SlideShare a Scribd company logo
1 of 19
Light, Reflection, & Mirrors
AP Physics 2
Facts about Light
 It is a form of Electromagnetic Energy
 It is a part of the Electromagnetic Spectrum and the only part we
can really see
Facts about Light
The speed of light, c, is constant in a vacuum.
Light can be:
•REFLECTED
•ABSORBED
•REFRACTED
Light is an electromagnetic wave in that it has wave like properties
which can be influenced by electric and magnetic fields.
The Law of “REFLECTION”
The Law of Reflection states that- " the angle
of incidence (incoming ray) equals the
angle of reflection (outgoing ray)"
The law works for FLAT,
PLANE surfaces only.
The angles are measured
from a perpendicular line
to the surface called a
NORMAL.
NORMAL
Plane Mirror
Suppose we had a flat , plane mirror mounted vertically. A candle is
placed 10 cm in front of the mirror. WHERE IS THE IMAGE OF
THE CANDLE LOCATED?
mirror
Object Distance, Do = 10 cm
Same side as the object?
On the surface of the mirror?
Behind the mirror?
Plane Mirror
Suppose we had a flat , plane mirror mounted vertically. A candle is
placed 10 cm in front of the mirror. WHERE IS THE IMAGE OF
THE CANDLE LOCATED?
mirror
Object Distance, Do = 10 cm Image Distance, Di = 10 cm
Do=Di, and the heights are equal as well
Virtual Image
Virtual Images
Virtual Images are basically images which cannot be
visually projected on a screen.
If this box gave off
light, we could project
an image of this box
on to a screen
provided the screen
was on the SAME
SIDE as the box.
You would not be able to project the image of the
vase or your face in a mirror on a screen, therefore
it is a virtual image.
CONCLUSION: VIRTUAL IMAGES are ALWAYS on the OPPOSITE side of
the mirror relative to the object.
Real Image
Real Images are ones you can project on to a screen.
For MIRRORS they always appear on the SAME SIDE of the mirror as the object.
object
image
The characteristics of the
image, however, may be
different from the original object.
These characteristics are:
•SIZE (reduced,enlarged,same
size)
•POSITION (same side,
opposite side)
•ORIENTATION (right side up,
inverted)
What if the mirror isn’t flat?
Spherical Mirrors – Concave & Convex
Also called CONVERGING mirror
Also called DIVERGING mirror
Converging (Concave) Mirror
A converging mirror is one that is spherical in nature
by which it can FOCUS parallel light rays to a point
directly in front of its surface. Every spherical mirror
can do this and this special point is at a “fixed”
position for every mirror. We call this point the
FOCAL POINT. To find this point you MUST use
light from “infinity”
Light from an “infinite”
distance, most likely the
sun.
Converging (Concave) Mirror
Since the mirror is
spherical it technically
has a CENTER OF
CURVATURE, C. The
focal point happens to
be HALF this distance.
We also draw a line through the
center of the mirror and call it the
PRINCIPAL AXIS.
f
C
C
f
2
2


Ray Diagram
A ray diagram is a pictorial representation of how the
light travels to form an image and can tell you the
characteristics of the image.
Principal axis
f
C
object
Rule One: Draw a ray, starting from the top of the object, parallel to the
principal axis and then through “f” after reflection.
Ray Diagrams
Principal axis
f
C
object
Rule Two: Draw a ray, starting from the top of the object, through the focal
point, then parallel to the principal axis after reflection.
Ray Diagrams
Principal axis
f
C
object
Rule Three: Draw a ray, starting from the top of the object, through C, then
back upon itself.
What do you notice about the three lines? THEY INTERSECT
The intersection is the location of the image.
Ray Diagram – Image Characteristics
Principal axis
f
C
object
After getting the intersection, draw an arrow down from the principal axis to
the point of intersection. Then ask yourself these questions:
1) Is the image on the SAME or OPPOSITE side of the mirror as the object?
Same, therefore it is a REAL IMAGE.
2) Is the image ENLARGED or REDUCED?
3) Is the image INVERTED or RIGHT SIDE UP?
The Mirror/Lens Equation
Is there any OTHER way to predict image characteristics besides
the ray diagram? YES!
One way is to use the MIRROR/LENS equation to
CALCULATE the position of the image.
i
o d
d
f
1
1
1


