SlideShare a Scribd company logo
1 of 13
Download to read offline
Data Sheet
Broadcom AV02-3157EN
December 12, 2017
Description
The Broadcom®
ACPL-K49T is a single-channel, high-
temperature, high CMR, 20-kBd digital optocoupler,
configurable as a low-power, low-leakage phototransistor,
specifically for use in automotive applications. The
stretched SO-8 stretched package outline is designed to be
compatible with standard surface mount processes.
This digital optocoupler uses an insulating layer between
the light emitting diode and an integrated photo detector to
provide electrical insulation between input and output.
Separate connections for the photodiode bias and output
transistor collector increase the speed up to a hundred
times over that of a conventional phototransistor coupler by
reducing the base-collector capacitance.
The Broadcom R2
Coupler isolation product provides
reinforced insulation and reliability that delivers safe signal
isolation critical in automotive and high-temperature
industrial applications.
Features
 High-temperature and reliability low-speed digital
interface for automotive application
 30 kV/μs high common-mode rejection at VCM = 1500V
(typ)
 Low-power, low-leakage phototransistor in a 4-pin
configuration
 Compact, auto-insertable stretched SO8 packages
 Qualified to AEC Q100 Grade 1 test guidelines
 Wide temperature range: –40°C to +125°C
 Low LED drive current: 4 mA (typ)
 Low propagation delay: 20 μs (max)
 Worldwide safety approval:
– UL 1577 approval, 5 kVrms/1 min.
– CSA approval
– IEC/EN/DIN EN 60747-5-5
Applications
 Automotive low-speed digital signal isolation interface
 Inverter fault feedback signal isolation
 Switching power supplies feedback circuit
CAUTION!
It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage
and/or degradation which may be induced by ESD. The components featured in this data sheet are not to be used in military
or aerospace applications or environments..
ACPL-K49T
Wide Operating Temperature Automotive
R2
Coupler®
20-kBd Digital Optocoupler
Configurable as Low-Power, Low-Leakage
Phototransistor
Broadcom AV02-3157EN
2
ACPL-K49T Data Sheet
Wide Operating Temperature Automotive R2
Coupler®
20-kBd Digital Optocoupler Configu-
rable as Low-Power, Low-Leakage Phototransistor
Functional Diagram
NOTE: The connection of a 0.1-μF bypass capacitor between pins 5 and 8 is recommended for 5-pin configuration.
Pins 7 and 8 are externally shorted for 4-pin configuration.
Truth Table
Ordering Information
Specify part number followed by option number (if desired).
To order, choose a part number from the part number column and combine with the desired option from the option column
to form an order entry.
Example 1:
ACPL-K49T-560E to order product of SSO-8 Surface Mount package in Tape and Reel packaging with IEC/EN/DIN EN
60747-5-5 Safety Approval in RoHS compliant.
Option data sheets are available. Contact your Broadcom sales representative or authorized distributor for information.
LED VO
ON LOW
OFF HIGH
Part Number
Option (RoHS
Compliant) Package
Surface
Mount
Tape and
Reel
UL 5000 Vrms/
1 Minute Rating
IEC/EN/DIN EN
60747-5-5 Quantity
ACPL-K49T -000E Stretched
SO-8
X X 80 per tube
-060E X X X 80 per tube
-500E X X X 1000 per reel
-560E X X X X 1000 per reel
8
7
6
5
1
2
3
4
VCC
VO
GND
ANODE
NC
CATHODE
NC
NC
8
7
6
5
1
2
3
4
VO
GND
ANODE
NC
CATHODE
NC
NC
Broadcom AV02-3157EN
3
ACPL-K49T Data Sheet
Wide Operating Temperature Automotive R2
Coupler®
20-kBd Digital Optocoupler Configu-
rable as Low-Power, Low-Leakage Phototransistor
Outline Drawing (Stretched SO8)
Recommended Pb-Free IR Reflow Profile
Recommended reflow condition as per JEDEC Standard, J-STD-020 (latest revision).
NOTE: Non-halide flux should be used.
Regulatory Information
The ACPL-K49T is approved by the following organizations:
UL
Approval under UL 1577, component recognition program up to VISO = 5 kVrms.
CSA
Approval under CSA Component Acceptance Notice #5.
IEC/EN/DIN EN 60747-5-5
Approval under IEC/EN/DIN EN 60747-5-5.
5.850 ± 0.254
(0.230 ± 0.010)
5678
4321
Dimensions in millimeters and (inches).
Note:
Lead coplanarity = 0.1 mm (0.004 inches).
Floating lead protrusion = 0.25mm (10mils) max.
6.807 ± 0.127
(0.268 ± 0.005)
RECOMMENDED LAND PATTERN
12.650
(0.498)
1.905
(0.075)
3.180 ± 0.127
(0.125 ± 0.005)
0.381 ± 0.127
(0.015 ± 0.005)
1.270
(0.050) BSG
7°
0.254 ± 0.100
(0.010 ± 0.004)
0.750 ± 0.250
(0.0295 ± 0.010)
11.50 ± 0.250
(0.453 ± 0.010)
1.590 ± 0.127
(0.063 ± 0.005)
0.450
(0.018)
45°
RoHS-COMPLIANCE
INDICATOR
0.64
(0.025)
0.200 ± 0.100
(0.008 ± 0.004)
PART NUMBER
DATE CODE
KXXT
YWW
EE
EXTENDED DATECODE
FOR LOT TRACKING
Broadcom AV02-3157EN
4
ACPL-K49T Data Sheet
Wide Operating Temperature Automotive R2
Coupler®
20-kBd Digital Optocoupler Configu-
rable as Low-Power, Low-Leakage Phototransistor
Insulation and Safety Related Specifications
IEC/EN/DIN EN 60747-5-5 Insulation Related Characteristic (Option 060E
and 560E)
Parameter Symbol
ACPL-
K49T Unit Conditions
Minimum External Air Gap
(Clearance)
L(101) 8 mm Measured from input terminals to output terminals, shortest
distance through air.
Minimum External Tracking
(Creepage)
L(102) 8 mm Measured from input terminals to output terminals, shortest
distance path along body.
Minimum Internal Plastic Gap
(Internal Clearance)
0.08 mm Through insulation distance conductor to conductor, usually the
straight line distance thickness between the emitter and detector.
Tracking Resistance
(Comparative Tracking Index)
CTI 175 V DIN IEC 112/VDE 0303 Part 1.
Isolation Group (DIN VDE0109) IIIa Material Group (DIN VDE 0109).
Description Symbol Characteristic Unit
Installation classification per DIN VDE 0110/1.89, Table 1
For rated mains voltage ≤ 150 Vrms
For rated mains voltage ≤ 300 Vrms
For rated mains voltage ≤ 450 Vrms
For rated mains voltage ≤ 600 Vrms
For rated mains voltage ≤ 1000 Vrms
I-IV
I-IV
I-IV
I-IV
I-III
Climatic Classification 55/100/21
Pollution Degree (DIN VDE 0110/1.89) 2
Maximum Working Insulation Voltage VIORM 1140 VPEAK
Input to Output Test Voltage, Method b
VIORM x 1.875 = VPR, 100% Production Test with tm = 1 sec
Partial Discharge < 5 pC
VPR 2137 VPEAK
Input to Output Test Voltage, Method a
VIORM x 1.6 = VPR, Type and sample test, tm = 10 sec,
Partial Discharge < 5 pC
VPR 1824 VPEAK
Highest Allowable Overvoltage (Transient Overvoltage, tini = 60 sec) VIOTM 8000 VPEAK
Safety Limiting Values (Maximum values allowed in the event of a failure)
Case Temperature
Input Current
Output Power
TS
IS,INPUT
PS,OUTPUT
175
230
600
°C
mA
mW
Insulation Resistance at TS, VIO = 500V RS 109 Ω
Broadcom AV02-3157EN
5
ACPL-K49T Data Sheet
Wide Operating Temperature Automotive R2
Coupler®
20-kBd Digital Optocoupler Configu-
rable as Low-Power, Low-Leakage Phototransistor
Absolute Maximum Ratings
Recommended Operating Conditions
Parameter Symbol Min. Max. Unit
Storage Temperature TS –55 150 °C
Operating Temperature TA –40 125 °C
Lead Soldering Cycle Temperature — 260 °C
Time — 10 s
Average Forward Input Current IF(avg) — 20 mA
Peak Forward Input Current (50% duty cycle, 1-ms pulse width) IF(peak) — 40 mA
Peak Transient Input Current (≤1-μs pulse width, 300 ps) IF(trans) — 100 mA
Reversed Input Voltage VR — 5 V
Input Power Dissipation PIN — 30 mW
Output Power Dissipation PO — 100 mW
Average Output Current IO — 8 mA
Peak Output Current Io(pk) — 16 mA
Supply Voltage VCC –0.5 30 V
Output Voltage VO –0.5 20 V
Parameter Symbol Min. Max. Unit
Supply Voltage VCC — 20.0 V
Operating Temperature TA –40 125 °C
Broadcom AV02-3157EN
6
ACPL-K49T Data Sheet
Wide Operating Temperature Automotive R2
Coupler®
20-kBd Digital Optocoupler Configu-
rable as Low-Power, Low-Leakage Phototransistor
Electrical Specifications (DC) for 5-Pin Configuration
Over recommended operating TA = –40°C to 125°C, unless otherwise specified.
Switching Specifications (AC) for 5-Pin Configuration
Over recommended operating (TA = –40°C to 125°C), VCC = 5.0V unless otherwise specified.
Parameter Symbol Min. Typ. Max. Unit Conditions Fig. Note
Current Transfer Ratio CTR 32 65 100 % TA = 25° C VCC = 4.5V, VO = 0.5V, IF = 10 mA 1, 2, 4 a
a. Current Transfer Ratio in percent is defined as the ratio of output collector current, IO, to the forward LED input current, IF, times 100.
24 65 —
65 110 150 TA = 25° C VCC = 4.5V, VO= 0.5V, IF = 4 mA 1, 2, 4
50 110 —
Logic Low Output Voltage VOL — 0.1 0.5 V VCC = 4.5V, IF = 10 mA, Io = 2.4 mA 3
— 0.1 0.5 VCC = 4.5V, IF = 4 mA, Io = 2.0 mA
Logic High Output
Current
IOH — 2 x 10–4 0.5 μA TA = 25° C VO = VCC= 5.5V IF = 0 mA 7
— 4 x 10–4 5 VO = VCC= 20V
Logic Low Supply Current ICCL — 35 100 μA IF = 4 mA, VO = open, VCC = 20V
Logic High Supply
Current
ICCH — 0.02 1 μA TA = 25° C IF = 0 mA, VO = open, VCC = 20V
— — 2.5 μA
Input Forward Voltage VF 1.4 1.5 1.7 V TA = 25°C IF = 4 mA 6
1.2 1.5 1.8 V
Input Reversed
Breakdown Voltage
BVR 5 — — V IR = 10 μA
Temperature Coefficient
of Forward Voltage
ΔV/ΔTA — –1.5 — mV/°C IF = 10 mA
Input Capacitance CIN — 90 — pF F = 1 MHz, VF = 0V
Parameter Sym. Min. Typ. Max. Unit Conditions Fig. Note
Propagation Delay Time to
Logic Low at Output
tPHL — — 20 μs Pulse: f = 10 kHz, Duty cycle = 50%,
IF = 4 mA, VCC = 5.0V, RL = 8.2 kΩ,
CL = 15 pF, VTHHL = 1.5V
9
Propagation Delay Time to
Logic High at Output
tPLH — — 20 μs Pulse: f = 10 kHz, Duty cycle = 50%,
IF = 4 mA, VCC = 5.0V, RL = 8.2 kΩ,
CL = 15 pF, VTHLH = 2.0V
9
Common Mode Transient
Immunity at Logic High Output
