SlideShare a Scribd company logo
1 of 16
Analysis of diffraction patterns generated through TEM through concept of reciprocal
space with an insight into EELS
Report
by
Mainak Saha
Roll No: 14/MM/65
Submitted to
Prof. Durbadal Mandal
Department of Metallurgical and Materials Engineering
National Institute of Technology(NIT) Durgapur
Durgapur-713209,West Bengal
14 February,2018
Abstract
Transmissionelectronmicroscope (TEM) canoperate infourmainmodes:brightfield(BF),darkfield
(DF),electrondiffraction(ED) andenergy-dispersive analysisof X-rays(EDX).A TEMworkinginall
modes(BF,DF,ED and EDX) is usuallycalledthe analytical electronmicroscope.Itisa powerful tool
for studyof nanocrystals,whichare invisible inlightmicroscopesanddonot diffractX-rays
sufficiently.TEM/BFincombinationwithimage analysisyieldsaquantitative descriptionof
nanocrystal shapes.TEM/EDXgiveselemental compositionof nanoparticles.TEM/EDincombination
withcrystallographicdatabasesidentifiesknowncrystal structures. TEM/DFmaydifferentiate
monocrystalsfromtwins.
Introduction
Diffraction, crystals, electronwaves,and the transmissionelectronmicroscope
-Diffraction oflight by an optical grating
If monochromaticandspatiallycoherent(laser) lighttransmitsa transparentdiffractiongratingwith
perpendiculardiffractionslitsbeingseparatedbythe distance dalongthe horizontal x-axisa
diffractionpatternwithdiscrete diffractionordersisformed.Constructive interference of light
emittedbyeachof the slits inthe diffractiongratingshowninFig.1 leadstohorizontallyseparated
diffractionspotsatanglesθm forwhichholds
sin(θm)d=mλ
Experimentalsetupof diffractionof laserlightbyanoptical gratingand itsprojectionontoa detector
by an optical setupconsistingof anobjectivelens,andobjectiveaperture,anda projectorlens.
Differentdiffractionorders(butnotdifferentwavelengths!)are indicatedbycolor.
For the more complex discussionof electrondiffractionfromathree-dimensional lattice itisuseful
to describe thisphenomenoninmomentumspace.The momentumvectorof the incidentradiation
isthengivenby
~ k0 = (kx,ky,kz)=(0,0,2π/λ)
the diffractedradiationbehindthe diffractiongratingisnow splitupintopartial waveswith
momenta
~ kl = (2π sinθm/λ,0,2πcosθm/λ)=(2πm/d,0,2πcosθm/λ)
The discrete kx-componentsof the scatteredwave vectorsmayare obviouslyindependentof the
wavelengthandonlyafunctionof the scatteringobject.Theyare thuscalledreciprocal lattice points
alongthe horizontal momentumaxisatdistances
gm =2πm/d
away fromthe momentumvectorof the unscatteredpartial wave whichisequal tothatof the
incidentlight~k0.A three-dimensional latticemayhave separate periodicitiesalongthree different
noncolineardirections~a,~ b,and ~c. The reciprocal lattice vectorsare thenindexednotbyasingle
index m,butby the three (Miller) indicesh,k,andl.The correspondinglatticevectoristhusgivenby
~g(h,k,l) =(h~a∗,k~ b∗,l~c∗)
If we nowplace a recordingscreenat some cameralengthL awayfrom the diffractiongratingwe
expectthe spotsonthe screentoappearat distances
The factor Lλ isalsocalledthe calibrationfactor.
Electronwaves
Louisde Broglie inhis1924 doctoral thesisproposedthe wave nature of mass-carryingparticles,
givingthemthe wavelength
(hbeingPlanck’sconstant,m0the electronrest mass,andEkin = |eV0|the kineticenergyof the
electron,withe beingitscharge andV0 the acceleratingvoltage) isveryshort,almost2ordersof
magnitude shorterthantypical X-raywavelengths.Forelectronbeamenergiesachievableina
standardTEM, i.e.E ≥ 20 kV,the wavelengthcanbe approximatedbythe followingexpression:
For example,inastandardmediumvoltage TEM(U = 200 kV) the electronwavelengthisλ= 0.0251 ˚
A. Only3 yearsafterthe revolutionarydiscoveryof the wave nature of electrons,electron
diffraction,aphenomenonbasedonthe wave nature of these small particles,wasable toprovide
diffractionpatternsof crystallinematerialsverysimilartothose obtainedbyX-rays.Today,electron
diffractionhasdevelopedintoavery powerful tool in structural crystallographyandmaterials
science andhas againsplitintoseveral subdisciplines.Inlightof the large bodyof literature available
on electronscatteringanddiffractionitseemsimportanttoemphasizethatwithinthischapterthe
term’diffraction’istreatedsynonymouslywith’elasticscattering’,i.e.aprocesswhichpreservesthe
energyof the incidentelectron.If the acceleratingvoltage of the electronisinthe range of 20 - 200
V (sometimesupto600 V) one speaksof low-energyelectrondiffraction(LEED).Electronsof this
energyhave a wavelengthof about1 ˚A(2.7 ˚A at 20 V and 0.5 ˚A at 600 V),i.e.comparable tothe
distance betweenatoms,andcanonlypenetrate the firstatomiclayers,or 5-10 ˚ A of the sample.
LEED istherefore exclusivelyusedtostudythe atomicstructure of surfaces,mainlyunderultra-high
vacuumconditions.Athigherbeamenergies,asinmediumenergyelectrondiffraction(MEED,
acceleratingvoltage between1kV and 5 kV or reflectionhighenergyelectrondiffraction(RHEED,
electronenergyrange between40keV and100 keV) the scatteringanglesbecometoosmall towork
witha normallyincidentelectronbeam,butinstead,amore (RHEED) or less(MEED) grazing
incidence setuphastobe chosen.Thisdeviationof the angle of incidence fromthe surface normal
makesRHEED muchmore sensitive tosurface roughnessthanLEED,withMEED beingaboutin
betweenbothworlds.Atsufficientlyhighenergy(above 20keV) electronsare fastenoughto
penetrate severalnanometersof material withouttoomuchabsorptionorcharging.Although
transmissionthroughverythinsamplesandevenatomicresolutionimagingisalsopossible atlower
energy,transmissionelectrondiffractionintransmissionelectronmicroscopes (TEMs) ismost
commonlydone atacceleratingvoltagesabove 20kV and insome casesup to 1 or even3 MV.
Because of the versatilityof TEMs andtheiravailabilityinalarge numberof laboratoriesaroundthe
globe thischapterwill focusontransmission highenergyelectrondiffraction(HEED) only.Electron
Diffractionpatternsof crystalline materialscontainawealthof informationandhave helpedto
reconstructthe atomic positionsof complex crystal structures,largelybyapplyingthe verysame
techniquesdevelopedinX-raycrystallography.However,beinglimitedinspace,the final sectionof
thischapterwill onlybe able toprovide anoverview of aselectionof electrondiffractiontechniques
whichshowcase the unique capabilitiesof electrondiffraction comparedtoother(e.g.X-rayor
neutron) diffractiontechniques.The electriccharge of the electronsnotonlyallowsthemtobe
acceleratedbyelectrostaticfields,butalsodeflectedandfocusedbyboth,magneticaswell as
electricfieldsaccordingtothe Lorentzforce.
While roundmagneticlenseshave aninherentpositive spherical aberration,multipoleelements
may be usedto compensate thisspherical (andalsohigherorder) aberrations,producingelectron
probesas small as0.5 ˚A indiameter.In additiontothe correctionof lensaberrationsinthe probe-
forminglenssystemthe formationof suchsmall probesalsorequiresahighspatial coherence.A
critical parameterdescribingthe amountof currentavailableata certaindegree of spatial
coherence isthe brightnessβ, whichisthe amountof currentemittedintoacertainsolidangle Ω
froman area A. For rotationallysymmetricsystemsone canalsowrite
where α isthe angularradiusof the cone of emittedelectrons,andrthe radiusof the source.
Because of the increasedmomentumof electronsathigheracceleratingvoltages,the effectivecone
radiusα isproportional tothe electronwavelength,andisthusinverse proportional tothe square
root of the electron’skineticenergy.Forthisreasonthe reducedbrightness,isoftenusedinstead.
The electronmicroscope usedforthispracticumhasa fieldemissiongun(FEG).A FEG, todaythe
standardelectronsource inhigh-performance TEMs,providesasource of nanometerdimensions
and sub-eV energyspread,withabrightnessperunitbandwidthgreaterthancurrent-generation
synchrotrons.When alsotakingintoaccountthe muchstrongerinteractionof electronswith
matter,the amountof coherentlyscatteredsignal thatcanpotentiallybe collected fromacertain
volume of material exceedseventhatof free-electronlasers.FEGshave a much higherbrightness
than thermionicelectronguns,suchasa LaB6 source is used.
The needto understandatomicprocessesinsolidshasledtoan increasingdemand fornew imaging,
diffractionandspectroscopymethodswithhighspatial resolution. Thisneedhasbeenreinforcedby
the growinginterestinnanoscience andnanotechnology. Particularly,transmissionelectron
microscopy(TEM) isof unrivalledvalue,becauseitcanprovide structural informationwithexcellent
spatial resolution(downtoatomicdimensions) viahighresolutionTEMimagingandelectron
diffraction. These structural datacanbe supplementedbychemical informationfromthe same
specimenregion,obtainedusinganalytical techniques,suchasenergy-dispersiveX-rayspectroscopy
(EDS) and electronenergy-lossspectroscopy(EELS).Due tothe broad range of inelasticinteractions
of the highenergyelectronswiththe specimenatoms,rangingfromphononinteractionsto
ionisationprocesses,electronenergy-lossspectroscopyoffersunique possibilitiesforadvanced
materialsanalysis. Itcan be usedto map the elementalcompositionof aspecimen,butalsofor
studyingthe physical andchemical propertiesof awide range of materialsandbiologicalmatter.
Beginningwiththe increasinguse of EEL spectrometersduringthe eightiesof the lastcentury[1],
the energy-filteringtechnique wasamajorstepforwardfor two-dimensionalmappingof the
spectral featuresvisibleinanEEL spectrum. The wide distributionof energy-filteringTEMs (EFTEM)
ledto numerouspractical applicationsbothinthe materialsandbiological sciences[4]. Inthe
meanwhile,EFTEMisa widelyusedmethodforbothoverview and nanoscale characterisationof
thinsamples,applicable tomostchemical elementsandespeciallysensitive tolightelements.With
the introductionof highbrightnesselectronsourcesandspherical aberrationcorrectors,the image
resolutionof the TEMreachesnowthe 50 picometre level. Especiallyscanningtransmission
electronmicroscopy(STEM) equippedwithaCs-probe correctorisextremelyusefulforhigh
resolutionimaging[6] andthe parallel chemical analysisbyEELSand EDS because of the much
increasedprobe currentinthe correctedbeam.
Electron energylossSpectroscopy
A beamelectronina (S)TEMmay be inelasticallyscatteredwhenitinteractswiththe atomic
electronsinthe specimen. The electronbeamlosesenergyandisbentthroughasmall angle (5 -
100 milliradians). The energydistributionof all the inelasticallyscatteredelectronsprovides
informationaboutthe local environmentof the atomicelectronswhichinturnrelatestothe
physical andchemical propertiesof the specimen. Thisisthe basisof electronenergy-loss
spectroscopy(EELS). Much of the informationobtainablefromEELSis similartothatof X-ray
absorptionspectrometry(XAS) inthe synchrotron.
The firstpeak,the most intense foraverythinspecimen,occursat0 eV and istherefore calledthe
zero-losspeak. Itrepresentselectronswhichhave notbeenscatteredinthe specimen(transmitted
electrons) andwhichhave beenelasticallyscatteredviainteractionwiththe atomicnuclei.
The low-lossorvalence region of anEEL spectrum(< 50 eV) providessimilarinformationtothat
providedbyoptical spectroscopy,containingvaluable informationaboutthe bandstructure andin
particularaboutthe dielectricpropertiesof amaterial (e.g.,bandgap,surface plasmons). The most
prominentpeak,centredat24 eV,comesfroma plasmaresonance of the valence atoms. Signal
intensitiesinthe low-lossregionare largerthaninthe high-lossregionof the spectrum.Athigher