Mirror/Lens Equation
Assume that a certain concave spherical mirror has a
focal length of 10.0 cm. Locate the image for an
object distance of 25 cm and describe the image’s
characteristics.






i
i
i
o
d
d
d
d
f
1
25
1
10
1
1
1
1
16.67 cm
What does this tell us? First we know the image is BETWEEN “C” & “f”. Since the
image distance is POSITIVE the image is a REAL IMAGE.
Real image = positive image distance
Virtual image = negative image distance
What about the size and orientation?
Magnification Equation
To calculate the orientation and size of the image we
use the MAGNIFICATION EQUATION.
x
M
M
h
h
d
d
M
o
i
o
i
67
.
0
25
67
.
16







Here is how this works:
•If we get a POSITIVE magnification, the image is
UPRIGHT.
•If we get a NEGATIVE magnification, the image is
INVERTED
•If the magnification value is GREATER than 1, the
image is ENLARGED.
•If the magnification value is LESS than 1, the image
is REDUCED.
•If the magnification value is EQUAL to 1, the image
is the SAME SIZE as the object.
Using our previous data we see that our image was INVERTED, and REDUCED.
Example
Assume that a certain concave spherical mirror has a focal
length of 10.0 cm. Locate the image for an object distance of
5 cm and describe the image’s characteristics.









5
1
5
1
10
1
1
1
1
i
i
i
i
o
d
M
d
d
d
d
f
-10 cm
2x
•VIRTUAL (opposite side)
•Enlarged
•Upright
Characteristics?

More Related Content

Similar to AP_Physics_2_-_Ch_22_and_23_Reflection_and_Mirrors.ppt

Spherical mirror by Kshitiz Rai
Spherical mirror by Kshitiz RaiSpherical mirror by Kshitiz Rai
Spherical mirror by Kshitiz Rai26sep98
 
Reflection of Light in Mirrors - Science 10 (S10FE-IIg-h-50-52)
Reflection of Light in Mirrors - Science 10 (S10FE-IIg-h-50-52)Reflection of Light in Mirrors - Science 10 (S10FE-IIg-h-50-52)
Reflection of Light in Mirrors - Science 10 (S10FE-IIg-h-50-52)Rolly Franco
 
Reflection of the light in the mirror.pptx
Reflection of the light in the mirror.pptxReflection of the light in the mirror.pptx
Reflection of the light in the mirror.pptxkriselcello
 
Reflection ray optics light chapter
Reflection ray optics light chapterReflection ray optics light chapter
Reflection ray optics light chapterAbishekThiyagarajan
 
Light full chaptet 10 cbse x
Light full chaptet 10 cbse x Light full chaptet 10 cbse x
Light full chaptet 10 cbse x RAVNEET NAGI
 
fdocuments.net_optics-lecture-2-book-chapter-3435.ppt
fdocuments.net_optics-lecture-2-book-chapter-3435.pptfdocuments.net_optics-lecture-2-book-chapter-3435.ppt
fdocuments.net_optics-lecture-2-book-chapter-3435.pptPedramMaghsoudi4
 
Reflection of light (Physics)
Reflection of light (Physics)Reflection of light (Physics)
Reflection of light (Physics)Sheikh Amman
 
Lenses
LensesLenses
Lensesozo120
 
Light – reflection refraction
Light – reflection refractionLight – reflection refraction
Light – reflection refractionrahul670905
 
Light - Mirrors and Lenses.pptx
Light - Mirrors and Lenses.pptxLight - Mirrors and Lenses.pptx
Light - Mirrors and Lenses.pptxhayyasoo
 
G10 Science Q2-Week 8- Properties of Mirror.ppt
G10 Science Q2-Week 8- Properties of Mirror.pptG10 Science Q2-Week 8- Properties of Mirror.ppt
G10 Science Q2-Week 8- Properties of Mirror.pptRegieBenigno
 