|CMH| 15 30 — kV/μs IF = 0 mA VCM = 1500 Vp-p, TA = 25°C
RL = 1.9 kΩ
10 a
a. Common transient immunity in a Logic High level is the maximum tolerable (positive) dVCM/dt on the rising edge of the common mode pulse,
VCM, to assure that the output will remain in a Logic High state (i.e., VO > 2.0V). Common mode transient immunity in a Logic Low level is the
maximum tolerable (negative) dVCM/dt on the falling edge of the common mode pulse signal, VCM, to assure that the output will remain in a
Logic Low state (i.e., VO < 0.8V).
Common Mode Transient
Immunity at Logic Low Output
|CML| 15 30 — kV/μs IF = 10 mA
Common Mode Transient
Immunity at Logic Low Output
|CML| — 15 — kV/μs IF = 4 mA VCM = 1500 Vp-p, TA = 25°C
RL = 8.2 kΩ
Broadcom AV02-3157EN
7
ACPL-K49T Data Sheet
Wide Operating Temperature Automotive R2
Coupler®
20-kBd Digital Optocoupler Configu-
rable as Low-Power, Low-Leakage Phototransistor
Electrical Specifications (DC) for 4-Pin Configuration
Over recommended operating TA = –40°C to 125°C, unless otherwise specified.
Switching Specifications (AC) for 4-Pin Configuration
Over recommended operating (TA = –40°C to 125°C), VCC = 5.0V unless otherwise specified.
Parameter Sym. Min. Typ. Max. Unit Conditions Fig. Note
Current Transfer Ratio CTR 70 130 210 % TA = 25°C, VCC = VO = 5V, IF = 4 mA 4 a
a. Current Transfer Ratio in percent is defined as the ratio of output collector current, IO, to the forward LED input current, IF, times 100.
Current Transfer Ratio CTR
(Sat)
24 60 — IF = 10 mA VCC = VO = 0.5V 5
35 110 — IF = 4 mA
Logic Low Output Voltage VOL — 0.1 0.5 V IF = 10 mA IO = 2.4 mA 5
— 0.1 0.5 IF = 4 mA IO = 1.4 mA
Off-State Current I(CEO) — 4 x 10–4 5 μA VO = VCC = 20V, IF = 0 mA 8
Input Forward Voltage VF 1.4 1.5 1.7 V TA = 25°C IF = 4 mA 6
1.2 1.5 1.8 V
Input Reversed Breakdown
Voltage
BVR 5 — — V IR = 10 μA
Temperature Coefficient of
Forward Voltage
ΔV/ΔTA — –1.5 — mV/°C IF = 10 mA
Input Capacitance CIN — 90 — pF F = 1 MHz, VF = 0V
Output Capacitance CCE — 35 — pF F = 1 MHz, VF = 0V, VO = VCC = 0V
Parameter Sym. Min. Typ. Max. Unit Conditions Fig. Note
Propagation Delay Time to
Logic Low at Output
tPHL — 2 100 μs Pulse: f = 1 kHz, Duty cycle = 50%, IF = 4 mA,
VCC = 5.0V, RL = 8.2 kΩ, CL = 15 pF,
VTHHL = 1.5V
10
Propagation Delay Time to
Logic High at Output
tPLH — 19 100 μs Pulse: f = 1 kHz, Duty cycle = 50%, IF = 4 mA,
VCC = 5.0V, RL = 8.2 kΩ CL = 15 pF,
VTHLH = 2.0V
10
Common Mode Transient
Immunity at Logic Low Output
|CML| 15 30 — kV/μs IF = 0 mA VCM = 1500 Vp-p, TA = 25°C
RL = 8.2 kΩ
12 a
a. Common transient immunity in a Logic High level is the maximum tolerable (positive) dVCM/dt on the rising edge of the common mode pulse,
VCM, to assure that the output will remain in a Logic High state (i.e., VO > 2.0V). Common mode transient immunity in a Logic Low level is the
maximum tolerable (negative) dVCM/dt on the falling edge of the common mode pulse signal, VCM, to assure that the output will remain in a
Logic Low state (i.e., VO < 0.8V).
Common Mode Transient
Immunity at Logic Low Output
|CML| 15 30 — kV/μs IF = 4 mA VCM = 1500 Vp-p, TA = 25°C
RL = 8.2 kΩ
Broadcom AV02-3157EN
8
ACPL-K49T Data Sheet
Wide Operating Temperature Automotive R2
Coupler®
20-kBd Digital Optocoupler Configu-
rable as Low-Power, Low-Leakage Phototransistor
Package Characteristics
Parameter Symbol Min. Typ. Max. Unit Test Conditions Fig. Note
Input-Output Momentary
Withstand Voltagea
a. The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous
voltage rating.
VISO 5000 — — Vrms RH ≤ 50%, t = 1 min;
TA = 25°C
b, c
b. Device considered a two-terminal device: pins 1, 2, 3 and 4 shorted together, and pins 5, 6, 7 and 8 shorted together.
c. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage >6000 Vrms for 1 second.
Input-Output Resistance RI-O — 1014 — Ω VI-O = 500 Vdc b
Input-Output Capacitance CI-O — 0.6 — pF f = 1 MHz; VI-O = 0 Vdc b
Broadcom AV02-3157EN
9
ACPL-K49T Data Sheet
Wide Operating Temperature Automotive R2
Coupler®
20-kBd Digital Optocoupler Configu-
rable as Low-Power, Low-Leakage Phototransistor
Figure 1: Current Transfer Ratio vs. Input Current Figure 2: Normalized Current Transfer Ratio vs. Temperature
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
0.1 1 10 100
NORMALIZEDCURRENTTRANSFERRATIO
IF - INPUT CURRENT (mA)
TA = 25° C
VCC = 5 V
VO = 0.4 V
TA - TEMPERATURE - °C
0.6
0.7
0.8
0.9
1
1.1
-50 -25 0 25 50 75 100 125
NORMALIZEDCURRENTTRANSFERRATIO
IF = 10 mA
IF = 4 mA
VCC = 5 V
VO = 0.5 V
Figure 3: Typical Low-Level Output Current vs Output Voltage Figure 4: Output Current vs Output Voltage (4-Pin
Configuration)
VOL - LOW LEVEL OUTPUT VOLTAGE - V
IOL-LOWLEVELOUTPUTCURRENT-mA
0
2
4
6
8
10
12
14
0.0 0.2 0.4 0.6 0.8 1.0
VCC = 5 V, TA = 25° C IF = 20 mA
IF = 10 mA
IF = 4 mA
IF = 1 mA
0
5
10
15
20
25
0 5 10 15
IO-OUTPUTCURRENT-mA
VO - OUTPUT VOLTAGE - V
IF = 20 mA
IF = 10 mA
IF = 15 mA
IF = 4 mA
TA = 25° C
VCC = VO
Figure 5: Typical Low-Level Output Current vs Output Voltage
(4-Pin Configuration)
Figure 6: Typical Input Current vs Forward Voltage
0
2
4
6
8
10
12
14
0.0 0.2 0.4 0.6 0.8 1.0
VOL - LOW LEVEL OUTPUT VOLTAGE - V
IOL-LOWLEVELOUTPUTCURRENT-mA
IF = 20 mA
IF = 10 mA
IF = 4 mA
IF = 1 mA
VCC = VO, TA = 25° C
1.0
10.0
1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90
VF - FORWARD VOLTAGE - V
IF-FORWARDCURRENT-mA
TA = 125° C
TA = 25° C
TA = -40° C
Broadcom AV02-3157EN
10
ACPL-K49T Data Sheet
Wide Operating Temperature Automotive R2
Coupler®
20-kBd Digital Optocoupler Configu-
rable as Low-Power, Low-Leakage Phototransistor
Figure 7: Typical High-Level Output Current vs Temperature Figure 8: Typical Off-State Current vs Temperature (4-Pin
Configuration)
0.0001
0.001
0.01
0.1
1
25 50 75 100 125
IOH-LOGICHIGHOUTPUTCURRENT-A
TA - TEMPERATURE - °C
VCC = VO = 15 V
0.00001
0.0001
0.001
0.01
0.1
1
25 50 75 100 125
ICEO-OFF-STATECURRENT-A
TA - TEMPERATURE - °C
15 V
12 V
5 V
3.3 V
Figure 9: Switching Test Circuit (5-Pin Configuration)
Figure 10: Switching Test Circuit (4-Pin Configuration)
8
7
6
5
1
2
3
4
Pulse
Generator
ZO = 50 Ω
tr = 5 ns
10% Duty Cycle
1/f < 100 s
IF Monitor
+5 V
RL
VO
0.1 F
CL = 15 pF
5 V
IF
VO
1.5 V 2.0 V
tPHL tPLH
VOL
100
8
7
6
5
1
2
3
4
Pulse
Generator
ZO = 50 Ω
tr = 5 ns
10% Duty Cycle
1/f < 100 s
IF Monitor
+5 V
RL
VO
CL = 15 pF
5 V
IF
VO
1.5 V 2.0 V
tPHL tPLH
VOL
100
Broadcom AV02-3157EN
11
ACPL-K49T Data Sheet
Wide Operating Temperature Automotive R2
Coupler®
20-kBd Digital Optocoupler Configu-
rable as Low-Power, Low-Leakage Phototransistor
Figure 11: Test Circuit for Transient Immunity and Typical Waveforms (5-Pin Configuration)
Figure 12: Test Circuit for Transient Immunity and Typical Waveforms (4-Pin Configuration)
8
7
6
5
1
2
3
4
IF
VCC
RL
VO
0.1 F
VFF
+ –
VCM Pulse Gen.
5 V
VCM
VO
tr tf
VOL
10%
90%
10%
90%
Tr = tf = 80 ns
Switch at IF = 0 mA
VO
Switch at IF = 4 mA
1500 V
8
7
6
5
1
2
3
4
IF
VCC
RL
VO
CL = 15 pF
VFF
+ –
VCM Pulse Gen.
5 V
VCM
VO
tr tf
VOL
10%
90%
10%
90%
Tr = tf = 80 ns
Switch at IF = 0 mA
VO
Switch at IF = 4 mA
1500 V
ACPL-K49T Data Sheet
Wide Operating Temperature Automotive R2
Coupler®
20-kBd Digital Optocoupler Configu-
rable as Low-Power, Low-Leakage Phototransistor
Broadcom AV02-3157EN
12
Thermal Resistance Model for
ACPL-K49T
The diagram of ACPL-K49T for measurement is shown in
Figure 13. Here, one die is heated first and the
temperatures of all the dice are recorded after thermal
equilibrium is reached. Then, the second die is heated and
all the dice temperatures are recorded. With the known
ambient temperature, the die junction temperature and
power dissipation, the thermal resistance can be calculated.
The thermal resistance calculation can be cast in matrix
form. This yields a 2-by-2 matrix for our case of two heat
sources.
R11: Thermal Resistance of Die1 due to heating of Die1
R12: Thermal Resistance of Die1 due to heating of Die2.
R21: Thermal Resistance of Die2 due to heating of Die1.
R22: Thermal Resistance of Die2 due to heating of Die2.
P1: Power dissipation of Die1 (W).
P2: Power dissipation of Die2 (W).
T1: Junction temperature of Die1 due to heat from all dice
(°C).
T2: Junction temperature of Die2 due to heat from all dice.
Ta: Ambient temperature.
ΔT1: Temperature difference between Die1 junction and
ambient (°C).
ΔT2: Temperature deference between Die2 junction and
ambient (°C).
T1 = (R11 x P1 + R12 x P2) + Ta
T2 = (R21 x P1 + R22 x P2) + Ta
Measurement data on a low K board:
R11 = 160°C/W, R12 = R21 = 74°C/W, R22 = 115°C/W
Figure 13: Diagram of ACPL-K49T for Measurement
R11 R12
×
P1
=
ΔT1
R12 R22 P2 ΔT2
1
2
3
4
8
7
6
5
Die 1:
LED
Die 2:
Detector
Broadcom, the pulse logo, Connecting everything, Avago Technologies, Avago, and the A logo are among the trademarks
of Broadcom and/or its affiliates in the United States, certain other countries and/or the EU.
Copyright © 2017 by Broadcom. All Rights Reserved.
The term “Broadcom” refers to Broadcom Limited and/or its subsidiaries. For more information, please visit
www.broadcom.com.
Broadcom reserves the right to make changes without further notice to any products or data herein to improve reliability,
function, or design. Information furnished by Broadcom is believed to be accurate and reliable. However, Broadcom does
not assume any liability arising out of the application or use of this information, nor the application or use of any product or
circuit described herein, neither does it convey any license under its patent rights nor the rights of others.

