SlideShare a Scribd company logo
1 of 46
Download to read offline
Trash	
  Bottles	
  
A	
  Practical	
  Approach	
  To	
  Postconsumer	
  Plastic	
  Waste	
  
Management	
  
Lars	
  Battle	
  
	
  
Submitted	
  as	
  part	
  of	
  the	
  Requirements	
  for	
  	
  
Masters	
  of	
  Natural	
  Resources	
  	
  
From	
  	
  
Virginia	
  Tech	
  
July	
  2012	
  
	
  
ABSTRACT	
  
As	
  the	
  severity	
  of	
  the	
  global	
  waste	
  problem	
  deepens,	
  society	
  must	
  respond	
  
commensurately	
   by	
   rethinking	
   our	
   linear	
   cradle-­‐to-­‐grave	
   system	
   of	
  
production,	
  consumption,	
  and	
  final	
  disposal.	
  The	
  vision	
  of	
  a	
  future	
  where	
  
our	
   waste	
   can	
   enhance	
   the	
   environment	
   rather	
   than	
   compromise	
   it	
   may	
  
seem	
   unattainable	
   to	
   contemporary	
   society	
   even	
   though	
   it	
   is	
   wholly	
  
necessary	
  if	
  our	
  goal	
  is	
  to	
  preserve	
  the	
  biosphere	
  as	
  we	
  know	
  it	
  for	
  future	
  
generations.	
  Incremental	
  steps	
  are	
  needed	
  to	
  drive	
  this	
  change.	
  In	
  the	
  era	
  
of	
   commercial	
   globalization,	
   plastic	
   bottles	
   and	
   product	
   packaging	
   are	
  
ubiquitous.	
  As	
  such,	
  simple	
  household	
  management	
  solutions	
  for	
  this	
  waste	
  
stream	
  can	
  be	
  globally	
  replicable.	
  Until	
  the	
  uncontrolled	
  spread	
  of	
  single-­‐
use	
   plastics	
   can	
   be	
   reduced	
   to	
   a	
   socially	
   tolerable	
   scale	
   or	
   altogether	
  
eliminated,	
  the	
  safe	
  storage	
  of	
  plastic	
  packaging	
  film	
  in	
  empty,	
  disposable	
  
plastic	
   bottles	
   can	
   help	
   to	
   educate	
   populations,	
   decontaminate	
   the	
  
environment,	
   and	
   give	
   value	
   to	
   waste	
   through	
   its	
   productive	
   reuse	
   in	
  
constructive	
  applications.	
  A	
  trash	
  bottle	
  is	
  any	
  plastic	
  bottle	
  manually	
  filled	
  
to	
   capacity	
   with	
   clean,	
   dry,	
   plastic	
   trash.	
   Improved	
   treatment	
   of	
   plastic	
  
waste	
  can	
  turn	
  this	
  societal	
  burden	
  into	
  a	
  resource	
  of	
  value.	
  	
  
i	
  
	
  
TABLE	
  OF	
  CONTENTS	
  
Preface	
  .....................................................................................................................................................	
  ii	
  
Introduction	
  ...........................................................................................................................................	
  1	
  
Waste	
  ........................................................................................................................................................	
  5	
  
The	
  Municipal	
  Solid	
  Waste	
  Stream	
  ...........................................................................................................	
  7	
  
Plastics	
  ...............................................................................................................................................................	
  8	
  
Ecological	
  Impacts	
  of	
  Plastic	
  ............................................................................................................	
  9	
  
Market	
  Trends	
  .....................................................................................................................................	
  10	
  
Bioplastics	
  .......................................................................................................................................................	
  13	
  
Global	
  Implications	
  ...........................................................................................................................	
  14	
  
Policies	
  ...................................................................................................................................................	
  17	
  
Agenda	
  21	
  ........................................................................................................................................................	
  18	
  
The	
  Resource	
  Conservation	
  and	
  Recovery	
  Act	
  of	
  the	
  United	
  States	
  ............................................	
  19	
  
Subtitle	
  D	
  approach	
  .....................................................................................................................................................	
  19	
  
Market-­‐based	
  Waste	
  Management	
  Strategies	
  ....................................................................................	
  20	
  
Upstream	
  Policy	
  Choices	
  ...........................................................................................................................................	
  21	
  
Downstream	
  Policy	
  Choices	
  ....................................................................................................................................	
  21	
  
MSW	
  Management	
  .............................................................................................................................	
  25	
  
Traditional	
  Approaches	
  ..............................................................................................................................	
  25	
  
Recycling	
  ..........................................................................................................................................................................	
  26	
  
Incineration	
  ....................................................................................................................................................................	
  28	
  
Landfill	
  Disposal	
  ...........................................................................................................................................................	
  29	
  
Alternative	
  Management	
  ............................................................................................................................	
  29	
  
Reuse	
  and	
  Repurposing	
  ..............................................................................................................................	
  30	
  
The	
  Trash	
  Bottle	
  Program	
  Concept	
  ......................................................................................................................	
  31	
  
Trash	
  Bottles	
  in	
  Practice	
  ...........................................................................................................................................	
  33	
  
Long	
  Way	
  Home	
  ............................................................................................................................................................	
  34	
  
Hug	
  It	
  Forward	
  ..............................................................................................................................................................	
  36	
  
Challenges	
  .......................................................................................................................................................................	
  36	
  
Recommendations	
  .............................................................................................................................	
  37	
  
Conclusion	
  ............................................................................................................................................	
  38	
  
References	
  ............................................................................................................................................	
  39	
  
	
  
ii	
  
PREFACE	
  
Based	
   on	
   the	
   research	
   conducted	
   for	
   this	
   report,	
   there	
   appears	
   to	
   be	
   no	
   literature	
   that	
  
elaborates	
   on	
   the	
   idea	
   of	
   filling	
   plastic	
   bottles	
   with	
   compacted	
   trash	
   as	
   an	
   approach	
   to	
  
mitigating	
   the	
   impacts	
   of	
   post-­‐consumer	
   plastic	
   waste.	
   There	
   are,	
   however,	
   numerous	
  
efforts	
   around	
   the	
   globe	
   that	
   promote	
   and	
   implement	
   this	
   methodology	
   with	
   success.	
  
Additionally,	
   websites	
   and	
   instructional	
   videos	
   online	
   advertise	
   the	
   idea	
   and	
   extoll	
   the	
  
myriad	
  benefits.	
  Nevertheless,	
  the	
  concept	
  is	
  relatively	
  unknown.	
  	
  
	
  
To	
  me,	
  the	
  trash	
  bottle	
  approach	
  is	
  an	
  obvious	
  temporary	
  fix	
  for	
  capturing	
  loose	
  plastic	
  in	
  
the	
   absence	
   of	
   proactive	
   waste	
   management	
   controls.	
   The	
   following	
   report	
   seeks	
   to	
  
introduce	
  the	
  problem	
  and	
  present	
  the	
  trash	
  bottle	
  strategy	
  as	
  one	
  promising	
  component	
  
in	
  what	
  must	
  be	
  an	
  integrated	
  waste	
  management	
  approach.	
  Together	
  with	
  the	
  resources	
  
available	
  online,	
  I	
  hope	
  this	
  document	
  can	
  be	
  used	
  as	
  a	
  foundation	
  upon	
  which	
  to	
  build	
  
pilot	
  programs	
  that	
  will	
  test	
  and	
  evaluate	
  the	
  viability	
  of	
  the	
  trash	
  bottle	
  methodology.	
  	
  
	
  
This	
   paper	
   is	
   intended	
   for	
   a	
   variety	
   of	
   audiences	
   including	
   but	
   not	
   limited	
   to	
  
parties/organizations	
   that	
   support	
   decision-­‐makers;	
   consultants	
   working	
   on	
   urban	
  
services,	
  recycling	
  or	
  waste	
  management;	
  representatives	
  of	
  local	
  stakeholders	
  including	
  
community	
   groups,	
   NGOs	
   and	
   the	
   private	
   sector;	
   entrepreneurs	
   seeking	
   to	
   expand	
   their	
  
solid	
  waste	
  portfolios;	
  academicians	
  and	
  scholars	
  involved	
  in	
  environmental	
  management;	
  
donors	
  interested	
  in	
  supporting	
  waste	
  management	
  activities;	
  and	
  local	
  experts	
  interested	
  
in	
  program	
  implementation.	
  
