SlideShare a Scribd company logo
1 of 55
Molecular Genetic Assessment of some
Rice Mutants Induced by Gamma
Irradiation
‫المس‬ ‫األرز‬ ‫طفرات‬ ‫لبعض‬ ‫الجزيئي‬ ‫الوراثي‬ ‫التقييم‬‫تحدثة‬
‫جاما‬ ‫أشعة‬ ‫بواسطة‬
by
Mohammed Hussein Essa Ayaad
Under supervision
 Dr. Eman Mahmoud Fahmy
 Prof. Emeritus of Genetics, Genetics Dept., Faculty Of Agriculture,
Ain Shams University.
 Dr. Nermin Mahmoud Abd El-Gawad
 Prof. of Genetics, Genetics Dept., Faculty Of Agriculture, Ain
Shams University.
 Dr. Raafat Anwar Kamal Moustafa
 Prof. Emeritus of Genetics and plant breeding., Plant Res. Dept.,
NRC, Egyptian Atomic Energy Authority.
 Rice is the most important food crop in the world.
 More than half of World population
are rice consumers.
 About 93% increased will occur in
developing countries.
7 billion
people
2014
8 billion
people in
2025
We must
produce 40%
more rice by
2025.
 FAO Database 2014
FAOSTAT | © FAO Statistics Division 2014 | 23 February 2014
Yield (ton/Ha)
year
country 2010 2011 2012
Australia 10.4 9.5 8.9
Egypt 9.4 9.5 9.5
USA 7.5 7.5 8.3
China 6.5 6.6 6.7
Japan 6.5 6.6 6.7
Viet Nam 5.3 5.5 5.6
Indonesia 5.0 4.9 5.1
Asia + (Total) 4.4 4.5 4.4
World + (Total) 4.3 4.4 4.4
Bangladesh 4.3 4.2 2.9
Brazil 4.1 4.8 4.7
Myanmar 4.0 3.8 4.0
Malaysia 3.6 3.7 3.9
Philippines 3.6 3.6 3.8
India 3.3 3.5 3.5
Thailand 2.9 2.8 3.1
Rice yield (ton/ha)
Challenges?
 Limited cultivated area.
 Limited water resources.
 Rice water consumption
(Plant growth duration)
(1k rice = ?? M3 of water)
 Increased growth population
 Diseases
Rice scenario in Egypt
• 55.5 billion
M3 of water/
year
River Nile
• 620.285
hectares (1.5
MF)
Egypt
• Long
• Medium
• Short growth
duration
World
Rice blast disease
Evaluation of blast disease resistance
 Rice blast, caused by the
pathogenic fungus Magnaporthe
oryza, is one of the important rice
diseases, causing great damage to
rice yield because of its wide
distribution and destructiveness
under favorable conditions (Ou,
1980)
 Novel variation can be
produced.
 Direct mutant varieties (limited
breeding effort required).
 The mutations are generally
random and unpredicted
 The rice genome (2n=24) is about
420 Mbp (Indica with 32000
gene) to 466 Mbp (Japonica with
46000 gene).
Rice Mutants
(815 from 3200)
 Early maturing
 High Tillering
 Yield
 Quality
 Semidwarf
 Disease resistance
 Cold tolerance
 Salinity tolerance
 Agronomy
 Yield evaluation of different rice genotypes in two different
locations for two advanced seasons (M6 and M7).
 Screening all genotypes for blast disease resistance under natural
and artificial infection conditions.
 Evaluation of aroma and the grain quality traits.
 Applying SSRs as molecular techniques to identify causative
mutations and develop suitable molecular markers for good yield-
related traits.
Objectives
1. MATERIALS
Five local rice (Oryza sativa, L.) cultivated genotypes; Sakha101, Sakha102,
Sakha103, Giza177 and Egyptian Jasmine; in addition to eight mutant rice genotypes
in M5 generation; Egy22, Egy23, Egy24, Egy202, Egy32, Egy33, Egy34 and Egy316.
1. Plant Materials
Table (1): The origin and pedigree of the used rice cultivars
Cultivars Pedigree Origin
Sakha101 Giza 176/ Milyang 79 Egypt
Sakha102 Gz4098-7-1 / Giza 177 Egypt
Sakha103 Giza 177 / Suweon 349 Egypt
Giza177 Giza 171/Yomji Egypt
Egyptian Jasmine IR 358 Egypt
Egyptian local cultivars
Sakha 102 Sakha 103
Giza 177
Mutants The parent
Irradiated
dose (Gy)
Growth duration
Important trait as
individual plant
Egy22 Sakha102 200 Gy 130 days High yielding
Egy23 Sakha102 300 Gy 130 days Highly synchronization of
flowering, red plant.
Egy24 Sakha102 400 Gy 135 days High yielding
Egy202 Sakha102 200 Gy 125 days High tillering, red
pericarp rice, long
stature.
Egy32 Sakha103 200 Gy 135 days High yielding
Egy33 Sakha103 300 Gy 135 days High yielding
Egy34 Sakha103 400 Gy 135 days High yielding
Egy316 Sakha103 300 Gy 110 days The highest 1000 grains
weight
Different mutations pedigree
 Sakha102 and its mutants
Egy202
Sakha 103 and its mutations
2. Methods
2.1.Yield-relatedtraitsEvaluation
 All genotypes were cultivated in
two locations (RRTC, Sakha, Kafr
Elsheikh and Agriculture Research
Center, Gemiza, Gharbia).
 The usual procedures for conventional
production of rice were followed.
 1. Heading date
 2. Plant height (cm)
 3. Panicle length (cm)
 4. Number of panicles per plant
 5. Number of grains per panicle
 6. 1000 grain weight (g)
 7. Grain yield per one m2 (g)
 Microsatellites are highly
polymorphic, genome-specific,
abundant and co-dominant,
and they have become
important as genetic markers
in rice breeding programs.
 Thirty two SSRs primers were
used in the present study to
discriminate the genetic variation
among the 13 rice genotypes and
to detect highly polymorphic
molecular markers for some
studied traits.
2. Methods
Rice quality
evaluation
Blast disease
evaluation
Microsatellite
Markers
Yield-related traits evaluation
Table (1): Means of days to maturity of the 13 rice genotypes in two locations and
two different seasons.
Season 2010 (M6)
Means of
Genotypes
2011 (M7)
Means of
genotypes
Locations Gemmiza Sakha Gemmiza Sakha
Genotypes Interaction Interaction
Sk101 137.3 135.6 136.5 135.3 137.7 136.5
Sk102 120.0 125.0 122.5 125.0 125.0 125.0
Sk103 123.3 119.0 121.2 119.3 119.3 119.3
Gz177 117.7 119.7 118.7 118.0 118.0 118.0
Egy23 126.3 130.7 128.5 126.3 125.3 125.8
Egy202 128.3 125.7 127.0 126.6 128.3 127.5
Egy316 111.3 110.7 111.0 111.0 110.7 110.8
Egy22 130.3 131.0 130.7 130.3 130.3 130.3
Egy24 131.0 131.3 131.2 131.0 131.6 131.2
Egy32 131.3 131.7 131.5 131.3 131.7 131.5
Egy33 132.7 132.3 132.5 132.7 132.3 132.5
Egy34 133.0 133.7 133.3 133.0 133.7 133.3
E. Jas. 151.3 149.3 150.3 152.3 150.7 151.5
Means of locations 128.8 128.9 128.6 128.8
LSD at 0.05
(L)= N.S. (L)= N.S.
(G)= 1.608 (G)= 1.566
(L*G)= 2.274 (L*G)= 2.214
Sk103 (120 day) Egy316 (111 day)
Table(2):Means of plant height (cm) of the 13 rice genotypes in two
locations and two different seasons.
Season 2010 (M6)
Means of
Genotypes
2011 (M7)
Means of
Genotypes
Locations Gemmiza Sakha Gemmiza Sakha
Genotypes Interaction Interaction
Sk101 98.3 88.8 93.5 90.7 92.2 91.5
Sk102 102.2 90.2 96.2 108.3 106.1 107.2
Sk103 106.1 95.2 100.7 98.9 97.6 98.3
Gz177 95.5 99.8 97.7 96.7 94.6 95.6
Egy23 116.9 99.8 108.3 106.0 103.1 104.6
Egy202 142.5 147.0 144.8 143.3 139.2 141.2
Egy316 116.4 98.6 107.5 113.0 110.5 111.7
Egy22 117.5 111.2 114.3 107.8 100.6 104.2
Egy24 113.1 93.8 103.5 111.3 103.6 107.4
Egy32 116.9 95.0 106.0 108.3 106.1 107.2
Egy33 116.4 100.2 108.3 104.7 103.9 104.3
Egy34 114.0 92.2 103.1 107.1 99.4 103.0
E. Jas. 114.2 94.0 104.1 101.2 103.0 102.1
Means of locations 113.1 100.4 107.5 104.6
LSD at 0.05
(L)= 2.468 (L)= N.S.
(G)= 2.379 (G)= 3.822
Egy202Egy23
Different plant height
Table (7): Means of panicle length (cm) of the 13 rice genotypes in two locations and two
different seasons.
Season 2010 (M6)
Means of
genotypes
2011 (M7)
Means of
genotypes
Locations Gemmiza Sakha Gemmiza Sakha
Genotypes Interaction Interaction