energylosses(>50 eV),where the numberof inelasticallyscatteredelectronsismuchlower,the
spectrumshowscharacteristicfeaturescalled“ionisationedges”(due totheirtypical shape,arapid
rise followedbyamore gradual fall). These edgesare the exactequivalentof anabsorptionedge in
XASand arise fromthe same process. The edgesare formedwhenaninner-shellelectronabsorbs
enoughenergyfromabeamelectrontobe excitedtoa state above the Fermi level. Notall
ionisationedgesare saw-toothedlikethe carbonK-edge infigure1,but exhibitmore complex
edgeshapessuchasthe L2,3-edge of titaniuminfigure 1. This L2,3-edge includessharpexcitations
at the onsetof the ionisationedge,calledwhite-lines,whichare typical forelementsinthe firstrow
of transitionelementsand forthe rare earthelements. The ionisationedgescanbe usedfor the
analysisof almostall chemical elementsinparticularforthe lighterelements,the edge onsetgives
the ionisationenergyandallowsthe qualitativeanalysisandincase of verythin samplesthe edge
intensitiesare proportional tothe concentrationof the correspondingelements.
RecentadvancesinEELS methodologyTEM-EELSinstrumentationisbasedona magneticprism, in
whicha uniformmagneticfieldisgeneratedbyanelectromagnet withspeciallydesignedpole
pieces. The prismbendsthe inelasticallyscatteredelectronsbyabout90o, dispersesthemaccording
to theirdifferentkineticenergiesandalsohasa focussingaction. The spectraare recordedwitha
charge coupleddevice(CCDcamera). Due tothe enormousdynamicrange of anEEL spectrum,
spanningmanyordersof magnitude,anddue torestrictionsindynamicrange andsensitivityof CCD
basedspectrometers,acomplete EELspectrumnormallyhastobe recordedinseveral segmentsby
changingilluminationconditionsand/oracquisitiontimes.Energyfiltersare usedtoformimages
fromelectronsthathave sufferedaspecificenergyloss[energyfilteredTEM(EFTEM) or electron
specificimaging(ESI)]. Inparticular,twotypesof energy-filteringinstrumentsare mostoftenused:
firstlypost-columnenergyfilters,withasingle prismgeometryandmultipole lenses,canbe
attachedand retrofittedtopracticallyanyTEMor STEM instrument. The post-columnfilterisnot
onlyan efficientimagingsystem, butalsoaversatile instrumentforacquiringEELspectra inhigh
quality. Secondlythe in-columnfilter,whosespectrometerconsistsof fourmagneticprismsthatare
arrangedsymmetricallyaccordingtothe shape of a GreekOmega,islocatedbelow the projector
lenssystemof the TEM. Thistype of filtercan be alsousedfor spectroscopy,butthe main
applicationfieldishighqualityimagingsuchaslarge areaelemental mappingandenergy-filtered
electrondiffractionstudies.Anotherimportantdevelopmentwasthe introductionof
monochromatorsforthe electronsource,whichpavedthe wayforacquiringEEL spectraat high
energyresolution,typicallyinthe 100 - 200 meV range (e.g.,the Wienfilterapproach). The
improvedenergyresolutionopensnewpossibilitiesforstudyingdetailedelectronicstructure and
bondingeffectsevaluatedfromnearedge fine structuresof the ionisationedges,butalsoaccurate
bandgap and dielectricfunctionmeasurementsviathe low-losspartof the spectrum.Several years
ago, the problemof the highdynamicrange of the EEL spectrumcouldbe addressedbyacquiring
the elasticandinelasticpartsat nearlycoincidenttimesatidentical experimental conditions,
offeringthe advantage of usingthe low-lossregime asareference forquantitative dataanalysis.
Thissystemworkswithan additional electrostaticvertical deflectorandisnow successfullyusedby
several groupsworldwide.AdvancesinX-raydetectionwiththe adventof large areaor four-
quadrantsolidstate silicondriftdetectors andthe rapidprogressinEDS data processing,pushed
the ideasforhighlyefficientelemental mappingincombinationwithEELS. The collaboration
betweenGatan,Brukerandthe TU Graz enabledthe fastrecording of multimodal datasothat
STEM-images,low-lossandhigh-lossEELSandEDS data can now be acquiredwitha speedof 1,000
to 1,500 spectrapersecond.While the conventional methodof EELSmappingcombinesTEM/STEM
imageswiththe local concentrationof the elements,the developmentof more powerfulcomputers
and data reductionproceduresnowadaysallowsa“holistic”approach:the whole spectral
informationisgatheredforeachpointof animage,generatingathree-dimensional datasetwhichis
oftencalledaspectrumimage. The spectrum-imagingtechniqueoffersvariousadvantages:the
wealthof data allowsacertainamountof “postexperimentmicroscopy”andbecause of the
completenessof data,interpretationmistakescanbe avoided. Additionally,adata-evaluation
software canautomaticallyidentifyandhighlightthe mostprominentfeatures,e.g.,chemical
phases. Therefore,spectrum-imagingtechniquesare the essential basisforsuccessful EELSmapping
at the atomicscale.
Elemental mappingathighspatial resolutionOne of the mostcommonlyusedapplicationsof STEM-
EELS or EFTEM isto derive compositional informationbyrecordingenergy-filteredimagesusingthe
elementcharacteristicionisationedges.
Althoughadvancedenergy-filtersorspectrometersnow enablethe fastacquisitionof elemental
maps almostona routine basis,care must be takendue to several experimental limitationsof EELS:
generally,the signal-to-noise ratioof the elementalsignal isverylow whichismainlycausedbythe
highuncharacteristicbackgroundbelow the ionisationedgesandthe low ionisationcross-sections
for heavierelementsandforelementsoccurringatlow concentrations.Anotherimportantlimitation
comesfrommultiple scatteringof the inelasticsignal inthickerspecimens,restrictingelemental
mappingtospecimenthicknesseswellbelow the meanfree pathlengthsof the inelastically
scatteredelectrons(specimenthickness<70 nmfor mostmaterials).
Alternatively,EELSspectrafrom thickerspecimensmaybe deconvolvedbyusingthe low-losspartof
the EELS spectrum,recoveringasingle scatteringdistributionEELSspectrum. Typical procedures
involve Richardson-LucyorFourierlogmethods,whichhoweverdecreasethe signal-to-noise ratio
of the spectrum. Whencrystalline specimensare studied,afrequentproblemisthe preservationof
diffractioncontrastininelasticimaging,whichcanbe reducedbyemployingadvancedillumination
conditions(hollow-coneorrocking-beamillumination).
ImagesshowingMgO/Ni core shell nanoparticlesinvestigatedwithaCS-correctedSTEMandEELS
spectrumimagingrevealingthe Ni core andthe MgO shell,the insetshowsthe Z-contrastimage of
the Ni core.
Chemical bondinginformation
Edge fine structuresarouse considerableinterestinthe applicationof EELS,especiallyinthe fieldof
materialsscience,because theycanbe usedtoextractinformationregardinglocal charge
distributions,coordinationnumbersandbondingcharacteristics. The fine structuresare dividedinto
the near edge-fine structures(ELNES) within50eV of the edge onsetandthe extendedfinestructure
(EXELFS) aboutsome 100 eV above the edge onset. Mostof the ionisationedgescontainamore
complex structure thancan be explainedinsimple atomicterms. The ionisationedgesare often
modifiedbythe solidstate environmentof the atomundergoingthe inner-shellexcitationandthis
informationcanbe usedas a “fingerprint”fromelementsinsimilarchemical environments[26,27].
In the meanwhilethe calculationof ELNESstructureshas reacheda highdegree of sophistication
[28]. One importantdevelopmentforELNESstudieswasthe introductionof the monochromated
(S)TEMs whichhelpedtoimprove the instrumental energyresolutiontovaluesaslow as100 meV.
In combinationwithadvancedenergy-filtersand/orspectrometersitwasnow possible tofully
exploitinformational the spectral detailscontainedinthe EEL spectrum. It wasnot at all obvious,
however, atthe time of the developmentduringthe late ninetiesthatthese toolswouldgainsuch
importance. The reducedenergyspreadof the TEMimmediatelyopenedpossibilitiesfordetailed
studiesof the near-edge fine structuresatK- andL2,3-ionisationedgesof oxides,perovskitesand
similarmaterials[29]. The knowledgeaboutthese ELNESstructuresathighenergyresolutionisan
importantbasisforSTEM-EELS imagingof chemical bondinginmaterials. Figure 4showsthe ELNES
structure of the V L2,3 white linesof V2O5recordedat differentenergyresolutions. The L3 white
line revealsthe symmetryof the vanadiumsite beingsurroundedbysix oxygenatomsforminga
stronglydistortedoctahedronunit.
Comparisonof the V L2,3- and O-ionisationedgesof V2O5whichhave beenrecordedwithdifferent
energyresolution;
a) 200 kV TEM withLaB6 cathode (0.7 eV);
b) 200 kV TEM withSchottkyemitter(0.6eV);
c) 200 kV TEM witha monochromatorand a HR-energyfilter(0.3eV);
d) X-rayabsorptionspectrumrecordedwithanenergyresolutionof 0.08 eV.
Physical propertymappingThe low-lossspectrumcontainsenergylossestovalence orconduction
electronswhichproviderichinformationaboutthe physical propertiesof aspecimene.g.,inter-or
intrabandtransitions,bandgapsandthe dielectricproperties. One importantapplicationof low-loss
EELS liesinthe studyof optical propertiesof metallicnanostructureswhichmaydrasticallychange at
the nanometre scale asa functionof size,morphologyandenvironment. Inparticular,collective
oscillationsof quasi free electronsonametallic/dielectricinterface,i.e.,surface plasmons,are
increasinglystudiedinthe (S)TEM,takingadvantage of itsunbeatenhighspatial resolution
(comparedtothe scanningoptical near-fieldmicroscope). Here the introductionof
monochromators,providinganenergyresolutionof 100 meV or evenless[33],wasmainly
responsible forthe bigsuccessof the technique.Since the earlyseventiesof the lastcenturyEELS
has beenusedforstudyingsurface plasmons ,butit wasonlyin 2007 whentwoindependentgroups
showedhowfastelectronscanbe usedto map localizedsurface plasmonsof single noble metal
nanoparticles[36,37]. In these pioneeringworksSTEM-EELSwasused,butlaterit wasalso shown
that a monochromatedEFTEMcan yieldcomparable results[38,39]. It is now widelyacceptedthat
EELS or EFTEM are the mostadvancedmethodstoprobe plasmonicmodesandtheyare increasingly
usedto studynanostructuresof increasingcomplexity. Forexample STEM-EELSwasusedfor
studyingdarkplasmonicbreathingmodesinsilvernanodisks[40],formorphingaplasmonic
nanodiskintoananotriangle ,forrevealinguniversaldispersionsof surface plasmonsinflat
nanostructures , for studyingthe 3D distributionof surface plasmonsaroundametal nanoparticle.
a) High-angle annulardarkfield(HAADF) image of a 30 nm thick Au-nanostar on a 15 nm thin silicon
nitride membrane (left) andcorrespondingelectronenergyloss (EEL) maps at 0.8 eV (A), 1.35 eV (B)
and 1.70 eV (C) integrated over an energy width of 150 meV. The EELS maps were generated using
the STEM-EELS approach with a monochromated 200 keV electron beam with 150 meV energy
resolution (FWHM). The sample was prepared by electron beam lithography, raw data are
presented. B) The regions 1-3 in the spectrum image (left) mark the areas from which EEL spectra
were extracted. The peaks labelled by A, B and C corresponds to the energies of the EELS maps
shown in (a).
Diffraction of electronwavesby a three-dimensional lattice
Due to fact that the electronsinan atomare much more delocalizedthanitsprotons,every(neutral)
atom producesa sharplypeakedpositiveelectrostaticpotential withthe centerof thispeakatthe
positionof the core of thisatom.Accordingto equation, electronsare deflectedbyelectrostaticand
magneticfields.Neglectinganymagneticcontributionstothe scatteringthe electronsare thus
deflectedbythe electrostaticpotentialof atoms.Since incrystalline specimenthe atomsare located
on a regularlattice inthree-dimensional space we candescribe the scatteringpropertyof the whole