More Related Content

What's hot

Original Opto LTV-354T LTV354T 354T 354 SOP-4 New
Original Opto LTV-354T LTV354T 354T 354 SOP-4 NewOriginal Opto LTV-354T LTV354T 354T 354 SOP-4 New
Original Opto LTV-354T LTV354T 354T 354 SOP-4 NewAUTHELECTRONIC
 
Hdd15 5-ag-power-one
Hdd15 5-ag-power-oneHdd15 5-ag-power-one
Hdd15 5-ag-power-onePawar Chander
 
Original High Voltage Isolation IC ACS710T KLA-12CB 710T SOP-16 New
Original High Voltage Isolation IC ACS710T KLA-12CB 710T SOP-16 NewOriginal High Voltage Isolation IC ACS710T KLA-12CB 710T SOP-16 New
Original High Voltage Isolation IC ACS710T KLA-12CB 710T SOP-16 NewAUTHELECTRONIC
 
Original N Channel Mosfet PHP36N03LT 36N03LT 36N03 TO-220 New
Original N Channel Mosfet PHP36N03LT 36N03LT 36N03 TO-220 NewOriginal N Channel Mosfet PHP36N03LT 36N03LT 36N03 TO-220 New
Original N Channel Mosfet PHP36N03LT 36N03LT 36N03 TO-220 NewAUTHELECTRONIC
 
TFT индикатор с емкостным тачем WF35LTIBCDSC0# для работы с отладками Arduino.
TFT индикатор с емкостным тачем WF35LTIBCDSC0# для работы с отладками Arduino.TFT индикатор с емкостным тачем WF35LTIBCDSC0# для работы с отладками Arduino.
TFT индикатор с емкостным тачем WF35LTIBCDSC0# для работы с отладками Arduino.SEA Company
 
Original N Channel Mosfet AOT418L T418 418 TO-220 105A 100V New
Original N Channel Mosfet AOT418L T418 418 TO-220 105A 100V NewOriginal N Channel Mosfet AOT418L T418 418 TO-220 105A 100V New
Original N Channel Mosfet AOT418L T418 418 TO-220 105A 100V NewAUTHELECTRONIC
 
Original Opto TLP5702 P5702 5702 SOP-6 New TOSHIBA
Original Opto TLP5702 P5702 5702 SOP-6 New TOSHIBAOriginal Opto TLP5702 P5702 5702 SOP-6 New TOSHIBA
Original Opto TLP5702 P5702 5702 SOP-6 New TOSHIBAAUTHELECTRONIC
 
Origianl Opto TLP781 P781 PC781 781 DIP-4 New
Origianl Opto TLP781 P781 PC781 781 DIP-4 NewOrigianl Opto TLP781 P781 PC781 781 DIP-4 New
Origianl Opto TLP781 P781 PC781 781 DIP-4 NewAUTHELECTRONIC
 
Original P-Channel Mosfet APM4015P APM4015 4015 TO-252 New ANPEC
Original P-Channel Mosfet APM4015P APM4015 4015 TO-252 New ANPECOriginal P-Channel Mosfet APM4015P APM4015 4015 TO-252 New ANPEC
Original P-Channel Mosfet APM4015P APM4015 4015 TO-252 New ANPECAUTHELECTRONIC
 
IL4116 -Datasheet - VISHAY
IL4116 -Datasheet - VISHAYIL4116 -Datasheet - VISHAY
IL4116 -Datasheet - VISHAYMarioFarias18
 
Original Opto PS9151-V-F3-AX 9151 SOP-5 New
Original Opto PS9151-V-F3-AX 9151 SOP-5 NewOriginal Opto PS9151-V-F3-AX 9151 SOP-5 New
Original Opto PS9151-V-F3-AX 9151 SOP-5 Newauthelectroniccom
 
Original Opto HCPL-4504 A4504 4504 DIP-8 New
Original Opto HCPL-4504 A4504 4504 DIP-8 NewOriginal Opto HCPL-4504 A4504 4504 DIP-8 New
Original Opto HCPL-4504 A4504 4504 DIP-8 Newauthelectroniccom
 

What's hot (19)

Original Opto LTV-354T LTV354T 354T 354 SOP-4 New
Original Opto LTV-354T LTV354T 354T 354 SOP-4 NewOriginal Opto LTV-354T LTV354T 354T 354 SOP-4 New
Original Opto LTV-354T LTV354T 354T 354 SOP-4 New
 
C1251 nec
C1251 necC1251 nec
C1251 nec
 
Hdd15 5-ag-power-one
Hdd15 5-ag-power-oneHdd15 5-ag-power-one
Hdd15 5-ag-power-one
 
Original High Voltage Isolation IC ACS710T KLA-12CB 710T SOP-16 New
Original High Voltage Isolation IC ACS710T KLA-12CB 710T SOP-16 NewOriginal High Voltage Isolation IC ACS710T KLA-12CB 710T SOP-16 New
Original High Voltage Isolation IC ACS710T KLA-12CB 710T SOP-16 New
 
RT7257E Datasheet PDF
RT7257E Datasheet PDFRT7257E Datasheet PDF
RT7257E Datasheet PDF
 
Original N Channel Mosfet PHP36N03LT 36N03LT 36N03 TO-220 New
Original N Channel Mosfet PHP36N03LT 36N03LT 36N03 TO-220 NewOriginal N Channel Mosfet PHP36N03LT 36N03LT 36N03 TO-220 New
Original N Channel Mosfet PHP36N03LT 36N03LT 36N03 TO-220 New
 
TFT индикатор с емкостным тачем WF35LTIBCDSC0# для работы с отладками Arduino.
TFT индикатор с емкостным тачем WF35LTIBCDSC0# для работы с отладками Arduino.TFT индикатор с емкостным тачем WF35LTIBCDSC0# для работы с отладками Arduino.
TFT индикатор с емкостным тачем WF35LTIBCDSC0# для работы с отладками Arduino.
 