Class 10 light - convex mirror
Class 10   light - convex mirrorClass 10   light - convex mirror
Class 10 light - convex mirrorRachnaRishi2
 

Similar to AP_Physics_2_-_Ch_22_and_23_Reflection_and_Mirrors.ppt (20)

Espejos
Espejos Espejos
Espejos
 
Spherical mirror by Kshitiz Rai
Spherical mirror by Kshitiz RaiSpherical mirror by Kshitiz Rai
Spherical mirror by Kshitiz Rai
 
Reflection of Light in Mirrors - Science 10 (S10FE-IIg-h-50-52)
Reflection of Light in Mirrors - Science 10 (S10FE-IIg-h-50-52)Reflection of Light in Mirrors - Science 10 (S10FE-IIg-h-50-52)
Reflection of Light in Mirrors - Science 10 (S10FE-IIg-h-50-52)
 
Reflection of the light in the mirror.pptx
Reflection of the light in the mirror.pptxReflection of the light in the mirror.pptx
Reflection of the light in the mirror.pptx
 
Reflection ray optics light chapter
Reflection ray optics light chapterReflection ray optics light chapter
Reflection ray optics light chapter
 
Light 1.pptx
Light 1.pptxLight 1.pptx
Light 1.pptx
 
Light full chaptet 10 cbse x
Light full chaptet 10 cbse x Light full chaptet 10 cbse x
Light full chaptet 10 cbse x
 
1 Reflaction Of Light
1 Reflaction Of Light1 Reflaction Of Light
1 Reflaction Of Light
 
Light
LightLight
Light
 
fdocuments.net_optics-lecture-2-book-chapter-3435.ppt
fdocuments.net_optics-lecture-2-book-chapter-3435.pptfdocuments.net_optics-lecture-2-book-chapter-3435.ppt
fdocuments.net_optics-lecture-2-book-chapter-3435.ppt
 
Geometric optics
Geometric opticsGeometric optics
Geometric optics
 
Reflection of light (Physics)
Reflection of light (Physics)Reflection of light (Physics)
Reflection of light (Physics)
 
1 Reflaction Of Light
1 Reflaction Of Light1 Reflaction Of Light
1 Reflaction Of Light
 
Lenses
LensesLenses
Lenses
 
Light
LightLight
Light
 
Light – reflection refraction
Light – reflection refractionLight – reflection refraction
Light – reflection refraction
 
Light - Mirrors and Lenses.pptx
Light - Mirrors and Lenses.pptxLight - Mirrors and Lenses.pptx
Light - Mirrors and Lenses.pptx
 
G10 Science Q2-Week 8- Properties of Mirror.ppt
G10 Science Q2-Week 8- Properties of Mirror.pptG10 Science Q2-Week 8- Properties of Mirror.ppt
G10 Science Q2-Week 8- Properties of Mirror.ppt
 
Class 10 light - convex mirror
Class 10   light - convex mirrorClass 10   light - convex mirror
Class 10 light - convex mirror
 
light
lightlight
light
 

Recently uploaded

Environmental Biotechnology Topic:- Microbial Biosensor
Environmental Biotechnology Topic:- Microbial BiosensorEnvironmental Biotechnology Topic:- Microbial Biosensor
Environmental Biotechnology Topic:- Microbial Biosensorsonawaneprad
 
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptxLIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptxmalonesandreagweneth
 
The dark energy paradox leads to a new structure of spacetime.pptx
The dark energy paradox leads to a new structure of spacetime.pptxThe dark energy paradox leads to a new structure of spacetime.pptx
The dark energy paradox leads to a new structure of spacetime.pptxEran Akiva Sinbar
 
Dubai Calls Girl Lisa O525547819 Lexi Call Girls In Dubai
Dubai Calls Girl Lisa O525547819 Lexi Call Girls In DubaiDubai Calls Girl Lisa O525547819 Lexi Call Girls In Dubai
Dubai Calls Girl Lisa O525547819 Lexi Call Girls In Dubaikojalkojal131
 