crystal by only describingthe electrostaticpotentialof itsunitcell inreciprocal space.The Fourier
coefficientsof the electrostaticpotentialof the unitcell are calledstructure factorsandare givenby
where γ = 1/q1−v2/c2 isthe Lorentzfactor forthe fast electronatvelocityv,Vcell isthe unitcell
volume,fj
el(s) isthe atomicscatteringfactorforscatteringparameters= |~g|/2, ~g isa reciprocal
lattice vector,and~rj isthe positionof the jthatomwithinthe unitcell.The atomicscatteringfactor
isthe radial part of Fouriertransformof the electrostaticpotential of the atomj alone.Since the
potential of anisolatedatomis isotropicinangle andnotinfinitelysharplypeaked,thisscattering
factor fallsof withscatteringparameters.Itcan be well approximatedbythe sumof a 4 Gaussians[.
The electronstructure factorsare onlynon-zeroonpointsinreciprocal space whichlie onthe
reciprocal lattice.However,thisreciprocal lattice isconvolutedbythe shape transformof the
crystal,i.e. the Fouriertransformof itsshape inreal space.Since TEM specimenmustbe verythin
for the electronbeamtobe able to passthrough them, butmay be verywide laterally,the reciprocal
lattice pointshave some finite extentalongthe directionparallel tothe wave vectorof the incident
electronbeam,butare verysharplydefinedinthe lateral directions.Fornanocrystals,whichare also
laterallyconfined,the reciprocal lattice pointsextendalsolaterally. Elasticallyscatteredelectrons
maintaintheirmomentumandmaytherefore scatteronlytoreciprocal lattice vectorswhichlie ona
sphere (Ewaldsphere).Reflectionswhichare notintersectedbythe Ewaldsphere maystill be
excited,but,because of the nonvanishingexcitationerrorsg(reciprocal space distance betweenthe
Ewaldsphere andthe reciprocal lattice pointforthe infinitelyextendedcrystal),inmostcaseswitha
reducedintensity.Kinematical scatteringtheory,whichneglectsthe possibilitythatanelectron
scattersmore than once on its paththroughthe sample predictsthatthe intensityinthe diffraction
patternIIh,k,l ∝|U(~q)|2,i.e.thatitisproportional tothe amplitude squaredof the structure factor
U(~gh,k,l). Forelasticscatteringof the incidentelectronwavethe kineticenergyof the electronis
preserved,andwiththatalsothe absolute value of itsmomentumvector.Thismeansthatin
reciprocal space the wave vectorsof all scatteredelectronsmustlie onthe surface of a sphere of the
sphere.
Optical systemsbuiltof lenses
For settingupthe optical diffractioncamera,andfor understandingthe electrondiffraction
experimentitisimportantthatyoureview the followingprinciplesof geometrical optics:
The lensequation.
The magnificationof animage:M = himage/hobject = dimage/dobject.
The fact that inthe back focal plane a lensproducesthe Fouriertransformof the lightfieldinthe
objectplane.
Experimental setupsof an optical diffraction camera and an electronmicroscope
The transmissionelectronmicroscope (TEM)
Basedon the Lorentzforce givenbyequation ithas beendiscoveredbyBusch that magneticcoils
will focusanelectronbeam.Thishassoonafterledto the developmentof
Diagram illustratingthe Ewaldsphere constructionandthe physical meaningof the excitationerror
sg. The fast beamelectroncanonlyscatterelasticallytoreciprocal space vectorswhichlie onthe
Ewaldsphere (dashedcurve).The distancebetweenagivenpointinreciprocal space andthe Ewald
sphere inthe directionof the specimen’ssurface normal (assumedtobe inthe z-directioninthis
illustration) iscalledexcitationerrorsg.
the first transmissionelectronmicroscope(TEM) byKnoll andRuska an achievementwhichhas
beenhonouredwiththe Nobelprice in1986. ModernTEMs are equippedwithatleast4
electromagneticlenses(gunlensandcondenserlenssystemandobjective pre-fieldlens) to
collimate orfocusthe beamon the sample andat least4 lensesbelow the sample(objective lens
and a projectorlenssystem) tofocuseitheramagnifiedimage orthe magnifieddiffractionpattern
on a detectorwhichcan be a CCD camera, photographicfilm, digital imagingplates,ora
spectrometer.Inthispracticumwe will use aCCD camerafor detectingimagesanddiffraction
patterns.Figure showsthatby simplychangingthe currentrunningthroughlensesinthe projector
lenssystemthe TEMcan switchbetweenimage anddiffractionmode.Likewise,the condenserlens
systemcan be usedto continuouslyvarythe illuminationconvergence angleandwiththatthe size of
the electronprobe onthe sample,changingfromparallel toconvergentillumination,facilitating
parallel orconvergentbeamelectrondiffraction(CBED).The areaof the sample contributingtothe
diffractionpatterninparallel-beamillumination maybe selectedin2ways:a) by an aperture inthe
condenserlenssystemorb) bya selectedareaaperture inthe positionof the firstintermediate
image (indicatedbyanarrowin Figure 3b).Inthispracticum we will use selected areaelectron
diffraction(SAED),i.e.applythe secondoptionof selectingthe contributingarea.The reasonforthis
isthe experimental simplicity.Withoutchanginganylenscurrentsoralignment,orthe illumination
conditionsonthe sample we mayquicklyswitchbetweenaverylarge fieldof view forrecordingan
overviewimage andasmall fieldof view for selectingthe areafromwhichthe diffractiondatashall
stem,simplybyinsertingandpositioningasmall aperture.There are afew problemsof this
approach:a) Because of the fixedmagnificationof the objective lensthe smallestareathatcan be
selectedbyaverysmall (e.g.5 µm aperture) hastypicallyadiameternotmuchsmallerthan80 nm.
b) Due to aberrationsof the objective lenshigh-angle diffractioninformationmaystemfroma
slightlylargerareathanthe one selectedfromthe (bright-field) image.
Two differentmodesof operationof aTEM: a) High-resolutionimagingmode:Anincidentplane
wave scatterselasticallyaccordingtothe differentlattice planesandthe diffractedbeamsinterfere
witheachother.Thisinterference patternmayinsome casesbe interpretedasdirectlyrepresenting
the atomic structure.b) For parallel illuminationthe diffractionmode isa(conventional)spot
pattern.
Resolutionof modernTEMmicroscopesiswell below1nm, whichmakesthemsuitabletoolsforstudy
of nanoparticles and nanostructuresin bulk materials.Both nanoparticles and nanostructures cover
broadrange of applicationsinmaterialsscience (inorganic nanoparticles,nanolayers,defectsinmetals
andalloys),polymerscience (syntheticpolymernanocomposites,blockcopolymers,polymermicelles)
andbiology(morphologyof cellsandviruses).Thiscontributionisfocusedonanalysisof nanoparticles,
namely nanocrystals.
A standardmoderntransmissionelectronmicroscope(TEM) operatesinthreemodes:brightfield(BF),
dark field (DF), and electron diffraction (ED, SAED). In TEM/BF we detect transmitted electronsand
receive a"standard"TEMmicrograph:a directimage,inwhichthedarkareasappearduetodiffraction
and/or absorption contrast. In TEM/DF we detect (a selected portion of) scattered/diffracted
electrons and obtain a direct image with "inverted" contrast. In TEM/ED we detect
scattered/diffracted electrons in a different way and obtain electron diffraction pattern, which is
analogous to X-ray and neutron diffraction patterns.
Asan extraoption,TEMmicroscope canbe equippedwithaEDXdetectorandworkinmode of energy
dispersive analysis of X-rays (EDX, EDS). In such a case we can detect characteristic X-rays and, as a
result, perform elemental analysis in nanoscale. A TEM microscope equipped with the four basic
modes (BF, DF, ED, EDX) is usually called the analytical electron microscope.
It isa matterof course thatthere are also more advancedand/orspecial modesof TEM,such as high-
resolutiontransmissionelectronmicroscopy(HRTEM),convergentbeamelectrondiffraction(CBED),
scanningtransmissionelectronmicroscopy(STEM),energy-filteredtransmissionelectronmicroscopy
(EFTEM), cryo transmission electron microscopy (cryoTEM) - just to name a few. Nevertheless, this
contribution concentrates on the explanation of four basic modes (BF, DF, ED, EDX) and their
application on study of nanocrystal shapes, elemental composition and crystal structure.
Imaging and diffraction mode in TEM.
Single crystal diffraction in XRD and ED.
For single crystal X-ray diffraction,we needtouse four-circle diffractometersandcollectdiffractions
step-by-step,usingeitherpointdetectorsor2D-detectors,suchasCCDcameras,imageplatesof films.
In a TEM microscope, we can see the whole plane of reciprocal lattice in one image. The basic
explanation is again relatively straightforward, employing just Ewald's construction, calculation of
electron wavelength and one simple formula from Fourier theory.
CeO2 nanocubes in TEM: (a) bright field, (b) dark field
(c)electron diffraction, (d) EDX spectrum.
References
[1] H. Busch. ¨Uberdie Wirkungsweise derKonzentrierungsspule bei derBraunschenRo¨hre.Arch.
Elektrotech.(Berlin),18:583, 1927.
[2] J.M. CowleyandH. Shuman.Electrondiffractionfromastatisticallyroughsurface.Surface
Science,38:53–59, 1973.
[3] A.V.Crewe,D.N.Eggenberger,J.Wall,andL.M.Welter.Electrongunusingafieldemissionsource.
Rev.Sci.Inst.,39:576, 1968.
[4] C. DavissonandL. H. Germer.Diffractionof electronsbyacrystal of nickel.Phys.Rev.,30:705–
740, Dec 1927.
[5] C. DavissonandL. H. Germer.The scatteringof electronsbya single crystal of nickel.Nature,
119:558–560, 1927.
[6] Louisde Broglie.Recherchessurlatheorie desquanta.PhDthesis, Sorbonne,1924.
[7] D. L. Dorset.Structural ElectronCrystallography.Plenum, New York,1995.
[8] P.A. Doyle andP. S.Turner. RelativisticHartree-FockX-rayandelectronscatteringfactors.Acta
Cryst.A, 24:390–397, 1968.
[9] H. W. Fink,H. Schmid,H. J. Kreuzer,andA.Wierzbicki.Atomicresolutioninlenslesslow-energy
electronholography.Phys.Rev.Lett.,67:1543–1546, 1991.
[10] M. Haider,H. Rose,S.Uhlemann,E.Schwan,B. Kabius,andK. Urban. A sphericalaberration-
corrected200 kvtransmissionelectronmicroscope.Ultramicroscopy,75:53–60, 1998.
[11] C. Kisielowski,B.Freitag,M.Bischoff,H.van Lin,S. Lazar, G. Knippels,P.Tiemeijer,M.van der
Stam an S. vonHarrach, M. Stekelenburg,M.Haider,S.Uhlemann,H.Mu¨ller,P.Hartel,B. Kabius,D.
Miller,I.Petrov,E.A.Olson,T.Donchev,E.A.Kenik,A.R.Lupini,J.Bentley,S.J.Pennycook,I.M.
Anderson,A.M. Minor,A. K.Schmid,T. Duden,V.Radmilovic,Q.M.Ramasse,M. Watanabe,R. Erni,
E.A.Stach, P. Denes,andU. Dahmen.Detectionof singleatomsandburieddefectsinthree
dimensionsbyaberration-correctedelectronmicroscope with0.5a informationlimit.Microsc.
Microanal,14:469–477, 2008.
[12] M. Knoll andE. Ruska.Das elektronenmikroskop.Z.Phys.A,78:318–339, 1932. [13] O. L.
Krivanek,N.Dellby,andA.R. Lupini.Towardssub-˚A electronbeams.Ultramicroscopy,78:1–11,
1999.
[14] A. R. Moon and J.M. Cowley.Mediumenergyelectrondiffraction.Journal of VacuumScience
and Technology,9:649–651, 1972.
[15] E. Ruska. The developmentof the electronmicroscope andof electronmicroscopy.Reviewsof
ModernPhysics,59:627–638, 1987. [16] O. Scherzer.¨Ubereinige FehlervonElektronenlinsen.Z.
Physik,101:593–603, 1936.
[17] J. C. H. Spence,U.Weierstall,andM.Howells. Phase recoveryandlenslessimagingbyiterative
methodsinoptical,X-rayandelectrondiffraction.Phil.Trans.R.Soc.Lond.A, 360:875–895, 2002.
[18] G. P. Thompson.Experimentsonthe diffractionof cathode rays.Proceedingsof the Royal
Societyof London.SeriesA,ContainingPapersof aMathematical andPhysical Character,117:600–
609, 1928.
[19] K. Vainshtein.Structure AnalysisbyElectronDiffraction.Pergamon,New York,1964.
[20] T. E. Weirich,J.L. La´b´ar, , and X. Zou.ElectronCrystallography:Novel ApproachesforStructure
Determinationof NanosizedMaterials,volume211. Springer,Berlin,2006.

