SlideShare a Scribd company logo
1 of 1
Mucin + DNA
0 107 108 109 1010
0.10
0.15
0.20
PFU/ml
!sin(δ)!
p<0.05
tobramycin
WT Pf++
0
1
2
killing,log10
p<0.02
WT Pf++
0
1
2
3
5×1004
7×1004
9×1004
Pf4/104CFUs
p<0.01
WT Pf++ WT Pf++
0.0
0.2
0.4
0.6
!sin(δ)!
washed
p<0.01
A	
  
WT	
  
Pf++	
  
WT	
  
Pf++	
  
C	
  
0.75
0.38
0.0
|sin(δ)|
References	
  
1.	
  Costerton	
  JW	
  et	
  al.	
  (1999),	
  Science.	
  2.	
  Whiteley	
  M	
  et	
  al.	
  (2001),	
  Nature.	
  3.	
  Webb	
  JS,	
  Lau	
  M	
  &	
  Kjelleberg	
  S.	
  
(2004),	
  J	
  Bacteriol	
  .	
  4.	
  Dogic	
  Z	
  &	
  Fraden	
  S.	
  (2006),	
  Curr	
  Opin	
  Colloid	
  In.	
  5.	
  Glazer	
  AM	
  et	
  al.	
  (1996),	
  P	
  Roy	
  Soc	
  Lond	
  
a	
  Mat.	
  
Filamentous	
  bacteriophage	
  organize	
  biofilms	
  into	
  liquid	
  crystals,	
  increasing	
  anTbioTc	
  tolerance	
  
IntroducTon	
  
Lia	
  A.	
  Michaels1,	
  Patrick	
  R.	
  Secor1,	
  William	
  C.	
  Parks2,	
  and	
  Pradeep	
  K.	
  Singh1	
  
1	
  Departments	
  of	
  Medicine	
  and	
  Microbiology,	
  University	
  of	
  Washington,	
  SeaYle,	
  WA;	
  2	
  Department	
  of	
  Pulmonary	
  and	
  CriTcal	
  Care	
  Medicine,	
  Cedar	
  Sinai	
  Medical	
  Center,	
  Los	
  Angeles,	
  CA	
  
Biofilms	
  are	
  aggregates	
  of	
  bacteria	
  within	
  
a	
  polymer-­‐rich	
  extracellular	
  matrix.	
  The	
  
formaTon	
  of	
  biofilms	
  protects	
  bacteria	
  
from	
  environmental	
  stresses.	
  For	
  example,	
  
bacteria	
  within	
  biofilms	
  become	
  tolerant	
  
to	
  desiccaTon,	
  immune	
  defenses,	
  and	
  
anTbioTc	
  treatment,	
  contribuTng	
  to	
  
persistent	
  infecTons	
  (1).	
  Therefore,	
  
understanding	
  the	
  structure	
  and	
  funcTon	
  
of	
  the	
  biofilm	
  matrix	
  is	
  important	
  in	
  
understanding	
  the	
  pathogenesis	
  of	
  chronic	
  
bacterial	
  infecTons	
  such	
  as	
  diabeTc	
  ulcers,	
  
burn	
  wounds,	
  and	
  airway	
  infecTons	
  
associated	
  with	
  cysTc	
  fibrosis	
  .	
  
Fig	
  3.	
  The	
  liquid	
  crystalline	
  matrix	
  enhances	
  an=bio=c	
  tolerance	
  by	
  binding	
  
aminoglycosides.	
  A.	
  Killing	
  of	
  biofilms	
  by	
  tobramycin	
  (10	
  µg/ml)	
  relaTve	
  to	
  untreated	
  
controls.	
  B.	
  Tobramycin	
  or	
  ciprofloxacin	
  were	
  added	
  to	
  DNA	
  (2.5	
  mg/ml),	
  Pf4	
  (1010	
  
PFUs/ml),	
  and	
  DNA	
  +	
  Pf4	
  to	
  invesTgate	
  binding.	
  C.	
  Binding	
  of	
  tobramycin	
  to	
  DNA,	
  Pf4,	
  
and	
  DNA	
  +	
  Pf4	
  was	
  visualized	
  by	
  adding	
  fluorescently	
  conjugated	
  tobramycin	
  (Cy5-­‐
tobramycin,	
  40	
  µg/ml).	
  Scale	
  bars,	
  20	
  µm.	
  
Conclusions	
  
•  Mixtures	
  of	
  Pf4	
  and	
  host	
  &	
  microbial	
  polymers	
  spontaneously	
  assemble	
  
into	
  liquid	
  crystals.	
  
•  	
  P.	
  aeruginosa	
  biofilms	
  producing	
  Pf4	
  have	
  a	
  liquid	
  crystalline	
  matrix.	
  
•  Liquid	
  crystalline	
  structure	
  of	
  the	
  biofilm	
  matrix	
  increases	
  tolerance	
  to	
  
aminoglycoside	
  anTbioTcs.	
  
•  Liquid	
  crystalline	
  structures	
  enhance	
  the	
  binding	
  of	
  aminoglycosides.	
  