	
  
To	
  provide	
  a	
  brief	
  background	
  on	
  the	
  author,	
  my	
  interest	
  in	
  this	
  concept	
  emerged	
  from	
  
personal	
  experience	
  working	
  in	
  community	
  development	
  in	
  Guatemala	
  between	
  2007	
  and	
  
the	
   present.	
   I	
   was	
   inspired	
   by	
   the	
   potential	
   of	
   this	
   simple	
   idea	
   after	
   observing	
   the	
  
community	
   response	
   to	
   a	
   small	
   financial	
   incentive	
   that	
   encouraged	
   residents	
   to	
   manage	
  
their	
   waste	
   in	
   this	
   way.	
   Given	
   this	
   positive	
   experience,	
   I	
   am	
   invested	
   in	
   the	
   idea	
   and	
   I	
  
practice	
  and	
  promote	
  it	
  in	
  my	
  daily	
  life.	
  
1	
  
INTRODUCTION	
  
Today,	
  the	
  world’s	
  cultures	
  are	
  as	
  diverse	
  as	
  its	
  landscapes	
  are	
  unique.	
  As	
  economic	
  
globalization	
   permeates	
   even	
   the	
   most	
   isolated	
   populations,	
   however,	
   society	
   at	
  
large	
   faces	
   a	
   common	
   threat	
   from	
   the	
   accumulation	
   of	
   foreign	
   waste	
   materials.	
  
Plastic	
  waste	
  in	
  particular	
  threatens	
  public	
  health	
  and	
  the	
  integrity	
  of	
  ecosystems,	
  
causing	
  hazardous	
  changes	
  in	
  concentrations	
  of	
  toxic	
  substances	
  in	
  biogeochemical	
  
cycles,	
  in	
  biodiversity	
  and	
  in	
  climate.	
  Each	
  year	
  the	
  production	
  and	
  consumption	
  of	
  
plastics	
  grow,	
  as	
  does	
  the	
  concern	
  of	
  informed	
  individuals	
  about	
  the	
  environmental	
  
consequences.	
  	
  
	
  
The	
  question	
  highlighted	
  in	
  this	
  paper	
  concerns	
  the	
  management	
  of	
  postconsumer	
  
plastics:	
   Why	
   not	
   stem	
   the	
   flow	
   of	
   this	
   waste	
   stream	
   into	
   landfills	
   and	
   across	
  
landscapes	
  by	
  packing	
  the	
  loose	
  plastic	
  into	
  plastic	
  bottle	
  containers?	
  It	
  is	
  herein	
  
argued	
   that	
   this	
   is	
   not	
   only	
   universally	
   applicable,	
   but	
   the	
   end	
   result	
   is	
   a	
   packed	
  
block	
  that	
  carries	
  a	
  marginal	
  exchange	
  value	
  given	
  its	
  reuse	
  potential	
  in	
  productive	
  
applications.	
  	
  
	
  
Industrialized	
  nations	
  rely	
  on	
  complex	
  systems	
  and	
  extensive	
  networks	
  to	
  collect,	
  
process	
   and	
   dispose	
   of	
   waste.	
   Yet	
   even	
   these	
   reactive	
   efforts	
   are	
   arguably	
   an	
  
insufficient	
   damage	
   control.	
   Recycling	
   is	
   touted	
   as	
   a	
   solution,	
   yet	
   with	
   regard	
   to	
  
plastics	
  it	
  is	
  a	
  failed	
  approach	
  in	
  its	
  current	
  form.	
  A	
  common	
  misconception	
  is	
  that	
  
when	
  sent	
  to	
  the	
  curb	
  for	
  recycling,	
  plastic	
  containers,	
  like	
  aluminum	
  and	
  glass,	
  are	
  
literally	
  reprocessed	
  into	
  an	
  identical	
  product.	
  The	
  truth	
  is	
  that	
  in	
  many	
  cases	
  none	
  
of	
  the	
  recovered	
  plastic	
  is	
  recycled	
  back	
  into	
  its	
  former	
  use	
  but	
  rather	
  ‘downcycled’	
  
into	
  secondary	
  products	
  such	
  as	
  textiles,	
  parking	
  lot	
  bumpers	
  or	
  plastic	
  lumber	
  …all	
  
unrecyclable	
   products	
   (Berkeley	
   Plastics	
   Task	
   Force,	
   1996).	
   After	
   one	
   trip	
   to	
   the	
  
recycling	
   plant,	
   the	
   material	
   is	
   used	
   one	
   final	
   time	
   before	
   its	
   ultimate	
   disposal.	
  
Furthermore,	
  voluntary	
  recycling	
  strategies	
  have	
  not	
  been	
  effective	
  in	
  encouraging	
  
the	
  practice.	
  In	
  2010	
  for	
  example,	
  the	
  United	
  States	
  recovered	
  and	
  recycled	
  only	
  8%	
  
2	
  
of	
   its	
   postconsumer	
   plastics	
   (EPA,	
   2010).	
   Only	
   5%	
   of	
   the	
   1	
   trillion	
   plastic	
   bags	
  
produced	
  annually	
  in	
  the	
  U.S.	
  are	
  being	
  recovered	
  (Sivan,	
  2011).	
  
	
  
Less-­‐industrialized	
   countries	
   have	
   a	
   considerably	
   weaker	
   ability	
   to	
   address	
   the	
  
waste	
  management	
  challenge	
  due	
  to	
  a	
  lack	
  of	
  institutional	
  capacity,	
  infrastructure,	
  
regulation	
   and	
   public	
   guidance	
   on	
   appropriate	
   disposal	
   options.	
   Consequently,	
  
improved	
  solutions	
  are	
  needed	
  to	
  alleviate	
  the	
  worldwide	
  management	
  burdens	
  of	
  
plastic	
  waste,	
  particularly	
  in	
  ill-­‐equipped	
  regions.	
  Borrowing	
  language	
  from	
  a	
  2012	
  
United	
   Nations	
   Environment	
   Program	
   report	
   entitled	
   “Converting	
   Plastics	
   Waste	
  
into	
  a	
  Resource,”	
  emerging	
  economies	
  have	
  a	
  “latecomer’s	
  advantage”	
  in	
  that	
  they	
  
can	
  learn	
  from	
  the	
  experimentation	
  in	
  industrialized	
  nations	
  and	
  avoid	
  unsuccessful	
  
policies.	
  This	
  may	
  be	
  particularly	
  relevant	
  with	
  respect	
  to	
  the	
  recycling	
  of	
  plastics	
  
(UNEP,	
  2009).	
  
	
  
Admittedly,	
   the	
   trash	
   bottle	
   methodology	
   focuses	
   on	
   a	
   symptom	
   of	
   the	
   waste	
  
problem	
   rather	
   than	
   targeting	
   the	
   root	
   causes.	
   Nevertheless,	
   in	
   the	
   absence	
   of	
  
radical	
  change	
  that	
  addresses	
  the	
  fundamental	
  drivers	
  of	
  waste	
  generation,	
  namely	
  
our	
   current	
   brand	
   of	
   economic	
   development	
   and	
   population	
   size	
   and	
   growth,	
  
incremental	
  changes	
  from	
  the	
  ground	
  up	
  can	
  support	
  a	
  necessary	
  cultural	
  response	
  
to	
  our	
  evolving	
  ecological	
  context.	
  Ultimately,	
  the	
  solution	
  to	
  the	
  waste	
  issue	
  resides	
  
upstream,	
  with	
  a	
  paradigm	
  shift	
  in	
  product	
  design	
  and	
  industrial	
  processes	
  that	
  will	
  
eliminate	
   harmful	
   waste	
   from	
   commerce.	
   McDonough	
   and	
   Braungart	
   (2002)	
  
express	
  this	
  vision	
  succinctly	
  by	
  promoting	
  a	
  “waste	
  equals	
  food”	
  paradigm	
  where	
  
the	
  economic	
  system	
  mimics	
  the	
  closed	
  material	
  loops	
  occurring	
  within	
  and	
  among	
  
ecosystems.	
   To	
   a	
   small	
   degree,	
   this	
   shift	
   is	
   taking	
   root	
   with	
   advances	
   in	
   the	
  
development	
  of	
  bioplastics	
  that	
  decompose	
  naturally.	
  This	
  news	
  is	
  promising,	
  but	
  in	
  
its	
  present	
  form	
  it	
  does	
  nothing	
  to	
  mitigate	
  the	
  immediate	
  problem	
  of	
  plastic	
  waste	
  
accumulation.	
   Until	
   industry	
   can	
   stop	
   the	
   bleeding	
   from	
   upstream,	
   new	
  
management	
   strategies	
   that	
   collect	
   and	
   consolidate	
   plastics	
   downstream	
   at	
   the	
  
postconsumer	
  end	
  are	
  vital.	
  	
  
	
  
3	
  
The	
  goal	
  of	
  the	
  trash	
  bottle	
  methodology	
  is	
  to	
  capture	
  and	
  repurpose	
  plastic	
  waste.	
  