More Related Content

What's hot

Studying photnic crystals in linear and nonlinear media
Studying photnic crystals in linear and nonlinear mediaStudying photnic crystals in linear and nonlinear media
Studying photnic crystals in linear and nonlinear mediaIslam Kotb Ismail
 
Photonics Metamaterials
Photonics MetamaterialsPhotonics Metamaterials
Photonics MetamaterialsPraveen Sharma
 
Power harvesting metamaterial
Power harvesting metamaterialPower harvesting metamaterial
Power harvesting metamaterialNaga Mounika
 
Em and optics project 3 (1st) converted
Em and optics project 3 (1st) convertedEm and optics project 3 (1st) converted
Em and optics project 3 (1st) convertedDurgeshJoshi6
 
Optical and Impedance Spectroscopy Study of ZnS Nanoparticles
Optical and Impedance Spectroscopy Study of ZnS NanoparticlesOptical and Impedance Spectroscopy Study of ZnS Nanoparticles
Optical and Impedance Spectroscopy Study of ZnS NanoparticlesIJMER
 
Quick DFT tour of Electron Energy Loss Spectrum (EELS)
Quick DFT tour of Electron Energy Loss  Spectrum (EELS)Quick DFT tour of Electron Energy Loss  Spectrum (EELS)
Quick DFT tour of Electron Energy Loss Spectrum (EELS)Shruba Gangopadhyay Ph.D.
 
Lecture22 non linear fiber optics
Lecture22 non linear fiber opticsLecture22 non linear fiber optics
Lecture22 non linear fiber opticsnadia abd
 
Plasmonic assisted optical absorption enhancement in thin films, a theoretica...
Plasmonic assisted optical absorption enhancement in thin films, a theoretica...Plasmonic assisted optical absorption enhancement in thin films, a theoretica...
Plasmonic assisted optical absorption enhancement in thin films, a theoretica...Aparajita Mandal
 
Introduction to optical fiber cable
Introduction to optical fiber cableIntroduction to optical fiber cable
Introduction to optical fiber cableARCHYASOME SARKAR
 
Analysis of electromagnetic (em) radiation shielding and decay chain for nucl...
Analysis of electromagnetic (em) radiation shielding and decay chain for nucl...Analysis of electromagnetic (em) radiation shielding and decay chain for nucl...
Analysis of electromagnetic (em) radiation shielding and decay chain for nucl...Alexander Decker
 
3 d single gaas co axial nanowire solar cell for nanopillar-array photovoltai...
3 d single gaas co axial nanowire solar cell for nanopillar-array photovoltai...3 d single gaas co axial nanowire solar cell for nanopillar-array photovoltai...
3 d single gaas co axial nanowire solar cell for nanopillar-array photovoltai...ijcsa
 
Optical properties materials_studio_55
Optical properties materials_studio_55Optical properties materials_studio_55
Optical properties materials_studio_55BIOVIA
 
Comparison of 7 Epithermal Neutron Beams
Comparison of 7 Epithermal Neutron BeamsComparison of 7 Epithermal Neutron Beams
Comparison of 7 Epithermal Neutron Beamskent.riley
 
Transparent conducting oxides for thin film PV
Transparent conducting oxides for thin film PVTransparent conducting oxides for thin film PV
Transparent conducting oxides for thin film PVUniversity of Liverpool
 
The Physics of Transparent Conducting Oxides
The Physics of Transparent Conducting OxidesThe Physics of Transparent Conducting Oxides
The Physics of Transparent Conducting OxidesUniversity of Liverpool
 
Phononics and phononic crystals
Phononics and phononic crystalsPhononics and phononic crystals
Phononics and phononic crystalsvinzilla
 

What's hot (20)

quantum dots
quantum dotsquantum dots
quantum dots
 
Studying photnic crystals in linear and nonlinear media
Studying photnic crystals in linear and nonlinear mediaStudying photnic crystals in linear and nonlinear media
Studying photnic crystals in linear and nonlinear media
 
Photonics Metamaterials
Photonics MetamaterialsPhotonics Metamaterials
Photonics Metamaterials
 
Power harvesting metamaterial
Power harvesting metamaterialPower harvesting metamaterial
Power harvesting metamaterial
 
Em and optics project 3 (1st) converted
Em and optics project 3 (1st) convertedEm and optics project 3 (1st) converted
Em and optics project 3 (1st) converted
 
Photovoltaic cell
Photovoltaic cellPhotovoltaic cell
Photovoltaic cell
 
Optical and Impedance Spectroscopy Study of ZnS Nanoparticles
Optical and Impedance Spectroscopy Study of ZnS NanoparticlesOptical and Impedance Spectroscopy Study of ZnS Nanoparticles
Optical and Impedance Spectroscopy Study of ZnS Nanoparticles
 
OPTICAL FIBER COMMUNICATION PPT
OPTICAL FIBER COMMUNICATION PPTOPTICAL FIBER COMMUNICATION PPT
OPTICAL FIBER COMMUNICATION PPT
 
Nanoantenna
Nanoantenna Nanoantenna
Nanoantenna
 
Quick DFT tour of Electron Energy Loss Spectrum (EELS)
Quick DFT tour of Electron Energy Loss  Spectrum (EELS)Quick DFT tour of Electron Energy Loss  Spectrum (EELS)
Quick DFT tour of Electron Energy Loss Spectrum (EELS)
 
Lecture22 non linear fiber optics
Lecture22 non linear fiber opticsLecture22 non linear fiber optics
Lecture22 non linear fiber optics
 
Plasmonic assisted optical absorption enhancement in thin films, a theoretica...
Plasmonic assisted optical absorption enhancement in thin films, a theoretica...Plasmonic assisted optical absorption enhancement in thin films, a theoretica...
Plasmonic assisted optical absorption enhancement in thin films, a theoretica...
 
Introduction to optical fiber cable
Introduction to optical fiber cableIntroduction to optical fiber cable
Introduction to optical fiber cable
 
Analysis of electromagnetic (em) radiation shielding and decay chain for nucl...
Analysis of electromagnetic (em) radiation shielding and decay chain for nucl...Analysis of electromagnetic (em) radiation shielding and decay chain for nucl...
Analysis of electromagnetic (em) radiation shielding and decay chain for nucl...
 
3 d single gaas co axial nanowire solar cell for nanopillar-array photovoltai...
3 d single gaas co axial nanowire solar cell for nanopillar-array photovoltai...3 d single gaas co axial nanowire solar cell for nanopillar-array photovoltai...
3 d single gaas co axial nanowire solar cell for nanopillar-array photovoltai...
 
Optical properties materials_studio_55
Optical properties materials_studio_55Optical properties materials_studio_55
Optical properties materials_studio_55
 
Comparison of 7 Epithermal Neutron Beams
Comparison of 7 Epithermal Neutron BeamsComparison of 7 Epithermal Neutron Beams
Comparison of 7 Epithermal Neutron Beams
 
Transparent conducting oxides for thin film PV
Transparent conducting oxides for thin film PVTransparent conducting oxides for thin film PV
Transparent conducting oxides for thin film PV
 
The Physics of Transparent Conducting Oxides
The Physics of Transparent Conducting OxidesThe Physics of Transparent Conducting Oxides
The Physics of Transparent Conducting Oxides
 
Phononics and phononic crystals
Phononics and phononic crystalsPhononics and phononic crystals
Phononics and phononic crystals
 

Similar to Analysis of diffraction patterns generated through TEM

Advanced Characterization Technique - SEM
Advanced Characterization Technique - SEMAdvanced Characterization Technique - SEM
Advanced Characterization Technique - SEMIlyas Hussain
 
Microprobing with electrons
Microprobing with electronsMicroprobing with electrons
Microprobing with electronsJonathan Price
 
Materials Characterization
Materials CharacterizationMaterials Characterization
Materials CharacterizationVikas Barnwal
 
EDAX -Energy Dispersive X-ray analysis
EDAX   -Energy Dispersive X-ray analysisEDAX   -Energy Dispersive X-ray analysis
EDAX -Energy Dispersive X-ray analysisMahalakshmiSahasrana
 
Electron Beam Lithography review paper - EE541 Dublin City University
Electron Beam Lithography review paper - EE541 Dublin City UniversityElectron Beam Lithography review paper - EE541 Dublin City University
Electron Beam Lithography review paper - EE541 Dublin City UniversityRay Tyndall
 