Original N Channel Mosfet AOT418L T418 418 TO-220 105A 100V New
Original N Channel Mosfet AOT418L T418 418 TO-220 105A 100V NewOriginal N Channel Mosfet AOT418L T418 418 TO-220 105A 100V New
Original N Channel Mosfet AOT418L T418 418 TO-220 105A 100V New
 
Original Opto TLP5702 P5702 5702 SOP-6 New TOSHIBA
Original Opto TLP5702 P5702 5702 SOP-6 New TOSHIBAOriginal Opto TLP5702 P5702 5702 SOP-6 New TOSHIBA
Original Opto TLP5702 P5702 5702 SOP-6 New TOSHIBA
 
Tcs230
Tcs230Tcs230
Tcs230
 
A110x
A110xA110x
A110x
 
Origianl Opto TLP781 P781 PC781 781 DIP-4 New
Origianl Opto TLP781 P781 PC781 781 DIP-4 NewOrigianl Opto TLP781 P781 PC781 781 DIP-4 New
Origianl Opto TLP781 P781 PC781 781 DIP-4 New
 
Original P-Channel Mosfet APM4015P APM4015 4015 TO-252 New ANPEC
Original P-Channel Mosfet APM4015P APM4015 4015 TO-252 New ANPECOriginal P-Channel Mosfet APM4015P APM4015 4015 TO-252 New ANPEC
Original P-Channel Mosfet APM4015P APM4015 4015 TO-252 New ANPEC
 
Acs712
Acs712Acs712
Acs712
 
IL4116 -Datasheet - VISHAY
IL4116 -Datasheet - VISHAYIL4116 -Datasheet - VISHAY
IL4116 -Datasheet - VISHAY
 
Original Opto PS9151-V-F3-AX 9151 SOP-5 New
Original Opto PS9151-V-F3-AX 9151 SOP-5 NewOriginal Opto PS9151-V-F3-AX 9151 SOP-5 New
Original Opto PS9151-V-F3-AX 9151 SOP-5 New
 
Original Opto HCPL-4504 A4504 4504 DIP-8 New
Original Opto HCPL-4504 A4504 4504 DIP-8 NewOriginal Opto HCPL-4504 A4504 4504 DIP-8 New
Original Opto HCPL-4504 A4504 4504 DIP-8 New
 
2 n5401
2 n54012 n5401
2 n5401
 
Max6603
Max6603Max6603
Max6603
 

Similar to ACPL-K49T - Datasheet - Broadcom Corporation

SFH6916_08 - Datasheet - VISHAY
SFH6916_08 - Datasheet - VISHAYSFH6916_08 - Datasheet - VISHAY
SFH6916_08 - Datasheet - VISHAYMarioFarias18
 
BlueOptics Bo31j856s3d 10gbase-sr xfp transceiver 850nm 300m multimode lc dup...
BlueOptics Bo31j856s3d 10gbase-sr xfp transceiver 850nm 300m multimode lc dup...BlueOptics Bo31j856s3d 10gbase-sr xfp transceiver 850nm 300m multimode lc dup...
BlueOptics Bo31j856s3d 10gbase-sr xfp transceiver 850nm 300m multimode lc dup...CBO GmbH
 
Original Opto TLP185GB TLP185G TLP185 P185 185 SOP-4 New
Original Opto TLP185GB TLP185G TLP185 P185 185 SOP-4 NewOriginal Opto TLP185GB TLP185G TLP185 P185 185 SOP-4 New
Original Opto TLP185GB TLP185G TLP185 P185 185 SOP-4 NewAUTHELECTRONIC
 
Original NPN Transistor A44 TO-92 New
Original NPN Transistor A44 TO-92 NewOriginal NPN Transistor A44 TO-92 New
Original NPN Transistor A44 TO-92 NewAUTHELECTRONIC
 
Original Opto LS180 TLP180 P180 H17 SOP-4 New
Original Opto LS180 TLP180 P180 H17 SOP-4 NewOriginal Opto LS180 TLP180 P180 H17 SOP-4 New
Original Opto LS180 TLP180 P180 H17 SOP-4 Newauthelectroniccom
 
BlueOptics Bo65j27610d 10gbase-bx-u xfp transceiver tx1270nm-rx1330nm 10 km s...
BlueOptics Bo65j27610d 10gbase-bx-u xfp transceiver tx1270nm-rx1330nm 10 km s...BlueOptics Bo65j27610d 10gbase-bx-u xfp transceiver tx1270nm-rx1330nm 10 km s...
BlueOptics Bo65j27610d 10gbase-bx-u xfp transceiver tx1270nm-rx1330nm 10 km s...CBO GmbH
 
Original PNP Transistors PZT2907A PZT2907 2907 P2F SOT22-3 New On Semiconductor
Original PNP Transistors PZT2907A PZT2907 2907 P2F SOT22-3 New On SemiconductorOriginal PNP Transistors PZT2907A PZT2907 2907 P2F SOT22-3 New On Semiconductor
Original PNP Transistors PZT2907A PZT2907 2907 P2F SOT22-3 New On Semiconductorauthelectroniccom
 
BlueOptics Bo31j136s4d 10gbase-lrm xfp transceiver 1310nm 220m multimode lc d...
BlueOptics Bo31j136s4d 10gbase-lrm xfp transceiver 1310nm 220m multimode lc d...BlueOptics Bo31j136s4d 10gbase-lrm xfp transceiver 1310nm 220m multimode lc d...
BlueOptics Bo31j136s4d 10gbase-lrm xfp transceiver 1310nm 220m multimode lc d...CBO GmbH
 
4N25 - Datasheet - AVAGO TECHNOLOGIES LIMITED
4N25 - Datasheet - AVAGO TECHNOLOGIES LIMITED4N25 - Datasheet - AVAGO TECHNOLOGIES LIMITED
4N25 - Datasheet - AVAGO TECHNOLOGIES LIMITEDMarioFarias18
 
BlueOptics Bo65j33610d 10gbase-bx-d xfp transceiver tx1330nm-rx1270nm 10 km s...
BlueOptics Bo65j33610d 10gbase-bx-d xfp transceiver tx1330nm-rx1270nm 10 km s...BlueOptics Bo65j33610d 10gbase-bx-d xfp transceiver tx1330nm-rx1270nm 10 km s...
BlueOptics Bo65j33610d 10gbase-bx-d xfp transceiver tx1330nm-rx1270nm 10 km s...CBO GmbH
 
BlueOptics Bo65j27640d 10gbase-bx-u xfp transceiver tx1270nm-rx1330nm 40 km s...
BlueOptics Bo65j27640d 10gbase-bx-u xfp transceiver tx1270nm-rx1330nm 40 km s...BlueOptics Bo65j27640d 10gbase-bx-u xfp transceiver tx1270nm-rx1330nm 40 km s...
BlueOptics Bo65j27640d 10gbase-bx-u xfp transceiver tx1270nm-rx1330nm 40 km s...CBO GmbH
 
BlueOptics Bo31h13610d 2-4-8gbase-lw xfp transceiver 1310nm 10km singlemode l...
BlueOptics Bo31h13610d 2-4-8gbase-lw xfp transceiver 1310nm 10km singlemode l...BlueOptics Bo31h13610d 2-4-8gbase-lw xfp transceiver 1310nm 10km singlemode l...
BlueOptics Bo31h13610d 2-4-8gbase-lw xfp transceiver 1310nm 10km singlemode l...CBO GmbH
 
BlueOptics Bo65j27660d 10gbase-bx-u xfp transceiver tx1270nm-rx1330nm 60 km s...
BlueOptics Bo65j27660d 10gbase-bx-u xfp transceiver tx1270nm-rx1330nm 60 km s...BlueOptics Bo65j27660d 10gbase-bx-u xfp transceiver tx1270nm-rx1330nm 60 km s...
BlueOptics Bo65j27660d 10gbase-bx-u xfp transceiver tx1270nm-rx1330nm 60 km s...CBO GmbH
 
BlueOptics Bo31j15680d 10gbase-zr xfp transceiver 1550nm 80km singlemode lc d...
BlueOptics Bo31j15680d 10gbase-zr xfp transceiver 1550nm 80km singlemode lc d...BlueOptics Bo31j15680d 10gbase-zr xfp transceiver 1550nm 80km singlemode lc d...
BlueOptics Bo31j15680d 10gbase-zr xfp transceiver 1550nm 80km singlemode lc d...CBO GmbH
 
BlueOptics Bo65 j33640d 10gbase-bx-d xfp transceiver tx1330nm-rx1270nm 40 km ...
BlueOptics Bo65 j33640d 10gbase-bx-d xfp transceiver tx1330nm-rx1270nm 40 km ...BlueOptics Bo65 j33640d 10gbase-bx-d xfp transceiver tx1330nm-rx1270nm 40 km ...
BlueOptics Bo65 j33640d 10gbase-bx-d xfp transceiver tx1330nm-rx1270nm 40 km ...CBO GmbH
 
BlueOptics Bo65j33660d 10gbase-bx-d xfp transceiver tx1330nm-rx1270nm 60 km s...
BlueOptics Bo65j33660d 10gbase-bx-d xfp transceiver tx1330nm-rx1270nm 60 km s...BlueOptics Bo65j33660d 10gbase-bx-d xfp transceiver tx1330nm-rx1270nm 60 km s...
BlueOptics Bo65j33660d 10gbase-bx-d xfp transceiver tx1330nm-rx1270nm 60 km s...CBO GmbH
 
BlueOptics Bo66hxx680d 2-4-8gbase-cwdm xfp transceiver 1471nm - 1611nm 80km s...
BlueOptics Bo66hxx680d 2-4-8gbase-cwdm xfp transceiver 1471nm - 1611nm 80km s...BlueOptics Bo66hxx680d 2-4-8gbase-cwdm xfp transceiver 1471nm - 1611nm 80km s...
BlueOptics Bo66hxx680d 2-4-8gbase-cwdm xfp transceiver 1471nm - 1611nm 80km s...CBO GmbH
 
Blueoptics bo28c3443640d 1000base-2bx-u csfp dual bidi transceiver 40km singl...
Blueoptics bo28c3443640d 1000base-2bx-u csfp dual bidi transceiver 40km singl...Blueoptics bo28c3443640d 1000base-2bx-u csfp dual bidi transceiver 40km singl...
Blueoptics bo28c3443640d 1000base-2bx-u csfp dual bidi transceiver 40km singl...CBO GmbH
 
BlueOptics Bo31j15640d 10gbase-er xfp transceiver 1550nm 40km singlemode lc d...
BlueOptics Bo31j15640d 10gbase-er xfp transceiver 1550nm 40km singlemode lc d...BlueOptics Bo31j15640d 10gbase-er xfp transceiver 1550nm 40km singlemode lc d...
BlueOptics Bo31j15640d 10gbase-er xfp transceiver 1550nm 40km singlemode lc d...CBO GmbH
 

Similar to ACPL-K49T - Datasheet - Broadcom Corporation (20)

SFH6916_08 - Datasheet - VISHAY
SFH6916_08 - Datasheet - VISHAYSFH6916_08 - Datasheet - VISHAY
SFH6916_08 - Datasheet - VISHAY
 
BlueOptics Bo31j856s3d 10gbase-sr xfp transceiver 850nm 300m multimode lc dup...
BlueOptics Bo31j856s3d 10gbase-sr xfp transceiver 850nm 300m multimode lc dup...BlueOptics Bo31j856s3d 10gbase-sr xfp transceiver 850nm 300m multimode lc dup...
BlueOptics Bo31j856s3d 10gbase-sr xfp transceiver 850nm 300m multimode lc dup...
 