The	
  intended	
  benefits	
  are	
  environmental	
  decontamination,	
  improved	
  human	
  health,	
  
increased	
   public	
   engagement	
   and	
   poverty	
   alleviation.	
   Additionally,	
   the	
   cultural	
  
impact	
   of	
   assigning	
   value,	
   whether	
   it	
   is	
   a	
   positive	
   value	
   in	
   the	
   form	
   of	
   the	
   trash	
  
bottle	
  or	
  a	
  negative	
  value	
  as	
  loose	
  waste,	
  can	
  have	
  far-­‐reaching	
  implications	
  for	
  the	
  
future	
   of	
   waste	
   management.	
   By	
   giving	
   a	
   tangible,	
   monetary	
   value	
   to	
   waste	
  
materials,	
   society	
   can	
   rationally	
   assess	
   the	
   costs	
   of	
   the	
   waste	
   problem.	
   The	
   trash	
  
bottle	
   methodology	
   is	
   regarded	
   here	
   as	
   a	
   sensible	
   and	
   practical	
   solution	
   to	
   be	
  
implemented	
   until	
   ecologically	
   appropriate	
   substitutes	
   for	
   single-­‐use	
   plastics	
  
emerge.	
  The	
  strategy	
  buys	
  extra	
  time	
  to	
  transition	
  to	
  a	
  sustainable	
  economic	
  model	
  
that	
  does	
  not	
  achieve	
  progress	
  at	
  the	
  expense	
  of	
  the	
  environment.	
  	
  
	
  
	
   	
   	
  
There	
  are	
  various	
  policy	
  instruments	
  that	
  can	
  be	
  applied	
  to	
  encourage	
  this	
  waste	
  
management	
  behavior.	
  For	
  example,	
  one	
  scenario	
  uses	
  a	
  refund	
  incentive	
  funded	
  by	
  
a	
  tax	
  on	
  all	
  retail	
  items	
  that	
  contain	
  single-­‐use	
  plastics.	
  The	
  tax	
  would	
  raise	
  revenue	
  
to	
  cover	
  program	
  costs,	
  including	
  a	
  public	
  awareness	
  campaign,	
  and	
  a	
  redemption	
  
value	
  per	
  trash	
  bottle	
  that	
  is	
  high	
  enough,	
  depending	
  on	
  the	
  local	
  context,	
  to	
  achieve	
  
Also	
  referred	
  to	
  as	
  “bottle	
  bricks”	
  or	
  “ecobricks,”	
  trash	
  bottles	
  are	
  transformed	
  into	
  
solid	
  bricks	
  when	
  filled	
  to	
  capacity.	
  The	
  20	
  oz.	
  trash	
  bottle	
  holds	
  roughly	
  one	
  lb.	
  of	
  
plastic	
  waste.	
  A	
  one	
  half-­‐gallon	
  container	
  can	
  sequester	
  up	
  to	
  100	
  grocery	
  bags.	
  	
  
Image	
  source:	
  Temple	
  and	
  Rose,	
  2011	
  
	
  
4	
  
public	
  buy-­‐in.	
  While	
  the	
  tax	
  would	
  compel	
  producers	
  to	
  limit	
  or	
  eliminate	
  the	
  use	
  of	
  
plastic	
   packaging,	
   the	
   refund	
   would	
   encourage	
   environmental	
   stewardship.	
   The	
  
approach	
  requires	
  minimal	
  infrastructure	
  and	
  can	
  yield	
  significant	
  ecological,	
  social	
  
and	
  economic	
  benefits.	
  	
  
	
  
An	
   example	
   to	
   be	
   revisited	
   later	
   elaborates	
   on	
   the	
   work	
   of	
   the	
   community	
  
development	
   organization	
   Long	
   Way	
   Home	
   (LWH),	
   which	
   has	
   been	
   charging	
   an	
  
admission	
  fee	
  of	
  one	
  trash	
  bottle	
  per	
  visitor	
  at	
  a	
  popular	
  five-­‐acre	
  recreational	
  park	
  
it	
  has	
  built	
  in	
  the	
  central	
  highlands	
  of	
  Guatemala.	
  In	
  offering	
  a	
  small	
  incentive	
  to	
  
produce	
  trash	
  bottles,	
  a	
  liability	
  has	
  been	
  transformed	
  into	
  a	
  product	
  with	
  practical	
  
use-­‐value.	
   The	
   trash	
   bottle	
   campaign	
   has	
   achieved	
   a	
   vastly	
   cleaner	
   landscape,	
  
exposed	
  local	
  families	
  to	
  a	
  new	
  waste	
  management	
  solution	
  and	
  has	
  simultaneously	
  
created	
  a	
  stream	
  of	
  building	
  materials	
  for	
  Long	
  Way	
  Home’s	
  construction	
  projects.	
  
The	
  social	
  and	
  environmental	
  benefits	
  of	
  collecting	
  and	
  building	
  with	
  waste	
  have	
  
visibly	
   impacted	
   the	
   community.	
   Environmental	
   decontamination	
   is	
   helping	
   to	
  
restore	
  ecosystem	
  integrity.	
  Ridding	
  the	
  landscape	
  of	
  litter	
  has	
  led	
  to	
  an	
  enhanced	
  
cultural	
  value	
  for	
  the	
  predominantly	
  indigenous	
  population.	
  The	
  educational	
  value	
  
of	
   community	
   exposure	
   to	
   improved	
   waste	
   management	
   has	
   empowered	
   the	
  
community	
   and	
   fostered	
   environmental	
   stewardship.	
   The	
   LWH	
   experience	
   and	
  
another	
  example	
  from	
  Central	
  America	
  are	
  regarded	
  as	
  a	
  first	
  iteration	
  of	
  a	
  trash	
  
bottle	
  program	
  that	
  can	
  be	
  expanded	
  and	
  modified	
  to	
  satisfy	
  site-­‐specific	
  dynamics.	
  
	
  
This	
   paper	
   will	
   begin	
   by	
   developing	
   a	
   contextual	
   understanding	
   of	
   the	
   problem	
  
including	
  an	
  overview	
  of	
  the	
  waste	
  challenge	
  in	
  general,	
  an	
  assessment	
  of	
  plastics	
  in	
  
particular,	
  a	
  quantification	
  and	
  characterization	
  of	
  the	
  municipal	
  solid	
  waste	
  stream,	
  
scale,	
   impacts,	
   targeted	
   legislation	
   and	
   management	
   approaches.	
   Taken	
   together,	
  
this	
   information	
   is	
   intended	
   to	
   establish	
   the	
   fact	
   that	
   current	
   measures	
   are	
  
insufficient	
  to	
  address	
  this	
  challenge.	
  This	
  information	
  is	
  followed	
  by	
  a	
  presentation	
  
of	
   the	
   trash	
   bottle	
   concept,	
   repurposing	
   opportunities	
   and	
   policies	
   that	
   can	
  
separately	
   encourage	
   bottle	
   packing	
   behavior	
   and	
   repurposing.	
   Finally,	
   basic	
  
program	
  design	
  recommendations	
  are	
  offered	
  to	
  target	
  audiences.	
  
5	
  
WASTE	
  
Historically,	
  waste	
  generation,	
  distribution	
  and	
  composition	
  has	
  been	
  inextricably	
  
linked	
   to	
   economic	
   expansion	
   and	
   the	
   demographic	
   trends	
   of	
   our	
   growing	
  
population.	
  Until	
  the	
  unbridled	
  growth	
  in	
  these	
  areas	
  is	
  drawn	
  back	
  to	
  a	
  sustainable	
  
scale,	
   a	
   sustainable	
   future	
   is	
   not	
   possible.	
   Resource	
   overconsumption	
   and	
   the	
  
resulting	
   accumulation	
   of	
   waste	
   are	
   among	
   the	
   most	
   important	
   issues	
   presently	
  
facing	
   the	
   global	
   community.	
   Without	
   a	
   course-­‐correction,	
   the	
   trend	
   threatens	
   to	
  
compromise	
  the	
  lives	
  of	
  generations	
  to	
  come.	
  Sustainable	
  development,	
  a	
  concept	
  
that	
  is	
  value	
  laden	
  and	
  can	
  be	
  quite	
  arbitrary,	
  is	
  defined	
  here	
  using	
  the	
  definition	
  
provided	
   by	
   the	
   Brundtland	
   Report	
   from	
   1987:	
   "Sustainable	
   development	
   is	
  
development	
  that	
  meets	
  the	
  needs	
  of	
  the	
  present	
  without	
  compromising	
  the	
  ability	
  
of	
  future	
  generations	
  to	
  meet	
  their	
  own	
  needs.”	
  (Brundtland	
  Commission,	
  1987)	
  
	
  
With	
  this	
  definition	
  in	
  mind,	
  the	
  widespread	
  notion	
  that	
  pro-­‐growth	
  policies	
  are	
  the	
  
answer	
   to	
   global	
   economic	
   challenges	
   must	
   first	
   be	
   exposed	
   as	
   a	
   self-­‐destructive	
  
approach	
  to	
  progress.	
  Staying	
  the	
  course	
  while	
  seeking	
  to	
  maximize	
  efficiency	
  and	
  
relying	
  on	
  the	
  promise	
  of	
  technological	
  innovation	
  to	
  resolve	
  future	
  resource	
  issues	
  
is	
  not	
  a	
  realistic	
  solution	
  in	
  a	
  world	
  with	
  finite	
  resources.	
  Rather,	
  a	
  focal	
  point	
  for	
  
achieving	
   sustainability	
   should	
   be	
   the	
   issue	
   of	
   sustainable	
   scale.	
   	