Sk101 24.6 24.6 24.6 24.6 23.1 23.9
Sk102 22.4 23.7 23.1 23.7 21.3 22.5
Sk103 23.4 20.0 21.7 20.0 19.3 19.7
Gz177 23.0 20.4 21.7 20.4 19.5 19.9
Egy23 23.6 25.8 24.7 22.4 21.8 22.1
Egy202 23.0 28.2 25.6 23.4 22.2 22.8
Egy316 28.2 25.9 27.0 25.9 24.5 25.2
Egy22 29.5 22.4 26.0 28.2 25.2 26.7
Egy24 29.3 28.0 28.6 28.0 26.2 27.1
Egy32 28.6 23.4 26.0 28.6 27.5 28.1
Egy33 30.6 28.6 29.6 28.5 26.0 27.2
Egy34 29.5 28.5 29.0 28.5 23.8 26.2
E. Jas. 28.5 28.5 28.5 25.8 26.6 26.2
Means of locations 26.5 25.2 25.2 23.6
LSD at 0.05
(L)= 0.721 (L)= 0.966
(G)= 1.065 (G)= 1.656
(L*G)= 1.506 (L*G)= N.S.
Table (8): Means number of panicles per m2 of the 13 rice genotypes
in two locations and two different seasons.
Season 2010 (M6)
Means of
Genotypes
2011 (M7)
Means of
genotypes
Locations Gemmiza Sakha Gemmiza Sakha
Genotypes Interaction Interaction
Sk101 359.7 338.7 349.2 354.7 342.7 384.7
Sk102 346.7 308.3 327.5 338.3 326.4 332.5
Sk103 343.0 327.3 335.1 341.3 302.5 322.0
Gz177 346.7 334.3 340.5 366.7 332.3 349.5
Egy23 434.0 366.7 400.4 391.7 355.4 373.5
Egy202 922.0 907.3 914.7 938.0 923.7 930.8
Egy316 346.0 330.0 338.0 355.0 324.3 339.6
Egy22 442.0 421.7 431.9 461.7 431.7 446.7
Egy24 407.3 403.7 405.5 443.3 416.5 430.0
Egy32 400.7 371.7 386.2 428.3 408.7 418.5
Egy33 407.0 402.7 404.9 410.7 403.0 406.9
Egy34 422.7 410.3 416.5 450.0 426.7 438.4
E. Jas. 380.7 375.3 378.0 398.3 381.5 389.9
Means of locations 427.6 407.5 436.8 413.5
LSD at 0.05
(L)= 1.424 (L)= 0.0009
(G)= 2.629 (G)= 0.002
Fig (6). a) High tillering mutant Egy202, b) Low tillering mutant Egy316 and
c) Phenotype of the moc1 mutant.
a b c
Table (9) Grains number/panicle means of the 13 rice genotypes in the two
locations and two different seasons (M6 and M7).
Season 2010 (M6)
Means of
genotypes
2011 (M7)
Means of
genotypes
Locations Gemmiza Sakha Gemmiza Sakha
Genotypes Interaction Interaction
Sk101 123.0 151.0 137.0 151.0 120.8 135.9
Sk102 129.7 112.1 120.9 112.1 92.6 102.3
Sk103 145.9 103.5 124.7 103.5 109.5 106.5
Gz177 104.6 97.5 101.1 97.5 93.8 95.7
Egy23 163.7 180.3 172.0 137.7 108.3 123.0
Egy202 105.6 185.9 145.7 114.3 70.1 92.2
Egy316 145.1 141.9 143.5 141.9 110.0 126.0
Egy22 179.7 137.7 158.7 185.9 126.9 156.4
Egy24 183.3 192.2 187.7 192.2 149.5 170.9
Egy32 188.2 114.3 151.3 205.3 160.4 182.9
Egy33 187.7 205.3 196.5 191.9 151.3 171.6
Egy34 208.6 191.9 200.2 196.1 122.7 159.4
E. Jas. 185.6 196.1 190.9 180.3 143.0 161.6
Means of locations 157.7 154.6 154.6 119.9
LSD at 0.05
(L)= N.S. (L)= 22.97
(G)= 20.43 (G)= 17.25
(L*G)= 28.90 (L*G)= 24.40
Table (10). Means of panicle weight (g) of the 13 rice genotypes in two
locations and two different seasons.
Season 2010 (M6)
Means of
genotypes
2011 (M7)
Means of
genotypes
Locations Gemmiza Sakha Gemmiza Sakha
Genotypes Interaction Interaction
Sk101 3.6 4.1 3.9 4.1 3.4 3.8
Sk102 3.8 3.3 3.5 3.3 2.6 3.0
Sk103 4.0 2.8 3.4 2.8 2.7 2.7
Gz177 3.0 2.8 2.9 2.8 2.5 2.7
Egy23 4.1 4.7 4.4 3.4 2.9 3.2
Egy202 2.6 5.0 3.8 2.8 1.6 2.2
Egy316 4.8 4.7 4.8 4.7 3.5 4.1
Egy22 5.0 3.4 4.2 5.0 3.6 4.3
Egy24 5.0 5.5 5.2 5.5 4.1 4.8
Egy32 5.2 2.8 4.0 5.5 4.6 5.1
Egy33 5.0 5.5 5.3 5.3 4.4 4.9
Egy34 5.2 5.3 5.2 5.3 3.2 4.3
E. Jas. 5.1 5.3 5.2 4.7 4.1 4.4
Means of locations 4.3 4.3 4.3 3.3
LSD at 0.05
(L)= N.S. (L)= 0.582
(G)= 0.565 (G)= 0.497
(L*G)= 0.799 (L*G)= 0.702
Differences between panicles
Sk102 and its mutants Sk103 and its mutants
Table (11). Means of 1000 grain weight per panicle (g) trait of the 13 rice
genotypes in two locations and two different seasons.
Season 2010 (M6)
Means of
genotypes
2011 (M7)
Means of
genotypes
Locations Gemmiza Sakha Gemmiza Sakha
Genotypes Interaction Interaction
Sk101 29.7 27.3 28.5 27.3 28.2 27.7
Sk102 29.1 29.6 29.3 29.6 28.2 28.9
Sk103 27.5 27.0 27.3 27.0 24.3 25.6
Gz177 28.9 29.0 28.9 29.0 26.4 27.7
Egy23 24.8 26.4 25.6 24.8 27.0 25.9
Egy202 24.5 26.6 25.5 24.4 23.4 23.9
Egy316 33.3 32.9 33.1 32.9 31.7 32.3
Egy22 28.0 24.8 26.4 26.6 28.8 27.7
Egy24 27.1 28.7 27.9 28.7 27.4 28.0
Egy32 27.9 24.4 26.2 26.9 28.8 27.8
Egy33 26.8 26.9 26.8 27.6 29.4 28.5
Egy34 25.0 27.6 26.3 27.1 26.7 26.9
E.Jas. 27.3 27.1 27.2 26.4 28.5 27.4
Means of locations 27.6 27.7 27.6 27.6
LSD at 0.05
(L)= N.S. (L)= N.S.
(G)= 1.245 (G)= 1.136
(L*G)= 1.761 (L*G)= 1.606
Season 2010 (M6)
Means of
genotypes
2011 (M7)
Means of
genotypes
Locations Gemmiza Sakha Gemmiza Sakha
Genotypes Interaction Interaction
Sk101 4.50 3.93 4.22 4.76 3.84 4.30
Sk102 3.95 3.67 3.81 3.55 3.30 3.43
Sk103 4.05 3.32 3.69 3.24 3.24 3.24
Gz177 4.13 3.53 3.83 3.89 3.20 3.55
Egy23 4.28 3.77 4.03 4.22 3.47 3.85
Egy202 3.85 4.05 3.95 3.55 3.67 3.61
Egy316 4.54 4.04 4.29 4.55 3.34 4.45
Egy22 4.93 4.75 4.84 4.95 4.16 4.56
Egy24 4.80 4.44 4.62 4.91 4.08 4.50
Egy32 4.05 4.44 4.25 4.31 3.83 4.07
Egy33 4.81 4.12 4.47 4.17 3.96 4.07
Egy34 4.36 4.05 4.21 4.50 4.17 4.34
E.Jas. 3.55 3.47 3.51 3.63 3.23 3.43
Means of locations 4.29 3.97 4.17 3.73
LSD at 0.05
(L)= 0.001 (L)= 0.001
(G)= 0.002 (G)= 0.003
(L*G)= 0.0016 (L*G)= 0.0017
Table (12) Means of grain yield/fedden (ton/fed) of the 13 rice genotypes
in two locations and two different seasons.
Rice grain
quality
2.3. Evaluation of grain quality
The traitsof physical qualityof grains
 Hulling and milling percentage.
 Length, width and grain shape
 Head Rice Yield (the weight of
whole white rice after milling as
a percentage)
The cooking and eatingcharacteristicsof rice
 Amylosecontent(high; ≥ 25%, intermediate;
20-25% , low; 15-20% and waxy is zero)
 Gelatinizationtemperature
 Aroma
Genotypes
Grain dimension (mm) Milling recovery (%) Cooking and eating quality
GL GW LWR H% M% HR AC GT Aroma
Sk101 7.92 3.22 2.48 65.27 56.67 54.67 20.03 4 None
Sk102 8.05 3.24 2.48 81.67 71.73 67.47 19.22 5 None
Sk103 7.33 3.18 2.30 79.80 64.60 62.47 16.15 6 None
Gz177 7.55 3.13 2.42 81.07 71.20 68.33 19.41 5 None
Egy23 7.93 3.04 2.79 78.67 66.67 61.33 25.29 7 None
Egy202 8.88 2.89 3.08 81.00 67.47 65.07 24.04 3 Slight
Egy316 9.91 3.17 3.13 82.33 68.13 66.67 17.28 3 Slight
Egy22 10.14 2.69 3.78 80.60 67.13 64.80 16.90 7 Strong
Egy24 9.92 2.63 3.80 84.87 70.53 67.80 24.16 7 Moderate
Egy32 10.14 2.64 3.84 78.47 66.53 50.00 15.90 6 Moderate
Egy33 10.14 2.59 3.93 83.13 67.60 64.33 16.65 5 Moderate
Egy34 9.34 2.63 3.57 79.47 66.67 61.40 16.78 4 Moderate
E. Jas 9.92 2.69 3.64 63.13 53.33 50.00 16.84 5 Moderate
LSD 0.05 0.727 0.361 0.256 2.159 0.002 2.698 0.296 0.853 ---
STDEVA ± 1.1 ± 0.26 ± 0.62 ± 6.57 ± 5.34 ± 6.39 ± 3.33 ± 1.42 ---
Table (13) Means for rice grain quality characters of thirteen genotypes.
*GL: Grain length, GW: Grain Width, LWR: length Width Ratio, H%: Hulling percentage, M%:
Milling percentage, AC: Amylose Content, GT: Gelatinization temperature and HR: Head Rice.
Traits GL GW LWR AC GT H % M % HR
GL 1.00
GW -0.80 1.00
LWR 0.95** -0.94** 1.00
AC -0.29 0.16 -0.21 1.00
GT 0.03 -0.27* 0.20 0.13 1.00
H % 0.09 -0.08 0.11 0.15 0.17 1.00
M % -0.04 0.05 -0.03 0.22 0.15 0.95** 1.00
HR -0.19 0.25* -0.23 0.32 -0.03 0.78** 0.79** 1.00
Table (14). Correlation coefficients among different quality
