IRJET- Thermal Analysis on Solar Air Heater Duct
IRJET- Thermal Analysis on Solar Air Heater DuctIRJET- Thermal Analysis on Solar Air Heater Duct
IRJET- Thermal Analysis on Solar Air Heater Duct
 
Bn32839844
Bn32839844Bn32839844
Bn32839844
 
IRJET- Experimental Investigation on the Performance of V.C.R. System using R...
IRJET- Experimental Investigation on the Performance of V.C.R. System using R...IRJET- Experimental Investigation on the Performance of V.C.R. System using R...
IRJET- Experimental Investigation on the Performance of V.C.R. System using R...
 
Waste Heat Recovery From Refrigeration Plant
Waste Heat Recovery From Refrigeration PlantWaste Heat Recovery From Refrigeration Plant
Waste Heat Recovery From Refrigeration Plant
 
IRJET-Numerical Investigation on Performance of VCR System using Shell and Tu...
IRJET-Numerical Investigation on Performance of VCR System using Shell and Tu...IRJET-Numerical Investigation on Performance of VCR System using Shell and Tu...
IRJET-Numerical Investigation on Performance of VCR System using Shell and Tu...
 
IRJET- Experimental Analysis on Power Generation Unit using R134a Powered...
IRJET-  	  Experimental Analysis on Power Generation Unit using R134a Powered...IRJET-  	  Experimental Analysis on Power Generation Unit using R134a Powered...
IRJET- Experimental Analysis on Power Generation Unit using R134a Powered...
 
Aph operation and emergency handling
Aph operation and emergency handlingAph operation and emergency handling
Aph operation and emergency handling
 
Modification of Generator In Electrolux Refrigerator
Modification of Generator In Electrolux RefrigeratorModification of Generator In Electrolux Refrigerator
Modification of Generator In Electrolux Refrigerator
 
IRJET- A Review of Solar Water Heater Performance Factors
IRJET- A Review of Solar Water Heater Performance FactorsIRJET- A Review of Solar Water Heater Performance Factors
IRJET- A Review of Solar Water Heater Performance Factors
 
Ad04602208211
Ad04602208211Ad04602208211
Ad04602208211
 

Recently uploaded

APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSKurinjimalarL3
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxupamatechverse
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Dr.Costas Sachpazis
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝soniya singh
 
chaitra-1.pptx fake news detection using machine learning
chaitra-1.pptx  fake news detection using machine learningchaitra-1.pptx  fake news detection using machine learning
chaitra-1.pptx fake news detection using machine learningmisbanausheenparvam
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingrakeshbaidya232001
 
the ladakh protest in leh ladakh 2024 sonam wangchuk.pptx
the ladakh protest in leh ladakh 2024 sonam wangchuk.pptxthe ladakh protest in leh ladakh 2024 sonam wangchuk.pptx
the ladakh protest in leh ladakh 2024 sonam wangchuk.pptxhumanexperienceaaa
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)Suman Mia
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130Suhani Kapoor
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130Suhani Kapoor
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSCAESB
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...ranjana rawat
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escortsranjana rawat
 
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...ranjana rawat
 

Recently uploaded (20)

APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptx
 
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCRCall Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
 
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptxExploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
 
chaitra-1.pptx fake news detection using machine learning
chaitra-1.pptx  fake news detection using machine learningchaitra-1.pptx  fake news detection using machine learning
chaitra-1.pptx fake news detection using machine learning
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writing
 
the ladakh protest in leh ladakh 2024 sonam wangchuk.pptx
the ladakh protest in leh ladakh 2024 sonam wangchuk.pptxthe ladakh protest in leh ladakh 2024 sonam wangchuk.pptx
the ladakh protest in leh ladakh 2024 sonam wangchuk.pptx
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentation
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
 