   The	
   size	
   of	
   an	
  
economy	
  should	
  be	
  directly	
  informed	
  by	
  the	
  regenerative	
  and	
  absorptive	
  capacities	
  
of	
  the	
  ecosystems	
  that	
  sustain	
  it.	
  In	
  other	
  words,	
  resource	
  use	
  should	
  be	
  constrained	
  
by	
   the	
   ecosystem’s	
   renewability	
   rates	
   while	
   the	
   economy’s	
   waste	
   output	
   volume	
  
should	
  respect	
  the	
  ecosystem’s	
  capacity	
  to	
  metabolize	
  the	
  waste	
  stream.	
  This	
  calls	
  
for	
   a	
   steady-­‐state	
   economy	
   that	
   strives	
   for	
   qualitative	
   improvements	
   in	
   the	
  
provision	
   of	
   goods	
   and	
   services	
   without	
   the	
   quantitative	
   increase	
   in	
   material	
  
throughput	
  passing	
  in	
  and	
  out	
  of	
  the	
  system	
  (O’Neill,	
  Dietz	
  &	
  Jones,	
  2010).	
  	
  
	
  
As	
   previously	
   mentioned,	
   unlike	
   the	
   material	
   cycle	
   in	
   nature	
   where	
   one	
   system’s	
  
material	
  output	
  is	
  a	
  corresponding	
  system’s	
  input,	
  our	
  economic	
  output	
  generally	
  is	
  
6	
  
not	
   fed	
   back	
   into	
   any	
   kind	
   of	
   useful	
   circulation.	
   Martin	
   Pawley,	
   the	
   author	
   of	
  
Garbage	
  Housing	
  (1975),	
  explains	
  this	
  inefficiency	
  well:	
  	
  
	
  
“We	
  in	
  the	
  West	
  have	
  come	
  to	
  identify	
  the	
  termination	
  of	
  one	
  use	
  with	
  the	
  
termination	
   of	
   all	
   usefulness,	
   and	
   we	
   carry	
   this	
   simple	
   idea	
   through	
  
ruthlessly,	
  in	
  our	
  own	
  treatment	
  of	
  the	
  old	
  as	
  much	
  as	
  our	
  treatment	
  of	
  
waste	
   products	
   our	
   society	
   generates	
   in	
   such	
   profusion…	
   While	
   waste	
  
remains	
  valueless	
  it	
  will	
  be	
  wasted:	
  and	
  this	
  valuelessness	
  is	
  a	
  consequence	
  
of	
  the	
  tunnel	
  vision	
  from	
  which	
  we	
  in	
  the	
  West	
  all	
  suffer.”	
  
	
  
This	
  “simple	
  idea,”	
  as	
  Pawley	
  puts	
  it,	
  originates	
  from	
  a	
  conceptual	
  oversimplification	
  
of	
   the	
   economy	
   according	
   to	
   the	
   neoclassical	
   model,	
   our	
   prevailing	
   school	
   of	
  
economic	
  thought.	
  The	
  neoclassical	
  philosophy	
  views	
  the	
  economic	
  dimension	
  as	
  a	
  
closed	
   system	
   with	
   waste	
   outputs	
   ‘external’	
   or	
   inconsequential	
   to	
   its	
   proper	
  
functioning.	
  ‘Externalities,’	
  the	
  misnomer	
  by	
  which	
  this	
  class	
  of	
  economic	
  actors	
  are	
  
known,	
  can	
  be	
  positive	
  or	
  negative.	
  What	
  all	
  externalities	
  share	
  is	
  the	
  fact	
  that	
  they	
  
are	
   nonmarket	
   goods	
   or	
   services	
   without	
   an	
   assigned	
   monetary	
   value.	
   Examples	
  
include	
  the	
  intangible	
  benefits	
  of	
  an	
  ecosystem’s	
  waste	
  assimilation	
  capacity	
  or	
  the	
  
costs	
   of	
   waste	
   emissions.	
   Without	
   an	
   economic	
   value	
   or	
   sufficient	
   regulatory	
  
controls,	
   externalities	
   represent	
   a	
   market	
   failure	
   and	
   have	
   not	
   received	
   adequate	
  
attention	
  in	
  spite	
  of	
  their	
  relative	
  importance.	
  
	
  
As	
  the	
  waste	
  problem	
  becomes	
  increasingly	
  burdensome,	
  the	
  conceptualization	
  of	
  
the	
  economy	
  as	
  a	
  closed	
  system	
  is	
  no	
  longer	
  appropriate.	
  The	
  feedback	
  relationship	
  
of	
   accumulating	
   waste	
   in	
   the	
   environment	
   is	
   a	
   story	
   of	
   growing	
   stressors	
   that	
  
adversely	
   affect	
   the	
   economy.	
   To	
   paraphrase	
   McDonough	
   and	
   Braungart,	
   the	
  
authors	
  of	
  Cradle	
  to	
  Cradle,	
  we	
  are	
  all	
  downstream	
  from	
  the	
  wastes	
  we	
  produce.	
  	
  
	
  
Internalizing	
   the	
   solid	
   waste	
   externality	
   can	
   be	
   accomplished	
   through	
   its	
  
incorporation	
  into	
  the	
  monetized	
  economy.	
  Assigning	
  an	
  economic	
  value	
  to	
  waste	
  
materials	
  will	
  facilitate	
  rational	
  decision-­‐making	
  by	
  revealing	
  costs	
  associated	
  with	
  
7	
  
waste	
  and	
  wasteful	
  behavior.	
  A	
  trash	
  bottle	
  program	
  that	
  can	
  effectively	
  impart	
  an	
  
exchange	
  value	
  on	
  each	
  unit	
  can	
  demonstrate	
  this	
  idea.	
  Items	
  that	
  carry	
  an	
  exchange	
  
value	
   function	
   as	
   a	
   form	
   of	
   currency	
   and	
   as	
   such	
   can	
   change	
   the	
   way	
   they	
   are	
  
viewed	
  by	
  society.	
  	
  
	
  
THE	
  MUNICIPAL	
  SOLID	
  WASTE	
  STREAM	
  
The	
  waste	
  materials	
  that	
  make	
  up	
  the	
  trash	
  bottle	
  are	
  found	
  in	
  the	
  Municipal	
  Solid	
  
Waste	
  (MSW)	
  stream.	
  The	
  MSW	
  stream	
  comprises	
  only	
  7%	
  of	
  overall	
  waste	
  output	
  
in	
   the	
   U.S.	
   compared	
   to	
   the	
   larger	
   waste	
   categories	
   including	
   industrial	
   and	
  
commercial	
   (20%),	
   agricultural	
   (17%),	
   mining	
   (19%),	
   and	
   demolition	
   and	
  
construction	
   (22%).	
   Nevertheless,	
   MSW	
   management	
   is	
   the	
   most	
   visible	
  
demonstration	
  of	
  current	
  efforts	
  to	
  address	
  the	
  waste	
  challenge	
  and	
  therefore	
  has	
  a	
  
high	
  potential	
  to	
  guide	
  public	
  awareness	
  and	
  affect	
  positive	
  change.	
  This	
  category	
  of	
  
waste	
  is	
  particularly	
  challenging	
  to	
  manage	
  due	
  to	
  its	
  broad	
  spatial	
  distribution	
  and	
  
diverse	
   composition.	
   The	
   stream	
   primarily	
   includes	
   durable	
   goods,	
   nondurable	
  
goods,	
   containers,	
   packaging,	
   food	
   and	
   yard	
   waste.	
   Within	
   the	
   U.S.	
   MSW	
   stream,	
  
plastics	
  account	
  for	
  12.4%	
  of	
  its	
  total,	
  with	
  an	
  annual	
  average	
  volume	
  of	
  roughly	
  14	
  
million	
  tons	
  (EPA,	
  2010).	
  	
