Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
CONFRONTING GLOBAL WARMING                                                                                                ...
Myth: “Demand for EVs will require more power plants to be built.”                            Fact: Like new TVs or air co...
Average Trip Lengths per Household (miles)                                                      Social and Recreational   ...
EV production anchors thousands of jobs in advanced vehicle, battery, and component                           manufacturin...
Upcoming SlideShare
Loading in …5
×

Electric Vehicles Myths vs. Facts - National Wildlife Federation

811 views

Published on

Cheap oil is tapped out. Americans send about a third of a trillion dollars overseas to pay for oil every year and oil imports are responsible for 50% of our trade deficit.

Published in: Technology
  • Be the first to comment

Electric Vehicles Myths vs. Facts - National Wildlife Federation

  1. 1. CONFRONTING GLOBAL WARMING Electric Vehicles Myths vs. Facts Cheap oil is tapped out. Americans send about a third of a trillion dollars overseas to pay for oil every year and oil imports are responsible for 50% of our trade deficit.1 Whether oil is domestic or imported, our economy remains at the mercy of rising and volatile oil prices set by global demand. By contrast, car and truck innovation provides Siel via flickr.com Americans with real options to cope with high gas prices. And electric vehicles (EVs) free households and businesses from the gas pump altogether. EVs also improve local air quality, improve our energy security, and help combat climate change. EVs are here today. The Chevy Volt, Nissan Leaf and Tesla Roadster are in dealerships now, and over the next two years virtually every automaker will introduce a plug-in electric or plug -in hybrid car or truck. By getting EVs rolling, more than half the miles we drive could be electric by 2030.2 Below we address some of the most common questions about this new technology. Myth: “Sure, EVs have no tailpipe pollution, but once you account for the pollution from the electricity that fuels them, Electric vehicles (EVs) aren’t any cleaner than gasoline vehicles.” Fact: Even when powered by electricity made from coal, EVs are still cleaner to operate than a comparable car powered with a gasoline engine. A typical car fueled by gasoline emits more than twice as much global warming pollution as an EV charged using average US electricity (see graph). EVs also get cleaner over time as states increasingly require utilities to generate more power from renewable sources such as wind and solar power.Contact: Data from US EPA3 and Energy Information Administration4Zoe Lipman ________________________________________________Senior Manager 1 US Census Bureau: Bureau of Economy Analysis. “US International Trade in Goods and Services.” June 2010.Transportation Solutions, <http://www.bea.gov/newsreleases/international/trade/2010/trad0610.htm>.Climate & Energy Program 2 Electrification Coalition. “Electrification Roadmap.” November 2009.202-797-6614 (p) <http://electrificationcoalition.org/reports/EC-Roadmap-screen.pdf>.202-797-6646 (f) 3 US Environmental Protection Agency. “Emission Facts: Greenhouse Gas Emissions from a Typical Passenger Vehicle.” January 2010.lipman@nwf.org <http://www.epa.gov/oms/climate/420f05004.htm>. comparing mid-sized sedans; not accounting for petroleum refining emissions 4 US Energy Information Administration. “Carbon Dioxide Emissions from the Generation of Electric Power in the United States.” July 2000. <http://www.eia.doe.gov/cneaf/electricity/page/co2_report/co2report.html>.
  2. 2. Myth: “Demand for EVs will require more power plants to be built.” Fact: Like new TVs or air conditioning units, EVs do increase electric power use. But, if managed correctly, that power can be fully provided using the power plants we have today. Much of the day, most power plants operate far below their capacity. That idle off -peak capacity would be sufficient to power 84% of all vehicles if they were EVs.5 Today’s electric vehicles come with technology to help ensure that most cars charge “off peak”—at night, or at other times when power plants are less busy. Consumers and power companies can also benefit by maximizing this kind of charging. Myth: “EVs can’t meet every driver’s needs.” Fact: No one car or technology meets every driver’s needs, but new, mass market, high performing EVs provide consumers with real, gasoline-free driving choices for the first time. And even amongst the first electric and plug-in hybrid vehicles, there are a variety of combinations of range, price, and availability of gas engine backup that can meet the needs of many different lifestyles. Today’s EV batteries provide strong vehicle performance over distances that meet most households’ daily driving needs. The typical American driver drives fewer than 35 miles per day on average,6 and our most frequent trips are much shorter—closer to 10 miles (see“New, mass market, graphs below and on next page). Current electric vehicles are of two types: (1) all- electrichigh performing EVs cars with a range of 70 miles or more on one charge, and (2) plug-in electric hybrids that drive from 10- 40 miles all-electric before they switch to gasoline backup for long provide consumers distances. These two approaches meet most driving needs while providing low fueling cost with real, gasoline- and low pollution.free driving choices Unlike many other alternative fuels, electricity is everywhere, so the infrastructure for the first time.” upgrades needed for EVs are comparatively modest. If we make upgrades to home outlets easy, and provide workplace and Share of Vehicle Trips by Trip Distance public charging 2.0% where necessary, we can make using <10 miles an EV as 17.8% 10 to 15 miles convenient, or more convenient, 50.7% 15 to 20 miles than fueling at the 29.5% gas station. >20 miles Data from the 2009 Transportation Energy Data Book7 ________________________________________________ 5 “The existing electricity infrastructure as a national resource has sufficient available capacity to fuel 84% of the nation’s cars, pickup trucks, and SUVs (198 million) or 73% of the light duty fleet (about 217 million vehicles) for a daily drive of 33 miles on average.” Kintner-Meyer, Michael; Schneider, Kevin; Pratt, Robert. “Impacts Assessment of Plug-In Hybrid Vehicles on Electric Utilities and Re- gional U.S. Power Grids; Part 1: Technical Analysis” Pacific Northwest National Laboratory. December 2006. pg.15. <http://energytech.pnl.gov/publications/pdf/PHEV_Feasibility_Analysis_Part1.pdf>. 