Scanning Electron microscopy
Scanning Electron microscopy Scanning Electron microscopy
Scanning Electron microscopy sagar sen sen
 
Transmission Electron Microscope
Transmission Electron MicroscopeTransmission Electron Microscope
Transmission Electron MicroscopeManoranjan Ghosh
 
Characterization of materials lec2
Characterization of materials  lec2Characterization of materials  lec2
Characterization of materials lec2Noor Faraz
 
Spectroscopic Techniques
Spectroscopic TechniquesSpectroscopic Techniques
Spectroscopic TechniquesPalakAgrawal97
 
Performance analysis of a monopole antenna with fluorescent tubes at 4.9 g hz...
Performance analysis of a monopole antenna with fluorescent tubes at 4.9 g hz...Performance analysis of a monopole antenna with fluorescent tubes at 4.9 g hz...
Performance analysis of a monopole antenna with fluorescent tubes at 4.9 g hz...Alexander Decker
 
Electron spin resonance spectroscopy
Electron spin resonance spectroscopy Electron spin resonance spectroscopy
Electron spin resonance spectroscopy sunp994
 
Electron Diffraction Using Transmission Electron Microscopy
Electron Diffraction Using Transmission Electron MicroscopyElectron Diffraction Using Transmission Electron Microscopy
Electron Diffraction Using Transmission Electron MicroscopyLe Scienze Web News
 
Electron spin resonance(ESR) spectroscopy
Electron spin resonance(ESR) spectroscopyElectron spin resonance(ESR) spectroscopy
Electron spin resonance(ESR) spectroscopyPreeti Choudhary
 

Similar to Analysis of diffraction patterns generated through TEM (20)

Advanced Characterization Technique - SEM
Advanced Characterization Technique - SEMAdvanced Characterization Technique - SEM
Advanced Characterization Technique - SEM
 
Microprobing with electrons
Microprobing with electronsMicroprobing with electrons
Microprobing with electrons
 
Sem Poster
Sem PosterSem Poster
Sem Poster
 
Materials Characterization
Materials CharacterizationMaterials Characterization
Materials Characterization
 
GenerationofXRays.ppt
GenerationofXRays.pptGenerationofXRays.ppt
GenerationofXRays.ppt
 
EDAX -Energy Dispersive X-ray analysis
EDAX   -Energy Dispersive X-ray analysisEDAX   -Energy Dispersive X-ray analysis
EDAX -Energy Dispersive X-ray analysis
 
Electron Beam Lithography review paper - EE541 Dublin City University
Electron Beam Lithography review paper - EE541 Dublin City UniversityElectron Beam Lithography review paper - EE541 Dublin City University
Electron Beam Lithography review paper - EE541 Dublin City University
 
Optical Sensors
Optical SensorsOptical Sensors
Optical Sensors
 
Electron microscopy 2
Electron microscopy 2Electron microscopy 2
Electron microscopy 2
 
SEM BRIEF.docx
SEM BRIEF.docxSEM BRIEF.docx
SEM BRIEF.docx
 
Scanning Electron microscopy
Scanning Electron microscopy Scanning Electron microscopy
Scanning Electron microscopy
 
Transmission Electron Microscope
Transmission Electron MicroscopeTransmission Electron Microscope
Transmission Electron Microscope
 
Characterization of materials lec2
Characterization of materials  lec2Characterization of materials  lec2
Characterization of materials lec2
 
Spectroscopic Techniques
Spectroscopic TechniquesSpectroscopic Techniques
Spectroscopic Techniques
 
Performance analysis of a monopole antenna with fluorescent tubes at 4.9 g hz...
Performance analysis of a monopole antenna with fluorescent tubes at 4.9 g hz...Performance analysis of a monopole antenna with fluorescent tubes at 4.9 g hz...
Performance analysis of a monopole antenna with fluorescent tubes at 4.9 g hz...
 
Electron spin resonance spectroscopy
Electron spin resonance spectroscopy Electron spin resonance spectroscopy
Electron spin resonance spectroscopy
 
X-RayTechnology.ppt
X-RayTechnology.pptX-RayTechnology.ppt
X-RayTechnology.ppt
 
Electron Diffraction Using Transmission Electron Microscopy
Electron Diffraction Using Transmission Electron MicroscopyElectron Diffraction Using Transmission Electron Microscopy
Electron Diffraction Using Transmission Electron Microscopy
 
ESR Spectrophotometry
ESR SpectrophotometryESR Spectrophotometry
ESR Spectrophotometry
 
Electron spin resonance(ESR) spectroscopy
Electron spin resonance(ESR) spectroscopyElectron spin resonance(ESR) spectroscopy
Electron spin resonance(ESR) spectroscopy
 

More from Mainak Saha(मैनक साहा)

Influence of intrinsic solidification behavior on solidification of AISI3XX
Influence of intrinsic solidification behavior on solidification of AISI3XXInfluence of intrinsic solidification behavior on solidification of AISI3XX
Influence of intrinsic solidification behavior on solidification of AISI3XXMainak Saha(मैनक साहा)
 
Fabrication and corrosion resistance of Mg Zn-Y-based nano-quasicrystals allo...
Fabrication and corrosion resistance of Mg Zn-Y-based nano-quasicrystals allo...Fabrication and corrosion resistance of Mg Zn-Y-based nano-quasicrystals allo...
Fabrication and corrosion resistance of Mg Zn-Y-based nano-quasicrystals allo...Mainak Saha(मैनक साहा)
 
Analysis of structural differences of Ag nanoparticles generated using Therma...
Analysis of structural differences of Ag nanoparticles generated using Therma...Analysis of structural differences of Ag nanoparticles generated using Therma...
Analysis of structural differences of Ag nanoparticles generated using Therma...Mainak Saha(मैनक साहा)
 
A brief study of energy efficiency in alternative routes of extration of Al ...
A brief study of energy efficiency in alternative  routes of extration of Al ...A brief study of energy efficiency in alternative  routes of extration of Al ...
A brief study of energy efficiency in alternative routes of extration of Al ...Mainak Saha(मैनक साहा)
 

More from Mainak Saha(मैनक साहा) (11)

Thermal Barrier Coatings(TBCs)
Thermal Barrier Coatings(TBCs)Thermal Barrier Coatings(TBCs)
Thermal Barrier Coatings(TBCs)
 
Ferrous and non-ferrous extractive metallurgy
Ferrous and non-ferrous extractive metallurgyFerrous and non-ferrous extractive metallurgy
Ferrous and non-ferrous extractive metallurgy
 
Hismelt (ironmaking) process
Hismelt (ironmaking) processHismelt (ironmaking) process
Hismelt (ironmaking) process
 
Innovations for energy utilisation in iron&steel plants
Innovations for energy utilisation in iron&steel plantsInnovations for energy utilisation in iron&steel plants
Innovations for energy utilisation in iron&steel plants
 
Influence of intrinsic solidification behavior on solidification of AISI3XX
Influence of intrinsic solidification behavior on solidification of AISI3XXInfluence of intrinsic solidification behavior on solidification of AISI3XX
Influence of intrinsic solidification behavior on solidification of AISI3XX
 
Study of nimonic 75 alloy
Study of nimonic 75 alloyStudy of nimonic 75 alloy
Study of nimonic 75 alloy
 
Observation of Ru-rich Heusler phase in UM-F13 Ni-based superalloy
Observation of Ru-rich Heusler phase in UM-F13 Ni-based superalloyObservation of Ru-rich Heusler phase in UM-F13 Ni-based superalloy
Observation of Ru-rich Heusler phase in UM-F13 Ni-based superalloy
 
Fabrication and corrosion resistance of Mg Zn-Y-based nano-quasicrystals allo...
Fabrication and corrosion resistance of Mg Zn-Y-based nano-quasicrystals allo...Fabrication and corrosion resistance of Mg Zn-Y-based nano-quasicrystals allo...
Fabrication and corrosion resistance of Mg Zn-Y-based nano-quasicrystals allo...
 
Reduction in charge requirements of HIsmelt process
Reduction in charge requirements of HIsmelt processReduction in charge requirements of HIsmelt process
Reduction in charge requirements of HIsmelt process
 
Analysis of structural differences of Ag nanoparticles generated using Therma...
Analysis of structural differences of Ag nanoparticles generated using Therma...Analysis of structural differences of Ag nanoparticles generated using Therma...
Analysis of structural differences of Ag nanoparticles generated using Therma...
 
A brief study of energy efficiency in alternative routes of extration of Al ...
A brief study of energy efficiency in alternative  routes of extration of Al ...A brief study of energy efficiency in alternative  routes of extration of Al ...
A brief study of energy efficiency in alternative routes of extration of Al ...
 

Recently uploaded

Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝soniya singh
 
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...ranjana rawat
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxAsutosh Ranjan
 
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...RajaP95
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVRajaP95
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130Suhani Kapoor
 
(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...
(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...
(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...ranjana rawat
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escortsranjana rawat
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Dr.Costas Sachpazis
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Dr.Costas Sachpazis
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escortsranjana rawat
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Christo Ananth
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Call Girls in Nagpur High Profile
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxupamatechverse
 

Recently uploaded (20)

Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
 
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
 
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptx
 
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
 
(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...
(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...
(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
 
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINEDJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptx
 