  
	
  
A	
  rapid	
  increase	
  in	
  the	
  cost	
  of	
  waste	
  disposal	
  services	
  in	
  the	
  U.S.	
  is	
  attributed	
  to	
  
increasing	
  waste	
  volume,	
  evolving	
  government	
  regulations	
  and	
  limited	
  space.	
  The	
  
U.S.	
  Environmental	
  Protection	
  Agency	
  estimates	
  the	
  cost	
  of	
  MSW	
  disposal	
  at	
  $100	
  
per	
  ton,	
  with	
  costs	
  growing	
  at	
  $1.64	
  per	
  ton	
  each	
  year.	
  	
  The	
  annual	
  cost	
  of	
  MSW	
  
management	
  in	
  the	
  U.S.	
  could	
  therefore	
  be	
  as	
  much	
  as	
  $23.8	
  billion	
  (Letcher	
  and	
  
Valero,	
  2011).	
  This	
  figure	
  does	
  not	
  include	
  the	
  ‘external	
  costs’	
  to	
  society	
  such	
  as	
  the	
  
impacts	
  on	
  atmospheric	
  CO2	
  concentration,	
  public	
  health	
  and	
  habitat	
  degradation.	
  In	
  
less-­‐industrialized	
   nations,	
   external	
   costs	
   are	
   often	
   more	
   visible	
   given	
   the	
   higher	
  
incidence	
  of	
  illegal	
  dumping	
  and	
  open	
  burning	
  of	
  waste.	
  	
  
	
  
8	
  
PLASTICS	
  
The	
  term	
  ‘plastics’	
  refers	
  to	
  biomass	
  and	
  petroleum-­‐based	
  materials	
  that	
  at	
  some	
  
stage	
  in	
  the	
  production	
  process	
  reach	
  a	
  viscous	
  state	
  that	
  allows	
  them	
  to	
  be	
  molded,	
  
cast,	
  spun	
  or	
  applied	
  as	
  a	
  coating	
  (Thompson	
  et	
  al,	
  2009).	
  Polymers	
  are	
  typically	
  
produced	
  by	
  polymerization	
  of	
  oil	
  or	
  gas	
  monomers,	
  incorporating	
  various	
  chemical	
  
additives	
  in	
  the	
  process	
  such	
  as	
  antioxidants,	
  stabilizers,	
  softeners,	
  flame-­‐retardants	
  
and	
   pigments	
   in	
   order	
   to	
   give	
   the	
   product	
   different	
   aesthetic	
   and	
   performance	
  
attributes	
   (UNEP,	
   2009).	
   Plastics	
   are	
   versatile	
   and	
   lightweight	
   materials	
   with	
  
properties	
  that	
  yield	
  innumerable	
  social	
  benefits	
  (Andrady	
  &	
  Neal	
  2009).	
  	
  
	
  
The	
   history	
   of	
   plastics	
   began	
   in	
   1868	
   when	
   John	
   W.	
   Hyatt	
   invented	
   celluloid	
  
(Freinkel,	
  2011).	
  Celluloid	
  is	
  made	
  from	
  wood	
  pulp,	
  plant	
  fibers	
  (cellulose)	
  or	
  cotton	
  
fibers	
   treated	
   with	
   nitrogen	
   and	
   camphor.	
   By	
   treating	
   cellulose	
   with	
   acids	
   and	
  
solvents,	
  cellophane	
  and	
  rayon	
  were	
  invented.	
  This	
  class	
  of	
  plant-­‐based	
  plastics	
  is	
  
referred	
   to	
   as	
   bioplastics.	
   In	
   1907,	
   when	
   Leo	
   Bakeland	
   developed	
   the	
   first	
  
petroleum-­‐based	
   plastics,	
   the	
   attention	
   on	
   bioplastics	
   development	
   essentially	
  
halted.	
  The	
  versatility	
  of	
  plastics	
  originating	
  from	
  crude	
  oil	
  or	
  natural	
  gas	
  was	
  clear.	
  	
  
	
  
The	
  material	
  is	
  relatively	
  inexpensive,	
  lightweight,	
  strong,	
  durable,	
  and	
  corrosion-­‐
resistant	
   and	
   has	
   high	
   thermal	
   and	
   electrical	
   insulation	
   properties.	
   With	
  
degradation	
  periods	
  ranging	
  from	
  hundreds	
  to	
  thousands	
  of	
  years,	
  there	
  simply	
  has	
  
not	
   been	
   time	
   to	
   understand	
   the	
   long-­‐term	
   impacts.	
   Only	
   recently,	
   as	
   the	
  
repercussions	
  of	
  petroleum-­‐based	
  plastics	
  become	
  more	
  apparent,	
  has	
  the	
  industry	
  
returned	
  to	
  the	
  research	
  and	
  development	
  of	
  bioplastics.	
  
	
  
While	
  plastics	
  are	
  primarily	
  comprised	
  of	
  organic	
  material,	
  they	
  typically	
  degrade	
  
by	
  exposure	
  to	
  light,	
  heat,	
  moisture	
  and	
  pollutants	
  rather	
  than	
  through	
  biological	
  
processes	
  (Moore,	
  2011).	
  Though	
  only	
  8%	
  of	
  all	
  petroleum	
  use	
  is	
  directed	
  towards	
  
plastics	
   manufacturing,	
   the	
   source	
   is	
   a	
   concern,	
   as	
   is	
   the	
   fact	
   that	
   the	
   product	
   is	
  
neither	
  compostable	
  nor	
  biodegradable.	
  In	
  the	
  past	
  70	
  years,	
  the	
  plastic	
  industry	
  
has	
   seen	
   a	
   dramatic	
   increase	
   in	
   the	
   production	
   of	
   synthetic	
   polymers,	
   or	
   plastics	
  
9	
  
produced	
  with	
  additives	
  to	
  modify	
  their	
  structural	
  properties.	
  These	
  plastics	
  include	
  
two	
   categories	
   known	
   as	
   thermoplastics	
   and	
   thermosets.	
   Thermoplastics	
   can	
   be	
  
softened	
  and	
  melted	
  when	
  reheated	
  and	
  then	
  formed	
  into	
  new	
  shapes	
  when	
  cooled,	
  
while	
   thermosets	
   cannot.	
   Thermoplastics	
   constitute	
   80%	
   of	
   global	
   plastics	
  
production	
  and	
  are	
  the	
  focus	
  of	
  the	
  trash	
  bottle	
  methodology.	
  This	
  category	
  includes	
  
polyethylene	
  (PE),	
  polypropylene	
  (PP),	
  polystyrene	
  (PS),	
  polyethylene	
  terephthalate	
  
(PET),	
  and	
  polyvinyl	
  chloride	
  (PVC)	
  (UNEP,	
  2009).	
  	
  
ECOLOGICAL	
  IMPACTS	
  OF	
  PLASTIC	
  
Traditional	
  polymers	
  such	
  as	
  PE	
  use	
  fossil	
  feedstocks	
  with	
  carbon	
  fixation	
  rates	
  in	
  
the	
  millions	
  of	
  years.	
  Once	
  processed,	
  their	
  carbon	
  release	
  rate	
  into	
  the	
  environment	
  
is	
   1-­‐10	
   years.	
   This	
   increases	
   atmospheric	
   CO2.	
  	
   In	
   contrast,	
   plant-­‐based	
   polymers	
  
use	
  renewable	
  feedstocks,	
  and	
  their	
  release	
  of	
  CO2	
  can	
  be	
  neutralized	
  the	
  following	
  
season	
  simply	
  by	
  replanting	
  the	
  feedstock	
  (Bastioli,	
  2005).	
  	
  
	
  
When	
  plastic	
  debris	
  is	
  exposed	
  to	
  UV	
  irradiation	
  from	
  sunlight	
  it	
  undergoes	
  photo	
  
oxidation.	
   It	
   deteriorates	
   by	
   losing	
   its	
   tensile	
   strength	
   and	
   crumbling	
   into	
  
progressively	
  smaller	
  fragments	
  known	
  as	
  microplastics.	
  A	
  loss	
  of	
  molecular	
  weight	
  
occurs	
  during	
  plastic	
  fragmentation	
  through	
  the	
  departure	
  or	
  ‘leaching’	
  of	
  chemical	
  
compounds,	
  outgassing	
  of	
  petrochemicals	
  as	
  well	
  as	
  the	
  attraction	
  of	
  nearby	
  toxins	
  
(Moore	
  et	
  al.,	
  2001).	
  	