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
 
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
 

Improving boiler efficiency by using air preheater

  • 1. International Journal of Advanced Research in Engineering and Applied Sciences ISSN: 2278-6252 Vol. 3 | No. 2 | February 2014 www.garph.co.uk IJAREAS | 11 IMPROVING BOILER EFFICIENCY BY USING AIR PREHEATER V. Mallikarjuna* N. Jashuva** B. Rama Bhupal Reddy*** Abstract: Air pre-heater is a heat transfer surface in which air temperature is raised by transferring heat from other media such as flue gas .Hot air is necessary for rapid combustion in the furnace and also for drying coal in milling plants. So an essential boiler accessory which serves this purpose is air pre-heater. The air pre-heater are not essential for operation of steam generator, but they are used where a study of cost indicates that money can be saved or efficient combustion can be obtained by their use. The decision for its adoption can be made when the financial advantages is weighed against the capital cost of heater in the present paper we have taken up the operation and performance analysis of LJUNGSTROM AIRPREHEATER27VITM 1900 of 2x210 MW capacity Rayalaseema Thermal Power Plant, Kalamala and compare with Rothemuhle air pre-heater. In analysis of performance preventive measures for corrosion of heating elements has been studied, and also air heater leakage, corrected gas outlet temperature and finally gas efficiency has been calculated. Key words: Thermal power plant, energy, air pre heater, Rothemuhle air pre-heater *Assistant Professor, Department of Mechanical Engineering, Global College of Engineering, Science & Technology, Kadapa, A.P., India. **Assistant Professor, Department of Humanities, Bharat College of Engineering & Technology for Women, Kadapa, A.P., India. *** Associate Professor, Department of Mathematics, K.S.R.M. College of Engineering, Kadapa, A.P., India.
  • 2. International Journal of Advanced Research in Engineering and Applied Sciences ISSN: 2278-6252 Vol. 3 | No. 2 | February 2014 www.garph.co.uk IJAREAS | 12 1. INTRODUCTON The place where the heat energy of fuel is converted into Electrical Energy is called Thermal Power Plant. Energy Conversion: This part of the lesion outlines the various conversion processes which are carried out at power station indicating where possible the efficiency of the conversion process or in other words, indicating how successful the operation is of converting one form of energy into another. Remember, energy cannot be destroyed, but its conversion incurs difficulties, which results in not all the energy being usefully converted Chemical Energy to Heat Energy: Chemical energy is stored in coal is converted into heat by the process known as combustion. The carbon and other combustible elements in coal are made to unite with Oxygen of air in furnaces. This process converts chemical energy into heat energy. Many pieces of equipment are used for this first conversion, including chain grate stroke, pulverized fuel furnaces, forced and induced draught fans, chimney stacks and many other items of boiler house plant. 2. WORKING PRINCIPLE As the name implies the tri-sector pre-heater design has three sections. Use for flue gas. One for primary air (used for drying and transport of coal through mill to the burner) another for secondary air (additional air for combustion around the burners). These helps in avoiding wastage of heat pick up by air due to primary air flow and also help in selecting different temperatures for primary air and secondary air. Whatever is not utilized in primary air can be picked up by secondary air stream. Thousands of these high efficiency elements are spaced compactly arranged with in 12 sectors shaped compartments for heater size from 24.2 to 27 inches, and 24 sector shaped compartments for heater size from 28 to 33 of radially divided cylindrical shell called the rotor. The housing surrounding the rotor is provided with duct connections at both ends and is adequately sealed by radial and axial sealing members forming an air passage through one half of the pre-heater and a gas passage through the other. As the rotor slowly revolves the mass of the elements alternatively through the air and gas passage, heat is absorbed by the element surfaces passing through the hot gas stream. These are the same surfaces are carried through the air stream. They released the stored up heat thus increasing the temperature of the incoming combustion or process air.