New	
  therapeuTc	
  strategies	
  might	
  be	
  developed	
  targeTng	
  phage	
  producTon	
  or	
  
the	
  liquid	
  crystalline	
  matrix.	
  Given	
  that	
  several	
  species	
  of	
  Gram-­‐negaTve	
  
bacteria	
  harbor	
  filamentous	
  phage,	
  our	
  observaTons	
  might	
  be	
  applied	
  to	
  
other	
  pathogens	
  such	
  as	
  E.	
  coli	
  or	
  Vibrio	
  cholerae.	
  	
  
A	
  
Results	
  (cont.)	
  
Acknowledgments	
  
This	
  work	
  was	
  funded	
  by	
  a	
  CysTc	
  Fibrosis	
  FoundaTon	
  Postdoctoral	
  Fellowship	
  to	
  PRS	
  
and	
  a	
  BasseY	
  scholarship	
  supported	
  LAM.	
  
Fig	
  2.	
  The	
  P.	
  aeruginosa	
  biofilm	
  matrix	
  is	
  
organized	
  by	
  Pf4	
  into	
  a	
  liquid	
  crystal.	
  A.	
  Pf4	
  
producTon	
  by	
  wild	
  type	
  (WT)	
  and	
  Pf	
  over-­‐
producing	
  (Pf++)	
  biofilms	
  were	
  enumerated	
  and	
  
normalized	
  to	
  bacterial	
  CFUs.	
  B.	
  Birefringence	
  
(normalized	
  for	
  thickness)	
  was	
  quanTfied	
  in	
  WT	
  
and	
  Pf++	
  biofilms	
  pre	
  and	
  post	
  washing	
  to	
  
remove	
  the	
  extracellular	
  matrix.	
  C.	
  QualitaTve	
  
image	
  of	
  birefringence	
  in	
  WT	
  and	
  Pf++	
  biofilms.	
  
Results	
  
ObservaTons	
  &	
  Hypothesis	
  
•  Pseudomonas	
  aeruginosa	
  is	
  an	
  
opportunisTc	
  bacterial	
  pathogen.	
  
•  As	
  P.	
  aeruginosa	
  biofilms	
  develop,	
  
many	
  laboratories	
  have	
  observed	
  the	
  
producTon	
  of	
  filamentous	
  Pf	
  phage	
  (up	
  
to	
  1011	
  PFU/ml)	
  under	
  a	
  variety	
  of	
  
growth	
  condiTons	
  (2,3).	
  
•  Clinical	
  isolates	
  and	
  laboratory	
  strains	
  
of	
  P.	
  aeruginosa	
  harbor	
  Pf	
  phage.	
  For	
  
example,	
  P.	
  aeruginosa	
  strain	
  PAO1	
  
harbors	
  Pf4.	
  
•  We	
  observe	
  ~108	
  Pf	
  phage/ml	
  in	
  
sputum	
  from	
  cysTc	
  fibrosis	
  paTents.	
  
•  Like	
  other	
  filamentous	
  phage,	
  Pf	
  phage	
  
are	
  long,	
  filamentous,	
  and	
  negaTvely	
  
charged.	
  	
  
•  When	
  suspended	
  in	
  polymer	
  soluTons,	
  
filamentous	
  phage	
  spontaneously	
  
assemble	
  liquid	
  crystals	
  due	
  to	
  their	
  
physical	
  properTes	
  (4).	
  
•  Liquid	
  crystals	
  are	
  a	
  state	
  of	
  maYer	
  
between	
  that	
  of	
  a	
  liquid	
  and	
  a	
  solid.	
  
Hypothesis	
  1:	
  Pf	
  phage	
  spontaneously	
  assemble	
  liquid	
  crystals	
  in	
  the	
  
presence	
  of	
  host	
  and	
  bacterial	
  polymers.	
  
Methods:	
  A	
  custom	
  built	
  microscope	
  (5)	
  was	
  used	
  to	
  measure	
  an	
  opTcal	
  property	
  of	
  liquid	
  crystals	
  
called	
  birefringence,	
  which	
  is	
  the	
  splijng	
  of	
  passing	
  light	
  into	
  two	
  beams.	
  This	
  device	
  measures	
  
birefringence	
  as|sin	
  (δ)|,	
  a	
  measure	
  of	
  the	
  phase	
  difference	
  between	
  the	
  two	
  beams.	
  
Birefringence	
  is	
  a	
  direct	
  measurement	
  of	
  the	
  molecular	
  alignment	
  of	
  a	
  sample.	
  Physiologically	
  
relevant	
  polymers	
  were	
  mixed	
  with	
  Pf	
  phage	
  and	
  birefringence	
  was	
  quanTtated.	
  
Hypothesis	
  2:	
  The	
  matrix	
  of	
  phage	
  producing	
  biofilms	
  show	
  liquid	
  crystalline	
  
organizaTon.	
  
Methods:	
  Birefringence	
  was	
  quanTtated	
  as|sin	
  (δ)|in	
  biofilms	
  producing	
  either	
  basal	
  amounts	
  of	
  
Pf	
  phage	
  or	
  abundant	
  amounts	
  of	
  Pf	
  phage.	
  
Results:	
  Pf	
  phage	
  assemble	
  the	
  biofilm	
  matrix	
  into	
  a	
  birefringent,	
  liquid	
  crystalline	
  structure.	
  