  
	
  
Plastics	
  that	
  contain	
  various	
  synthetic	
  additives	
  are	
  a	
  concern	
  for	
  human	
  and	
  animal	
  
health.	
   Styrene,	
   for	
   instance,	
   is	
   a	
   known	
   carcinogen.	
   The	
   petrochemical	
   BPA,	
  
currently	
  applied	
  as	
  a	
  hardening	
  agent,	
  was	
  first	
  used	
  as	
  a	
  synthetic	
  estrogen.	
  BPA	
  is	
  
a	
   known	
   endocrine	
   system	
   disruptor	
   (Yang	
   et	
   al.,	
   2011).	
   In	
   spite	
   of	
   growing	
  
awareness	
   about	
   the	
   public	
   health	
   implications,	
   the	
   demand	
   for	
   plastics	
   steadily	
  
grows.	
  	
  
	
  
The	
   spatial	
   distribution	
   of	
   plastic	
   waste	
   is	
   astounding.	
   Terrestrial	
   landscapes,	
  
particularly	
   in	
   less-­‐industrialized	
   countries,	
   are	
   often	
   blanketed	
   with	
   windblown	
  
10	
  
debris.	
  Wind	
  and	
  rains	
  flush	
  much	
  of	
  this	
  waste	
  into	
  rivers	
  and	
  streams	
  that	
  in	
  turn	
  
transport	
   it	
   to	
   the	
   oceans.	
   Ocean	
   currents	
   carry	
   plastic	
   indiscriminately	
   to	
  
seashores,	
   seafloors	
   and	
   throughout	
   the	
   surface.	
   It	
   is	
   an	
   impermeable	
   material,	
  
preventing	
  the	
  passage	
  of	
  water	
  or	
  air,	
  presenting	
  a	
  hazard	
  to	
  plants	
  and	
  animals	
  
alike.	
  	
  
	
  
The	
  most	
  dramatic	
  example	
  of	
  marine	
  debris	
  is	
  the	
  North	
  Pacific	
  Gyre,	
  also	
  known	
  
as	
  the	
  Great	
  Pacific	
  Garbage	
  Patch.	
  This	
  is	
  an	
  immense	
  cluster	
  of	
  marine	
  debris	
  that	
  
highlights	
   plastics’	
   uncontrolled	
   spread.	
   According	
   to	
   the	
   National	
   Oceanic	
   and	
  
Atmospheric	
   Administration,	
   it	
   is	
   not	
   possible	
   to	
   accurately	
   provide	
   the	
   exact	
  
location,	
  size	
  or	
  volume	
  of	
  trash	
  here,	
  but	
  estimates	
  are	
  as	
  high	
  as	
  4	
  million	
  tons	
  
spread	
  out	
  over	
  an	
  area	
  one	
  or	
  two	
  times	
  the	
  size	
  of	
  Texas.	
  Plastic	
  bags	
  and	
  PET	
  
bottles	
  are	
  the	
  most	
  pervasive	
  type	
  of	
  marine	
  litter	
  around	
  the	
  world,	
  accounting	
  for	
  
more	
  than	
  80%	
  of	
  all	
  rubbish	
  collected	
  in	
  a	
  regional	
  seas	
  assessment	
  (UNEP,	
  2009).	
  
	
  
Plastics	
  damage	
  coral	
  reefs,	
  ensnare	
  animals	
  and	
  can	
  be	
  misidentified	
  as	
  food	
  and	
  
ingested.	
  Plastic	
  debris	
  accumulating	
  in	
  the	
  food	
  chain	
  is	
  exerting	
  multiple	
  hazards	
  
on	
   wildlife	
   and	
   ultimately	
   on	
   humans	
   with	
   repercussions	
   that	
   are	
   poorly	
  
understood,	
   but	
   certain	
   nonetheless	
   (Sivan,	
   2011).	
   Ingesting	
   plastic	
   can	
   cause	
  
internal	
  injury,	
  blockage	
  of	
  the	
  digestive	
  tract	
  and	
  starvation.	
  The	
  United	
  Nations	
  
Environment	
   Program	
   estimates	
   that	
   more	
   than	
   1	
   million	
   seabirds	
   and	
   100,000	
  
non-­‐avian	
  marine	
  animals	
  die	
  every	
  year	
  from	
  ingesting	
  plastics	
  (UNEP,	
  2005).	
  
MARKET	
  TRENDS	
  
Plastics	
  are	
  now	
  used	
  in	
  most	
  aspects	
  of	
  everyday	
  life.	
  Over	
  the	
  past	
  12	
  years,	
  more	
  
plastics	
  have	
  been	
  produced	
  than	
  in	
  the	
  entire	
  20th	
  century	
  (Freinkel,	
  2011).	
  From	
  
1990	
  to	
  2007,	
  production	
  of	
  all	
  types	
  of	
  plastics	
  more	
  than	
  tripled	
  from	
  80	
  million	
  to	
  
260	
   million	
   tons,	
   now	
   accounting	
   for	
   approximately	
   8%	
   of	
   world	
   oil	
   production	
  
(Letcher	
  and	
  Valero,	
  2011).	
  It	
  is	
  estimated	
  that	
  production	
  of	
  plastics	
  worldwide	
  is	
  
growing	
  at	
  a	
  rate	
  of	
  approximately	
  5%	
  per	
  year	
  (Letcher	
  and	
  Valero,	
  2011).	
  	
  This	
  
growth	
  far	
  exceeds	
  global	
  recycling	
  and	
  reuse	
  rates. 	
  
11	
  
	
  
Data Source: http://cipet.gov.in/plastics_statics.html
	
  
Any	
  type	
  of	
  plastic	
  that	
  can	
  fit	
  into	
  the	
  trash	
  bottle	
  via	
  the	
  bottleneck	
  is	
  appropriate.	
  
Polyethylene	
   is	
   the	
   most	
   consumed	
   synthetic	
   polymer	
   with	
   a	
   current	
   global	
  
production	
  of	
  roughly	
  140	
  million	
  tons	
  per	
  year	
  (Sivan,	
  2011).	
  	
  The	
  content	
  of	
  trash	
  
bottles	
   generally	
   falls	
   into	
   two	
   of	
   the	
   three	
   categories	
   of	
   PE	
   that	
   exist.	
   The	
   first	
  
category	
   is	
   LDPE	
   or	
   low-­‐density	
   polyethylene,	
   manufactured	
   through	
   a	
   high-­‐
pressure	
  method	
  that	
  achieves	
  soft,	
  ductile	
  and	
  flexible	
  properties.	
  LDPE	
  accounts	
  
for	
  1/3	
  of	
  household	
  trash	
  in	
  the	
  United	
  States	
  in	
  the	
  form	
  of	
  packaging	
  film	
  and	
  
bags.	
  Roughly	
  67%	
  of	
  global	
  LDPE	
  demand	
  corresponds	
  to	
  these	
  uses.	
  The	
  second	
  
category,	
   with	
   similar	
   properties	
   to	
   LDPE	
   is	
   LLDPE	
   or	
   linear	
   low-­‐density	
  
polyethylene,	
  which	
  is	
  used	
  in	
  agricultural	
  films,	
  stretch	
  wrap	
  for	
  covering	
  food	
  and	
  
bubble	
  wrap.	
  Packaging	
  consisting	
  of	
  PE	
  represents	
  a	
  key	
  growth	
  segment	
  (Figure	
  
2.)	
  accounting	
  for	
  over	
  35%	
  of	
  the	
  global	
  consumption	
  (CIPET,	
  2012).	
  Once	
  again,	
  
this	
   is	
   the	
   primary	
   material	
   targeted	
   for	
   safe	
   storage	
   by	
   the	
   trash	
   bottle	
  
methodology.	
  	
  
0	
  
2	
  
4	
  
6	
  
8	
  
10	
  
12	
  
PS	
   PVC	
   PE	
   PP	
   PET	
  
%	
  Average	
  
Annual	
  	
  
Growth	
  Rate	
  
Figure	
  1.	
  Global	
  Growth	
  Rates	
  (2004	
  -­‐	
  
2010)	
  
12	
  
Data Source: http://cipet.gov.in/plastics_statics.html
	
  
The	
   container	
   element	
   of	
   the	
   trash	
   bottle	
   is	
   typically	
   made	
   from	
   polyethylene	
  
terephthalate	
  or	
  PET	
  used	
  in	
  carbonated	
  and	
  non-­‐carbonated	
  beverages,	
  but	
  high-­‐
density	
  polyethylene	
  or	
  HDPE	
  used	
  in	
  milk	
  and	
  detergent	
  bottles	
  is	
  equally	
  suitable.	
  