characters for 13 rice genotypes.
*GL: Grain length, GW: Grain Width, LWR: length Width Ratio, AC: Amylose Content, GT:
Gelatinization Temperature, H%: Hulling percentage, M%: Milling percentage and HR: Head Rice.
Blast Disease
Blast damage
2.2. Screening of blast disease resistance
 Dry grains of the 13 genotypes
were infected by six races of
Magnoporthe oryzae in the glass
house for 30 days after the
cultivation process.
 All of thirteen genotypes`
grains were cultivated in the
blast nursery, in two
different locations in the first
of July for two seasons.
Natural infection Artificial inoculation
Evaluation of blast Disease under natural infection
Genotypes
2010 2011
Gemmiza Sakha Gemmiza Sakha
Sk101 8 7 8 6
Sk102 1 1 1 1
Sk103 1 1 1 1
GZ177 2 1 2 1
Egy23 1 1 1 1
Egy202 1 1 2 1
Egy316 1 1 1 1
Egy22 1 1 1 1
Egy24 1 1 1 1
Egy32 1 1 1 1
Egy33 1 1 1 1
Egy34 1 1 1 1
Egy. Jas. 1 1 1 1
Evaluation of blast Disease under artificial inoculation
Genotypes
Blast Races
IC-5 IG-1 IB-63 IH-1 IB-19 ID-15
Sk101 5 1 4 1 1 5
Sk102 1 1 1 1 1 1
Sk103 2 1 1 2 1 3
Gz177 1 1 1 1 1 1
Egy23 3 1 3 3 3 3
Egy202 3 3 3 3 1 3
Egy316 1 1 3 1 1 3
Egy22 1 2 3 2 1 3
Egy24 1 1 3 1 1 3
Egy32 1 1 3 3 1 3
Egy33 3 1 1 3 2 3
Egy34 3 3 1 2 1 3
E. Jas 1 3 1 3 1 3
32 SSRs
primers
Unique markers and common bands using 32 SSRs
primers.
Primers Chr. MS
Sk101
Sk102
Sk103
Gz177
Egy23
Egy202
Egy316
Egy22
Egy24
Egy32
Egy33
Egy34
E.Jas
Name No (bp)
RM112 (EM) 2 650 0 0 1 0 0 0 0 0 0 0 0 0 0
RM432 (EM) 7 294 0 0 0 0 0 1 0 0 0 0 0 0 0
RM434 (EM) 9 131 1 1 1 1 1 1 1 1 1 1 1 1 1
RM467 (EM) 10 903 0 0 0 0 0 0 0 1 0 0 0 0 0
RM9 (HT) 1 191 0 0 0 0 1 0 0 0 0 0 0 0 0
RM526 (HT) 2 50 1 1 1 1 1 1 1 1 1 1 1 1 1
RM135 (HT) 3
485 1 1 1 1 0 1 1 1 1 1 1 1 1
318 0 0 0 0 0 1 0 0 0 0 0 0 0
RM23120 (A) 8 292 1 0 0 0 0 0 0 0 0 0 0 0 0
RM136 (B) 6 1054 0 0 0 1 0 0 0 0 0 0 0 0 0
RM230 (B) 6 1476 0 1 0 0 0 0 0 0 0 0 0 0 0
RM527 (B) 6 139 1 1 1 1 1 1 1 0 1 1 1 1 1
RM587 (B) 6 191 0 0 0 0 1 0 0 0 0 0 0 0 0
RM10 (B) 7 756 0 0 0 0 0 0 0 1 0 0 0 0 0
RM70 (B) 7 644 1 0 0 0 0 0 0 0 0 0 0 0 0
RM144 (B) 11
326 0 1 0 0 0 0 0 0 0 0 0 0 0
235 1 1 1 1 1 1 1 1 1 1 1 0 1
RM206 (B) 11 162 0 0 0 0 1 0 0 0 0 0 0 0 0
RM224 (B) 11 152 1 0 0 0 0 0 0 0 0 0 0 0 0
EM= Early maturing, HT= High tillering, A= Aroma and B= Blast
SSRs-based dendrogram of 13 rice genotypes using
32 SSRs primers
Separated
Egy24
Egy33
Egy32
Egy34
Egy22
E. Jas.
Sk103
Gz177
Egy316
Sk102
Egy202
Egy23
Sk101
RM112 RM125
RM432 RM434
RM467 RM493
RM579
Marker
Sk101
Sk102
Sk103
Gz177
Egy23
Egy202
Egy316
Egy22
Egy24
Egy32
Egy33
Egy34
E.Jas
Marker
Sk101
Sk102
Sk103
Gz177
Egy23
Egy202
Egy316
Egy22
Egy24
Egy32
Egy33
Egy34
E.Jas
1. SSRs analysis for early
maturing.
RM125 showed to bands divided the 13 rice
genotypes into two groups
1- Sk101, Sk102, Sk103, Gz177, Egy23 and Egy202
as Medium grain shape (2.1-3.0 mm)
2- Egy316, Egy22, Egy24, Egy32, Egy33, Egy34
and E. Jas as slender grain shape (>3.0 mm)
443 483Primers Chr. MS
Sk103
Egy202
Egy316
Egy22
Name No (bp)
RM112 2 650 1 0 0 0
RM432 7 294 0 1 0 0
RM467 10 903 0 0 0 1
RM526
RM135 RM168
RM210
RM9
Marker
Sk101
Sk102
Sk103
Gz177
Egy23
Egy202
Egy316
Egy22
Egy24
Egy32
Egy33
Egy34
E.Jas
Marker
Sk101
Sk102
Sk103
Gz177
Egy23
Egy202
Egy316
Egy22
Egy24
Egy32
Egy33
Egy34
E.Jas
191 bp
164 bp
2. SSRs analysis for high
tillering
RM135 primer showed
unique positive marker in
the high tillering mutant
(Egy202) with molecular
weight 318 bp
The mutant Egy23 characterized
by unique positive and negative
markers with RM9 and RM135
RM526 showed common band in
all genotypes except Egy202 and
E. Jas
b) RM7049
c) RG28
a) RM23120
Marker
Sk101
Sk102
Sk103
Gz177
Egy23
Egy202
Egy316
Egy22
Egy24
Egy32
Egy33
Egy34
E.Jas
2. SSRs analysis for Aroma
Sk103
Egy202
 The primer RM23120 showed 4
alleles, followed by the primer
RG28 presented 2 alleles as 202
and 121 bp. While RM7049
revealed one allele (70 bp).
 RG28 produced one common
band with molecular size 202 bp
among the used aromatic
genotypes (E. Jas, Egy34, Egy33,
Egy32 and Egy24) except Egy22.
SSRs analysis for blast disease
Resistant genotypes
 Sk102
 Sk103
 Gz177
 Egy23
 Egy202
 Egy22
 Eg424
 Egy32
 Egy33
 Egy34
Susceptible genotypes
 Sk101
17 SSRs primers related to blast
Unique positive and negative markers
Genotypes
Molecular size (bp)
Total
Molecular size (bp)
Total
Grand
total
PUM (+) NUM (-)
Sk101 RM224 (152), RM70 (644) 2 - 0 2
Sk102 RM230 (1476) 1 - 0 1
Sk103 - 0 - 0 0
Gz177 RM136 (1054) 1 - 0 1
Egy23 RM206 (162) 1 - 0 1
Egy202 - 0 - 0 0
Egy316 - 0 - 0 0
Egy22 0 RM527 (139) 1 1
Egy24 - 0 - 0 0
Egy32 - 0 - 0 0
Egy32 - 0 - 0 0
Egy33 - 0 - 0 0
Egy34 - 0 RM144 (326) 1 1
E. Jasmine - 0 - 0 0
(1) RM 30
(8) RM 230
(6) RM 211
(2) RM 121
(3) RM 136 (4) RM 144
(5) RM 206
(7) RM 224
Marker
Sk101
Sk102
Sk103
Gz177
Egy23
Egy202
Egy316
Egy22
Egy24
Egy32
Egy33
Egy34
E.Jas
Marker
Sk101
Sk102
Sk103
Gz177
Egy23
Egy202
Egy316
Egy22
Egy24
Egy32
Egy33
Egy34
E.Jas
(13) RM 527
(11) RM 280
(9) RM 251 (10) RM 279
(12) RM 332
(14) RM 587
(15) RM 11 (16) RM 10
(17) RM 70
Marker
Sk101
Sk102
Sk103
Gz177
Egy23
Egy202
Egy316
Egy22
Egy24
Egy32
Egy33
Egy34
E.Jas
Marker
Sk101
Sk102
Sk103
Gz177
Egy23
Egy202
Egy316
Egy22
Egy24
Egy32
Egy33
Egy34
E.Jas
Conclusion
The mutant Egy316 was earlier
than other genotypes (110.9 days)
and recorded the highest 1000
grain weight (32.7g).
Egy202, showed the highest
number of panicles/m2 (922.8),
but the grain yield (ton/fed)
decreased as a result of lodging.
Maximum grain yield (ton/fed)
appeared for Egy22.
The studied rice mutants except Egy202
and Egy23 had slender grain shape in
addition to the Egyptian Jasmine (more
than 3 mm), while the cultivars; Sk101,
Sk102, Sk103, Gz177 and Egy23, as well
as Egy202 and Egy23 were medium grain
shape(2.1 to 3.0 mm).
All genotypes have intermediate amylose
content except Egy23, Egy202 and Egy24
(high amylose content).
The strongest aromatic genotype
was Egy22 as compared to the
local aromatic cultivar (E. Jas).
Under natural and artificial infection for
blast disease, the 13 rice genotypes were
resistance and moderate resistance
except Sk101
The primer RM125 may be specific primer for
grain shape.
The primer RM135 gave one positive
marker in the high tillering mutant
(Egy202); it may be related to the studied
trait.
The primer RG28 was able to recognize
between aromatic and non aromatic
genotypes except Egy22.
RM224, cosegregated with blast disease,
were absent in all genotypes except
Sk101.
 Dr. Abd El-Salam Ebaid Draz
 Dr. Fatthy M. Abd El-Tawab
 Dr. Eman Mahmoud Fahmy
 Dr. Nermin Mahmoud Abd El-Gawad
 Dr. Sabah M. Hassan
 Dr. Raafat Anwar Kamal Moustafa
 Dr. Sobieh S.S. Sobieh
 Dr. Abd El-Magid M. Shaheen
 Dr. Osama El-Badawy
 Dr. Rabiea El-Shafey
 Dr. Aly El-Gohary
 Dr. Yassir El-Refaee
 Dr. Aysam Faied
 Dr. Kamal Abd El-Lateef
 Dr. Nesrin Nazmy
Acknowledgment
To my family,
My father,
My mother,
My wife
My boys (Mohanad and Eiad)
Dr. Khaled Elazab,
Dr. Ibrahim Osamy,
Dr. Shreif Yousif,
Dr. Mohammed Basyouny,
Dr. Mohammed Abdelrazek,
Dr. Waleed Korany
Mr. Mohammed Ali
Mohammed ayaad