Analysis of diffraction patterns generated through TEM

  • 1. Analysis of diffraction patterns generated through TEM through concept of reciprocal space with an insight into EELS Report by Mainak Saha Roll No: 14/MM/65 Submitted to Prof. Durbadal Mandal Department of Metallurgical and Materials Engineering National Institute of Technology(NIT) Durgapur Durgapur-713209,West Bengal 14 February,2018
  • 2. Abstract Transmissionelectronmicroscope (TEM) canoperate infourmainmodes:brightfield(BF),darkfield (DF),electrondiffraction(ED) andenergy-dispersive analysisof X-rays(EDX).A TEMworkinginall modes(BF,DF,ED and EDX) is usuallycalledthe analytical electronmicroscope.Itisa powerful tool for studyof nanocrystals,whichare invisible inlightmicroscopesanddonot diffractX-rays sufficiently.TEM/BFincombinationwithimage analysisyieldsaquantitative descriptionof nanocrystal shapes.TEM/EDXgiveselemental compositionof nanoparticles.TEM/EDincombination withcrystallographicdatabasesidentifiesknowncrystal structures. TEM/DFmaydifferentiate monocrystalsfromtwins. Introduction Diffraction, crystals, electronwaves,and the transmissionelectronmicroscope -Diffraction oflight by an optical grating If monochromaticandspatiallycoherent(laser) lighttransmitsa transparentdiffractiongratingwith perpendiculardiffractionslitsbeingseparatedbythe distance dalongthe horizontal x-axisa diffractionpatternwithdiscrete diffractionordersisformed.Constructive interference of light emittedbyeachof the slits inthe diffractiongratingshowninFig.1 leadstohorizontallyseparated diffractionspotsatanglesθm forwhichholds sin(θm)d=mλ Experimentalsetupof diffractionof laserlightbyanoptical gratingand itsprojectionontoa detector by an optical setupconsistingof anobjectivelens,andobjectiveaperture,anda projectorlens. Differentdiffractionorders(butnotdifferentwavelengths!)are indicatedbycolor. For the more complex discussionof electrondiffractionfromathree-dimensional lattice itisuseful to describe thisphenomenoninmomentumspace.The momentumvectorof the incidentradiation isthengivenby ~ k0 = (kx,ky,kz)=(0,0,2π/λ) the diffractedradiationbehindthe diffractiongratingisnow splitupintopartial waveswith momenta ~ kl = (2π sinθm/λ,0,2πcosθm/λ)=(2πm/d,0,2πcosθm/λ)
  • 3. The discrete kx-componentsof the scatteredwave vectorsmayare obviouslyindependentof the wavelengthandonlyafunctionof the scatteringobject.Theyare thuscalledreciprocal lattice points alongthe horizontal momentumaxisatdistances gm =2πm/d away fromthe momentumvectorof the unscatteredpartial wave whichisequal tothatof the incidentlight~k0.A three-dimensional latticemayhave separate periodicitiesalongthree different noncolineardirections~a,~ b,and ~c. The reciprocal lattice vectorsare thenindexednotbyasingle index m,butby the three (Miller) indicesh,k,andl.The correspondinglatticevectoristhusgivenby ~g(h,k,l) =(h~a∗,k~ b∗,l~c∗) If we nowplace a recordingscreenat some cameralengthL awayfrom the diffractiongratingwe expectthe spotsonthe screentoappearat distances The factor Lλ isalsocalledthe calibrationfactor. Electronwaves Louisde Broglie inhis1924 doctoral thesisproposedthe wave nature of mass-carryingparticles, givingthemthe wavelength (hbeingPlanck’sconstant,m0the electronrest mass,andEkin = |eV0|the kineticenergyof the electron,withe beingitscharge andV0 the acceleratingvoltage) isveryshort,almost2ordersof magnitude shorterthantypical X-raywavelengths.Forelectronbeamenergiesachievableina standardTEM, i.e.E ≥ 20 kV,the wavelengthcanbe approximatedbythe followingexpression:
  • 4. For example,inastandardmediumvoltage TEM(U = 200 kV) the electronwavelengthisλ= 0.0251 ˚ A. Only3 yearsafterthe revolutionarydiscoveryof the wave nature of electrons,electron diffraction,aphenomenonbasedonthe wave nature of these small particles,wasable toprovide diffractionpatternsof crystallinematerialsverysimilartothose obtainedbyX-rays.Today,electron diffractionhasdevelopedintoavery powerful tool in structural crystallographyandmaterials science andhas againsplitintoseveral subdisciplines.Inlightof the large bodyof literature available on electronscatteringanddiffractionitseemsimportanttoemphasizethatwithinthischapterthe term’diffraction’istreatedsynonymouslywith’elasticscattering’,i.e.aprocesswhichpreservesthe energyof the incidentelectron.If the acceleratingvoltage of the electronisinthe range of 20 - 200 V (sometimesupto600 V) one speaksof low-energyelectrondiffraction(LEED).Electronsof this energyhave a wavelengthof about1 ˚A(2.7 ˚A at 20 V and 0.5 ˚A at 600 V),i.e.comparable tothe distance betweenatoms,andcanonlypenetrate the firstatomiclayers,or 5-10 ˚ A of the sample. LEED istherefore exclusivelyusedtostudythe atomicstructure of surfaces,mainlyunderultra-high vacuumconditions.Athigherbeamenergies,asinmediumenergyelectrondiffraction(MEED, acceleratingvoltage between1kV and 5 kV or reflectionhighenergyelectrondiffraction(RHEED, electronenergyrange between40keV and100 keV) the scatteringanglesbecometoosmall towork witha normallyincidentelectronbeam,butinstead,amore (RHEED) or less(MEED) grazing incidence setuphastobe chosen.Thisdeviationof the angle of incidence fromthe surface normal makesRHEED muchmore sensitive tosurface roughnessthanLEED,withMEED beingaboutin betweenbothworlds.Atsufficientlyhighenergy(above 20keV) electronsare fastenoughto penetrate severalnanometersof material withouttoomuchabsorptionorcharging.Although transmissionthroughverythinsamplesandevenatomicresolutionimagingisalsopossible atlower energy,transmissionelectrondiffractionintransmissionelectronmicroscopes (TEMs) ismost commonlydone atacceleratingvoltagesabove 20kV and insome casesup to 1 or even3 MV. Because of the versatilityof TEMs andtheiravailabilityinalarge numberof laboratoriesaroundthe globe thischapterwill focusontransmission highenergyelectrondiffraction(HEED) only.Electron Diffractionpatternsof crystalline materialscontainawealthof informationandhave helpedto reconstructthe atomic positionsof complex crystal structures,largelybyapplyingthe verysame techniquesdevelopedinX-raycrystallography.However,beinglimitedinspace,the final sectionof thischapterwill onlybe able toprovide anoverview of aselectionof electrondiffractiontechniques whichshowcase the unique capabilitiesof electrondiffraction comparedtoother(e.g.X-rayor neutron) diffractiontechniques.The electriccharge of the electronsnotonlyallowsthemtobe acceleratedbyelectrostaticfields,butalsodeflectedandfocusedbyboth,magneticaswell as electricfieldsaccordingtothe Lorentzforce. While roundmagneticlenseshave aninherentpositive spherical aberration,multipoleelements may be usedto compensate thisspherical (andalsohigherorder) aberrations,producingelectron
  • 5. probesas small as0.5 ˚A indiameter.In additiontothe correctionof lensaberrationsinthe probe- forminglenssystemthe formationof suchsmall probesalsorequiresahighspatial coherence.A critical parameterdescribingthe amountof currentavailableata certaindegree of spatial coherence isthe brightnessβ, whichisthe amountof currentemittedintoacertainsolidangle Ω froman area A. For rotationallysymmetricsystemsone canalsowrite where α isthe angularradiusof the cone of emittedelectrons,andrthe radiusof the source. Because of the increasedmomentumof electronsathigheracceleratingvoltages,the effectivecone radiusα isproportional tothe electronwavelength,andisthusinverse proportional tothe square root of the electron’skineticenergy.Forthisreasonthe reducedbrightness,isoftenusedinstead. The electronmicroscope usedforthispracticumhasa fieldemissiongun(FEG).A FEG, todaythe standardelectronsource inhigh-performance TEMs,providesasource of nanometerdimensions and sub-eV energyspread,withabrightnessperunitbandwidthgreaterthancurrent-generation synchrotrons.When alsotakingintoaccountthe muchstrongerinteractionof electronswith matter,the amountof coherentlyscatteredsignal thatcanpotentiallybe collected fromacertain volume of material exceedseventhatof free-electronlasers.FEGshave a much higherbrightness than thermionicelectronguns,suchasa LaB6 source is used. The needto understandatomicprocessesinsolidshasledtoan increasingdemand fornew imaging, diffractionandspectroscopymethodswithhighspatial resolution. Thisneedhasbeenreinforcedby the growinginterestinnanoscience andnanotechnology. Particularly,transmissionelectron microscopy(TEM) isof unrivalledvalue,becauseitcanprovide structural informationwithexcellent spatial resolution(downtoatomicdimensions) viahighresolutionTEMimagingandelectron diffraction. These structural datacanbe supplementedbychemical informationfromthe same specimenregion,obtainedusinganalytical techniques,suchasenergy-dispersiveX-rayspectroscopy (EDS) and electronenergy-lossspectroscopy(EELS).Due tothe broad range of inelasticinteractions of the highenergyelectronswiththe specimenatoms,rangingfromphononinteractionsto ionisationprocesses,electronenergy-lossspectroscopyoffersunique possibilitiesforadvanced materialsanalysis. Itcan be usedto map the elementalcompositionof aspecimen,butalsofor studyingthe physical andchemical propertiesof awide range of materialsandbiologicalmatter. Beginningwiththe increasinguse of EEL spectrometersduringthe eightiesof the lastcentury[1], the energy-filteringtechnique wasamajorstepforwardfor two-dimensionalmappingof the spectral featuresvisibleinanEEL spectrum. The wide distributionof energy-filteringTEMs (EFTEM) ledto numerouspractical applicationsbothinthe materialsandbiological sciences[4]. Inthe meanwhile,EFTEMisa widelyusedmethodforbothoverview and nanoscale characterisationof thinsamples,applicable tomostchemical elementsandespeciallysensitive tolightelements.With the introductionof highbrightnesselectronsourcesandspherical aberrationcorrectors,the image resolutionof the TEMreachesnowthe 50 picometre level. Especiallyscanningtransmission electronmicroscopy(STEM) equippedwithaCs-probe correctorisextremelyusefulforhigh