  • 3. International Journal of Advanced Research in Engineering and Applied Sciences ISSN: 2278-6252 Vol. 3 | No. 2 | February 2014 www.garph.co.uk IJAREAS | 13 Figure 1: 3-D View of Ljungstrom Air pre-heater The Ljungstrom air pre-heater is more widely used than any other type of heat exchanger for comparable service. The reasons for this world wide acceptance are its proven performance and reliability, effective leakage control, and its adaptability to most, any fuel burning process. It is both designed and built to operate over extend periods with durable, uninterrupted service. Simplicity of design also makes it easy and economical to maintain while in operation and at scheduled outages. Applications of Air Pre-Heaters: Available in a broad range of sizes, arrangements and materials, LJUNGSTROM Air pre-heaters are custom engineer to meet the specific requirements and operating conditions of a variety of applications.  Electric power generating plants  Fluidized bed and marine boilers  Package and large industrial boilers  Hydro-carbon and chemical processes  Flue gas and other re heating systems  Heat transfer surface 3. IMPROVEMENT IN THERMAL PERFORMANCE Leakage Reduction: The seal setting done under better supervision should reduce the leakage. Seals are to be set, not only to be fitted.
  • 4. International Journal of Advanced Research in Engineering and Applied Sciences ISSN: 2278-6252 Vol. 3 | No. 2 | February 2014 www.garph.co.uk IJAREAS | 14 Soft Touch Seal: A new concept has been developed to minimize the seal leak. As an introduction, this ‘Soft Touch Seal’ is provided for hot end radial seal only. This can be extended to axial seal also. Soft touch seal has flexile end that cannot escape air from one basket to another basket. That can be reduces the percentage of air leak to flue gas. Heat transfer is effectively utilized from flue gas to Primary Air and Secondary Air. Double Sealing: In double sealing an additional radial and axial seals are introduced along with the existing seals. This will reduce the overall leakage y 1.5% to 2% recently even triple seals have been introduced. Double Sealing is adapted in the recent design. For old air pre-heaters, this can be retrofitted. This modification will call for the change of all baskets dimensions Figure 2: Incorporation of soft touch seal Figure 3: View of soft touch seal Diaphragm Plate Protection Sheets: In the conventional air pre-heater, the hot end of the diaphragm plate is exposed to the gas flow. Due to erosive ash particles, the diaphragm plate edges erode fast. In course of time, the erosion extends to the radial seal fixing hole, thereby distributing the fixing and setting of radial seals. The diaphragm plate edge can e protected by the erosive resistant cover plates with the change of seals, these protective sheets also can be changed. Figure 4: Installation of soft touch seal
  • 5. International Journal of Advanced Research in Engineering and Applied Sciences ISSN: 2278-6252 Vol. 3 | No. 2 | February 2014 www.garph.co.uk IJAREAS | 15 Figure 5: Before and After sealing Figure 6: Insertion of diaphragm protection sheets Cast ‘T’ Bar: Currently rolled ‘T’ bars are used for bypass sealing. This rolled ‘T’ has more variation in the radius. After setting it gives more leakage through bypass seal. Whatever correction is made at site could not control the radius variations. The cast ‘T’ bars keep the radius with controlled dimension, thus reducing the leakage across bypass seals. Figure 7: Reducing gaps by casted T-Bars Change of Profile for cold end Baskets: In old air pre-heaters, the cold end baskets are provided with 1.2 mm thick elements of NF6 profile. For Indian operating conditions, this