Davis plaque method.pptx recombinant DNA technology
Davis plaque method.pptx recombinant DNA technologyDavis plaque method.pptx recombinant DNA technology
Davis plaque method.pptx recombinant DNA technologycaarthichand2003
 
Pests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdfPests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdfPirithiRaju
 
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptxSTOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptxMurugaveni B
 
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.PraveenaKalaiselvan1
 
User Guide: Capricorn FLX™ Weather Station
User Guide: Capricorn FLX™ Weather StationUser Guide: Capricorn FLX™ Weather Station
User Guide: Capricorn FLX™ Weather StationColumbia Weather Systems
 
Citronella presentation SlideShare mani upadhyay
Citronella presentation SlideShare mani upadhyayCitronella presentation SlideShare mani upadhyay
Citronella presentation SlideShare mani upadhyayupadhyaymani499
 
Pests of castor_Binomics_Identification_Dr.UPR.pdf
Pests of castor_Binomics_Identification_Dr.UPR.pdfPests of castor_Binomics_Identification_Dr.UPR.pdf
Pests of castor_Binomics_Identification_Dr.UPR.pdfPirithiRaju
 
REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...
REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...
REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...Universidade Federal de Sergipe - UFS
 
Microphone- characteristics,carbon microphone, dynamic microphone.pptx
Microphone- characteristics,carbon microphone, dynamic microphone.pptxMicrophone- characteristics,carbon microphone, dynamic microphone.pptx
Microphone- characteristics,carbon microphone, dynamic microphone.pptxpriyankatabhane
 
Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...
Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...
Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...D. B. S. College Kanpur
 
User Guide: Magellan MX™ Weather Station
User Guide: Magellan MX™ Weather StationUser Guide: Magellan MX™ Weather Station
User Guide: Magellan MX™ Weather StationColumbia Weather Systems
 
Speech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxSpeech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxpriyankatabhane
 
preservation, maintanence and improvement of industrial organism.pptx
preservation, maintanence and improvement of industrial organism.pptxpreservation, maintanence and improvement of industrial organism.pptx
preservation, maintanence and improvement of industrial organism.pptxnoordubaliya2003
 
Base editing, prime editing, Cas13 & RNA editing and organelle base editing
Base editing, prime editing, Cas13 & RNA editing and organelle base editingBase editing, prime editing, Cas13 & RNA editing and organelle base editing
Base editing, prime editing, Cas13 & RNA editing and organelle base editingNetHelix
 
Topic 9- General Principles of International Law.pptx
Topic 9- General Principles of International Law.pptxTopic 9- General Principles of International Law.pptx
Topic 9- General Principles of International Law.pptxJorenAcuavera1
 

Recently uploaded (20)

Environmental Biotechnology Topic:- Microbial Biosensor
Environmental Biotechnology Topic:- Microbial BiosensorEnvironmental Biotechnology Topic:- Microbial Biosensor
Environmental Biotechnology Topic:- Microbial Biosensor
 
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptxLIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
 
The dark energy paradox leads to a new structure of spacetime.pptx
The dark energy paradox leads to a new structure of spacetime.pptxThe dark energy paradox leads to a new structure of spacetime.pptx
The dark energy paradox leads to a new structure of spacetime.pptx
 
Dubai Calls Girl Lisa O525547819 Lexi Call Girls In Dubai
Dubai Calls Girl Lisa O525547819 Lexi Call Girls In DubaiDubai Calls Girl Lisa O525547819 Lexi Call Girls In Dubai
Dubai Calls Girl Lisa O525547819 Lexi Call Girls In Dubai
 
Davis plaque method.pptx recombinant DNA technology
Davis plaque method.pptx recombinant DNA technologyDavis plaque method.pptx recombinant DNA technology
Davis plaque method.pptx recombinant DNA technology
 
Pests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdfPests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdf
 
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptxSTOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
 