Original Opto TLP185GB TLP185G TLP185 P185 185 SOP-4 New
Original Opto TLP185GB TLP185G TLP185 P185 185 SOP-4 NewOriginal Opto TLP185GB TLP185G TLP185 P185 185 SOP-4 New
Original Opto TLP185GB TLP185G TLP185 P185 185 SOP-4 New
 
Original NPN Transistor A44 TO-92 New
Original NPN Transistor A44 TO-92 NewOriginal NPN Transistor A44 TO-92 New
Original NPN Transistor A44 TO-92 New
 
Original Opto LS180 TLP180 P180 H17 SOP-4 New
Original Opto LS180 TLP180 P180 H17 SOP-4 NewOriginal Opto LS180 TLP180 P180 H17 SOP-4 New
Original Opto LS180 TLP180 P180 H17 SOP-4 New
 
BlueOptics Bo65j27610d 10gbase-bx-u xfp transceiver tx1270nm-rx1330nm 10 km s...
BlueOptics Bo65j27610d 10gbase-bx-u xfp transceiver tx1270nm-rx1330nm 10 km s...BlueOptics Bo65j27610d 10gbase-bx-u xfp transceiver tx1270nm-rx1330nm 10 km s...
BlueOptics Bo65j27610d 10gbase-bx-u xfp transceiver tx1270nm-rx1330nm 10 km s...
 
Original PNP Transistors PZT2907A PZT2907 2907 P2F SOT22-3 New On Semiconductor
Original PNP Transistors PZT2907A PZT2907 2907 P2F SOT22-3 New On SemiconductorOriginal PNP Transistors PZT2907A PZT2907 2907 P2F SOT22-3 New On Semiconductor
Original PNP Transistors PZT2907A PZT2907 2907 P2F SOT22-3 New On Semiconductor
 
BlueOptics Bo31j136s4d 10gbase-lrm xfp transceiver 1310nm 220m multimode lc d...
BlueOptics Bo31j136s4d 10gbase-lrm xfp transceiver 1310nm 220m multimode lc d...BlueOptics Bo31j136s4d 10gbase-lrm xfp transceiver 1310nm 220m multimode lc d...
BlueOptics Bo31j136s4d 10gbase-lrm xfp transceiver 1310nm 220m multimode lc d...
 
4N25 - Datasheet - AVAGO TECHNOLOGIES LIMITED
4N25 - Datasheet - AVAGO TECHNOLOGIES LIMITED4N25 - Datasheet - AVAGO TECHNOLOGIES LIMITED
4N25 - Datasheet - AVAGO TECHNOLOGIES LIMITED
 
BlueOptics Bo65j33610d 10gbase-bx-d xfp transceiver tx1330nm-rx1270nm 10 km s...
BlueOptics Bo65j33610d 10gbase-bx-d xfp transceiver tx1330nm-rx1270nm 10 km s...BlueOptics Bo65j33610d 10gbase-bx-d xfp transceiver tx1330nm-rx1270nm 10 km s...
BlueOptics Bo65j33610d 10gbase-bx-d xfp transceiver tx1330nm-rx1270nm 10 km s...
 
BlueOptics Bo65j27640d 10gbase-bx-u xfp transceiver tx1270nm-rx1330nm 40 km s...
BlueOptics Bo65j27640d 10gbase-bx-u xfp transceiver tx1270nm-rx1330nm 40 km s...BlueOptics Bo65j27640d 10gbase-bx-u xfp transceiver tx1270nm-rx1330nm 40 km s...
BlueOptics Bo65j27640d 10gbase-bx-u xfp transceiver tx1270nm-rx1330nm 40 km s...
 
BlueOptics Bo31h13610d 2-4-8gbase-lw xfp transceiver 1310nm 10km singlemode l...
BlueOptics Bo31h13610d 2-4-8gbase-lw xfp transceiver 1310nm 10km singlemode l...BlueOptics Bo31h13610d 2-4-8gbase-lw xfp transceiver 1310nm 10km singlemode l...
BlueOptics Bo31h13610d 2-4-8gbase-lw xfp transceiver 1310nm 10km singlemode l...
 
BlueOptics Bo65j27660d 10gbase-bx-u xfp transceiver tx1270nm-rx1330nm 60 km s...
BlueOptics Bo65j27660d 10gbase-bx-u xfp transceiver tx1270nm-rx1330nm 60 km s...BlueOptics Bo65j27660d 10gbase-bx-u xfp transceiver tx1270nm-rx1330nm 60 km s...
BlueOptics Bo65j27660d 10gbase-bx-u xfp transceiver tx1270nm-rx1330nm 60 km s...
 
BlueOptics Bo31j15680d 10gbase-zr xfp transceiver 1550nm 80km singlemode lc d...
BlueOptics Bo31j15680d 10gbase-zr xfp transceiver 1550nm 80km singlemode lc d...BlueOptics Bo31j15680d 10gbase-zr xfp transceiver 1550nm 80km singlemode lc d...
BlueOptics Bo31j15680d 10gbase-zr xfp transceiver 1550nm 80km singlemode lc d...
 
BlueOptics Bo65 j33640d 10gbase-bx-d xfp transceiver tx1330nm-rx1270nm 40 km ...
BlueOptics Bo65 j33640d 10gbase-bx-d xfp transceiver tx1330nm-rx1270nm 40 km ...BlueOptics Bo65 j33640d 10gbase-bx-d xfp transceiver tx1330nm-rx1270nm 40 km ...
BlueOptics Bo65 j33640d 10gbase-bx-d xfp transceiver tx1330nm-rx1270nm 40 km ...
 
BlueOptics Bo65j33660d 10gbase-bx-d xfp transceiver tx1330nm-rx1270nm 60 km s...
BlueOptics Bo65j33660d 10gbase-bx-d xfp transceiver tx1330nm-rx1270nm 60 km s...BlueOptics Bo65j33660d 10gbase-bx-d xfp transceiver tx1330nm-rx1270nm 60 km s...
BlueOptics Bo65j33660d 10gbase-bx-d xfp transceiver tx1330nm-rx1270nm 60 km s...
 
Ucc 3895 dw
Ucc 3895 dwUcc 3895 dw
Ucc 3895 dw
 
BlueOptics Bo66hxx680d 2-4-8gbase-cwdm xfp transceiver 1471nm - 1611nm 80km s...
BlueOptics Bo66hxx680d 2-4-8gbase-cwdm xfp transceiver 1471nm - 1611nm 80km s...BlueOptics Bo66hxx680d 2-4-8gbase-cwdm xfp transceiver 1471nm - 1611nm 80km s...
BlueOptics Bo66hxx680d 2-4-8gbase-cwdm xfp transceiver 1471nm - 1611nm 80km s...
 
Blueoptics bo28c3443640d 1000base-2bx-u csfp dual bidi transceiver 40km singl...
Blueoptics bo28c3443640d 1000base-2bx-u csfp dual bidi transceiver 40km singl...Blueoptics bo28c3443640d 1000base-2bx-u csfp dual bidi transceiver 40km singl...
Blueoptics bo28c3443640d 1000base-2bx-u csfp dual bidi transceiver 40km singl...
 
BlueOptics Bo31j15640d 10gbase-er xfp transceiver 1550nm 40km singlemode lc d...
BlueOptics Bo31j15640d 10gbase-er xfp transceiver 1550nm 40km singlemode lc d...BlueOptics Bo31j15640d 10gbase-er xfp transceiver 1550nm 40km singlemode lc d...
BlueOptics Bo31j15640d 10gbase-er xfp transceiver 1550nm 40km singlemode lc d...
 