More Related Content

What's hot

Bottlenecks -- some ramblings and a bit of data from maize PAGXXII
Bottlenecks -- some ramblings and a bit of data from maize PAGXXIIBottlenecks -- some ramblings and a bit of data from maize PAGXXII
Bottlenecks -- some ramblings and a bit of data from maize PAGXXIIjrossibarra
 
EWMA 2013-Ep436-THE ACCELERATED EPITHELIALIZATION OF RECOMBINANT EPIDERMAL GR...
EWMA 2013-Ep436-THE ACCELERATED EPITHELIALIZATION OF RECOMBINANT EPIDERMAL GR...EWMA 2013-Ep436-THE ACCELERATED EPITHELIALIZATION OF RECOMBINANT EPIDERMAL GR...
EWMA 2013-Ep436-THE ACCELERATED EPITHELIALIZATION OF RECOMBINANT EPIDERMAL GR...EWMAConference
 
WIDESPREAD BRAIN DISTRIBUTION OF SGSH ENZYME IN CANINE BRAIN FOLLOWING WHITE ...
WIDESPREAD BRAIN DISTRIBUTION OF SGSH ENZYME IN CANINE BRAIN FOLLOWING WHITE ...WIDESPREAD BRAIN DISTRIBUTION OF SGSH ENZYME IN CANINE BRAIN FOLLOWING WHITE ...
WIDESPREAD BRAIN DISTRIBUTION OF SGSH ENZYME IN CANINE BRAIN FOLLOWING WHITE ...Oncodesign
 
Candidate causative mutation on BTA18 associated with calving and conformatio...
Candidate causative mutation on BTA18 associated with calving and conformatio...Candidate causative mutation on BTA18 associated with calving and conformatio...
Candidate causative mutation on BTA18 associated with calving and conformatio...John B. Cole, Ph.D.
 
Vaccination against Haemonchus contortus
Vaccination against  Haemonchus contortusVaccination against  Haemonchus contortus
Vaccination against Haemonchus contortusIshfaq Maqbool
 

What's hot (6)

Bottlenecks -- some ramblings and a bit of data from maize PAGXXII
Bottlenecks -- some ramblings and a bit of data from maize PAGXXIIBottlenecks -- some ramblings and a bit of data from maize PAGXXII
Bottlenecks -- some ramblings and a bit of data from maize PAGXXII
 
EWMA 2013-Ep436-THE ACCELERATED EPITHELIALIZATION OF RECOMBINANT EPIDERMAL GR...
EWMA 2013-Ep436-THE ACCELERATED EPITHELIALIZATION OF RECOMBINANT EPIDERMAL GR...EWMA 2013-Ep436-THE ACCELERATED EPITHELIALIZATION OF RECOMBINANT EPIDERMAL GR...
EWMA 2013-Ep436-THE ACCELERATED EPITHELIALIZATION OF RECOMBINANT EPIDERMAL GR...
 
Eng7
Eng7Eng7
Eng7
 
WIDESPREAD BRAIN DISTRIBUTION OF SGSH ENZYME IN CANINE BRAIN FOLLOWING WHITE ...
WIDESPREAD BRAIN DISTRIBUTION OF SGSH ENZYME IN CANINE BRAIN FOLLOWING WHITE ...WIDESPREAD BRAIN DISTRIBUTION OF SGSH ENZYME IN CANINE BRAIN FOLLOWING WHITE ...
WIDESPREAD BRAIN DISTRIBUTION OF SGSH ENZYME IN CANINE BRAIN FOLLOWING WHITE ...
 
Candidate causative mutation on BTA18 associated with calving and conformatio...
Candidate causative mutation on BTA18 associated with calving and conformatio...Candidate causative mutation on BTA18 associated with calving and conformatio...
Candidate causative mutation on BTA18 associated with calving and conformatio...
 
Vaccination against Haemonchus contortus
Vaccination against  Haemonchus contortusVaccination against  Haemonchus contortus
Vaccination against Haemonchus contortus
 

Viewers also liked

368 夕游季互联网旅行社-商业计划书
368 夕游季互联网旅行社-商业计划书368 夕游季互联网旅行社-商业计划书
368 夕游季互联网旅行社-商业计划书Rui (Nash) Yang
 
Basics of thermodynamics
Basics of thermodynamics Basics of thermodynamics
Basics of thermodynamics Gaurav Patel
 
Ch 3 energy transfer by work, heat and mass
Ch 3 energy transfer by work, heat and massCh 3 energy transfer by work, heat and mass
Ch 3 energy transfer by work, heat and massabfisho
 
Heat engine 2nd law
Heat engine 2nd lawHeat engine 2nd law
Heat engine 2nd lawAmy Hopkins
 
Enthalpy and Internal Energy
Enthalpy and Internal EnergyEnthalpy and Internal Energy
Enthalpy and Internal EnergyLumen Learning
 
Heat Transfer Lesson PowerPoint, Convection, Conduction, Radiation, Labs
Heat Transfer Lesson PowerPoint, Convection, Conduction, Radiation, LabsHeat Transfer Lesson PowerPoint, Convection, Conduction, Radiation, Labs
Heat Transfer Lesson PowerPoint, Convection, Conduction, Radiation, Labswww.sciencepowerpoint.com
 

Viewers also liked (13)

368 夕游季互联网旅行社-商业计划书
368 夕游季互联网旅行社-商业计划书368 夕游季互联网旅行社-商业计划书
368 夕游季互联网旅行社-商业计划书
 
Heat Engine
Heat EngineHeat Engine
Heat Engine
 
Basics of thermodynamics
Basics of thermodynamics Basics of thermodynamics
Basics of thermodynamics
 
Heat engine
Heat engineHeat engine
Heat engine
 
Lecture 17 heat engines and refrigerators
Lecture 17   heat engines and refrigeratorsLecture 17   heat engines and refrigerators
Lecture 17 heat engines and refrigerators
 
Ch 3 energy transfer by work, heat and mass
Ch 3 energy transfer by work, heat and massCh 3 energy transfer by work, heat and mass
Ch 3 energy transfer by work, heat and mass
 
Energy, Heat and Work
Energy, Heat and WorkEnergy, Heat and Work
Energy, Heat and Work
 
Heat engine 2nd law
Heat engine 2nd lawHeat engine 2nd law
Heat engine 2nd law
 
Heat transfer
Heat transferHeat transfer
Heat transfer
 
Thermal 05
Thermal 05Thermal 05
Thermal 05
 
Enthalpy and Internal Energy
Enthalpy and Internal EnergyEnthalpy and Internal Energy
Enthalpy and Internal Energy
 
Thermal 07
Thermal 07Thermal 07
Thermal 07
 
Heat Transfer Lesson PowerPoint, Convection, Conduction, Radiation, Labs
Heat Transfer Lesson PowerPoint, Convection, Conduction, Radiation, LabsHeat Transfer Lesson PowerPoint, Convection, Conduction, Radiation, Labs
Heat Transfer Lesson PowerPoint, Convection, Conduction, Radiation, Labs
 

Similar to Mohammed ayaad

Cowpea differential response to striga gesnerioides
Cowpea differential response to striga gesnerioides Cowpea differential response to striga gesnerioides
Cowpea differential response to striga gesnerioides Umar Buba
 
Theme 2: Yield and nutrition quality stability of orange-fleshed sweetpotato ...
Theme 2: Yield and nutrition quality stability of orange-fleshed sweetpotato ...Theme 2: Yield and nutrition quality stability of orange-fleshed sweetpotato ...
Theme 2: Yield and nutrition quality stability of orange-fleshed sweetpotato ...African Potato Association (APA)
 