  • 6. resolutionimaging[6] andthe parallel chemical analysisbyEELSand EDS because of the much increasedprobe currentinthe correctedbeam. Electron energylossSpectroscopy A beamelectronina (S)TEMmay be inelasticallyscatteredwhenitinteractswiththe atomic electronsinthe specimen. The electronbeamlosesenergyandisbentthroughasmall angle (5 - 100 milliradians). The energydistributionof all the inelasticallyscatteredelectronsprovides informationaboutthe local environmentof the atomicelectronswhichinturnrelatestothe physical andchemical propertiesof the specimen. Thisisthe basisof electronenergy-loss spectroscopy(EELS). Much of the informationobtainablefromEELSis similartothatof X-ray absorptionspectrometry(XAS) inthe synchrotron. The firstpeak,the most intense foraverythinspecimen,occursat0 eV and istherefore calledthe zero-losspeak. Itrepresentselectronswhichhave notbeenscatteredinthe specimen(transmitted electrons) andwhichhave beenelasticallyscatteredviainteractionwiththe atomicnuclei. The low-lossorvalence region of anEEL spectrum(< 50 eV) providessimilarinformationtothat providedbyoptical spectroscopy,containingvaluable informationaboutthe bandstructure andin particularaboutthe dielectricpropertiesof amaterial (e.g.,bandgap,surface plasmons). The most prominentpeak,centredat24 eV,comesfroma plasmaresonance of the valence atoms. Signal intensitiesinthe low-lossregionare largerthaninthe high-lossregionof the spectrum.Athigher energylosses(>50 eV),where the numberof inelasticallyscatteredelectronsismuchlower,the spectrumshowscharacteristicfeaturescalled“ionisationedges”(due totheirtypical shape,arapid rise followedbyamore gradual fall). These edgesare the exactequivalentof anabsorptionedge in XASand arise fromthe same process. The edgesare formedwhenaninner-shellelectronabsorbs enoughenergyfromabeamelectrontobe excitedtoa state above the Fermi level. Notall ionisationedgesare saw-toothedlikethe carbonK-edge infigure1,but exhibitmore complex edgeshapessuchasthe L2,3-edge of titaniuminfigure 1. This L2,3-edge includessharpexcitations at the onsetof the ionisationedge,calledwhite-lines,whichare typical forelementsinthe firstrow of transitionelementsand forthe rare earthelements. The ionisationedgescanbe usedfor the analysisof almostall chemical elementsinparticularforthe lighterelements,the edge onsetgives the ionisationenergyandallowsthe qualitativeanalysisandincase of verythin samplesthe edge intensitiesare proportional tothe concentrationof the correspondingelements. RecentadvancesinEELS methodologyTEM-EELSinstrumentationisbasedona magneticprism, in whicha uniformmagneticfieldisgeneratedbyanelectromagnet withspeciallydesignedpole pieces. The prismbendsthe inelasticallyscatteredelectronsbyabout90o, dispersesthemaccording to theirdifferentkineticenergiesandalsohasa focussingaction. The spectraare recordedwitha charge coupleddevice(CCDcamera). Due tothe enormousdynamicrange of anEEL spectrum, spanningmanyordersof magnitude,anddue torestrictionsindynamicrange andsensitivityof CCD basedspectrometers,acomplete EELspectrumnormallyhastobe recordedinseveral segmentsby changingilluminationconditionsand/oracquisitiontimes.Energyfiltersare usedtoformimages fromelectronsthathave sufferedaspecificenergyloss[energyfilteredTEM(EFTEM) or electron specificimaging(ESI)]. Inparticular,twotypesof energy-filteringinstrumentsare mostoftenused:
  • 7. firstlypost-columnenergyfilters,withasingle prismgeometryandmultipole lenses,canbe attachedand retrofittedtopracticallyanyTEMor STEM instrument. The post-columnfilterisnot onlyan efficientimagingsystem, butalsoaversatile instrumentforacquiringEELspectra inhigh quality. Secondlythe in-columnfilter,whosespectrometerconsistsof fourmagneticprismsthatare arrangedsymmetricallyaccordingtothe shape of a GreekOmega,islocatedbelow the projector lenssystemof the TEM. Thistype of filtercan be alsousedfor spectroscopy,butthe main applicationfieldishighqualityimagingsuchaslarge areaelemental mappingandenergy-filtered electrondiffractionstudies.Anotherimportantdevelopmentwasthe introductionof monochromatorsforthe electronsource,whichpavedthe wayforacquiringEEL spectraat high energyresolution,typicallyinthe 100 - 200 meV range (e.g.,the Wienfilterapproach). The improvedenergyresolutionopensnewpossibilitiesforstudyingdetailedelectronicstructure and bondingeffectsevaluatedfromnearedge fine structuresof the ionisationedges,butalsoaccurate bandgap and dielectricfunctionmeasurementsviathe low-losspartof the spectrum.Several years ago, the problemof the highdynamicrange of the EEL spectrumcouldbe addressedbyacquiring the elasticandinelasticpartsat nearlycoincidenttimesatidentical experimental conditions, offeringthe advantage of usingthe low-lossregime asareference forquantitative dataanalysis. Thissystemworkswithan additional electrostaticvertical deflectorandisnow successfullyusedby several groupsworldwide.AdvancesinX-raydetectionwiththe adventof large areaor four- quadrantsolidstate silicondriftdetectors andthe rapidprogressinEDS data processing,pushed the ideasforhighlyefficientelemental mappingincombinationwithEELS. The collaboration betweenGatan,Brukerandthe TU Graz enabledthe fastrecording of multimodal datasothat STEM-images,low-lossandhigh-lossEELSandEDS data can now be acquiredwitha speedof 1,000 to 1,500 spectrapersecond.While the conventional methodof EELSmappingcombinesTEM/STEM imageswiththe local concentrationof the elements,the developmentof more powerfulcomputers and data reductionproceduresnowadaysallowsa“holistic”approach:the whole spectral informationisgatheredforeachpointof animage,generatingathree-dimensional datasetwhichis oftencalledaspectrumimage. The spectrum-imagingtechniqueoffersvariousadvantages:the wealthof data allowsacertainamountof “postexperimentmicroscopy”andbecause of the completenessof data,interpretationmistakescanbe avoided. Additionally,adata-evaluation software canautomaticallyidentifyandhighlightthe mostprominentfeatures,e.g.,chemical phases. Therefore,spectrum-imagingtechniquesare the essential basisforsuccessful EELSmapping at the atomicscale. Elemental mappingathighspatial resolutionOne of the mostcommonlyusedapplicationsof STEM- EELS or EFTEM isto derive compositional informationbyrecordingenergy-filteredimagesusingthe elementcharacteristicionisationedges. Althoughadvancedenergy-filtersorspectrometersnow enablethe fastacquisitionof elemental maps almostona routine basis,care must be takendue to several experimental limitationsof EELS: generally,the signal-to-noise ratioof the elementalsignal isverylow whichismainlycausedbythe highuncharacteristicbackgroundbelow the ionisationedgesandthe low ionisationcross-sections for heavierelementsandforelementsoccurringatlow concentrations.Anotherimportantlimitation comesfrommultiple scatteringof the inelasticsignal inthickerspecimens,restrictingelemental mappingtospecimenthicknesseswellbelow the meanfree pathlengthsof the inelastically scatteredelectrons(specimenthickness<70 nmfor mostmaterials).
  • 8. Alternatively,EELSspectrafrom thickerspecimensmaybe deconvolvedbyusingthe low-losspartof the EELS spectrum,recoveringasingle scatteringdistributionEELSspectrum. Typical procedures involve Richardson-LucyorFourierlogmethods,whichhoweverdecreasethe signal-to-noise ratio of the spectrum. Whencrystalline specimensare studied,afrequentproblemisthe preservationof diffractioncontrastininelasticimaging,whichcanbe reducedbyemployingadvancedillumination conditions(hollow-coneorrocking-beamillumination). ImagesshowingMgO/Ni core shell nanoparticlesinvestigatedwithaCS-correctedSTEMandEELS spectrumimagingrevealingthe Ni core andthe MgO shell,the insetshowsthe Z-contrastimage of the Ni core. Chemical bondinginformation Edge fine structuresarouse considerableinterestinthe applicationof EELS,especiallyinthe fieldof materialsscience,because theycanbe usedtoextractinformationregardinglocal charge distributions,coordinationnumbersandbondingcharacteristics. The fine structuresare dividedinto the near edge-fine structures(ELNES) within50eV of the edge onsetandthe extendedfinestructure (EXELFS) aboutsome 100 eV above the edge onset. Mostof the ionisationedgescontainamore complex structure thancan be explainedinsimple atomicterms. The ionisationedgesare often modifiedbythe solidstate environmentof the atomundergoingthe inner-shellexcitationandthis informationcanbe usedas a “fingerprint”fromelementsinsimilarchemical environments[26,27]. In the meanwhilethe calculationof ELNESstructureshas reacheda highdegree of sophistication [28]. One importantdevelopmentforELNESstudieswasthe introductionof the monochromated (S)TEMs whichhelpedtoimprove the instrumental energyresolutiontovaluesaslow as100 meV. In combinationwithadvancedenergy-filtersand/orspectrometersitwasnow possible tofully exploitinformational the spectral detailscontainedinthe EEL spectrum. It wasnot at all obvious, however, atthe time of the developmentduringthe late ninetiesthatthese toolswouldgainsuch importance. The reducedenergyspreadof the TEMimmediatelyopenedpossibilitiesfordetailed studiesof the near-edge fine structuresatK- andL2,3-ionisationedgesof oxides,perovskitesand
  • 9. similarmaterials[29]. The knowledgeaboutthese ELNESstructuresathighenergyresolutionisan importantbasisforSTEM-EELS imagingof chemical bondinginmaterials. Figure 4showsthe ELNES structure of the V L2,3 white linesof V2O5recordedat differentenergyresolutions. The L3 white line revealsthe symmetryof the vanadiumsite beingsurroundedbysix oxygenatomsforminga stronglydistortedoctahedronunit. Comparisonof the V L2,3- and O-ionisationedgesof V2O5whichhave beenrecordedwithdifferent energyresolution; a) 200 kV TEM withLaB6 cathode (0.7 eV); b) 200 kV TEM withSchottkyemitter(0.6eV); c) 200 kV TEM witha monochromatorand a HR-energyfilter(0.3eV); d) X-rayabsorptionspectrumrecordedwithanenergyresolutionof 0.08 eV. Physical propertymappingThe low-lossspectrumcontainsenergylossestovalence orconduction electronswhichproviderichinformationaboutthe physical propertiesof aspecimene.g.,inter-or intrabandtransitions,bandgapsandthe dielectricproperties. One importantapplicationof low-loss EELS liesinthe studyof optical propertiesof metallicnanostructureswhichmaydrasticallychange at the nanometre scale asa functionof size,morphologyandenvironment. Inparticular,collective oscillationsof quasi free electronsonametallic/dielectricinterface,i.e.,surface plasmons,are increasinglystudiedinthe (S)TEM,takingadvantage of itsunbeatenhighspatial resolution (comparedtothe scanningoptical near-fieldmicroscope). Here the introductionof monochromators,providinganenergyresolutionof 100 meV or evenless[33],wasmainly responsible forthe bigsuccessof the technique.Since the earlyseventiesof the lastcenturyEELS has beenusedforstudyingsurface plasmons ,butit wasonlyin 2007 whentwoindependentgroups showedhowfastelectronscanbe usedto map localizedsurface plasmonsof single noble metal nanoparticles[36,37]. In these pioneeringworksSTEM-EELSwasused,butlaterit wasalso shown
  • 10. that a monochromatedEFTEMcan yieldcomparable results[38,39]. It is now widelyacceptedthat EELS or EFTEM are the mostadvancedmethodstoprobe plasmonicmodesandtheyare increasingly usedto studynanostructuresof increasingcomplexity. Forexample STEM-EELSwasusedfor studyingdarkplasmonicbreathingmodesinsilvernanodisks[40],formorphingaplasmonic nanodiskintoananotriangle ,forrevealinguniversaldispersionsof surface plasmonsinflat nanostructures , for studyingthe 3D distributionof surface plasmonsaroundametal nanoparticle. a) High-angle annulardarkfield(HAADF) image of a 30 nm thick Au-nanostar on a 15 nm thin silicon nitride membrane (left) andcorrespondingelectronenergyloss (EEL) maps at 0.8 eV (A), 1.35 eV (B) and 1.70 eV (C) integrated over an energy width of 150 meV. The EELS maps were generated using the STEM-EELS approach with a monochromated 200 keV electron beam with 150 meV energy resolution (FWHM). The sample was prepared by electron beam lithography, raw data are presented. B) The regions 1-3 in the spectrum image (left) mark the areas from which EEL spectra were extracted. The peaks labelled by A, B and C corresponds to the energies of the EELS maps shown in (a). Diffraction of electronwavesby a three-dimensional lattice Due to fact that the electronsinan atomare much more delocalizedthanitsprotons,every(neutral) atom producesa sharplypeakedpositiveelectrostaticpotential withthe centerof thispeakatthe positionof the core of thisatom.Accordingto equation, electronsare deflectedbyelectrostaticand magneticfields.Neglectinganymagneticcontributionstothe scatteringthe electronsare thus deflectedbythe electrostaticpotentialof atoms.Since incrystalline specimenthe atomsare located on a regularlattice inthree-dimensional space we candescribe the scatteringpropertyof the whole crystal by only describingthe electrostaticpotentialof itsunitcell inreciprocal space.The Fourier coefficientsof the electrostaticpotentialof the unitcell are calledstructure factorsandare givenby