  • 6. International Journal of Advanced Research in Engineering and Applied Sciences ISSN: 2278-6252 Vol. 3 | No. 2 | February 2014 www.garph.co.uk IJAREAS | 16 can be changed to 0.8 mm DU profile. This will increase the heat transfer area, thereby reducing the flue as outlet temperature. It is calculated that by changing the profile as suggested, the as outlet temperature will decrease by 40 C, that means 0.2% improvement in efficiency. This change has already been incorporated in the current design. Still some of the air pre-heaters are operating with cold end NF6 profile. This can be changed. New Profiles: A highly efficient element profiles are available to improve the thermal performance. Case Study-I is presented to show the performance changes with the introduction of new profiles. With the introduction of new profile, the gas outlet temperature can be achieved to 135.60 C. Figure 8: Change of profiles Figure 9: New profiles 4. OVERHAULING OF THE PLANT AFTER INCORPORATING SOFT SEALS: OVERHAUL PERIOD - (15/11/2012 - 15/12/2012) S.No. PARAMETERSUNITS BEFORE OVERHAUL AFTER OVERHAUL APH-A APH-B APH-A APH-B 1. UNITLOAD MW 205 - 210 - 2. Fuel consumption T/hr 115.3 - 113 - 3. PD fan current amps 198 178 181 188 4. FD fan current amps 171 164 157 141 5. ID fan current amps 278 311 236 238
  • 7. International Journal of Advanced Research in Engineering and Applied Sciences ISSN: 2278-6252 Vol. 3 | No. 2 | February 2014 www.garph.co.uk IJAREAS | 17 4.1 Profits Gained After Overhauling A) Cost saving per hour: 1. Fuel saving = 115.3 - 113 = 2.3 T/Hr 2. Assuming coal cost as = Rs 2000 per MT 3. Cost saving per hour = 2000 X 2.3 = Rs 4600 4. Cost of fuel saving per year = 4600X24X365 = Rs 40, 29,600 B) Cost benefit due to fan loading: 1. Total fan loading before overhauling = 1300 amps 2. Total fan loading after overhauling = 1141 amps 3. Total saving in current = 159 amps 4. Power saved = 1.73 X 3.3 X 159 X 0.86 = 782.00KWhr = 0.782MWhr 5. Energy saved per year = 6,850,320 6. Power cost = Rs 2.60 per unit 7. Saving per year = 6850320 X 2.60 = Rs 1,78,10,832 C) Total savings per year = 4,02,96,000 + 1,78,10,832 = Rs 5,81,06,832 5. COMPARING LJUNGSTROM WITH ROTHEMUHLE Calculations of Ljungstrom air pre-heater The method determines air pre-heater as per this procedure is the volumetric method this is an empirical approximation of air heaters leakage with an accuracy of + / - 1%. ( ) ( ) 1009.0 21 2 22 ×× − − = gl gegl O OO AL Collected Data: AL – Air heater leakage O2gl – Percentage of O2 in gas entering air heater: 3.5 O2ge – Percentage of O2 in as leaving air heater: 5.0 Secondary air (SA) leaving air heater = 2990 c Primary air (PA) leaving air heater = 3040 c
  • 8. International Journal of Advanced Research in Engineering and Applied Sciences ISSN: 2278-6252 Vol. 3 | No. 2 | February 2014 www.garph.co.uk IJAREAS | 18 Calculations: Air leakage ( ) ( ) 1009.0 0.521 5.30.5 ×× − − =AL = 8.437 % Gas Side Efficiency: The gas efficiency is defined as the ratio of the temperature drop. Corrected leakage to the temperature head, expressed as a percentage. Temperature drop is obtained y subtracting the corrected gas outlet temperature from the gas inlet temperature. Temperature head is obtained y subtracting air inlet temperature from the gas inlet temperature. The corrected gas outlet temperature is defined as outlet gas temperature calculated for ‘no air heater leakage’ and is given y following equation. ( ) ( ) gl pg aegl pagnl T C TT CALT +         × − ×= 100 Collected Data: Tgnl – Gas outlet temperature corrected for no leakage. Cpa – The mean specific heat between temperature Tae and Tgl = 1.023 KJ / kg 0 k Cpg - The mean specific heat between temperature Tgl and Tae = 1.109 KJ / kg 0 k Tae – Temperature of air entering air heater = 400 c Tge – Temperature of gas entering air heater = 3310 c Tgl – Temperature of gas leaving air heater = 1540 c Calculations: ( ) ( ) gl pg aegl pagnl T C TT CALT +         × − ×= 100 ( ) ( ) 154 109.1100 40154 023.1437.8 +      × − ××=gnlT = 162.870 c Air heater Gas side efficiency: Gas side efficiency ( ) ( ) 100×         − − = aege ngnlge TT TT GSE 100 40331 87.162331 ×    − − = = 57.77% X- Ratio: Ratio of heat capacity of air passing through the air heater to the heat capacity of flue gas passing through the air heater. X-Ratio (Xr.) = Gas Side Efficiency / Air Side Efficiency