Improving production potential of sorghum and finger millets through genetic ...
Improving production potential of sorghum and finger millets through genetic ...Improving production potential of sorghum and finger millets through genetic ...
Improving production potential of sorghum and finger millets through genetic ...ILRI
 
Health and quality test
Health and quality testHealth and quality test
Health and quality testmonsur_mint
 
Undergraduate Post Data presentation
Undergraduate Post Data presentationUndergraduate Post Data presentation
Undergraduate Post Data presentationKushimo Oluwaseun
 
Pathotypic Evolution of Yellow (Stripe) rust in CWANA (1998-2008)
Pathotypic Evolution of Yellow (Stripe) rust in CWANA (1998-2008)Pathotypic Evolution of Yellow (Stripe) rust in CWANA (1998-2008)
Pathotypic Evolution of Yellow (Stripe) rust in CWANA (1998-2008)ICARDA
 
Distribution and virulence spectrum of wheat stem rush in Tigray, Ethiopia
Distribution and virulence spectrum of wheat stem rush in Tigray, EthiopiaDistribution and virulence spectrum of wheat stem rush in Tigray, Ethiopia
Distribution and virulence spectrum of wheat stem rush in Tigray, EthiopiaCIMMYT
 
IRJET- Regeneration studies in chickpea genotypes (Cicer arietinum L.)
IRJET- Regeneration studies in chickpea genotypes (Cicer arietinum L.)IRJET- Regeneration studies in chickpea genotypes (Cicer arietinum L.)
IRJET- Regeneration studies in chickpea genotypes (Cicer arietinum L.)IRJET Journal
 
Doubled Haploid Production Techniques of Horticultural Crops
Doubled Haploid  Production Techniques  of Horticultural CropsDoubled Haploid  Production Techniques  of Horticultural Crops
Doubled Haploid Production Techniques of Horticultural CropsMahbubul Hassan
 
Advances in host plant resistance and identification of broad-based stable so...
Advances in host plant resistance and identification of broad-based stable so...Advances in host plant resistance and identification of broad-based stable so...
Advances in host plant resistance and identification of broad-based stable so...ICRISAT
 
Yunus Musa - Maize and Drought.pptx
Yunus Musa - Maize and Drought.pptxYunus Musa - Maize and Drought.pptx
Yunus Musa - Maize and Drought.pptxyunus591002
 
Plants fungus cell biology microbes bacteria
Plants fungus cell biology microbes bacteriaPlants fungus cell biology microbes bacteria
Plants fungus cell biology microbes bacteriassuser0db82d1
 
Omar presentation
Omar presentationOmar presentation
Omar presentationsulfabi55
 
Character Associated and Path Analysis in Pigeon Pea [Cajanus Cajan (L) Millsp.]
Character Associated and Path Analysis in Pigeon Pea [Cajanus Cajan (L) Millsp.]Character Associated and Path Analysis in Pigeon Pea [Cajanus Cajan (L) Millsp.]
Character Associated and Path Analysis in Pigeon Pea [Cajanus Cajan (L) Millsp.]ijsrd.com
 
Evaluation of elite potato clones for drought tolerance in western Uganda
Evaluation of elite potato clones for drought tolerance in western UgandaEvaluation of elite potato clones for drought tolerance in western Uganda
Evaluation of elite potato clones for drought tolerance in western UgandaILRI
 
GRM 2013: Delivering drought tolerance to those who need it: From genetic res...
GRM 2013: Delivering drought tolerance to those who need it: From genetic res...GRM 2013: Delivering drought tolerance to those who need it: From genetic res...
GRM 2013: Delivering drought tolerance to those who need it: From genetic res...CGIAR Generation Challenge Programme
 

Similar to Mohammed ayaad (20)

Cowpea differential response to striga gesnerioides
Cowpea differential response to striga gesnerioides Cowpea differential response to striga gesnerioides
Cowpea differential response to striga gesnerioides
 
Theme 2: Yield and nutrition quality stability of orange-fleshed sweetpotato ...
Theme 2: Yield and nutrition quality stability of orange-fleshed sweetpotato ...Theme 2: Yield and nutrition quality stability of orange-fleshed sweetpotato ...
Theme 2: Yield and nutrition quality stability of orange-fleshed sweetpotato ...
 
Genetic basis of apomixis
Genetic basis of apomixisGenetic basis of apomixis
Genetic basis of apomixis
 
Improving production potential of sorghum and finger millets through genetic ...
Improving production potential of sorghum and finger millets through genetic ...Improving production potential of sorghum and finger millets through genetic ...
Improving production potential of sorghum and finger millets through genetic ...
 
Health and quality test
Health and quality testHealth and quality test
Health and quality test
 
Mutation breeding in groundnut
Mutation breeding in groundnutMutation breeding in groundnut
Mutation breeding in groundnut
 
Undergraduate Post Data presentation
Undergraduate Post Data presentationUndergraduate Post Data presentation
Undergraduate Post Data presentation
 
Hybrid seed production of pigeonpea
Hybrid seed production of pigeonpea Hybrid seed production of pigeonpea
Hybrid seed production of pigeonpea
 
Pathotypic Evolution of Yellow (Stripe) rust in CWANA (1998-2008)
Pathotypic Evolution of Yellow (Stripe) rust in CWANA (1998-2008)Pathotypic Evolution of Yellow (Stripe) rust in CWANA (1998-2008)
Pathotypic Evolution of Yellow (Stripe) rust in CWANA (1998-2008)
 
Distribution and virulence spectrum of wheat stem rush in Tigray, Ethiopia
Distribution and virulence spectrum of wheat stem rush in Tigray, EthiopiaDistribution and virulence spectrum of wheat stem rush in Tigray, Ethiopia
Distribution and virulence spectrum of wheat stem rush in Tigray, Ethiopia
 
IRJET- Regeneration studies in chickpea genotypes (Cicer arietinum L.)
IRJET- Regeneration studies in chickpea genotypes (Cicer arietinum L.)IRJET- Regeneration studies in chickpea genotypes (Cicer arietinum L.)
IRJET- Regeneration studies in chickpea genotypes (Cicer arietinum L.)
 
Monday theme 2 1400 1415 room 11 alvaro
Monday theme 2 1400 1415 room 11 alvaroMonday theme 2 1400 1415 room 11 alvaro
Monday theme 2 1400 1415 room 11 alvaro
 
Doubled Haploid Production Techniques of Horticultural Crops
Doubled Haploid  Production Techniques  of Horticultural CropsDoubled Haploid  Production Techniques  of Horticultural Crops
Doubled Haploid Production Techniques of Horticultural Crops
 
Advances in host plant resistance and identification of broad-based stable so...
Advances in host plant resistance and identification of broad-based stable so...Advances in host plant resistance and identification of broad-based stable so...
Advances in host plant resistance and identification of broad-based stable so...
 
Yunus Musa - Maize and Drought.pptx
Yunus Musa - Maize and Drought.pptxYunus Musa - Maize and Drought.pptx
Yunus Musa - Maize and Drought.pptx
 
Plants fungus cell biology microbes bacteria
Plants fungus cell biology microbes bacteriaPlants fungus cell biology microbes bacteria
Plants fungus cell biology microbes bacteria
 
Omar presentation
Omar presentationOmar presentation
Omar presentation
 
Character Associated and Path Analysis in Pigeon Pea [Cajanus Cajan (L) Millsp.]
Character Associated and Path Analysis in Pigeon Pea [Cajanus Cajan (L) Millsp.]Character Associated and Path Analysis in Pigeon Pea [Cajanus Cajan (L) Millsp.]
Character Associated and Path Analysis in Pigeon Pea [Cajanus Cajan (L) Millsp.]
 
Evaluation of elite potato clones for drought tolerance in western Uganda
Evaluation of elite potato clones for drought tolerance in western UgandaEvaluation of elite potato clones for drought tolerance in western Uganda
Evaluation of elite potato clones for drought tolerance in western Uganda
 
GRM 2013: Delivering drought tolerance to those who need it: From genetic res...
GRM 2013: Delivering drought tolerance to those who need it: From genetic res...GRM 2013: Delivering drought tolerance to those who need it: From genetic res...
GRM 2013: Delivering drought tolerance to those who need it: From genetic res...
 