Hypothesis	
  3:	
  The	
  liquid	
  crystalline	
  matrix	
  enhances	
  anTbioTc	
  
tolerance	
  by	
  binding	
  aminoglycoside	
  anTbioTcs.	
  	
  
Methods:	
  Biofilms	
  were	
  treated	
  with	
  the	
  indicated	
  anTbioTcs.	
  To	
  test	
  the	
  effects	
  of	
  
liquid	
  crystal	
  assembly	
  on	
  anTbioTc	
  tolerance,	
  bacteria	
  were	
  added	
  to	
  the	
  indicated	
  
phage	
  +	
  polymer	
  soluTons	
  followed	
  by	
  anTbioTc	
  treatment.	
  Fluorescently	
  conjugated	
  
tobramycin	
  was	
  added	
  to	
  liquid	
  crystalline	
  mixtures	
  of	
  Pf	
  phage	
  and	
  DNA	
  to	
  directly	
  
visualize	
  binding.	
  
A	
   B	
  
Pf4	
  
DNA	
   0.5
0.25
0.0
|sin(δ)|
DNA	
  +PF4	
  
Fig	
  1.	
  Pf4	
  assemble	
  disease	
  relevant	
  polymers	
  into	
  birefringent	
  liquid	
  crystals.	
  A.	
  Purified	
  Pf4	
  
(1011	
  PFU/ml)	
  and	
  DNA	
  (10	
  mg/ml)	
  alone	
  are	
  not	
  birefringent,	
  but	
  1:1	
  mixtures	
  of	
  Pf4	
  and	
  DNA	
  
assemble	
  birefringent	
  liquid	
  crystals.	
  Scale	
  bar,	
  10	
  µm.	
  B.	
  Birefringence	
  was	
  quanTfied	
  in	
  disease	
  
relevant	
  concentraTons	
  of	
  mucin	
  (8%	
  solids)	
  mixed	
  with	
  DNA	
  (4	
  mg/ml)	
  supplemented	
  with	
  Pf4.	
  	
  
E. coli
Control DNA Pf4 DNA+Pf4
0.00
0.01
1
2
3
antibiotic,µg/ml
tob
cipro
liquid crystal
B	
  
DNA	
   Pf4	
   DNA+Pf4	
  	
  C	
  
Results:	
  Host	
  and	
  microbial	
  polymers	
  interact	
  with	
  Pf	
  phage	
  at	
  disease	
  relevant	
  concentraTons	
  to	
  
spontaneously	
  assemble	
  birefringent	
  liquid	
  crystals,	
  similar	
  to	
  other	
  filamentous	
  phage	
  in	
  the	
  
presence	
  of	
  syntheTc	
  polymers	
  (4).	
  
Liquid	
  crystals	
  are	
  inherently	
  viscoelasTc	
  
in	
  nature	
  and	
  viscoelasTc	
  materials	
  
generally	
  display	
  reduced	
  rates	
  of	
  
diffusion.	
  Altering	
  the	
  viscoelasTc	
  and	
  
diffusion	
  properTes	
  of	
  the	
  biofilm	
  matrix	
  
would	
  likely	
  impact	
  several	
  disease	
  
phenotypes	
  such	
  as	
  anTbioTc	
  tolerance.	
  
Primary	
  hypothesis:	
  
The	
  matrix	
  of	
  phage	
  producing	
  biofilms	
  
show	
  liquid	
  crystalline	
  organiza=on,	
  
enhancing	
  an=bio=c	
  tolerance.	
  
B
250	
  µm	
  
250	
  µm	
  
Results:	
  Biofilms	
  with	
  a	
  liquid	
  crystalline	
  matrix	
  are	
  tolerant	
  to	
  aminoglycosides.	
  Liquid	
  
crystals	
  formed	
  from	
  Pf	
  phage	
  and	
  DNA	
  efficiently	
  bind	
  aminoglycosides.	
  

More Related Content

What's hot

Vol. 1 (2), 2014, 40–44
Vol. 1 (2), 2014, 40–44Vol. 1 (2), 2014, 40–44
Vol. 1 (2), 2014, 40–44Said Benramache
 
Honours poster final TWO PDF
Honours poster final TWO PDFHonours poster final TWO PDF
Honours poster final TWO PDFLaura Fairley
 
ISOLATION AND IDENTIFICATION OF NLF BACTERIA IN VARIOUS SAMPLES.
ISOLATION AND IDENTIFICATION OF NLF BACTERIA IN VARIOUS SAMPLES.ISOLATION AND IDENTIFICATION OF NLF BACTERIA IN VARIOUS SAMPLES.
ISOLATION AND IDENTIFICATION OF NLF BACTERIA IN VARIOUS SAMPLES.Daisy Saini
 
4. optimization of culture condition for enhanced decolorization of reactive ...
4. optimization of culture condition for enhanced decolorization of reactive ...4. optimization of culture condition for enhanced decolorization of reactive ...
4. optimization of culture condition for enhanced decolorization of reactive ...Darshan Rudakiya
 
Bacterial identification
Bacterial identificationBacterial identification
Bacterial identificationChota Alexander
 