In	
  the	
  U.S.	
  market,	
  95%	
  of	
  all	
  plastic	
  bottles	
  are	
  either	
  PET	
  or	
  HDPE	
  (Headwaters	
  
Cooperative	
  Recycling,	
  2012).	
  The	
  bottle	
  industry	
  continues	
  to	
  experience	
  annual	
  
growth,	
  with	
  the	
  greatest	
  demand	
  coming	
  from	
  the	
  United	
  States,	
  China	
  and	
  Mexico.	
  	
  
	
  
Corporate	
   social	
   and	
   environmental	
   responsibility	
   is	
   becoming	
   increasingly	
  
important	
  in	
  the	
  global	
  marketplace.	
  According	
  to	
  a	
  2010	
  Accenture	
  report	
  titled	
  
The	
   New	
   Era	
   of	
  Sustainability,	
   93%	
   of	
   CEOs	
   affirm	
   that	
   pursuing	
   a	
   sustainable	
  
business	
  model	
  is	
  critical	
  to	
  success.	
  At	
  present,	
  however,	
  there	
  is	
  no	
  single	
  business	
  
enterprise	
   that	
   has	
   achieved	
   carbon	
   neutrality.	
   Nevertheless,	
   studies	
   have	
   shown	
  
that	
   companies	
   adapting	
   to	
   the	
   evolving	
   social	
   and	
   environmental	
   context	
   with	
  
innovative	
   solutions	
   tend	
   to	
   demonstrate	
   above	
   average	
   financial	
   performance	
  
(Lacy	
  et	
  al.,	
  2010).	
  Rather	
  than	
  eliminate	
  adverse	
  impacts	
  from	
  industry,	
  however,	
  
most	
  companies	
  strive	
  to	
  maximize	
  the	
  efficiency	
  of	
  existing	
  processes.	
  Efficiency	
  in	
  
0	
  
200	
  
400	
  
600	
  
800	
  
1000	
  
1200	
  
1400	
  
1600	
  
1800	
  
2000	
  
2000	
   2002	
   2004	
   2006	
   2008	
   2010	
   2012	
  
thousand	
  tons	
  per	
  year	
  
	
  
Figure	
  2.	
  Global	
  Polyethylene	
  (PE)	
  
Demand	
  Growth	
  
HDPE	
  
LLDPE	
  
LDPE	
  
13	
  
this	
   context	
   implies	
   doing	
   less	
   harm,	
   which	
   is	
   fundamentally	
   different	
   from	
   a	
  
sustainable	
  approach	
  that	
  calls	
  for	
  corrective	
  actions	
  at	
  the	
  root	
  of	
  the	
  problem.	
  
	
  
Take	
   as	
   an	
   example	
   the	
   three	
   largest	
   suppliers	
   of	
   bottled	
   beverages:	
   Coca-­‐Cola,	
  
Pepsi	
   and	
   Nestlé.	
   These	
   companies	
   are	
   touting	
   their	
   efforts	
   of	
   minimizing	
   their	
  
packaging	
   footprint	
   but	
   the	
   focus	
   on	
   biodegradable	
   and	
   compostable	
   bioplastics	
  
does	
   not	
   appear	
   to	
   be	
   a	
   priority.	
   For	
   instance,	
   blasted	
   as	
   greenwashing	
   by	
  
environmentalists,	
  Coke’s	
  recently	
  released	
  “PlantBottle”	
  is	
  still	
  mostly	
  petroleum-­‐
based	
  (Loepp,	
  2011).	
  Instead,	
  the	
  companies	
  are	
  setting	
  ambitious	
  recycling	
  goals	
  
and	
  minimizing	
  packaging	
  volume	
  while	
  essentially	
  using	
  the	
  same	
  materials	
  (Pepsi,	
  
2010;	
  Coca-­‐Cola,	
  2011;	
  Nestlé,	
  2011).	
  Each	
  company	
  has	
  outlined	
  efforts	
  to	
  reduce	
  
bottle	
  weight	
  (light-­‐weighting)	
  while	
  increasing	
  the	
  amount	
  of	
  recycled	
  PET.	
  Coca-­‐
Cola’s	
   2010/2011	
   Sustainability	
   Review	
   explains	
   the	
   rationale:	
   “Capturing	
   the	
  
embodied	
  energy	
  and	
  raw	
  materials	
  in	
  beverage	
  bottles	
  for	
  reuse	
  through	
  recycling,	
  
we	
   believe,	
   is	
   a	
   better	
   option	
   for	
   our	
   business	
   and	
   for	
   the	
   environment	
   than	
   a	
  
biodegradable	
   packaging	
   when	
   considered	
   over	
   the	
   package	
   lifecycle.”	
   While	
  
demand	
  grows	
  for	
  their	
  products	
  as	
  the	
  global	
  economy	
  expands,	
  this	
  approach	
  is	
  
not	
  sustainable.	
  
BIOPLASTICS	
  
Bioplastics	
  fall	
  into	
  one	
  or	
  both	
  of	
  two	
  general	
  categories:	
  biomass-­‐based	
  plastics	
  
and	
  biodegradable	
  plastics.	
  Biomass-­‐based	
  plastics	
  can	
  be	
  either	
  biodegradable	
  or	
  
non-­‐biodegradable	
   just	
   as	
   biodegradable	
   polymers	
   can	
   also	
   be	
   petroleum-­‐based	
  
(Mugdal	
  et	
  al.,	
  2011).	
  Bioplastics	
  in	
  general	
  have	
  shown	
  growth	
  over	
  the	
  past	
  two	
  
years,	
  in	
  spite	
  of	
  the	
  global	
  economic	
  downturn,	
  but	
  their	
  production	
  base	
  remains	
  
quite	
  small	
  compared	
  to	
  the	
  petroleum-­‐based	
  plastics	
  market.	
  Greater	
  awareness	
  
about	
   environmental	
   concerns	
   and	
   government	
   initiatives	
   are	
   cited	
   as	
   drivers	
  
behind	
  this	
  growth	
  (Killam,	
  2010).	
  	
  
	
  
The	
  sources	
  of	
  bioplastics	
  are	
  diverse,	
  but	
  the	
  benefits	
  are	
  similar.	
  Biomass-­‐derived	
  
plastics	
  require	
  less	
  energy	
  to	
  produce	
  than	
  conventional	
  plastics	
  and	
  they	
  are	
  made	
  
14	
  
with	
   renewable	
   biomass.	
   Conventional	
   plastics	
   accumulate	
   in	
   landfills	
   and	
   take	
  
thousands	
  of	
  years	
  to	
  disintegrate	
  while	
  biodegradable	
  plastics	
  can	
  be	
  ‘upcycled’	
  as	
  
compost	
  to	
  nourish	
  soil.	
  The	
  result	
  is	
  less	
  landfill	
  usage,	
  less	
  pollution	
  and	
  a	
  smaller	
  
carbon	
  footprint.	
  
Cornstarch-­‐based	
   bioplastics	
   have	
   been	
   in	
   existence	
   for	
   20	
   years	
   and	
   claim	
   a	
  
majority	
   market	
   share	
   of	
   biodegradable	
   plastics	
   (Center	
   for	
   American	
   Progress,	
  
2011).	
   Other	
   bioplastics	
   under	
   development	
   include	
   those	
   using	
   sources	
   such	
   as	
  
potatoes,	
  sugar	
  cane	
  and	
  mushrooms.	
  The	
  mycelium	
  in	
  a	
  mushroom’s	
  root	
  structure	
  
is	
  a	
  particularly	
  promising	
  discovery	
  for	
  bioplastics.	
  Entrepreneurs	
  Gavin	
  McIntyre	
  
and	
   Eben	
   Bayer	
   use	
   mycelium	
   as	
   an	
   all-­‐natural	
   and	
   self-­‐assembling	
   styrene	
  
substitute.	
   It	
   is	
   a	
   green	
   packaging	
   alternative	
   that	
   requires	
   98%	
   less	
   energy	
   to	
  
produce	
  than	
  conventional	
  packaging	
  materials.	
  In	
  essence,	
  agricultural	
  crop	
  waste	
  
is	
  ground	
  up,	
  infused	
  with	
  mycelium	
  and	
  placed	
  into	
  a	
  mold	
  for	
  five	
  days.	
  During	
  
this	
  period,	
  the	
  mycelium	
  grows	
  and	
  binds	
  the	
  material.	
  The	
  postconsumer	
  product	
  
is	
  fully	
  compostable	
  (Bayer,	
  2010).	
  