Mohammed ayaad

  • 1. Molecular Genetic Assessment of some Rice Mutants Induced by Gamma Irradiation ‫المس‬ ‫األرز‬ ‫طفرات‬ ‫لبعض‬ ‫الجزيئي‬ ‫الوراثي‬ ‫التقييم‬‫تحدثة‬ ‫جاما‬ ‫أشعة‬ ‫بواسطة‬ by Mohammed Hussein Essa Ayaad
  • 2. Under supervision  Dr. Eman Mahmoud Fahmy  Prof. Emeritus of Genetics, Genetics Dept., Faculty Of Agriculture, Ain Shams University.  Dr. Nermin Mahmoud Abd El-Gawad  Prof. of Genetics, Genetics Dept., Faculty Of Agriculture, Ain Shams University.  Dr. Raafat Anwar Kamal Moustafa  Prof. Emeritus of Genetics and plant breeding., Plant Res. Dept., NRC, Egyptian Atomic Energy Authority.
  • 3.  Rice is the most important food crop in the world.  More than half of World population are rice consumers.  About 93% increased will occur in developing countries. 7 billion people 2014 8 billion people in 2025 We must produce 40% more rice by 2025.  FAO Database 2014
  • 4. FAOSTAT | © FAO Statistics Division 2014 | 23 February 2014 Yield (ton/Ha) year country 2010 2011 2012 Australia 10.4 9.5 8.9 Egypt 9.4 9.5 9.5 USA 7.5 7.5 8.3 China 6.5 6.6 6.7 Japan 6.5 6.6 6.7 Viet Nam 5.3 5.5 5.6 Indonesia 5.0 4.9 5.1 Asia + (Total) 4.4 4.5 4.4 World + (Total) 4.3 4.4 4.4 Bangladesh 4.3 4.2 2.9 Brazil 4.1 4.8 4.7 Myanmar 4.0 3.8 4.0 Malaysia 3.6 3.7 3.9 Philippines 3.6 3.6 3.8 India 3.3 3.5 3.5 Thailand 2.9 2.8 3.1 Rice yield (ton/ha)
  • 5. Challenges?  Limited cultivated area.  Limited water resources.  Rice water consumption (Plant growth duration) (1k rice = ?? M3 of water)  Increased growth population  Diseases Rice scenario in Egypt • 55.5 billion M3 of water/ year River Nile • 620.285 hectares (1.5 MF) Egypt • Long • Medium • Short growth duration World
  • 6. Rice blast disease Evaluation of blast disease resistance  Rice blast, caused by the pathogenic fungus Magnaporthe oryza, is one of the important rice diseases, causing great damage to rice yield because of its wide distribution and destructiveness under favorable conditions (Ou, 1980)
  • 7.  Novel variation can be produced.  Direct mutant varieties (limited breeding effort required).  The mutations are generally random and unpredicted  The rice genome (2n=24) is about 420 Mbp (Indica with 32000 gene) to 466 Mbp (Japonica with 46000 gene). Rice Mutants (815 from 3200)  Early maturing  High Tillering  Yield  Quality  Semidwarf  Disease resistance  Cold tolerance  Salinity tolerance  Agronomy
  • 8.  Yield evaluation of different rice genotypes in two different locations for two advanced seasons (M6 and M7).  Screening all genotypes for blast disease resistance under natural and artificial infection conditions.  Evaluation of aroma and the grain quality traits.  Applying SSRs as molecular techniques to identify causative mutations and develop suitable molecular markers for good yield- related traits. Objectives
  • 9.
  • 10. 1. MATERIALS Five local rice (Oryza sativa, L.) cultivated genotypes; Sakha101, Sakha102, Sakha103, Giza177 and Egyptian Jasmine; in addition to eight mutant rice genotypes in M5 generation; Egy22, Egy23, Egy24, Egy202, Egy32, Egy33, Egy34 and Egy316. 1. Plant Materials Table (1): The origin and pedigree of the used rice cultivars Cultivars Pedigree Origin Sakha101 Giza 176/ Milyang 79 Egypt Sakha102 Gz4098-7-1 / Giza 177 Egypt Sakha103 Giza 177 / Suweon 349 Egypt Giza177 Giza 171/Yomji Egypt Egyptian Jasmine IR 358 Egypt
  • 11. Egyptian local cultivars Sakha 102 Sakha 103 Giza 177
  • 12. Mutants The parent Irradiated dose (Gy) Growth duration Important trait as individual plant Egy22 Sakha102 200 Gy 130 days High yielding Egy23 Sakha102 300 Gy 130 days Highly synchronization of flowering, red plant. Egy24 Sakha102 400 Gy 135 days High yielding Egy202 Sakha102 200 Gy 125 days High tillering, red pericarp rice, long stature. Egy32 Sakha103 200 Gy 135 days High yielding Egy33 Sakha103 300 Gy 135 days High yielding Egy34 Sakha103 400 Gy 135 days High yielding Egy316 Sakha103 300 Gy 110 days The highest 1000 grains weight Different mutations pedigree
  • 13.  Sakha102 and its mutants Egy202
  • 14. Sakha 103 and its mutations
  • 15. 2. Methods 2.1.Yield-relatedtraitsEvaluation  All genotypes were cultivated in two locations (RRTC, Sakha, Kafr Elsheikh and Agriculture Research Center, Gemiza, Gharbia).  The usual procedures for conventional production of rice were followed.  1. Heading date  2. Plant height (cm)  3. Panicle length (cm)  4. Number of panicles per plant  5. Number of grains per panicle  6. 1000 grain weight (g)  7. Grain yield per one m2 (g)
  • 16.  Microsatellites are highly polymorphic, genome-specific, abundant and co-dominant, and they have become important as genetic markers in rice breeding programs.  Thirty two SSRs primers were used in the present study to discriminate the genetic variation among the 13 rice genotypes and to detect highly polymorphic molecular markers for some studied traits. 2. Methods Rice quality evaluation Blast disease evaluation Microsatellite Markers
  • 17.
  • 19. Table (1): Means of days to maturity of the 13 rice genotypes in two locations and two different seasons. Season 2010 (M6) Means of Genotypes 2011 (M7) Means of genotypes Locations Gemmiza Sakha Gemmiza Sakha Genotypes Interaction Interaction Sk101 137.3 135.6 136.5 135.3 137.7 136.5 Sk102 120.0 125.0 122.5 125.0 125.0 125.0 Sk103 123.3 119.0 121.2 119.3 119.3 119.3 Gz177 117.7 119.7 118.7 118.0 118.0 118.0 Egy23 126.3 130.7 128.5 126.3 125.3 125.8 Egy202 128.3 125.7 127.0 126.6 128.3 127.5 Egy316 111.3 110.7 111.0 111.0 110.7 110.8 Egy22 130.3 131.0 130.7 130.3 130.3 130.3 Egy24 131.0 131.3 131.2 131.0 131.6 131.2 Egy32 131.3 131.7 131.5 131.3 131.7 131.5 Egy33 132.7 132.3 132.5 132.7 132.3 132.5 Egy34 133.0 133.7 133.3 133.0 133.7 133.3 E. Jas. 151.3 149.3 150.3 152.3 150.7 151.5 Means of locations 128.8 128.9 128.6 128.8 LSD at 0.05 (L)= N.S. (L)= N.S. (G)= 1.608 (G)= 1.566 (L*G)= 2.274 (L*G)= 2.214
  • 20.
  • 21. Sk103 (120 day) Egy316 (111 day)
  • 22. Table(2):Means of plant height (cm) of the 13 rice genotypes in two locations and two different seasons. Season 2010 (M6) Means of Genotypes 2011 (M7) Means of Genotypes Locations Gemmiza Sakha Gemmiza Sakha Genotypes Interaction Interaction Sk101 98.3 88.8 93.5 90.7 92.2 91.5 Sk102 102.2 90.2 96.2 108.3 106.1 107.2 Sk103 106.1 95.2 100.7 98.9 97.6 98.3 Gz177 95.5 99.8 97.7 96.7 94.6 95.6 Egy23 116.9 99.8 108.3 106.0 103.1 104.6 Egy202 142.5 147.0 144.8 143.3 139.2 141.2 Egy316 116.4 98.6 107.5 113.0 110.5 111.7 Egy22 117.5 111.2 114.3 107.8 100.6 104.2 Egy24 113.1 93.8 103.5 111.3 103.6 107.4 Egy32 116.9 95.0 106.0 108.3 106.1 107.2 Egy33 116.4 100.2 108.3 104.7 103.9 104.3 Egy34 114.0 92.2 103.1 107.1 99.4 103.0 E. Jas. 114.2 94.0 104.1 101.2 103.0 102.1 Means of locations 113.1 100.4 107.5 104.6 LSD at 0.05 (L)= 2.468 (L)= N.S. (G)= 2.379 (G)= 3.822