Biochemical Reaction - Prac. Microbiology
Biochemical Reaction - Prac. MicrobiologyBiochemical Reaction - Prac. Microbiology
Biochemical Reaction - Prac. MicrobiologyCU Dentistry 2019
 
Biochemical tests (2nd part)
Biochemical tests (2nd part)Biochemical tests (2nd part)
Biochemical tests (2nd part)Aman Ullah
 
Biochemical reactions - Microbe identification
Biochemical reactions - Microbe identificationBiochemical reactions - Microbe identification
Biochemical reactions - Microbe identificationMalathi Murugesan
 
Antimicrobial susceptibility of isolated E.coli from different water sources ...
Antimicrobial susceptibility of isolated E.coli from different water sources ...Antimicrobial susceptibility of isolated E.coli from different water sources ...
Antimicrobial susceptibility of isolated E.coli from different water sources ...Sulieman Bahar
 
NSTOL1114001006_proofread1 (1)
NSTOL1114001006_proofread1 (1)NSTOL1114001006_proofread1 (1)
NSTOL1114001006_proofread1 (1)Ahmed Hachim
 
Characterization of the Volatile Components of the Leaf of Starchytarpheta ca...
Characterization of the Volatile Components of the Leaf of Starchytarpheta ca...Characterization of the Volatile Components of the Leaf of Starchytarpheta ca...
Characterization of the Volatile Components of the Leaf of Starchytarpheta ca...Premier Publishers
 
Unknown Project Report
Unknown Project ReportUnknown Project Report
Unknown Project ReportJeff Mackey
 
Ultrasonication Assisted Extraction of Isolation Characterization of Berb...
Ultrasonication Assisted Extraction of Isolation     Characterization of Berb...Ultrasonication Assisted Extraction of Isolation     Characterization of Berb...
Ultrasonication Assisted Extraction of Isolation Characterization of Berb...GuttiPavan
 
Medical Microbiology Laboratory (biochemical tests - iii)
Medical Microbiology Laboratory (biochemical tests - iii)Medical Microbiology Laboratory (biochemical tests - iii)
Medical Microbiology Laboratory (biochemical tests - iii)Hussein Al-tameemi
 
IOSR Journal of Pharmacy (IOSRPHR), www.iosrphr.org, call for paper, research...
IOSR Journal of Pharmacy (IOSRPHR), www.iosrphr.org, call for paper, research...IOSR Journal of Pharmacy (IOSRPHR), www.iosrphr.org, call for paper, research...
IOSR Journal of Pharmacy (IOSRPHR), www.iosrphr.org, call for paper, research...iosrphr_editor
 
IMViC biochemical tests
IMViC biochemical testsIMViC biochemical tests
IMViC biochemical testsshital trivedi
 

What's hot (18)

Master_final
Master_finalMaster_final
Master_final
 
Vol. 1 (2), 2014, 40–44
Vol. 1 (2), 2014, 40–44Vol. 1 (2), 2014, 40–44
Vol. 1 (2), 2014, 40–44
 
Honours poster final TWO PDF
Honours poster final TWO PDFHonours poster final TWO PDF
Honours poster final TWO PDF
 
ISOLATION AND IDENTIFICATION OF NLF BACTERIA IN VARIOUS SAMPLES.
ISOLATION AND IDENTIFICATION OF NLF BACTERIA IN VARIOUS SAMPLES.ISOLATION AND IDENTIFICATION OF NLF BACTERIA IN VARIOUS SAMPLES.
ISOLATION AND IDENTIFICATION OF NLF BACTERIA IN VARIOUS SAMPLES.
 
4. optimization of culture condition for enhanced decolorization of reactive ...
4. optimization of culture condition for enhanced decolorization of reactive ...4. optimization of culture condition for enhanced decolorization of reactive ...
4. optimization of culture condition for enhanced decolorization of reactive ...
 
Bacterial identification
Bacterial identificationBacterial identification
Bacterial identification
 
Biochemical Reaction - Prac. Microbiology
Biochemical Reaction - Prac. MicrobiologyBiochemical Reaction - Prac. Microbiology
Biochemical Reaction - Prac. Microbiology
 
Biochemical tests (2nd part)
Biochemical tests (2nd part)Biochemical tests (2nd part)
Biochemical tests (2nd part)
 
Biochemical reactions - Microbe identification
Biochemical reactions - Microbe identificationBiochemical reactions - Microbe identification
Biochemical reactions - Microbe identification
 
Antimicrobial susceptibility of isolated E.coli from different water sources ...
Antimicrobial susceptibility of isolated E.coli from different water sources ...Antimicrobial susceptibility of isolated E.coli from different water sources ...
Antimicrobial susceptibility of isolated E.coli from different water sources ...
 
NSTOL1114001006_proofread1 (1)
NSTOL1114001006_proofread1 (1)NSTOL1114001006_proofread1 (1)
NSTOL1114001006_proofread1 (1)
 
Characterization of the Volatile Components of the Leaf of Starchytarpheta ca...
Characterization of the Volatile Components of the Leaf of Starchytarpheta ca...Characterization of the Volatile Components of the Leaf of Starchytarpheta ca...
Characterization of the Volatile Components of the Leaf of Starchytarpheta ca...
 