More from MarioFarias18

HCPL-817 - Datasheet - AVAGO TECHNOLOGIES LIMITED
HCPL-817 - Datasheet - AVAGO TECHNOLOGIES LIMITEDHCPL-817 - Datasheet - AVAGO TECHNOLOGIES LIMITED
HCPL-817 - Datasheet - AVAGO TECHNOLOGIES LIMITEDMarioFarias18
 
BPW77NA_08 - Datasheet - VISHAY
BPW77NA_08 - Datasheet - VISHAYBPW77NA_08 - Datasheet - VISHAY
BPW77NA_08 - Datasheet - VISHAYMarioFarias18
 
BPW34 – BPW34S - Datasheet - VISHAY
BPW34 – BPW34S - Datasheet - VISHAYBPW34 – BPW34S - Datasheet - VISHAY
BPW34 – BPW34S - Datasheet - VISHAYMarioFarias18
 
BPV10NF - Datasheet - VISHAY
BPV10NF - Datasheet - VISHAYBPV10NF - Datasheet - VISHAY
BPV10NF - Datasheet - VISHAYMarioFarias18
 
S2721-02 - Datasheet - HAMAMATSU
S2721-02  - Datasheet - HAMAMATSUS2721-02  - Datasheet - HAMAMATSU
S2721-02 - Datasheet - HAMAMATSUMarioFarias18
 
S12742 - Datasheet - HAMAMATSU
S12742 - Datasheet - HAMAMATSUS12742 - Datasheet - HAMAMATSU
S12742 - Datasheet - HAMAMATSUMarioFarias18
 
LDR31450 - Datasheet - POWEREX
LDR31450 - Datasheet - POWEREXLDR31450 - Datasheet - POWEREX
LDR31450 - Datasheet - POWEREXMarioFarias18
 
LDR30850 - Datasheet - POWEREX
LDR30850 - Datasheet - POWEREXLDR30850 - Datasheet - POWEREX
LDR30850 - Datasheet - POWEREXMarioFarias18
 
LDR1825PT-R - datasheet - st-microelectronics
LDR1825PT-R - datasheet - st-microelectronicsLDR1825PT-R - datasheet - st-microelectronics
LDR1825PT-R - datasheet - st-microelectronicsMarioFarias18
 
Ldr1833 - datasheet - st microelectronics
Ldr1833 -  datasheet - st microelectronicsLdr1833 -  datasheet - st microelectronics
Ldr1833 - datasheet - st microelectronicsMarioFarias18
 

More from MarioFarias18 (10)

HCPL-817 - Datasheet - AVAGO TECHNOLOGIES LIMITED
HCPL-817 - Datasheet - AVAGO TECHNOLOGIES LIMITEDHCPL-817 - Datasheet - AVAGO TECHNOLOGIES LIMITED
HCPL-817 - Datasheet - AVAGO TECHNOLOGIES LIMITED
 
BPW77NA_08 - Datasheet - VISHAY
BPW77NA_08 - Datasheet - VISHAYBPW77NA_08 - Datasheet - VISHAY
BPW77NA_08 - Datasheet - VISHAY
 
BPW34 – BPW34S - Datasheet - VISHAY
BPW34 – BPW34S - Datasheet - VISHAYBPW34 – BPW34S - Datasheet - VISHAY
BPW34 – BPW34S - Datasheet - VISHAY
 
BPV10NF - Datasheet - VISHAY
BPV10NF - Datasheet - VISHAYBPV10NF - Datasheet - VISHAY
BPV10NF - Datasheet - VISHAY
 
S2721-02 - Datasheet - HAMAMATSU
S2721-02  - Datasheet - HAMAMATSUS2721-02  - Datasheet - HAMAMATSU
S2721-02 - Datasheet - HAMAMATSU
 
S12742 - Datasheet - HAMAMATSU
S12742 - Datasheet - HAMAMATSUS12742 - Datasheet - HAMAMATSU
S12742 - Datasheet - HAMAMATSU
 
LDR31450 - Datasheet - POWEREX
LDR31450 - Datasheet - POWEREXLDR31450 - Datasheet - POWEREX
LDR31450 - Datasheet - POWEREX
 
LDR30850 - Datasheet - POWEREX
LDR30850 - Datasheet - POWEREXLDR30850 - Datasheet - POWEREX
LDR30850 - Datasheet - POWEREX
 
LDR1825PT-R - datasheet - st-microelectronics
LDR1825PT-R - datasheet - st-microelectronicsLDR1825PT-R - datasheet - st-microelectronics
LDR1825PT-R - datasheet - st-microelectronics
 
Ldr1833 - datasheet - st microelectronics
Ldr1833 -  datasheet - st microelectronicsLdr1833 -  datasheet - st microelectronics
Ldr1833 - datasheet - st microelectronics
 

Recently uploaded

Making_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptx
Making_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptxMaking_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptx
Making_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptxnull - The Open Security Community
 
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)Bun (KitWorks Team Study 노별마루 발표 2024.4.22)
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)Wonjun Hwang
 
Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Enterprise Knowledge
 
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr LapshynFwdays
 
My INSURER PTE LTD - Insurtech Innovation Award 2024
My INSURER PTE LTD - Insurtech Innovation Award 2024My INSURER PTE LTD - Insurtech Innovation Award 2024
My INSURER PTE LTD - Insurtech Innovation Award 2024The Digital Insurer
 
Pigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food ManufacturingPigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food ManufacturingPigging Solutions
 
Human Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsHuman Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsMark Billinghurst
 
Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...Alan Dix
 
Enhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for PartnersEnhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for PartnersThousandEyes
 
Science&tech:THE INFORMATION AGE STS.pdf
Science&tech:THE INFORMATION AGE STS.pdfScience&tech:THE INFORMATION AGE STS.pdf
Science&tech:THE INFORMATION AGE STS.pdfjimielynbastida
 
Install Stable Diffusion in windows machine
Install Stable Diffusion in windows machineInstall Stable Diffusion in windows machine
Install Stable Diffusion in windows machinePadma Pradeep
 
Benefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other FrameworksBenefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other FrameworksSoftradix Technologies
 
Artificial intelligence in the post-deep learning era
Artificial intelligence in the post-deep learning eraArtificial intelligence in the post-deep learning era
Artificial intelligence in the post-deep learning eraDeakin University
 
Build your next Gen AI Breakthrough - April 2024
Build your next Gen AI Breakthrough - April 2024Build your next Gen AI Breakthrough - April 2024
Build your next Gen AI Breakthrough - April 2024Neo4j
 
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Patryk Bandurski
 
CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):comworks
 
Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Scott Keck-Warren
 
Pigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping ElbowsPigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping ElbowsPigging Solutions
 
Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Mattias Andersson
 

Recently uploaded (20)

Making_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptx
Making_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptxMaking_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptx
Making_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptx
 
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)Bun (KitWorks Team Study 노별마루 발표 2024.4.22)
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)
 
Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024
 
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
 
My INSURER PTE LTD - Insurtech Innovation Award 2024
My INSURER PTE LTD - Insurtech Innovation Award 2024My INSURER PTE LTD - Insurtech Innovation Award 2024
My INSURER PTE LTD - Insurtech Innovation Award 2024
 
Pigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food ManufacturingPigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food Manufacturing
 
Human Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsHuman Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR Systems
 
Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...
 
Enhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for PartnersEnhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for Partners
 
Science&tech:THE INFORMATION AGE STS.pdf
Science&tech:THE INFORMATION AGE STS.pdfScience&tech:THE INFORMATION AGE STS.pdf
Science&tech:THE INFORMATION AGE STS.pdf
 
The transition to renewables in India.pdf
The transition to renewables in India.pdfThe transition to renewables in India.pdf
The transition to renewables in India.pdf
 
Install Stable Diffusion in windows machine
Install Stable Diffusion in windows machineInstall Stable Diffusion in windows machine
Install Stable Diffusion in windows machine
 
Benefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other FrameworksBenefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other Frameworks
 
Artificial intelligence in the post-deep learning era
Artificial intelligence in the post-deep learning eraArtificial intelligence in the post-deep learning era
Artificial intelligence in the post-deep learning era
 
Build your next Gen AI Breakthrough - April 2024
Build your next Gen AI Breakthrough - April 2024Build your next Gen AI Breakthrough - April 2024
Build your next Gen AI Breakthrough - April 2024
 
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
 
CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):
 
Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024
 
Pigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping ElbowsPigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping Elbows
 
Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?
 