  • 24. Table (7): Means of panicle length (cm) of the 13 rice genotypes in two locations and two different seasons. Season 2010 (M6) Means of genotypes 2011 (M7) Means of genotypes Locations Gemmiza Sakha Gemmiza Sakha Genotypes Interaction Interaction Sk101 24.6 24.6 24.6 24.6 23.1 23.9 Sk102 22.4 23.7 23.1 23.7 21.3 22.5 Sk103 23.4 20.0 21.7 20.0 19.3 19.7 Gz177 23.0 20.4 21.7 20.4 19.5 19.9 Egy23 23.6 25.8 24.7 22.4 21.8 22.1 Egy202 23.0 28.2 25.6 23.4 22.2 22.8 Egy316 28.2 25.9 27.0 25.9 24.5 25.2 Egy22 29.5 22.4 26.0 28.2 25.2 26.7 Egy24 29.3 28.0 28.6 28.0 26.2 27.1 Egy32 28.6 23.4 26.0 28.6 27.5 28.1 Egy33 30.6 28.6 29.6 28.5 26.0 27.2 Egy34 29.5 28.5 29.0 28.5 23.8 26.2 E. Jas. 28.5 28.5 28.5 25.8 26.6 26.2 Means of locations 26.5 25.2 25.2 23.6 LSD at 0.05 (L)= 0.721 (L)= 0.966 (G)= 1.065 (G)= 1.656 (L*G)= 1.506 (L*G)= N.S.
  • 25.
  • 26. Table (8): Means number of panicles per m2 of the 13 rice genotypes in two locations and two different seasons. Season 2010 (M6) Means of Genotypes 2011 (M7) Means of genotypes Locations Gemmiza Sakha Gemmiza Sakha Genotypes Interaction Interaction Sk101 359.7 338.7 349.2 354.7 342.7 384.7 Sk102 346.7 308.3 327.5 338.3 326.4 332.5 Sk103 343.0 327.3 335.1 341.3 302.5 322.0 Gz177 346.7 334.3 340.5 366.7 332.3 349.5 Egy23 434.0 366.7 400.4 391.7 355.4 373.5 Egy202 922.0 907.3 914.7 938.0 923.7 930.8 Egy316 346.0 330.0 338.0 355.0 324.3 339.6 Egy22 442.0 421.7 431.9 461.7 431.7 446.7 Egy24 407.3 403.7 405.5 443.3 416.5 430.0 Egy32 400.7 371.7 386.2 428.3 408.7 418.5 Egy33 407.0 402.7 404.9 410.7 403.0 406.9 Egy34 422.7 410.3 416.5 450.0 426.7 438.4 E. Jas. 380.7 375.3 378.0 398.3 381.5 389.9 Means of locations 427.6 407.5 436.8 413.5 LSD at 0.05 (L)= 1.424 (L)= 0.0009 (G)= 2.629 (G)= 0.002
  • 27. Fig (6). a) High tillering mutant Egy202, b) Low tillering mutant Egy316 and c) Phenotype of the moc1 mutant. a b c
  • 28. Table (9) Grains number/panicle means of the 13 rice genotypes in the two locations and two different seasons (M6 and M7). Season 2010 (M6) Means of genotypes 2011 (M7) Means of genotypes Locations Gemmiza Sakha Gemmiza Sakha Genotypes Interaction Interaction Sk101 123.0 151.0 137.0 151.0 120.8 135.9 Sk102 129.7 112.1 120.9 112.1 92.6 102.3 Sk103 145.9 103.5 124.7 103.5 109.5 106.5 Gz177 104.6 97.5 101.1 97.5 93.8 95.7 Egy23 163.7 180.3 172.0 137.7 108.3 123.0 Egy202 105.6 185.9 145.7 114.3 70.1 92.2 Egy316 145.1 141.9 143.5 141.9 110.0 126.0 Egy22 179.7 137.7 158.7 185.9 126.9 156.4 Egy24 183.3 192.2 187.7 192.2 149.5 170.9 Egy32 188.2 114.3 151.3 205.3 160.4 182.9 Egy33 187.7 205.3 196.5 191.9 151.3 171.6 Egy34 208.6 191.9 200.2 196.1 122.7 159.4 E. Jas. 185.6 196.1 190.9 180.3 143.0 161.6 Means of locations 157.7 154.6 154.6 119.9 LSD at 0.05 (L)= N.S. (L)= 22.97 (G)= 20.43 (G)= 17.25 (L*G)= 28.90 (L*G)= 24.40
  • 29. Table (10). Means of panicle weight (g) of the 13 rice genotypes in two locations and two different seasons. Season 2010 (M6) Means of genotypes 2011 (M7) Means of genotypes Locations Gemmiza Sakha Gemmiza Sakha Genotypes Interaction Interaction Sk101 3.6 4.1 3.9 4.1 3.4 3.8 Sk102 3.8 3.3 3.5 3.3 2.6 3.0 Sk103 4.0 2.8 3.4 2.8 2.7 2.7 Gz177 3.0 2.8 2.9 2.8 2.5 2.7 Egy23 4.1 4.7 4.4 3.4 2.9 3.2 Egy202 2.6 5.0 3.8 2.8 1.6 2.2 Egy316 4.8 4.7 4.8 4.7 3.5 4.1 Egy22 5.0 3.4 4.2 5.0 3.6 4.3 Egy24 5.0 5.5 5.2 5.5 4.1 4.8 Egy32 5.2 2.8 4.0 5.5 4.6 5.1 Egy33 5.0 5.5 5.3 5.3 4.4 4.9 Egy34 5.2 5.3 5.2 5.3 3.2 4.3 E. Jas. 5.1 5.3 5.2 4.7 4.1 4.4 Means of locations 4.3 4.3 4.3 3.3 LSD at 0.05 (L)= N.S. (L)= 0.582 (G)= 0.565 (G)= 0.497 (L*G)= 0.799 (L*G)= 0.702
  • 30. Differences between panicles Sk102 and its mutants Sk103 and its mutants
  • 31. Table (11). Means of 1000 grain weight per panicle (g) trait of the 13 rice genotypes in two locations and two different seasons. Season 2010 (M6) Means of genotypes 2011 (M7) Means of genotypes Locations Gemmiza Sakha Gemmiza Sakha Genotypes Interaction Interaction Sk101 29.7 27.3 28.5 27.3 28.2 27.7 Sk102 29.1 29.6 29.3 29.6 28.2 28.9 Sk103 27.5 27.0 27.3 27.0 24.3 25.6 Gz177 28.9 29.0 28.9 29.0 26.4 27.7 Egy23 24.8 26.4 25.6 24.8 27.0 25.9 Egy202 24.5 26.6 25.5 24.4 23.4 23.9 Egy316 33.3 32.9 33.1 32.9 31.7 32.3 Egy22 28.0 24.8 26.4 26.6 28.8 27.7 Egy24 27.1 28.7 27.9 28.7 27.4 28.0 Egy32 27.9 24.4 26.2 26.9 28.8 27.8 Egy33 26.8 26.9 26.8 27.6 29.4 28.5 Egy34 25.0 27.6 26.3 27.1 26.7 26.9 E.Jas. 27.3 27.1 27.2 26.4 28.5 27.4 Means of locations 27.6 27.7 27.6 27.6 LSD at 0.05 (L)= N.S. (L)= N.S. (G)= 1.245 (G)= 1.136 (L*G)= 1.761 (L*G)= 1.606
  • 32. Season 2010 (M6) Means of genotypes 2011 (M7) Means of genotypes Locations Gemmiza Sakha Gemmiza Sakha Genotypes Interaction Interaction Sk101 4.50 3.93 4.22 4.76 3.84 4.30 Sk102 3.95 3.67 3.81 3.55 3.30 3.43 Sk103 4.05 3.32 3.69 3.24 3.24 3.24 Gz177 4.13 3.53 3.83 3.89 3.20 3.55 Egy23 4.28 3.77 4.03 4.22 3.47 3.85 Egy202 3.85 4.05 3.95 3.55 3.67 3.61 Egy316 4.54 4.04 4.29 4.55 3.34 4.45 Egy22 4.93 4.75 4.84 4.95 4.16 4.56 Egy24 4.80 4.44 4.62 4.91 4.08 4.50 Egy32 4.05 4.44 4.25 4.31 3.83 4.07 Egy33 4.81 4.12 4.47 4.17 3.96 4.07 Egy34 4.36 4.05 4.21 4.50 4.17 4.34 E.Jas. 3.55 3.47 3.51 3.63 3.23 3.43 Means of locations 4.29 3.97 4.17 3.73 LSD at 0.05 (L)= 0.001 (L)= 0.001 (G)= 0.002 (G)= 0.003 (L*G)= 0.0016 (L*G)= 0.0017 Table (12) Means of grain yield/fedden (ton/fed) of the 13 rice genotypes in two locations and two different seasons.
  • 34. 2.3. Evaluation of grain quality The traitsof physical qualityof grains  Hulling and milling percentage.  Length, width and grain shape  Head Rice Yield (the weight of whole white rice after milling as a percentage) The cooking and eatingcharacteristicsof rice  Amylosecontent(high; ≥ 25%, intermediate; 20-25% , low; 15-20% and waxy is zero)  Gelatinizationtemperature  Aroma
  • 35. Genotypes Grain dimension (mm) Milling recovery (%) Cooking and eating quality GL GW LWR H% M% HR AC GT Aroma Sk101 7.92 3.22 2.48 65.27 56.67 54.67 20.03 4 None Sk102 8.05 3.24 2.48 81.67 71.73 67.47 19.22 5 None Sk103 7.33 3.18 2.30 79.80 64.60 62.47 16.15 6 None Gz177 7.55 3.13 2.42 81.07 71.20 68.33 19.41 5 None Egy23 7.93 3.04 2.79 78.67 66.67 61.33 25.29 7 None Egy202 8.88 2.89 3.08 81.00 67.47 65.07 24.04 3 Slight Egy316 9.91 3.17 3.13 82.33 68.13 66.67 17.28 3 Slight Egy22 10.14 2.69 3.78 80.60 67.13 64.80 16.90 7 Strong Egy24 9.92 2.63 3.80 84.87 70.53 67.80 24.16 7 Moderate Egy32 10.14 2.64 3.84 78.47 66.53 50.00 15.90 6 Moderate Egy33 10.14 2.59 3.93 83.13 67.60 64.33 16.65 5 Moderate Egy34 9.34 2.63 3.57 79.47 66.67 61.40 16.78 4 Moderate E. Jas 9.92 2.69 3.64 63.13 53.33 50.00 16.84 5 Moderate LSD 0.05 0.727 0.361 0.256 2.159 0.002 2.698 0.296 0.853 --- STDEVA ± 1.1 ± 0.26 ± 0.62 ± 6.57 ± 5.34 ± 6.39 ± 3.33 ± 1.42 --- Table (13) Means for rice grain quality characters of thirteen genotypes. *GL: Grain length, GW: Grain Width, LWR: length Width Ratio, H%: Hulling percentage, M%: Milling percentage, AC: Amylose Content, GT: Gelatinization temperature and HR: Head Rice.
  • 36. Traits GL GW LWR AC GT H % M % HR GL 1.00 GW -0.80 1.00 LWR 0.95** -0.94** 1.00 AC -0.29 0.16 -0.21 1.00 GT 0.03 -0.27* 0.20 0.13 1.00 H % 0.09 -0.08 0.11 0.15 0.17 1.00 M % -0.04 0.05 -0.03 0.22 0.15 0.95** 1.00 HR -0.19 0.25* -0.23 0.32 -0.03 0.78** 0.79** 1.00 Table (14). Correlation coefficients among different quality characters for 13 rice genotypes. *GL: Grain length, GW: Grain Width, LWR: length Width Ratio, AC: Amylose Content, GT: Gelatinization Temperature, H%: Hulling percentage, M%: Milling percentage and HR: Head Rice.