Unknown Project Report
Unknown Project ReportUnknown Project Report
Unknown Project Report
 
Ultrasonication Assisted Extraction of Isolation Characterization of Berb...
Ultrasonication Assisted Extraction of Isolation     Characterization of Berb...Ultrasonication Assisted Extraction of Isolation     Characterization of Berb...
Ultrasonication Assisted Extraction of Isolation Characterization of Berb...
 
Medical Microbiology Laboratory (biochemical tests - iii)
Medical Microbiology Laboratory (biochemical tests - iii)Medical Microbiology Laboratory (biochemical tests - iii)
Medical Microbiology Laboratory (biochemical tests - iii)
 
6 nmj 2-1
6   nmj 2-16   nmj 2-1
6 nmj 2-1
 
IOSR Journal of Pharmacy (IOSRPHR), www.iosrphr.org, call for paper, research...
IOSR Journal of Pharmacy (IOSRPHR), www.iosrphr.org, call for paper, research...IOSR Journal of Pharmacy (IOSRPHR), www.iosrphr.org, call for paper, research...
IOSR Journal of Pharmacy (IOSRPHR), www.iosrphr.org, call for paper, research...
 
IMViC biochemical tests
IMViC biochemical testsIMViC biochemical tests
IMViC biochemical tests
 

Viewers also liked

The mechanism of enzyme action
The mechanism of enzyme actionThe mechanism of enzyme action
The mechanism of enzyme actionShakeel Earnest
 
Chapter 5 Enzymes Lesson 1 - Introduction to Enzymes
Chapter 5 Enzymes Lesson 1 - Introduction to EnzymesChapter 5 Enzymes Lesson 1 - Introduction to Enzymes
Chapter 5 Enzymes Lesson 1 - Introduction to Enzymesj3di79
 
Vitamin A chemistry, functions and deficiency
Vitamin A chemistry, functions and deficiencyVitamin A chemistry, functions and deficiency
Vitamin A chemistry, functions and deficiencyNamrata Chhabra
 

Viewers also liked (8)

The mechanism of enzyme action
The mechanism of enzyme actionThe mechanism of enzyme action
The mechanism of enzyme action
 
enzymes
enzymesenzymes
enzymes
 
Mechanism of enzyme action
Mechanism of enzyme actionMechanism of enzyme action
Mechanism of enzyme action
 
Chapter 5 Enzymes Lesson 1 - Introduction to Enzymes
Chapter 5 Enzymes Lesson 1 - Introduction to EnzymesChapter 5 Enzymes Lesson 1 - Introduction to Enzymes
Chapter 5 Enzymes Lesson 1 - Introduction to Enzymes
 
Enzymes
EnzymesEnzymes
Enzymes
 
Enzymes
EnzymesEnzymes
Enzymes
 
Enzymes
EnzymesEnzymes
Enzymes
 
Vitamin A chemistry, functions and deficiency
Vitamin A chemistry, functions and deficiencyVitamin A chemistry, functions and deficiency
Vitamin A chemistry, functions and deficiency
 

Similar to MichaelsLia_URS_Poster

EWMA Conference-Ep442-MODELLING WOUND BIOFILMS IN A THERMO-REVERSIBLE MATRIX ...
EWMA Conference-Ep442-MODELLING WOUND BIOFILMS IN A THERMO-REVERSIBLE MATRIX ...EWMA Conference-Ep442-MODELLING WOUND BIOFILMS IN A THERMO-REVERSIBLE MATRIX ...
EWMA Conference-Ep442-MODELLING WOUND BIOFILMS IN A THERMO-REVERSIBLE MATRIX ...EWMA
 
EWMA Conference-Ep442-MODELLING WOUND BIOFILMS IN A THERMO-REVERSIBLE MATRIX ...
EWMA Conference-Ep442-MODELLING WOUND BIOFILMS IN A THERMO-REVERSIBLE MATRIX ...EWMA Conference-Ep442-MODELLING WOUND BIOFILMS IN A THERMO-REVERSIBLE MATRIX ...
EWMA Conference-Ep442-MODELLING WOUND BIOFILMS IN A THERMO-REVERSIBLE MATRIX ...EWMAConference
 
MichaelsLia_MICROM_495_496
MichaelsLia_MICROM_495_496MichaelsLia_MICROM_495_496
MichaelsLia_MICROM_495_496Lia Michaels
 
Conceição et al, 2009. characterization of a new bioactive peptide from potam...
Conceição et al, 2009. characterization of a new bioactive peptide from potam...Conceição et al, 2009. characterization of a new bioactive peptide from potam...
Conceição et al, 2009. characterization of a new bioactive peptide from potam...pryloock
 
Protein Protein Interactions Of Glycine Oxidase (Thi O)
Protein Protein Interactions Of Glycine Oxidase (Thi O)Protein Protein Interactions Of Glycine Oxidase (Thi O)
Protein Protein Interactions Of Glycine Oxidase (Thi O)bturne
 
Random micro-confinement of bacteria into picolitre emulsion droplets for rap...
Random micro-confinement of bacteria into picolitre emulsion droplets for rap...Random micro-confinement of bacteria into picolitre emulsion droplets for rap...
Random micro-confinement of bacteria into picolitre emulsion droplets for rap...Pierre R. Marcoux
 