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
 
User Guide: Capricorn FLX™ Weather Station
User Guide: Capricorn FLX™ Weather StationUser Guide: Capricorn FLX™ Weather Station
User Guide: Capricorn FLX™ Weather Station
 
Citronella presentation SlideShare mani upadhyay
Citronella presentation SlideShare mani upadhyayCitronella presentation SlideShare mani upadhyay
Citronella presentation SlideShare mani upadhyay
 
Pests of castor_Binomics_Identification_Dr.UPR.pdf
Pests of castor_Binomics_Identification_Dr.UPR.pdfPests of castor_Binomics_Identification_Dr.UPR.pdf
Pests of castor_Binomics_Identification_Dr.UPR.pdf
 
REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...
REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...
REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...
 
Microphone- characteristics,carbon microphone, dynamic microphone.pptx
Microphone- characteristics,carbon microphone, dynamic microphone.pptxMicrophone- characteristics,carbon microphone, dynamic microphone.pptx
Microphone- characteristics,carbon microphone, dynamic microphone.pptx
 
Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...
Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...
Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...
 
User Guide: Magellan MX™ Weather Station
User Guide: Magellan MX™ Weather StationUser Guide: Magellan MX™ Weather Station
User Guide: Magellan MX™ Weather Station
 
Speech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxSpeech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptx
 
preservation, maintanence and improvement of industrial organism.pptx
preservation, maintanence and improvement of industrial organism.pptxpreservation, maintanence and improvement of industrial organism.pptx
preservation, maintanence and improvement of industrial organism.pptx
 
Hot Sexy call girls in Moti Nagar,🔝 9953056974 🔝 escort Service
Hot Sexy call girls in  Moti Nagar,🔝 9953056974 🔝 escort ServiceHot Sexy call girls in  Moti Nagar,🔝 9953056974 🔝 escort Service
Hot Sexy call girls in Moti Nagar,🔝 9953056974 🔝 escort Service
 
Base editing, prime editing, Cas13 & RNA editing and organelle base editing
Base editing, prime editing, Cas13 & RNA editing and organelle base editingBase editing, prime editing, Cas13 & RNA editing and organelle base editing
Base editing, prime editing, Cas13 & RNA editing and organelle base editing
 
Topic 9- General Principles of International Law.pptx
Topic 9- General Principles of International Law.pptxTopic 9- General Principles of International Law.pptx
Topic 9- General Principles of International Law.pptx
 