6 Oak Ridge National Laboratory. Transportation Energy Data Book. Chapter 8 Household Vehicle and Characteristics. 2009. <http://cta.ornl.gov/data/chapter8.shtml>. 2000. <http://www.eia.doe.gov/cneaf/electricity/page/co2_report/co2report.html>. 7 Ibid.PAGE 2
  3. 3. Average Trip Lengths per Household (miles) Social and Recreational 950 trips /year Shopping 700 trips/year To/From Work 560 trips/year School/Church 350 trips/year Work Related Business 100 trips/year 30 trips Other /year 0 10 20 30 40 50 Data from the US Department of Transportation8 Myth: “EVs are too expensive.” Fact: Nowadays, expensive is relative. Filling up an electric vehicle costs the equivalent of about 75 cents per gallon,10 while gas prices are heading towards $4/gallon. And electricity comes from much more stable, domestic sources, meaning household and business budgets don’t get squeezed by sudden changes in global oil prices. Today, the purchase price of a new EV is higher than a comparable gasoline vehicle. However, the cost to fuel an EV is so much lower that even these first generation vehicles can pay-off the added investment over the life of the vehicle.9 Federal and local tax incentives and the opportunity to lease the first EVs can alsoEVs are cheaper to operate: help make the first generation of EVs affordable, while helping the industry toEV ($0.085 / kWh) scale up fast enough to quickly drive down costs. * (0.35 kWh / mile)= mile.3 cents per mile There is no reason to believe EVs will stay expensive. Like other new technologies, battery costs are expected to drop over time due to economies of scale andInternal combustion (gas) engine ongoing innovation in battery chemistries and technologies (see graph below). ($3.00 / gallon gasoline) * (1 gal gas / 25 miles)= mile.12 cents per mile 11 ________________________________________________ 8 Hu, Pat S. and Timothy R. Reuscher. Summary of Travel Trends. Federal Highway Administration, December 2004. <http://nhts.ornl.gov/2001/pub/STT.pdf> 9 Assuming a gas price of $3.50/gallon, a price difference of $15K between an EV and an ICE, and the ICE fuel economy of 26 miles/gallon 10 “Electric Cars— How Much Does It Cost per Charge?” Scientific American. 13 March 2009. <http://www.scientificamerican.com/article.cfm?id=electric-cars-cost-per-charge>. 11 “The Recovery Act: Transforming the American Economy through Innovation.” August 2010. <www.whitehouse.gov/sites/default/files/uploads/Recovery_Act_Innovation.pdf>.PAGE 3
  4. 4. EV production anchors thousands of jobs in advanced vehicle, battery, and component manufacturing today and is projected to generate tens of thousands more over the next decade.12 With rapid adoption of EVs and ongoing US leadership in technology and manufacturing innovation, studies suggest the US could see a net employment gain as high as 350,000 jobs in EV-related manufacturing, construction, and operations jobs, and up to 1.9 million jobs when the overall economic impacts of reduced oil dependence are included.13 Myth: “EVs are just the latest technology fad.” Fact: Electrification is an integral part of today’s advanced vehicle technology development. Investments to improve EV technology speed innovation and improve the competitiveness of the whole advanced vehicle supply chain. Advancements in batteries, electric powertrain, and their components improve the full range of hybrid vehicles, while improvements in materials and aerodynamics are equally critical for improving the efficiency of the best gasoline vehicles. 14 Advanced Internal Hybrid Electric Plug-in Hybrid Battery Electric Fuel Cell Combustion Vehicles Electric Vehicles Vehicle Engines Chevrolet Cruze Toyota Prius Chevrolet Volt Nissan Leaf Pictured above are examples of cars on the road today that exemplify the ongoing and overlapping evolution of automotive technology. Innovations from aerodynamics to power electronics are shared across the vehicles that will drive us into a cleaner and more secure transportation future. For more information on EVs, see the following websites. Go Electric Drive: Department of Energy Vehicle Technologies Program: www.goelectricdrive.com www.eere.energy.gov/vehiclesandfuels To see other solutions to climate change: www.nwf.org/Global-Warming ________________________________________________ 12 US Department of Energy. “The Recovery Act: Transforming America’s Transportation Sector— Batteries and Electric Vehicles.” 14 July 2010. <http://www.whitehouse.gov/files/documents/Battery-and-Electric-Vehicle-Report-FINAL.pdf>. 13 Becker, Thomas A.; Ikhlaq Sidhu; and Burghardt Tenderich. Center for Entrepreneurship & Technology at the University of California, Berkley. Electric Vehicles in the United States: A New Model with Forecasts to 2030. August 24, 2009. < http://cet.berkeley.edu/dl/ CET_Technical%20Brief_EconomicModel2030_f.pdf>. As well as “Economic Impact of the Electrification Roadmap.” April 2010. <http://electrificationcoalition.org/media/EC_ImpactReport.pdf>. 14 Flickr.com Create Commons photographs from left to right: Cruze by David Pinter; Prius by Paul Garland; Volt by C.C. Chapman; Leaf by J.M. RosenfeldPAGE 4

×