  • 9. International Journal of Advanced Research in Engineering and Applied Sciences ISSN: 2278-6252 Vol. 3 | No. 2 | February 2014 www.garph.co.uk IJAREAS | 19 Air Side Efficiency (SA & PA): Ratio of air temperature gain across the air heater corrected from no leakage to the temperature head. Air Side Efficiency = ( ) ( ) 100×         − − aege aeal TT TT Collected Data: Tae – Temperature of air entering air heater = 400 c Tal – Temperature of air leaving air heater = 3020 c Tge – Temperature of gas entering air heater = 3310 c Calculations: Air Side Efficiency = ( ) ( ) 100×         − − aege aeal TT TT = ( ) ( ) 100 40331 40302 ×      − − = 90.03% X-Ratio (Xr.) = Gas Side Efficiency / Air Side Efficiency 641.0 03.90 77.57 ==rX Gas leaving temperature without leakage ( )aealrgegl TTXTT −−= = 331 – 0.641 (302 – 40) = 163.050 c Pre heater Air side efficiency (SA & PA): Air side efficiency (SA & PA)= ( ) ( ) 100×         − − aege aege TT TT = ( ) ( ) 100 40331 05.163331 ×      − − = 57.71% Secondary Air Side Efficiency: Collected Data: Tae – Temperature of air entering air heater = 340 c Tal – Temperature of air leaving air heater = 2990 c Tge – Temperature of gas entering air heater = 3310 c Calculations: Air Side Efficiency = ( ) ( ) 100×         − − aege aeal TT TT = ( ) ( ) 100 34331 34299 ×      − − = 89.22% X-Ratio (Xr) = Gas Side Efficiency / Air Side Efficiency 647.0 22.89 77.57 ==rX Gas leaving temperature without leakage Tgl = Tge – Xr (Tal – Tae) = 331 – 0.647(299 – 34) = 159.540 c
  • 10. International Journal of Advanced Research in Engineering and Applied Sciences ISSN: 2278-6252 Vol. 3 | No. 2 | February 2014 www.garph.co.uk IJAREAS | 20 Pre heater Secondary Air side efficiency: Secondary Air side efficiency = ( ) ( ) 100×         − − aege aege TT TT = ( ) ( ) 100 34331 54.159331 ×      − − = 57.73% Primary Air Side Efficiency: Collected Data: Tae – Temperature of air entering air heater = 460 c Tal – Temperature of air leaving air heater = 3040 c Tge – Temperature of gas entering air heater = 3310 c Calculations: Air Side Efficiency = ( ) ( ) 100×         − − aege aeal TT TT = ( ) ( ) 100 46331 46304 ×      − − = 90.52% X-Ratio (Xr) = Gas Side Efficiency / Air Side Efficiency 638.0 52.90 77.57 ==rX Gas leaving temperature without leakage Tgl = Tge – Xr (Tal – Tae) = 331 – 0.638(304 – 46) = 166.390 c Pre heater Primary Air side efficiency: Primary Air side efficiency = ( ) ( ) 100×         − − aege aege TT TT = ( ) ( ) 100 46331 39.166331 ×      − − = 57.75% 5.1 Rothemuhle air pre-heater: The heating plate elements in this type of regenerative air pre-heater are also installed in a casing, but the heating plate elements are stationary rather than rotating. Instead the air ducts in the pre-heater are rotated so as to alternatively expose sections of the heating plate elements to the up flowing cool air. As indicated in the adjacent drawing, there are rotating inlet air ducts at the bottom of the stationary plates similar to the rotating outlet air ducts at the top of the stationary plates. Stationary-plate regenerative air pre-heaters are also known as Rothemuhle pre-heaters.
  • 11. International Journal of Advanced Research in Engineering and Applied Sciences ISSN: 2278-6252 Vol. 3 | No. 2 | February 2014 www.garph.co.uk IJAREAS | 21 Figure 10: Rothemuhle air pre-heater 1009.0 0.521 5.30.7 ××      − − Calculations of Rothemuhle Air Pre-Heater: Collected data: AL – Air heater leakage O2gl – Percentage of O2 in gas entering air heater: 3.5 O2ge – Percentage of O2 in as leaving air heater: 7.0 Air leaving air preheater = 2950 c Air leakage (AL) = = 22.5% Gas Side Efficiency: The gas efficiency is defined as the ratio of the temperature drop. Corrected leakage, to the temperature head, expressed as a percentage. Temperature drop is obtained by subtracting the corrected gas outlet temperature from the gas inlet temperature. Temperature head is obtained by subtracting air inlet temperature from the gas inlet temperature. The corrected gas outlet temperature is defined as outlet gas temperature calculated for ‘no air heater leakage’ and is given by following equation. ( ) ( ) gl pg aegl pagnl T C TT CALT +         × − ×= 100 Collected Data: Tgnl – Gas outlet temperature corrected for no leakage. Cpa – The mean specific heat between temperature Tae and Tgl = 1.023 KJ / kg 0 k