Assimilation Of Phosphite By A. Stolonifera L. And Its In Vitro Effect On Mic...
Assimilation Of Phosphite By A. Stolonifera L. And Its In Vitro Effect On Mic...Assimilation Of Phosphite By A. Stolonifera L. And Its In Vitro Effect On Mic...
Assimilation Of Phosphite By A. Stolonifera L. And Its In Vitro Effect On Mic...JJDempsey
 
Docking_fungal peptide
Docking_fungal peptideDocking_fungal peptide
Docking_fungal peptidesathish kumar
 
PIF diagnóstico.pdf
PIF diagnóstico.pdfPIF diagnóstico.pdf
PIF diagnóstico.pdfleroleroero1
 
The targeted recognition of Lactococcus lactis phages tothei.docx
The targeted recognition of Lactococcus lactis phages tothei.docxThe targeted recognition of Lactococcus lactis phages tothei.docx
The targeted recognition of Lactococcus lactis phages tothei.docxarnoldmeredith47041
 
A bacterium that degrades and assimilates poly(ethylene terephthalate)
A bacterium that degrades and assimilates poly(ethylene terephthalate)A bacterium that degrades and assimilates poly(ethylene terephthalate)
A bacterium that degrades and assimilates poly(ethylene terephthalate)Md. Shabab Mehebub
 
Biochemical Analysis of Pleurotus spp
Biochemical Analysis of Pleurotus sppBiochemical Analysis of Pleurotus spp
Biochemical Analysis of Pleurotus sppPinkiPaul2
 

Similar to MichaelsLia_URS_Poster (20)

EWMA Conference-Ep442-MODELLING WOUND BIOFILMS IN A THERMO-REVERSIBLE MATRIX ...
EWMA Conference-Ep442-MODELLING WOUND BIOFILMS IN A THERMO-REVERSIBLE MATRIX ...EWMA Conference-Ep442-MODELLING WOUND BIOFILMS IN A THERMO-REVERSIBLE MATRIX ...
EWMA Conference-Ep442-MODELLING WOUND BIOFILMS IN A THERMO-REVERSIBLE MATRIX ...
 
EWMA Conference-Ep442-MODELLING WOUND BIOFILMS IN A THERMO-REVERSIBLE MATRIX ...
EWMA Conference-Ep442-MODELLING WOUND BIOFILMS IN A THERMO-REVERSIBLE MATRIX ...EWMA Conference-Ep442-MODELLING WOUND BIOFILMS IN A THERMO-REVERSIBLE MATRIX ...
EWMA Conference-Ep442-MODELLING WOUND BIOFILMS IN A THERMO-REVERSIBLE MATRIX ...
 
MichaelsLia_MICROM_495_496
MichaelsLia_MICROM_495_496MichaelsLia_MICROM_495_496
MichaelsLia_MICROM_495_496
 
phenolic disinfactants moa.pdf
phenolic disinfactants moa.pdfphenolic disinfactants moa.pdf
phenolic disinfactants moa.pdf
 
Conceição et al, 2009. characterization of a new bioactive peptide from potam...
Conceição et al, 2009. characterization of a new bioactive peptide from potam...Conceição et al, 2009. characterization of a new bioactive peptide from potam...
Conceição et al, 2009. characterization of a new bioactive peptide from potam...
 
Hydrological-Microbial Interactions Controlling Landscape Phosphorus Mobility
Hydrological-Microbial Interactions Controlling Landscape Phosphorus MobilityHydrological-Microbial Interactions Controlling Landscape Phosphorus Mobility
Hydrological-Microbial Interactions Controlling Landscape Phosphorus Mobility
 
Protein Protein Interactions Of Glycine Oxidase (Thi O)
Protein Protein Interactions Of Glycine Oxidase (Thi O)Protein Protein Interactions Of Glycine Oxidase (Thi O)
Protein Protein Interactions Of Glycine Oxidase (Thi O)
 
Random micro-confinement of bacteria into picolitre emulsion droplets for rap...
Random micro-confinement of bacteria into picolitre emulsion droplets for rap...Random micro-confinement of bacteria into picolitre emulsion droplets for rap...
Random micro-confinement of bacteria into picolitre emulsion droplets for rap...
 
Crystal
CrystalCrystal
Crystal
 
2013 AIC poster
2013 AIC poster2013 AIC poster
2013 AIC poster
 
Assimilation Of Phosphite By A. Stolonifera L. And Its In Vitro Effect On Mic...
Assimilation Of Phosphite By A. Stolonifera L. And Its In Vitro Effect On Mic...Assimilation Of Phosphite By A. Stolonifera L. And Its In Vitro Effect On Mic...
Assimilation Of Phosphite By A. Stolonifera L. And Its In Vitro Effect On Mic...
 