ACPL-K49T - Datasheet - Broadcom Corporation

  • 1. Data Sheet Broadcom AV02-3157EN December 12, 2017 Description The Broadcom® ACPL-K49T is a single-channel, high- temperature, high CMR, 20-kBd digital optocoupler, configurable as a low-power, low-leakage phototransistor, specifically for use in automotive applications. The stretched SO-8 stretched package outline is designed to be compatible with standard surface mount processes. This digital optocoupler uses an insulating layer between the light emitting diode and an integrated photo detector to provide electrical insulation between input and output. Separate connections for the photodiode bias and output transistor collector increase the speed up to a hundred times over that of a conventional phototransistor coupler by reducing the base-collector capacitance. The Broadcom R2 Coupler isolation product provides reinforced insulation and reliability that delivers safe signal isolation critical in automotive and high-temperature industrial applications. Features  High-temperature and reliability low-speed digital interface for automotive application  30 kV/μs high common-mode rejection at VCM = 1500V (typ)  Low-power, low-leakage phototransistor in a 4-pin configuration  Compact, auto-insertable stretched SO8 packages  Qualified to AEC Q100 Grade 1 test guidelines  Wide temperature range: –40°C to +125°C  Low LED drive current: 4 mA (typ)  Low propagation delay: 20 μs (max)  Worldwide safety approval: – UL 1577 approval, 5 kVrms/1 min. – CSA approval – IEC/EN/DIN EN 60747-5-5 Applications  Automotive low-speed digital signal isolation interface  Inverter fault feedback signal isolation  Switching power supplies feedback circuit CAUTION! It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD. The components featured in this data sheet are not to be used in military or aerospace applications or environments.. ACPL-K49T Wide Operating Temperature Automotive R2 Coupler® 20-kBd Digital Optocoupler Configurable as Low-Power, Low-Leakage Phototransistor
  • 2. Broadcom AV02-3157EN 2 ACPL-K49T Data Sheet Wide Operating Temperature Automotive R2 Coupler® 20-kBd Digital Optocoupler Configu- rable as Low-Power, Low-Leakage Phototransistor Functional Diagram NOTE: The connection of a 0.1-μF bypass capacitor between pins 5 and 8 is recommended for 5-pin configuration. Pins 7 and 8 are externally shorted for 4-pin configuration. Truth Table Ordering Information Specify part number followed by option number (if desired). To order, choose a part number from the part number column and combine with the desired option from the option column to form an order entry. Example 1: ACPL-K49T-560E to order product of SSO-8 Surface Mount package in Tape and Reel packaging with IEC/EN/DIN EN 60747-5-5 Safety Approval in RoHS compliant. Option data sheets are available. Contact your Broadcom sales representative or authorized distributor for information. LED VO ON LOW OFF HIGH Part Number Option (RoHS Compliant) Package Surface Mount Tape and Reel UL 5000 Vrms/ 1 Minute Rating IEC/EN/DIN EN 60747-5-5 Quantity ACPL-K49T -000E Stretched SO-8 X X 80 per tube -060E X X X 80 per tube -500E X X X 1000 per reel -560E X X X X 1000 per reel 8 7 6 5 1 2 3 4 VCC VO GND ANODE NC CATHODE NC NC 8 7 6 5 1 2 3 4 VO GND ANODE NC CATHODE NC NC
  • 3. Broadcom AV02-3157EN 3 ACPL-K49T Data Sheet Wide Operating Temperature Automotive R2 Coupler® 20-kBd Digital Optocoupler Configu- rable as Low-Power, Low-Leakage Phototransistor Outline Drawing (Stretched SO8) Recommended Pb-Free IR Reflow Profile Recommended reflow condition as per JEDEC Standard, J-STD-020 (latest revision). NOTE: Non-halide flux should be used. Regulatory Information The ACPL-K49T is approved by the following organizations: UL Approval under UL 1577, component recognition program up to VISO = 5 kVrms. CSA Approval under CSA Component Acceptance Notice #5. IEC/EN/DIN EN 60747-5-5 Approval under IEC/EN/DIN EN 60747-5-5. 5.850 ± 0.254 (0.230 ± 0.010) 5678 4321 Dimensions in millimeters and (inches). Note: Lead coplanarity = 0.1 mm (0.004 inches). Floating lead protrusion = 0.25mm (10mils) max. 6.807 ± 0.127 (0.268 ± 0.005) RECOMMENDED LAND PATTERN 12.650 (0.498) 1.905 (0.075) 3.180 ± 0.127 (0.125 ± 0.005) 0.381 ± 0.127 (0.015 ± 0.005) 1.270 (0.050) BSG 7° 0.254 ± 0.100 (0.010 ± 0.004) 0.750 ± 0.250 (0.0295 ± 0.010) 11.50 ± 0.250 (0.453 ± 0.010) 1.590 ± 0.127 (0.063 ± 0.005) 0.450 (0.018) 45° RoHS-COMPLIANCE INDICATOR 0.64 (0.025) 0.200 ± 0.100 (0.008 ± 0.004) PART NUMBER DATE CODE KXXT YWW EE EXTENDED DATECODE FOR LOT TRACKING
  • 4. Broadcom AV02-3157EN 4 ACPL-K49T Data Sheet Wide Operating Temperature Automotive R2 Coupler® 20-kBd Digital Optocoupler Configu- rable as Low-Power, Low-Leakage Phototransistor Insulation and Safety Related Specifications IEC/EN/DIN EN 60747-5-5 Insulation Related Characteristic (Option 060E and 560E) Parameter Symbol ACPL- K49T Unit Conditions Minimum External Air Gap (Clearance) L(101) 8 mm Measured from input terminals to output terminals, shortest distance through air. Minimum External Tracking (Creepage) L(102) 8 mm Measured from input terminals to output terminals, shortest distance path along body. Minimum Internal Plastic Gap (Internal Clearance) 0.08 mm Through insulation distance conductor to conductor, usually the straight line distance thickness between the emitter and detector. Tracking Resistance (Comparative Tracking Index) CTI 175 V DIN IEC 112/VDE 0303 Part 1. Isolation Group (DIN VDE0109) IIIa Material Group (DIN VDE 0109). Description Symbol Characteristic Unit Installation classification per DIN VDE 0110/1.89, Table 1 For rated mains voltage ≤ 150 Vrms For rated mains voltage ≤ 300 Vrms For rated mains voltage ≤ 450 Vrms For rated mains voltage ≤ 600 Vrms For rated mains voltage ≤ 1000 Vrms I-IV I-IV I-IV I-IV I-III Climatic Classification 55/100/21 Pollution Degree (DIN VDE 0110/1.89) 2 Maximum Working Insulation Voltage VIORM 1140 VPEAK Input to Output Test Voltage, Method b VIORM x 1.875 = VPR, 100% Production Test with tm = 1 sec Partial Discharge < 5 pC VPR 2137 VPEAK Input to Output Test Voltage, Method a VIORM x 1.6 = VPR, Type and sample test, tm = 10 sec, Partial Discharge < 5 pC VPR 1824 VPEAK Highest Allowable Overvoltage (Transient Overvoltage, tini = 60 sec) VIOTM 8000 VPEAK Safety Limiting Values (Maximum values allowed in the event of a failure) Case Temperature Input Current Output Power TS IS,INPUT PS,OUTPUT 175 230 600 °C mA mW Insulation Resistance at TS, VIO = 500V RS 109 Ω
  • 5. Broadcom AV02-3157EN 5 ACPL-K49T Data Sheet Wide Operating Temperature Automotive R2 Coupler® 20-kBd Digital Optocoupler Configu- rable as Low-Power, Low-Leakage Phototransistor Absolute Maximum Ratings Recommended Operating Conditions Parameter Symbol Min. Max. Unit Storage Temperature TS –55 150 °C Operating Temperature TA –40 125 °C Lead Soldering Cycle Temperature — 260 °C Time — 10 s Average Forward Input Current IF(avg) — 20 mA Peak Forward Input Current (50% duty cycle, 1-ms pulse width) IF(peak) — 40 mA Peak Transient Input Current (≤1-μs pulse width, 300 ps) IF(trans) — 100 mA Reversed Input Voltage VR — 5 V Input Power Dissipation PIN — 30 mW Output Power Dissipation PO — 100 mW Average Output Current IO — 8 mA Peak Output Current Io(pk) — 16 mA Supply Voltage VCC –0.5 30 V Output Voltage VO –0.5 20 V Parameter Symbol Min. Max. Unit Supply Voltage VCC — 20.0 V Operating Temperature TA –40 125 °C
  • 6. Broadcom AV02-3157EN 6 ACPL-K49T Data Sheet Wide Operating Temperature Automotive R2 Coupler® 20-kBd Digital Optocoupler Configu- rable as Low-Power, Low-Leakage Phototransistor Electrical Specifications (DC) for 5-Pin Configuration Over recommended operating TA = –40°C to 125°C, unless otherwise specified. Switching Specifications (AC) for 5-Pin Configuration Over recommended operating (TA = –40°C to 125°C), VCC = 5.0V unless otherwise specified. Parameter Symbol Min. Typ. Max. Unit Conditions Fig. Note Current Transfer Ratio CTR 32 65 100 % TA = 25° C VCC = 4.5V, VO = 0.5V, IF = 10 mA 1, 2, 4 a a. Current Transfer Ratio in percent is defined as the ratio of output collector current, IO, to the forward LED input current, IF, times 100. 24 65 — 65 110 150 TA = 25° C VCC = 4.5V, VO= 0.5V, IF = 4 mA 1, 2, 4 50 110 — Logic Low Output Voltage VOL — 0.1 0.5 V VCC = 4.5V, IF = 10 mA, Io = 2.4 mA 3 — 0.1 0.5 VCC = 4.5V, IF = 4 mA, Io = 2.0 mA Logic High Output Current IOH — 2 x 10–4 0.5 μA TA = 25° C VO = VCC= 5.5V IF = 0 mA 7 — 4 x 10–4 5 VO = VCC= 20V Logic Low Supply Current ICCL — 35 100 μA IF = 4 mA, VO = open, VCC = 20V Logic High Supply Current ICCH — 0.02 1 μA TA = 25° C IF = 0 mA, VO = open, VCC = 20V — — 2.5 μA Input Forward Voltage VF 1.4 1.5 1.7 V TA = 25°C IF = 4 mA 6 1.2 1.5 1.8 V Input Reversed Breakdown Voltage BVR 5 — — V IR = 10 μA Temperature Coefficient of Forward Voltage ΔV/ΔTA — –1.5 — mV/°C IF = 10 mA Input Capacitance CIN — 90 — pF F = 1 MHz, VF = 0V Parameter Sym. Min. Typ. Max. Unit Conditions Fig. Note Propagation Delay Time to Logic Low at Output tPHL — — 20 μs Pulse: f = 10 kHz, Duty cycle = 50%, IF = 4 mA, VCC = 5.0V, RL = 8.2 kΩ, CL = 15 pF, VTHHL = 1.5V 9 Propagation Delay Time to Logic High at Output tPLH — — 20 μs Pulse: f = 10 kHz, Duty cycle = 50%, IF = 4 mA, VCC = 5.0V, RL = 8.2 kΩ, CL = 15 pF, VTHLH = 2.0V 9 Common Mode Transient Immunity at Logic High Output |CMH| 15 30 — kV/μs IF = 0 mA VCM = 1500 Vp-p, TA = 25°C RL = 1.9 kΩ 10 a a. Common transient immunity in a Logic High level is the maximum tolerable (positive) dVCM/dt on the rising edge of the common mode pulse, VCM, to assure that the output will remain in a Logic High state (i.e., VO > 2.0V). Common mode transient immunity in a Logic Low level is the maximum tolerable (negative) dVCM/dt on the falling edge of the common mode pulse signal, VCM, to assure that the output will remain in a Logic Low state (i.e., VO < 0.8V). Common Mode Transient Immunity at Logic Low Output |CML| 15 30 — kV/μs IF = 10 mA Common Mode Transient Immunity at Logic Low Output |CML| — 15 — kV/μs IF = 4 mA VCM = 1500 Vp-p, TA = 25°C RL = 8.2 kΩ