  • 12. International Journal of Advanced Research in Engineering and Applied Sciences ISSN: 2278-6252 Vol. 3 | No. 2 | February 2014 www.garph.co.uk IJAREAS | 22 Cpg - The mean specific heat between temperature Tgl and Tae = 1.109 KJ / kg 0 k Tae – Temperature of air entering air heater = 400 c Tge – Temperature of gas entering air heater = 3310 c Tgl – Temperature of gas leaving air heater = 1750 c Calculation: ( ) ( ) gl pg aegl pagnl T C TT CALT +         × − ×= 100 ( ) ( ) 175 109.1100 40175 023.15.22 +      × − ××=gnlT = 2030 c Air heater Gas side efficiency: Gas side efficiency ( ) ( ) 100×         − − = aege ngnlge TT TT GSE 100 40331 203331 ×      − − = = 43.920 c Air Side Efficiency (SA & PA): Ratio of air temperature gain across the air heater corrected from no leakage to the temperature head. Air Side Efficiency = ( ) ( ) 100×         − − aege aeal TT TT Collected Data: Tae – Temperature of air entering air heater = 400 c Tal – Temperature of air leaving air heater = 2950 c Tge – Temperature of gas entering air heater = 3310 c Calculation: Air Side Efficiency = ( ) ( ) 100×         − − aege aeal TT TT = ( ) 100 40331 40295 ×      − − = 87.62% X-Ratio (Xr) = Gas Side Efficiency / Air Side Efficiency 5.0 62.87 92.43 ==rX Gas leaving temperature without leakage Tgl = Tge – Xr (Tal – Tae) = 331 – 0.5(295– 40) = 203.50 C
  • 13. International Journal of Advanced Research in Engineering and Applied Sciences ISSN: 2278-6252 Vol. 3 | No. 2 | February 2014 www.garph.co.uk IJAREAS | 23 Pre heater Air side efficiency (SA & PA): Air side efficiency (SA & PA) = ( ) ( ) 100×         − − aege alge TT TT = ( ) ( ) 100 40331 5.203331 ×      − − = 43.8% From this comparison air leakages in Rothemuhle are higher than Ljungstrom and air side, gas side efficiencies are less in Rothemuhle Ljungstrom APH 57 58 59 60 61 62 63 64 65 66 290 300 310 320 330 340 Air outlet Temperature Efficiency Y-Values Rothemuhle APH 30 32 34 36 38 40 42 44 46 240 250 260 270 280 290 300 Air outlet Temperature Efficiency Y-Values Figure 11: Pre heater Air side efficiency CONCLUSIONS  The Thermal performance of the air preheater is improved  Load on the fans are reduced thus power consumption is reduced and cost is reduced  Fuel consumption is also reduced, thus fuel is saved and cost is reduced  By comparing Rothemuhle with Ljungstrom air leakages are more, gas side efficiency and air side efficiencies are less in Rothemuhle air pre-heater  The Thermal performance of the Ljungstrom air pre-heater is better than Rothemuhle REFERENCES [1] Driscoll, J.M. et. al, “ASME Performance Test Codes Test Code for Air Heaters”, USA, 1968. [2] Hewitt, G.F., Shires, G.L. and Bott, T.R., “Process Heat Transfer”, Boca Raton, CRC Press, USA, 1994.
  • 14. International Journal of Advanced Research in Engineering and Applied Sciences ISSN: 2278-6252 Vol. 3 | No. 2 | February 2014 www.garph.co.uk IJAREAS | 24 [3] Incropera, F.P. and Dewitt, D.P., “Introduction to Heat Transfer”, 4th edition, John Wiley & Sons Inc., USA, 2002. [4] Shah, R.K., Sekulic, D.P., “Fundamentals of Heat Exchanger Design”, John Wiley & Sons Inc., Canada, 2003. [5] Juangjandee, P. and Sucharitakul, T., “Performance Evaluation of Cross-Flow Heat Exchanger in Coal-Fired Power Plant under Particulate Condition”, 18th Conference of Mechanical Engineering Network of Thailand, Khon Kaen University, Thailand, 2004. [6] Juangjandee, P. and Sucharitakul, T., “Performance Evaluation of Leakage Cross-Flow Heat Exchanger in Coal-Fired Power Plant”, 19th Conference of Mechanical Engineering Network of Thailand, Phuket, Thailand, 2005. [7] Juangjandee, P. and Sucharitakul, T., “Effect of High Ash Content Lignite on Cross- Flow Heat Exchanger Performance in Mae Moh Lignite-Fired Power Plant”, HAPUA Fuel Procurement & Utilisation Forum, Kuala Lumpur, Malaysia, 2006. [8] Juangjandee, P. and Sucharitakul, T., “Air Heater Performance and Enhancement under Low-Rank Coal”, 16th Conference of Electric Power Supply Industry, Mumbai, India, 2006.