Pou5 f1 copy
Pou5 f1   copyPou5 f1   copy
Pou5 f1 copy
 
Docking_fungal peptide
Docking_fungal peptideDocking_fungal peptide
Docking_fungal peptide
 
95.full
95.full95.full
95.full
 
(2102 2112) nd14
(2102 2112) nd14(2102 2112) nd14
(2102 2112) nd14
 
Pglo Lab Report
Pglo Lab ReportPglo Lab Report
Pglo Lab Report
 
PIF diagnóstico.pdf
PIF diagnóstico.pdfPIF diagnóstico.pdf
PIF diagnóstico.pdf
 
The targeted recognition of Lactococcus lactis phages tothei.docx
The targeted recognition of Lactococcus lactis phages tothei.docxThe targeted recognition of Lactococcus lactis phages tothei.docx
The targeted recognition of Lactococcus lactis phages tothei.docx
 
A bacterium that degrades and assimilates poly(ethylene terephthalate)
A bacterium that degrades and assimilates poly(ethylene terephthalate)A bacterium that degrades and assimilates poly(ethylene terephthalate)
A bacterium that degrades and assimilates poly(ethylene terephthalate)
 
Biochemical Analysis of Pleurotus spp
Biochemical Analysis of Pleurotus sppBiochemical Analysis of Pleurotus spp
Biochemical Analysis of Pleurotus spp
 