AP_Physics_2_-_Ch_22_and_23_Reflection_and_Mirrors.ppt

  • 1. Light, Reflection, & Mirrors AP Physics 2
  • 2. Facts about Light  It is a form of Electromagnetic Energy  It is a part of the Electromagnetic Spectrum and the only part we can really see
  • 3. Facts about Light The speed of light, c, is constant in a vacuum. Light can be: •REFLECTED •ABSORBED •REFRACTED Light is an electromagnetic wave in that it has wave like properties which can be influenced by electric and magnetic fields.
  • 4. The Law of “REFLECTION” The Law of Reflection states that- " the angle of incidence (incoming ray) equals the angle of reflection (outgoing ray)" The law works for FLAT, PLANE surfaces only. The angles are measured from a perpendicular line to the surface called a NORMAL. NORMAL
  • 5. Plane Mirror Suppose we had a flat , plane mirror mounted vertically. A candle is placed 10 cm in front of the mirror. WHERE IS THE IMAGE OF THE CANDLE LOCATED? mirror Object Distance, Do = 10 cm Same side as the object? On the surface of the mirror? Behind the mirror?
  • 6. Plane Mirror Suppose we had a flat , plane mirror mounted vertically. A candle is placed 10 cm in front of the mirror. WHERE IS THE IMAGE OF THE CANDLE LOCATED? mirror Object Distance, Do = 10 cm Image Distance, Di = 10 cm Do=Di, and the heights are equal as well Virtual Image
  • 7. Virtual Images Virtual Images are basically images which cannot be visually projected on a screen. If this box gave off light, we could project an image of this box on to a screen provided the screen was on the SAME SIDE as the box. You would not be able to project the image of the vase or your face in a mirror on a screen, therefore it is a virtual image. CONCLUSION: VIRTUAL IMAGES are ALWAYS on the OPPOSITE side of the mirror relative to the object.
  • 8. Real Image Real Images are ones you can project on to a screen. For MIRRORS they always appear on the SAME SIDE of the mirror as the object. object image The characteristics of the image, however, may be different from the original object. These characteristics are: •SIZE (reduced,enlarged,same size) •POSITION (same side, opposite side) •ORIENTATION (right side up, inverted) What if the mirror isn’t flat?
  • 9. Spherical Mirrors – Concave & Convex Also called CONVERGING mirror Also called DIVERGING mirror
  • 10. Converging (Concave) Mirror A converging mirror is one that is spherical in nature by which it can FOCUS parallel light rays to a point directly in front of its surface. Every spherical mirror can do this and this special point is at a “fixed” position for every mirror. We call this point the FOCAL POINT. To find this point you MUST use light from “infinity” Light from an “infinite” distance, most likely the sun.
  • 11. Converging (Concave) Mirror Since the mirror is spherical it technically has a CENTER OF CURVATURE, C. The focal point happens to be HALF this distance. We also draw a line through the center of the mirror and call it the PRINCIPAL AXIS. f C C f 2 2  
  • 12. Ray Diagram A ray diagram is a pictorial representation of how the light travels to form an image and can tell you the characteristics of the image. Principal axis f C object Rule One: Draw a ray, starting from the top of the object, parallel to the principal axis and then through “f” after reflection.
  • 13. Ray Diagrams Principal axis f C object Rule Two: Draw a ray, starting from the top of the object, through the focal point, then parallel to the principal axis after reflection.
  • 14. Ray Diagrams Principal axis f C object Rule Three: Draw a ray, starting from the top of the object, through C, then back upon itself. What do you notice about the three lines? THEY INTERSECT The intersection is the location of the image.
  • 15. Ray Diagram – Image Characteristics Principal axis f C object After getting the intersection, draw an arrow down from the principal axis to the point of intersection. Then ask yourself these questions: 1) Is the image on the SAME or OPPOSITE side of the mirror as the object? Same, therefore it is a REAL IMAGE. 2) Is the image ENLARGED or REDUCED? 3) Is the image INVERTED or RIGHT SIDE UP?
  • 16. The Mirror/Lens Equation Is there any OTHER way to predict image characteristics besides the ray diagram? YES! One way is to use the MIRROR/LENS equation to CALCULATE the position of the image. i o d d f 1 1 1  
  • 17. Mirror/Lens Equation Assume that a certain concave spherical mirror has a focal length of 10.0 cm. Locate the image for an object distance of 25 cm and describe the image’s characteristics.       i i i o d d d d f 1 25 1 10 1 1 1 1 16.67 cm What does this tell us? First we know the image is BETWEEN “C” & “f”. Since the image distance is POSITIVE the image is a REAL IMAGE. Real image = positive image distance Virtual image = negative image distance What about the size and orientation?
  • 18. Magnification Equation To calculate the orientation and size of the image we use the MAGNIFICATION EQUATION. x M M h h d d M o i o i 67 . 0 25 67 . 16        Here is how this works: •If we get a POSITIVE magnification, the image is UPRIGHT. •If we get a NEGATIVE magnification, the image is INVERTED •If the magnification value is GREATER than 1, the image is ENLARGED. •If the magnification value is LESS than 1, the image is REDUCED. •If the magnification value is EQUAL to 1, the image is the SAME SIZE as the object. Using our previous data we see that our image was INVERTED, and REDUCED.
  • 19. Example Assume that a certain concave spherical mirror has a focal length of 10.0 cm. Locate the image for an object distance of 5 cm and describe the image’s characteristics.          5 1 5 1 10 1 1 1 1 i i i i o d M d d d d f -10 cm 2x •VIRTUAL (opposite side) •Enlarged •Upright Characteristics?