  • 7. Broadcom AV02-3157EN 7 ACPL-K49T Data Sheet Wide Operating Temperature Automotive R2 Coupler® 20-kBd Digital Optocoupler Configu- rable as Low-Power, Low-Leakage Phototransistor Electrical Specifications (DC) for 4-Pin Configuration Over recommended operating TA = –40°C to 125°C, unless otherwise specified. Switching Specifications (AC) for 4-Pin Configuration Over recommended operating (TA = –40°C to 125°C), VCC = 5.0V unless otherwise specified. Parameter Sym. Min. Typ. Max. Unit Conditions Fig. Note Current Transfer Ratio CTR 70 130 210 % TA = 25°C, VCC = VO = 5V, IF = 4 mA 4 a a. Current Transfer Ratio in percent is defined as the ratio of output collector current, IO, to the forward LED input current, IF, times 100. Current Transfer Ratio CTR (Sat) 24 60 — IF = 10 mA VCC = VO = 0.5V 5 35 110 — IF = 4 mA Logic Low Output Voltage VOL — 0.1 0.5 V IF = 10 mA IO = 2.4 mA 5 — 0.1 0.5 IF = 4 mA IO = 1.4 mA Off-State Current I(CEO) — 4 x 10–4 5 μA VO = VCC = 20V, IF = 0 mA 8 Input Forward Voltage VF 1.4 1.5 1.7 V TA = 25°C IF = 4 mA 6 1.2 1.5 1.8 V Input Reversed Breakdown Voltage BVR 5 — — V IR = 10 μA Temperature Coefficient of Forward Voltage ΔV/ΔTA — –1.5 — mV/°C IF = 10 mA Input Capacitance CIN — 90 — pF F = 1 MHz, VF = 0V Output Capacitance CCE — 35 — pF F = 1 MHz, VF = 0V, VO = VCC = 0V Parameter Sym. Min. Typ. Max. Unit Conditions Fig. Note Propagation Delay Time to Logic Low at Output tPHL — 2 100 μs Pulse: f = 1 kHz, Duty cycle = 50%, IF = 4 mA, VCC = 5.0V, RL = 8.2 kΩ, CL = 15 pF, VTHHL = 1.5V 10 Propagation Delay Time to Logic High at Output tPLH — 19 100 μs Pulse: f = 1 kHz, Duty cycle = 50%, IF = 4 mA, VCC = 5.0V, RL = 8.2 kΩ CL = 15 pF, VTHLH = 2.0V 10 Common Mode Transient Immunity at Logic Low Output |CML| 15 30 — kV/μs IF = 0 mA VCM = 1500 Vp-p, TA = 25°C RL = 8.2 kΩ 12 a a. Common transient immunity in a Logic High level is the maximum tolerable (positive) dVCM/dt on the rising edge of the common mode pulse, VCM, to assure that the output will remain in a Logic High state (i.e., VO > 2.0V). Common mode transient immunity in a Logic Low level is the maximum tolerable (negative) dVCM/dt on the falling edge of the common mode pulse signal, VCM, to assure that the output will remain in a Logic Low state (i.e., VO < 0.8V). Common Mode Transient Immunity at Logic Low Output |CML| 15 30 — kV/μs IF = 4 mA VCM = 1500 Vp-p, TA = 25°C RL = 8.2 kΩ
  • 8. Broadcom AV02-3157EN 8 ACPL-K49T Data Sheet Wide Operating Temperature Automotive R2 Coupler® 20-kBd Digital Optocoupler Configu- rable as Low-Power, Low-Leakage Phototransistor Package Characteristics Parameter Symbol Min. Typ. Max. Unit Test Conditions Fig. Note Input-Output Momentary Withstand Voltagea a. The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous voltage rating. VISO 5000 — — Vrms RH ≤ 50%, t = 1 min; TA = 25°C b, c b. Device considered a two-terminal device: pins 1, 2, 3 and 4 shorted together, and pins 5, 6, 7 and 8 shorted together. c. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage >6000 Vrms for 1 second. Input-Output Resistance RI-O — 1014 — Ω VI-O = 500 Vdc b Input-Output Capacitance CI-O — 0.6 — pF f = 1 MHz; VI-O = 0 Vdc b
  • 9. Broadcom AV02-3157EN 9 ACPL-K49T Data Sheet Wide Operating Temperature Automotive R2 Coupler® 20-kBd Digital Optocoupler Configu- rable as Low-Power, Low-Leakage Phototransistor Figure 1: Current Transfer Ratio vs. Input Current Figure 2: Normalized Current Transfer Ratio vs. Temperature 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 0.1 1 10 100 NORMALIZEDCURRENTTRANSFERRATIO IF - INPUT CURRENT (mA) TA = 25° C VCC = 5 V VO = 0.4 V TA - TEMPERATURE - °C 0.6 0.7 0.8 0.9 1 1.1 -50 -25 0 25 50 75 100 125 NORMALIZEDCURRENTTRANSFERRATIO IF = 10 mA IF = 4 mA VCC = 5 V VO = 0.5 V Figure 3: Typical Low-Level Output Current vs Output Voltage Figure 4: Output Current vs Output Voltage (4-Pin Configuration) VOL - LOW LEVEL OUTPUT VOLTAGE - V IOL-LOWLEVELOUTPUTCURRENT-mA 0 2 4 6 8 10 12 14 0.0 0.2 0.4 0.6 0.8 1.0 VCC = 5 V, TA = 25° C IF = 20 mA IF = 10 mA IF = 4 mA IF = 1 mA 0 5 10 15 20 25 0 5 10 15 IO-OUTPUTCURRENT-mA VO - OUTPUT VOLTAGE - V IF = 20 mA IF = 10 mA IF = 15 mA IF = 4 mA TA = 25° C VCC = VO Figure 5: Typical Low-Level Output Current vs Output Voltage (4-Pin Configuration) Figure 6: Typical Input Current vs Forward Voltage 0 2 4 6 8 10 12 14 0.0 0.2 0.4 0.6 0.8 1.0 VOL - LOW LEVEL OUTPUT VOLTAGE - V IOL-LOWLEVELOUTPUTCURRENT-mA IF = 20 mA IF = 10 mA IF = 4 mA IF = 1 mA VCC = VO, TA = 25° C 1.0 10.0 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 VF - FORWARD VOLTAGE - V IF-FORWARDCURRENT-mA TA = 125° C TA = 25° C TA = -40° C
  • 10. Broadcom AV02-3157EN 10 ACPL-K49T Data Sheet Wide Operating Temperature Automotive R2 Coupler® 20-kBd Digital Optocoupler Configu- rable as Low-Power, Low-Leakage Phototransistor Figure 7: Typical High-Level Output Current vs Temperature Figure 8: Typical Off-State Current vs Temperature (4-Pin Configuration) 0.0001 0.001 0.01 0.1 1 25 50 75 100 125 IOH-LOGICHIGHOUTPUTCURRENT-A TA - TEMPERATURE - °C VCC = VO = 15 V 0.00001 0.0001 0.001 0.01 0.1 1 25 50 75 100 125 ICEO-OFF-STATECURRENT-A TA - TEMPERATURE - °C 15 V 12 V 5 V 3.3 V Figure 9: Switching Test Circuit (5-Pin Configuration) Figure 10: Switching Test Circuit (4-Pin Configuration) 8 7 6 5 1 2 3 4 Pulse Generator ZO = 50 Ω tr = 5 ns 10% Duty Cycle 1/f < 100 s IF Monitor +5 V RL VO 0.1 F CL = 15 pF 5 V IF VO 1.5 V 2.0 V tPHL tPLH VOL 100 8 7 6 5 1 2 3 4 Pulse Generator ZO = 50 Ω tr = 5 ns 10% Duty Cycle 1/f < 100 s IF Monitor +5 V RL VO CL = 15 pF 5 V IF VO 1.5 V 2.0 V tPHL tPLH VOL 100
  • 11. Broadcom AV02-3157EN 11 ACPL-K49T Data Sheet Wide Operating Temperature Automotive R2 Coupler® 20-kBd Digital Optocoupler Configu- rable as Low-Power, Low-Leakage Phototransistor Figure 11: Test Circuit for Transient Immunity and Typical Waveforms (5-Pin Configuration) Figure 12: Test Circuit for Transient Immunity and Typical Waveforms (4-Pin Configuration) 8 7 6 5 1 2 3 4 IF VCC RL VO 0.1 F VFF + – VCM Pulse Gen. 5 V VCM VO tr tf VOL 10% 90% 10% 90% Tr = tf = 80 ns Switch at IF = 0 mA VO Switch at IF = 4 mA 1500 V 8 7 6 5 1 2 3 4 IF VCC RL VO CL = 15 pF VFF + – VCM Pulse Gen. 5 V VCM VO tr tf VOL 10% 90% 10% 90% Tr = tf = 80 ns Switch at IF = 0 mA VO Switch at IF = 4 mA 1500 V
  • 12. ACPL-K49T Data Sheet Wide Operating Temperature Automotive R2 Coupler® 20-kBd Digital Optocoupler Configu- rable as Low-Power, Low-Leakage Phototransistor Broadcom AV02-3157EN 12 Thermal Resistance Model for ACPL-K49T The diagram of ACPL-K49T for measurement is shown in Figure 13. Here, one die is heated first and the temperatures of all the dice are recorded after thermal equilibrium is reached. Then, the second die is heated and all the dice temperatures are recorded. With the known ambient temperature, the die junction temperature and power dissipation, the thermal resistance can be calculated. The thermal resistance calculation can be cast in matrix form. This yields a 2-by-2 matrix for our case of two heat sources. R11: Thermal Resistance of Die1 due to heating of Die1 R12: Thermal Resistance of Die1 due to heating of Die2. R21: Thermal Resistance of Die2 due to heating of Die1. R22: Thermal Resistance of Die2 due to heating of Die2. P1: Power dissipation of Die1 (W). P2: Power dissipation of Die2 (W). T1: Junction temperature of Die1 due to heat from all dice (°C). T2: Junction temperature of Die2 due to heat from all dice. Ta: Ambient temperature. ΔT1: Temperature difference between Die1 junction and ambient (°C). ΔT2: Temperature deference between Die2 junction and ambient (°C). T1 = (R11 x P1 + R12 x P2) + Ta T2 = (R21 x P1 + R22 x P2) + Ta Measurement data on a low K board: R11 = 160°C/W, R12 = R21 = 74°C/W, R22 = 115°C/W Figure 13: Diagram of ACPL-K49T for Measurement R11 R12 × P1 = ΔT1 R12 R22 P2 ΔT2 1 2 3 4 8 7 6 5 Die 1: LED Die 2: Detector
  • 13. Broadcom, the pulse logo, Connecting everything, Avago Technologies, Avago, and the A logo are among the trademarks of Broadcom and/or its affiliates in the United States, certain other countries and/or the EU. Copyright © 2017 by Broadcom. All Rights Reserved. The term “Broadcom” refers to Broadcom Limited and/or its subsidiaries. For more information, please visit www.broadcom.com. Broadcom reserves the right to make changes without further notice to any products or data herein to improve reliability, function, or design. Information furnished by Broadcom is believed to be accurate and reliable. However, Broadcom does not assume any liability arising out of the application or use of this information, nor the application or use of any product or circuit described herein, neither does it convey any license under its patent rights nor the rights of others.