MichaelsLia_URS_Poster

  • 1. Mucin + DNA 0 107 108 109 1010 0.10 0.15 0.20 PFU/ml !sin(δ)! p<0.05 tobramycin WT Pf++ 0 1 2 killing,log10 p<0.02 WT Pf++ 0 1 2 3 5×1004 7×1004 9×1004 Pf4/104CFUs p<0.01 WT Pf++ WT Pf++ 0.0 0.2 0.4 0.6 !sin(δ)! washed p<0.01 A   WT   Pf++   WT   Pf++   C   0.75 0.38 0.0 |sin(δ)| References   1.  Costerton  JW  et  al.  (1999),  Science.  2.  Whiteley  M  et  al.  (2001),  Nature.  3.  Webb  JS,  Lau  M  &  Kjelleberg  S.   (2004),  J  Bacteriol  .  4.  Dogic  Z  &  Fraden  S.  (2006),  Curr  Opin  Colloid  In.  5.  Glazer  AM  et  al.  (1996),  P  Roy  Soc  Lond   a  Mat.   Filamentous  bacteriophage  organize  biofilms  into  liquid  crystals,  increasing  anTbioTc  tolerance   IntroducTon   Lia  A.  Michaels1,  Patrick  R.  Secor1,  William  C.  Parks2,  and  Pradeep  K.  Singh1   1  Departments  of  Medicine  and  Microbiology,  University  of  Washington,  SeaYle,  WA;  2  Department  of  Pulmonary  and  CriTcal  Care  Medicine,  Cedar  Sinai  Medical  Center,  Los  Angeles,  CA   Biofilms  are  aggregates  of  bacteria  within   a  polymer-­‐rich  extracellular  matrix.  The   formaTon  of  biofilms  protects  bacteria   from  environmental  stresses.  For  example,   bacteria  within  biofilms  become  tolerant   to  desiccaTon,  immune  defenses,  and   anTbioTc  treatment,  contribuTng  to   persistent  infecTons  (1).  Therefore,   understanding  the  structure  and  funcTon   of  the  biofilm  matrix  is  important  in   understanding  the  pathogenesis  of  chronic   bacterial  infecTons  such  as  diabeTc  ulcers,   burn  wounds,  and  airway  infecTons   associated  with  cysTc  fibrosis  .   Fig  3.  The  liquid  crystalline  matrix  enhances  an=bio=c  tolerance  by  binding   aminoglycosides.  A.  Killing  of  biofilms  by  tobramycin  (10  µg/ml)  relaTve  to  untreated   controls.  B.  Tobramycin  or  ciprofloxacin  were  added  to  DNA  (2.5  mg/ml),  Pf4  (1010   PFUs/ml),  and  DNA  +  Pf4  to  invesTgate  binding.  C.  Binding  of  tobramycin  to  DNA,  Pf4,   and  DNA  +  Pf4  was  visualized  by  adding  fluorescently  conjugated  tobramycin  (Cy5-­‐ tobramycin,  40  µg/ml).  Scale  bars,  20  µm.   Conclusions   •  Mixtures  of  Pf4  and  host  &  microbial  polymers  spontaneously  assemble   into  liquid  crystals.   •   P.  aeruginosa  biofilms  producing  Pf4  have  a  liquid  crystalline  matrix.   •  Liquid  crystalline  structure  of  the  biofilm  matrix  increases  tolerance  to   aminoglycoside  anTbioTcs.   •  Liquid  crystalline  structures  enhance  the  binding  of  aminoglycosides.   New  therapeuTc  strategies  might  be  developed  targeTng  phage  producTon  or   the  liquid  crystalline  matrix.  Given  that  several  species  of  Gram-­‐negaTve   bacteria  harbor  filamentous  phage,  our  observaTons  might  be  applied  to   other  pathogens  such  as  E.  coli  or  Vibrio  cholerae.     A   Results  (cont.)   Acknowledgments   This  work  was  funded  by  a  CysTc  Fibrosis  FoundaTon  Postdoctoral  Fellowship  to  PRS   and  a  BasseY  scholarship  supported  LAM.   Fig  2.  The  P.  aeruginosa  biofilm  matrix  is   organized  by  Pf4  into  a  liquid  crystal.  A.  Pf4   producTon  by  wild  type  (WT)  and  Pf  over-­‐ producing  (Pf++)  biofilms  were  enumerated  and   normalized  to  bacterial  CFUs.  B.  Birefringence   (normalized  for  thickness)  was  quanTfied  in  WT   and  Pf++  biofilms  pre  and  post  washing  to   remove  the  extracellular  matrix.  C.  QualitaTve   image  of  birefringence  in  WT  and  Pf++  biofilms.   Results   ObservaTons  &  Hypothesis   •  Pseudomonas  aeruginosa  is  an   opportunisTc  bacterial  pathogen.   •  As  P.  aeruginosa  biofilms  develop,   many  laboratories  have  observed  the   producTon  of  filamentous  Pf  phage  (up   to  1011  PFU/ml)  under  a  variety  of   growth  condiTons  (2,3).   •  Clinical  isolates  and  laboratory  strains   of  P.  aeruginosa  harbor  Pf  phage.  For   example,  P.  aeruginosa  strain  PAO1   harbors  Pf4.   •  We  observe  ~108  Pf  phage/ml  in   sputum  from  cysTc  fibrosis  paTents.   •  Like  other  filamentous  phage,  Pf  phage   are  long,  filamentous,  and  negaTvely   charged.     •  When  suspended  in  polymer  soluTons,   filamentous  phage  spontaneously   assemble  liquid  crystals  due  to  their   physical  properTes  (4).   •  Liquid  crystals  are  a  state  of  maYer   between  that  of  a  liquid  and  a  solid.   Hypothesis  1:  Pf  phage  spontaneously  assemble  liquid  crystals  in  the   presence  of  host  and  bacterial  polymers.   Methods:  A  custom  built  microscope  (5)  was  used  to  measure  an  opTcal  property  of  liquid  crystals   called  birefringence,  which  is  the  splijng  of  passing  light  into  two  beams.  This  device  measures   birefringence  as|sin  (δ)|,  a  measure  of  the  phase  difference  between  the  two  beams.   Birefringence  is  a  direct  measurement  of  the  molecular  alignment  of  a  sample.  Physiologically   relevant  polymers  were  mixed  with  Pf  phage  and  birefringence  was  quanTtated.   Hypothesis  2:  The  matrix  of  phage  producing  biofilms  show  liquid  crystalline   organizaTon.   Methods:  Birefringence  was  quanTtated  as|sin  (δ)|in  biofilms  producing  either  basal  amounts  of   Pf  phage  or  abundant  amounts  of  Pf  phage.   Results:  Pf  phage  assemble  the  biofilm  matrix  into  a  birefringent,  liquid  crystalline  structure.   Hypothesis  3:  The  liquid  crystalline  matrix  enhances  anTbioTc   tolerance  by  binding  aminoglycoside  anTbioTcs.     Methods:  Biofilms  were  treated  with  the  indicated  anTbioTcs.  To  test  the  effects  of   liquid  crystal  assembly  on  anTbioTc  tolerance,  bacteria  were  added  to  the  indicated   phage  +  polymer  soluTons  followed  by  anTbioTc  treatment.  Fluorescently  conjugated   tobramycin  was  added  to  liquid  crystalline  mixtures  of  Pf  phage  and  DNA  to  directly   visualize  binding.   A   B   Pf4   DNA   0.5 0.25 0.0 |sin(δ)| DNA  +PF4   Fig  1.  Pf4  assemble  disease  relevant  polymers  into  birefringent  liquid  crystals.  A.  Purified  Pf4   (1011  PFU/ml)  and  DNA  (10  mg/ml)  alone  are  not  birefringent,  but  1:1  mixtures  of  Pf4  and  DNA   assemble  birefringent  liquid  crystals.  Scale  bar,  10  µm.  B.  Birefringence  was  quanTfied  in  disease   relevant  concentraTons  of  mucin  (8%  solids)  mixed  with  DNA  (4  mg/ml)  supplemented  with  Pf4.     E. coli Control DNA Pf4 DNA+Pf4 0.00 0.01 1 2 3 antibiotic,µg/ml tob cipro liquid crystal B   DNA   Pf4   DNA+Pf4    C   Results:  Host  and  microbial  polymers  interact  with  Pf  phage  at  disease  relevant  concentraTons  to   spontaneously  assemble  birefringent  liquid  crystals,  similar  to  other  filamentous  phage  in  the   presence  of  syntheTc  polymers  (4).   Liquid  crystals  are  inherently  viscoelasTc   in  nature  and  viscoelasTc  materials   generally  display  reduced  rates  of   diffusion.  Altering  the  viscoelasTc  and   diffusion  properTes  of  the  biofilm  matrix   would  likely  impact  several  disease   phenotypes  such  as  anTbioTc  tolerance.   Primary  hypothesis:   The  matrix  of  phage  producing  biofilms   show  liquid  crystalline  organiza=on,   enhancing  an=bio=c  tolerance.   B 250  µm   250  µm   Results:  Biofilms  with  a  liquid  crystalline  matrix  are  tolerant  to  aminoglycosides.  Liquid   crystals  formed  from  Pf  phage  and  DNA  efficiently  bind  aminoglycosides.