  • 38. 2.2. Screening of blast disease resistance  Dry grains of the 13 genotypes were infected by six races of Magnoporthe oryzae in the glass house for 30 days after the cultivation process.  All of thirteen genotypes` grains were cultivated in the blast nursery, in two different locations in the first of July for two seasons. Natural infection Artificial inoculation
  • 39. Evaluation of blast Disease under natural infection Genotypes 2010 2011 Gemmiza Sakha Gemmiza Sakha Sk101 8 7 8 6 Sk102 1 1 1 1 Sk103 1 1 1 1 GZ177 2 1 2 1 Egy23 1 1 1 1 Egy202 1 1 2 1 Egy316 1 1 1 1 Egy22 1 1 1 1 Egy24 1 1 1 1 Egy32 1 1 1 1 Egy33 1 1 1 1 Egy34 1 1 1 1 Egy. Jas. 1 1 1 1
  • 40.
  • 41. Evaluation of blast Disease under artificial inoculation Genotypes Blast Races IC-5 IG-1 IB-63 IH-1 IB-19 ID-15 Sk101 5 1 4 1 1 5 Sk102 1 1 1 1 1 1 Sk103 2 1 1 2 1 3 Gz177 1 1 1 1 1 1 Egy23 3 1 3 3 3 3 Egy202 3 3 3 3 1 3 Egy316 1 1 3 1 1 3 Egy22 1 2 3 2 1 3 Egy24 1 1 3 1 1 3 Egy32 1 1 3 3 1 3 Egy33 3 1 1 3 2 3 Egy34 3 3 1 2 1 3 E. Jas 1 3 1 3 1 3
  • 43. Unique markers and common bands using 32 SSRs primers. Primers Chr. MS Sk101 Sk102 Sk103 Gz177 Egy23 Egy202 Egy316 Egy22 Egy24 Egy32 Egy33 Egy34 E.Jas Name No (bp) RM112 (EM) 2 650 0 0 1 0 0 0 0 0 0 0 0 0 0 RM432 (EM) 7 294 0 0 0 0 0 1 0 0 0 0 0 0 0 RM434 (EM) 9 131 1 1 1 1 1 1 1 1 1 1 1 1 1 RM467 (EM) 10 903 0 0 0 0 0 0 0 1 0 0 0 0 0 RM9 (HT) 1 191 0 0 0 0 1 0 0 0 0 0 0 0 0 RM526 (HT) 2 50 1 1 1 1 1 1 1 1 1 1 1 1 1 RM135 (HT) 3 485 1 1 1 1 0 1 1 1 1 1 1 1 1 318 0 0 0 0 0 1 0 0 0 0 0 0 0 RM23120 (A) 8 292 1 0 0 0 0 0 0 0 0 0 0 0 0 RM136 (B) 6 1054 0 0 0 1 0 0 0 0 0 0 0 0 0 RM230 (B) 6 1476 0 1 0 0 0 0 0 0 0 0 0 0 0 RM527 (B) 6 139 1 1 1 1 1 1 1 0 1 1 1 1 1 RM587 (B) 6 191 0 0 0 0 1 0 0 0 0 0 0 0 0 RM10 (B) 7 756 0 0 0 0 0 0 0 1 0 0 0 0 0 RM70 (B) 7 644 1 0 0 0 0 0 0 0 0 0 0 0 0 RM144 (B) 11 326 0 1 0 0 0 0 0 0 0 0 0 0 0 235 1 1 1 1 1 1 1 1 1 1 1 0 1 RM206 (B) 11 162 0 0 0 0 1 0 0 0 0 0 0 0 0 RM224 (B) 11 152 1 0 0 0 0 0 0 0 0 0 0 0 0 EM= Early maturing, HT= High tillering, A= Aroma and B= Blast
  • 44. SSRs-based dendrogram of 13 rice genotypes using 32 SSRs primers Separated Egy24 Egy33 Egy32 Egy34 Egy22 E. Jas. Sk103 Gz177 Egy316 Sk102 Egy202 Egy23 Sk101
  • 45. RM112 RM125 RM432 RM434 RM467 RM493 RM579 Marker Sk101 Sk102 Sk103 Gz177 Egy23 Egy202 Egy316 Egy22 Egy24 Egy32 Egy33 Egy34 E.Jas Marker Sk101 Sk102 Sk103 Gz177 Egy23 Egy202 Egy316 Egy22 Egy24 Egy32 Egy33 Egy34 E.Jas 1. SSRs analysis for early maturing. RM125 showed to bands divided the 13 rice genotypes into two groups 1- Sk101, Sk102, Sk103, Gz177, Egy23 and Egy202 as Medium grain shape (2.1-3.0 mm) 2- Egy316, Egy22, Egy24, Egy32, Egy33, Egy34 and E. Jas as slender grain shape (>3.0 mm) 443 483Primers Chr. MS Sk103 Egy202 Egy316 Egy22 Name No (bp) RM112 2 650 1 0 0 0 RM432 7 294 0 1 0 0 RM467 10 903 0 0 0 1
  • 46. RM526 RM135 RM168 RM210 RM9 Marker Sk101 Sk102 Sk103 Gz177 Egy23 Egy202 Egy316 Egy22 Egy24 Egy32 Egy33 Egy34 E.Jas Marker Sk101 Sk102 Sk103 Gz177 Egy23 Egy202 Egy316 Egy22 Egy24 Egy32 Egy33 Egy34 E.Jas 191 bp 164 bp 2. SSRs analysis for high tillering RM135 primer showed unique positive marker in the high tillering mutant (Egy202) with molecular weight 318 bp The mutant Egy23 characterized by unique positive and negative markers with RM9 and RM135 RM526 showed common band in all genotypes except Egy202 and E. Jas
  • 47. b) RM7049 c) RG28 a) RM23120 Marker Sk101 Sk102 Sk103 Gz177 Egy23 Egy202 Egy316 Egy22 Egy24 Egy32 Egy33 Egy34 E.Jas 2. SSRs analysis for Aroma Sk103 Egy202  The primer RM23120 showed 4 alleles, followed by the primer RG28 presented 2 alleles as 202 and 121 bp. While RM7049 revealed one allele (70 bp).  RG28 produced one common band with molecular size 202 bp among the used aromatic genotypes (E. Jas, Egy34, Egy33, Egy32 and Egy24) except Egy22.
  • 48. SSRs analysis for blast disease Resistant genotypes  Sk102  Sk103  Gz177  Egy23  Egy202  Egy22  Eg424  Egy32  Egy33  Egy34 Susceptible genotypes  Sk101
  • 49. 17 SSRs primers related to blast Unique positive and negative markers Genotypes Molecular size (bp) Total Molecular size (bp) Total Grand total PUM (+) NUM (-) Sk101 RM224 (152), RM70 (644) 2 - 0 2 Sk102 RM230 (1476) 1 - 0 1 Sk103 - 0 - 0 0 Gz177 RM136 (1054) 1 - 0 1 Egy23 RM206 (162) 1 - 0 1 Egy202 - 0 - 0 0 Egy316 - 0 - 0 0 Egy22 0 RM527 (139) 1 1 Egy24 - 0 - 0 0 Egy32 - 0 - 0 0 Egy32 - 0 - 0 0 Egy33 - 0 - 0 0 Egy34 - 0 RM144 (326) 1 1 E. Jasmine - 0 - 0 0
  • 50. (1) RM 30 (8) RM 230 (6) RM 211 (2) RM 121 (3) RM 136 (4) RM 144 (5) RM 206 (7) RM 224 Marker Sk101 Sk102 Sk103 Gz177 Egy23 Egy202 Egy316 Egy22 Egy24 Egy32 Egy33 Egy34 E.Jas Marker Sk101 Sk102 Sk103 Gz177 Egy23 Egy202 Egy316 Egy22 Egy24 Egy32 Egy33 Egy34 E.Jas
  • 51. (13) RM 527 (11) RM 280 (9) RM 251 (10) RM 279 (12) RM 332 (14) RM 587 (15) RM 11 (16) RM 10 (17) RM 70 Marker Sk101 Sk102 Sk103 Gz177 Egy23 Egy202 Egy316 Egy22 Egy24 Egy32 Egy33 Egy34 E.Jas Marker Sk101 Sk102 Sk103 Gz177 Egy23 Egy202 Egy316 Egy22 Egy24 Egy32 Egy33 Egy34 E.Jas
  • 52. Conclusion The mutant Egy316 was earlier than other genotypes (110.9 days) and recorded the highest 1000 grain weight (32.7g). Egy202, showed the highest number of panicles/m2 (922.8), but the grain yield (ton/fed) decreased as a result of lodging. Maximum grain yield (ton/fed) appeared for Egy22. The studied rice mutants except Egy202 and Egy23 had slender grain shape in addition to the Egyptian Jasmine (more than 3 mm), while the cultivars; Sk101, Sk102, Sk103, Gz177 and Egy23, as well as Egy202 and Egy23 were medium grain shape(2.1 to 3.0 mm). All genotypes have intermediate amylose content except Egy23, Egy202 and Egy24 (high amylose content). The strongest aromatic genotype was Egy22 as compared to the local aromatic cultivar (E. Jas). Under natural and artificial infection for blast disease, the 13 rice genotypes were resistance and moderate resistance except Sk101
  • 53. The primer RM125 may be specific primer for grain shape. The primer RM135 gave one positive marker in the high tillering mutant (Egy202); it may be related to the studied trait. The primer RG28 was able to recognize between aromatic and non aromatic genotypes except Egy22. RM224, cosegregated with blast disease, were absent in all genotypes except Sk101.
  • 54.  Dr. Abd El-Salam Ebaid Draz  Dr. Fatthy M. Abd El-Tawab  Dr. Eman Mahmoud Fahmy  Dr. Nermin Mahmoud Abd El-Gawad  Dr. Sabah M. Hassan  Dr. Raafat Anwar Kamal Moustafa  Dr. Sobieh S.S. Sobieh  Dr. Abd El-Magid M. Shaheen  Dr. Osama El-Badawy  Dr. Rabiea El-Shafey  Dr. Aly El-Gohary  Dr. Yassir El-Refaee  Dr. Aysam Faied  Dr. Kamal Abd El-Lateef  Dr. Nesrin Nazmy Acknowledgment To my family, My father, My mother, My wife My boys (Mohanad and Eiad) Dr. Khaled Elazab, Dr. Ibrahim Osamy, Dr. Shreif Yousif, Dr. Mohammed Basyouny, Dr. Mohammed Abdelrazek, Dr. Waleed Korany Mr. Mohammed Ali