  • 11. where γ = 1/q1−v2/c2 isthe Lorentzfactor forthe fast electronatvelocityv,Vcell isthe unitcell volume,fj el(s) isthe atomicscatteringfactorforscatteringparameters= |~g|/2, ~g isa reciprocal lattice vector,and~rj isthe positionof the jthatomwithinthe unitcell.The atomicscatteringfactor isthe radial part of Fouriertransformof the electrostaticpotential of the atomj alone.Since the potential of anisolatedatomis isotropicinangle andnotinfinitelysharplypeaked,thisscattering factor fallsof withscatteringparameters.Itcan be well approximatedbythe sumof a 4 Gaussians[. The electronstructure factorsare onlynon-zeroonpointsinreciprocal space whichlie onthe reciprocal lattice.However,thisreciprocal lattice isconvolutedbythe shape transformof the crystal,i.e. the Fouriertransformof itsshape inreal space.Since TEM specimenmustbe verythin for the electronbeamtobe able to passthrough them, butmay be verywide laterally,the reciprocal lattice pointshave some finite extentalongthe directionparallel tothe wave vectorof the incident electronbeam,butare verysharplydefinedinthe lateral directions.Fornanocrystals,whichare also laterallyconfined,the reciprocal lattice pointsextendalsolaterally. Elasticallyscatteredelectrons maintaintheirmomentumandmaytherefore scatteronlytoreciprocal lattice vectorswhichlie ona sphere (Ewaldsphere).Reflectionswhichare notintersectedbythe Ewaldsphere maystill be excited,but,because of the nonvanishingexcitationerrorsg(reciprocal space distance betweenthe Ewaldsphere andthe reciprocal lattice pointforthe infinitelyextendedcrystal),inmostcaseswitha reducedintensity.Kinematical scatteringtheory,whichneglectsthe possibilitythatanelectron scattersmore than once on its paththroughthe sample predictsthatthe intensityinthe diffraction patternIIh,k,l ∝|U(~q)|2,i.e.thatitisproportional tothe amplitude squaredof the structure factor U(~gh,k,l). Forelasticscatteringof the incidentelectronwavethe kineticenergyof the electronis preserved,andwiththatalsothe absolute value of itsmomentumvector.Thismeansthatin reciprocal space the wave vectorsof all scatteredelectronsmustlie onthe surface of a sphere of the sphere. Optical systemsbuiltof lenses For settingupthe optical diffractioncamera,andfor understandingthe electrondiffraction experimentitisimportantthatyoureview the followingprinciplesof geometrical optics: The lensequation. The magnificationof animage:M = himage/hobject = dimage/dobject. The fact that inthe back focal plane a lensproducesthe Fouriertransformof the lightfieldinthe objectplane. Experimental setupsof an optical diffraction camera and an electronmicroscope The transmissionelectronmicroscope (TEM)
  • 12. Basedon the Lorentzforce givenbyequation ithas beendiscoveredbyBusch that magneticcoils will focusanelectronbeam.Thishassoonafterledto the developmentof Diagram illustratingthe Ewaldsphere constructionandthe physical meaningof the excitationerror sg. The fast beamelectroncanonlyscatterelasticallytoreciprocal space vectorswhichlie onthe Ewaldsphere (dashedcurve).The distancebetweenagivenpointinreciprocal space andthe Ewald sphere inthe directionof the specimen’ssurface normal (assumedtobe inthe z-directioninthis illustration) iscalledexcitationerrorsg. the first transmissionelectronmicroscope(TEM) byKnoll andRuska an achievementwhichhas beenhonouredwiththe Nobelprice in1986. ModernTEMs are equippedwithatleast4 electromagneticlenses(gunlensandcondenserlenssystemandobjective pre-fieldlens) to collimate orfocusthe beamon the sample andat least4 lensesbelow the sample(objective lens and a projectorlenssystem) tofocuseitheramagnifiedimage orthe magnifieddiffractionpattern on a detectorwhichcan be a CCD camera, photographicfilm, digital imagingplates,ora spectrometer.Inthispracticumwe will use aCCD camerafor detectingimagesanddiffraction patterns.Figure showsthatby simplychangingthe currentrunningthroughlensesinthe projector lenssystemthe TEMcan switchbetweenimage anddiffractionmode.Likewise,the condenserlens systemcan be usedto continuouslyvarythe illuminationconvergence angleandwiththatthe size of the electronprobe onthe sample,changingfromparallel toconvergentillumination,facilitating parallel orconvergentbeamelectrondiffraction(CBED).The areaof the sample contributingtothe diffractionpatterninparallel-beamillumination maybe selectedin2ways:a) by an aperture inthe condenserlenssystemorb) bya selectedareaaperture inthe positionof the firstintermediate image (indicatedbyanarrowin Figure 3b).Inthispracticum we will use selected areaelectron diffraction(SAED),i.e.applythe secondoptionof selectingthe contributingarea.The reasonforthis isthe experimental simplicity.Withoutchanginganylenscurrentsoralignment,orthe illumination conditionsonthe sample we mayquicklyswitchbetweenaverylarge fieldof view forrecordingan overviewimage andasmall fieldof view for selectingthe areafromwhichthe diffractiondatashall stem,simplybyinsertingandpositioningasmall aperture.There are afew problemsof this
  • 13. approach:a) Because of the fixedmagnificationof the objective lensthe smallestareathatcan be selectedbyaverysmall (e.g.5 µm aperture) hastypicallyadiameternotmuchsmallerthan80 nm. b) Due to aberrationsof the objective lenshigh-angle diffractioninformationmaystemfroma slightlylargerareathanthe one selectedfromthe (bright-field) image. Two differentmodesof operationof aTEM: a) High-resolutionimagingmode:Anincidentplane wave scatterselasticallyaccordingtothe differentlattice planesandthe diffractedbeamsinterfere witheachother.Thisinterference patternmayinsome casesbe interpretedasdirectlyrepresenting the atomic structure.b) For parallel illuminationthe diffractionmode isa(conventional)spot pattern. Resolutionof modernTEMmicroscopesiswell below1nm, whichmakesthemsuitabletoolsforstudy of nanoparticles and nanostructuresin bulk materials.Both nanoparticles and nanostructures cover broadrange of applicationsinmaterialsscience (inorganic nanoparticles,nanolayers,defectsinmetals andalloys),polymerscience (syntheticpolymernanocomposites,blockcopolymers,polymermicelles) andbiology(morphologyof cellsandviruses).Thiscontributionisfocusedonanalysisof nanoparticles, namely nanocrystals. A standardmoderntransmissionelectronmicroscope(TEM) operatesinthreemodes:brightfield(BF), dark field (DF), and electron diffraction (ED, SAED). In TEM/BF we detect transmitted electronsand receive a"standard"TEMmicrograph:a directimage,inwhichthedarkareasappearduetodiffraction and/or absorption contrast. In TEM/DF we detect (a selected portion of) scattered/diffracted electrons and obtain a direct image with "inverted" contrast. In TEM/ED we detect scattered/diffracted electrons in a different way and obtain electron diffraction pattern, which is analogous to X-ray and neutron diffraction patterns. Asan extraoption,TEMmicroscope canbe equippedwithaEDXdetectorandworkinmode of energy dispersive analysis of X-rays (EDX, EDS). In such a case we can detect characteristic X-rays and, as a result, perform elemental analysis in nanoscale. A TEM microscope equipped with the four basic modes (BF, DF, ED, EDX) is usually called the analytical electron microscope.
  • 14. It isa matterof course thatthere are also more advancedand/orspecial modesof TEM,such as high- resolutiontransmissionelectronmicroscopy(HRTEM),convergentbeamelectrondiffraction(CBED), scanningtransmissionelectronmicroscopy(STEM),energy-filteredtransmissionelectronmicroscopy (EFTEM), cryo transmission electron microscopy (cryoTEM) - just to name a few. Nevertheless, this contribution concentrates on the explanation of four basic modes (BF, DF, ED, EDX) and their application on study of nanocrystal shapes, elemental composition and crystal structure. Imaging and diffraction mode in TEM. Single crystal diffraction in XRD and ED. For single crystal X-ray diffraction,we needtouse four-circle diffractometersandcollectdiffractions step-by-step,usingeitherpointdetectorsor2D-detectors,suchasCCDcameras,imageplatesof films.
  • 15. In a TEM microscope, we can see the whole plane of reciprocal lattice in one image. The basic explanation is again relatively straightforward, employing just Ewald's construction, calculation of electron wavelength and one simple formula from Fourier theory. CeO2 nanocubes in TEM: (a) bright field, (b) dark field (c)electron diffraction, (d) EDX spectrum. References [1] H. Busch. ¨Uberdie Wirkungsweise derKonzentrierungsspule bei derBraunschenRo¨hre.Arch. Elektrotech.(Berlin),18:583, 1927. [2] J.M. CowleyandH. Shuman.Electrondiffractionfromastatisticallyroughsurface.Surface Science,38:53–59, 1973. [3] A.V.Crewe,D.N.Eggenberger,J.Wall,andL.M.Welter.Electrongunusingafieldemissionsource. Rev.Sci.Inst.,39:576, 1968.
  • 16. [4] C. DavissonandL. H. Germer.Diffractionof electronsbyacrystal of nickel.Phys.Rev.,30:705– 740, Dec 1927. [5] C. DavissonandL. H. Germer.The scatteringof electronsbya single crystal of nickel.Nature, 119:558–560, 1927. [6] Louisde Broglie.Recherchessurlatheorie desquanta.PhDthesis, Sorbonne,1924. [7] D. L. Dorset.Structural ElectronCrystallography.Plenum, New York,1995. [8] P.A. Doyle andP. S.Turner. RelativisticHartree-FockX-rayandelectronscatteringfactors.Acta Cryst.A, 24:390–397, 1968. [9] H. W. Fink,H. Schmid,H. J. Kreuzer,andA.Wierzbicki.Atomicresolutioninlenslesslow-energy electronholography.Phys.Rev.Lett.,67:1543–1546, 1991. [10] M. Haider,H. Rose,S.Uhlemann,E.Schwan,B. Kabius,andK. Urban. A sphericalaberration- corrected200 kvtransmissionelectronmicroscope.Ultramicroscopy,75:53–60, 1998. [11] C. Kisielowski,B.Freitag,M.Bischoff,H.van Lin,S. Lazar, G. Knippels,P.Tiemeijer,M.van der Stam an S. vonHarrach, M. Stekelenburg,M.Haider,S.Uhlemann,H.Mu¨ller,P.Hartel,B. Kabius,D. Miller,I.Petrov,E.A.Olson,T.Donchev,E.A.Kenik,A.R.Lupini,J.Bentley,S.J.Pennycook,I.M. Anderson,A.M. Minor,A. K.Schmid,T. Duden,V.Radmilovic,Q.M.Ramasse,M. Watanabe,R. Erni, E.A.Stach, P. Denes,andU. Dahmen.Detectionof singleatomsandburieddefectsinthree dimensionsbyaberration-correctedelectronmicroscope with0.5a informationlimit.Microsc. Microanal,14:469–477, 2008. [12] M. Knoll andE. Ruska.Das elektronenmikroskop.Z.Phys.A,78:318–339, 1932. [13] O. L. Krivanek,N.Dellby,andA.R. Lupini.Towardssub-˚A electronbeams.Ultramicroscopy,78:1–11, 1999. [14] A. R. Moon and J.M. Cowley.Mediumenergyelectrondiffraction.Journal of VacuumScience and Technology,9:649–651, 1972. [15] E. Ruska. The developmentof the electronmicroscope andof electronmicroscopy.Reviewsof ModernPhysics,59:627–638, 1987. [16] O. Scherzer.¨Ubereinige FehlervonElektronenlinsen.Z. Physik,101:593–603, 1936. [17] J. C. H. Spence,U.Weierstall,andM.Howells. Phase recoveryandlenslessimagingbyiterative methodsinoptical,X-rayandelectrondiffraction.Phil.Trans.R.Soc.Lond.A, 360:875–895, 2002. [18] G. P. Thompson.Experimentsonthe diffractionof cathode rays.Proceedingsof the Royal Societyof London.SeriesA,ContainingPapersof aMathematical andPhysical Character,117:600– 609, 1928. [19] K. Vainshtein.Structure AnalysisbyElectronDiffraction.Pergamon,New York,1964. [20] T. E. Weirich,J.L. La´b´ar, , and X. Zou.ElectronCrystallography:Novel ApproachesforStructure Determinationof NanosizedMaterials,volume211. Springer,Berlin,2006.