	
  
There	
   are	
   a	
   number	
   of	
   biodegradable	
   plastic	
   products	
   currently	
   available	
   to	
  
consumers.	
  These	
  products	
  range	
  from	
  water	
  bottles	
  to	
  garbage	
  bags	
  to	
  amenities	
  
and	
  are	
  made	
  in	
  traditional	
  plastics-­‐processing	
  plants.	
  	
  Indications	
  of	
  the	
  emergence	
  
of	
   mainstream	
   bioplastics	
   are	
   promising,	
   but	
   the	
   growth	
   of	
   synthetic	
   polymers	
  
remains	
  largely	
  unaffected.	
  
GLOBAL	
  IMPLICATIONS	
  
Over	
  half	
  of	
  the	
  global	
  population	
  now	
  lives	
  in	
  urban	
  areas	
  (Macdonald,	
  2008).	
  The	
  
UN	
  Population	
  Division	
  estimates	
  an	
  additional	
  1.7	
  billion	
  new	
  urban	
  residents	
  to	
  
arrive	
   in	
   the	
   next	
   25	
   years	
   (UNPD,	
   2008).	
   This	
   demographic	
   shift	
   may	
   help	
   to	
  
alleviate	
  pressure	
  on	
  rural	
  ecology	
  even	
  though	
  most	
  of	
  the	
  urban	
  growth	
  observed	
  
is	
   occurring	
   in	
   less-­‐industrialized	
   countries	
   where	
   poor	
   waste	
   management	
   can	
  
exacerbate	
  public	
  health	
  risks.	
  Mike	
  Davis	
  (2005)	
  describes	
  the	
  magnitude	
  of	
  the	
  
problem:	
  
15	
  
	
  
	
  “…of	
   all	
   the	
   dangerous	
   ecological	
   symptoms	
   of	
   runaway	
   urban	
   poverty,	
  
none	
  poses	
  a	
  bigger	
  threat	
  than	
  overflowing	
  waste.	
  The	
  chronic	
  shortfalls	
  
between	
  the	
  rates	
  of	
  trash	
  generation	
  and	
  disposal	
  in	
  third	
  world	
  cities	
  are	
  
often	
  staggering:	
  the	
  average	
  collection	
  rate	
  in	
  Dar	
  el	
  Salaam	
  is	
  barely	
  25	
  
percent;	
  in	
  Karachi,	
  40	
  percent;	
  in	
  Jakarta,	
  60	
  percent.	
  The	
  city-­‐planning	
  
director	
   in	
   Kabul	
   complained	
   to	
   the	
   Washington	
   Post	
   that	
   his	
   city	
   is	
  
becoming	
   one	
   big	
   reservoir	
   of	
   solid	
   waste…	
   Every	
   24	
   hours,	
   2	
   million	
  
people	
  produce	
  800	
  cubic	
  meters	
  of	
  solid	
  waste.	
  If	
  all	
  40	
  of	
  our	
  trucks	
  make	
  
three	
  trips	
  a	
  day,	
  they	
  can	
  still	
  transport	
  only	
  200	
  to	
  300	
  cubic	
  meters.”	
  
	
  
Whereas	
   the	
   pioneer	
   industrialized	
   cities	
   of	
   the	
   world	
   have	
   confronted	
  
environmental	
   challenges	
   in	
   a	
   sequential	
   order	
   corresponding	
   with	
   their	
   gradual	
  
infrastructural	
  growth,	
  rapidly	
  urbanizing	
  cities	
  in	
  less-­‐industrialized	
  countries	
  are	
  
undergoing	
  a	
  “time-­‐space	
  compression”	
  in	
  that	
  they	
  must	
  grapple	
  simultaneously	
  
with	
  compounded	
  environmental	
  impacts	
  (Marcotullio	
  et	
  al.,	
  2003,	
  p	
  220;	
  Harvey,	
  
1989).	
   These	
   sets	
   of	
   environmental	
   challenges,	
   (e.g.	
   localized	
   solid	
   waste	
  
management,	
  regionalized	
  water	
  contamination	
  and	
  global	
  air	
  pollution)	
  have	
  been	
  
faced	
  concurrently	
  by	
  the	
  emerging	
  actors	
  in	
  the	
  global	
  marketplace	
  whose	
  capacity	
  
to	
  effectively	
  address	
  them	
  is	
  limited.	
  As	
  of	
  2007,	
  the	
  Western	
  European	
  and	
  North	
  
American	
   markets	
   accounted	
   for	
   44%	
   of	
   global	
   demand	
   for	
   synthetic	
   polymers	
  
(Mudgal	
   et	
   al.,	
   2011).	
   Emerging	
   economies	
   in	
   Eastern	
   Europe,	
   Russia,	
   the	
   Asian	
  
Pacific	
  and	
  the	
  Middle	
  East	
  are	
  increasingly	
  expanding	
  their	
  market	
  share.	
  	
  
	
  
Industrialized	
  countries	
  have	
  by	
  no	
  means	
  ‘solved’	
  the	
  waste	
  issue	
  either.	
  Rather,	
  
they	
  have	
  merely	
  managed	
  to	
  mitigate	
  short-­‐term	
  public	
  health	
  risks	
  by	
  displacing	
  
pollution	
   to	
   landfills,	
   to	
   downstream	
   ecosystems,	
   into	
   the	
   atmosphere	
   or	
   by	
  
exporting	
  the	
  polluting	
  activities	
  of	
  industry	
  abroad.	
  To	
  the	
  public,	
  what	
  is	
  out	
  of	
  
sight	
  is	
  also	
  out	
  of	
  mind,	
  suggesting	
  that	
  hiding	
  the	
  problem	
  from	
  view	
  impedes	
  the	
  
type	
   of	
   cultural	
   adaptation	
   that	
   responds	
   to	
   changes	
   in	
   the	
   environment.	
   The	
  
challenge	
  for	
  any	
  urban	
  area	
  now	
  is	
  how	
  to	
  reduce	
  resource	
  consumption	
  and	
  waste	
  
generation	
  for	
  the	
  benefit	
  of	
  long-­‐term	
  human	
  and	
  environmental	
  health.	
  
16	
  
Disempowered	
  social	
  groups	
  with	
  perspectives	
  valuable	
  to	
  resource	
  management	
  
have	
   been	
   forced	
   into	
   a	
   cycle	
   of	
   unstable	
   dependency	
   as	
   profit-­‐driven	
   power	
  
structures	
   focus	
   on	
   the	
   process	
   of	
   global	
   integration.	
   As	
   a	
   consequence,	
  
globalization	
  has	
  hindered	
  the	
  social	
  capacity	
  to	
  combat	
  environmental	
  injustice.	
  In	
  
terms	
  of	
  managing	
  urban	
  solid	
  waste,	
  adopting	
  capital-­‐intensive	
  technologies	
  may	
  
fail	
  to	
  recognize	
  the	
  value	
  of	
  existing	
  informal	
  sector	
  recycling	
  systems.	
  Scavenging	
  
for	
  waste	
  materials	
  with	
  reuse	
  value	
  at	
  dumping	
  sites	
  may	
  be	
  an	
  underappreciated	
  
activity	
  practiced	
  by	
  the	
  urban	
  poor.	
  It	
  is	
  reported	
  that	
  as	
  much	
  as	
  2%	
  of	
  the	
  urban	
  
population	
  in	
  Asia	
  and	
  Latin	
  America	
  depends	
  on	
  waste	
  picking	
  for	
  their	
  livelihood	
  
(Medina,	
   2000).	
   An	
   important	
   lesson	
   for	
   policymakers	
   rests	
   in	
   the	
   experience	
   of	
  
waste	
   scavenging	
   communities	
   in	
   global	
   cities.	
   Countless	
   examples	
   demonstrate	
  
how	
   informal	
   networks	
   can	
   explore	
   flexible	
   opportunities	
   for	
   resolving	
   resource	
  
issues.	
  As	
  urban	
  growth	
  continues,	
  these	
  informal	
  sector	
  groups	
  also	
  grow.	
  Current	
  
patterns	
  can	
  serve	
  as	
  models	
  for	
  how	
  the	
  urban	
  poor,	
  given	
  the	
  chance,	
  can	
  develop	
  
strong	
  livelihoods	
  within	
  a	
  formalized	
  waste-­‐picking	
  sector,	
  with	
  trash	
  bottles	
  as	
  a	
  
component	
  in	
  the	
  strategy.	
  	
  
Materials	
   recovery	
   strategies	
   using	
   the	
   refund	
   formula	
   carry	
   significant	
   social	
  
benefits	
   in	
   terms	
   of	
   public	
   health,	
   livelihoods	
   development	
   and	
   environmental	
  
education.	
  It	
  is	
  firmly	
  believed	
  that	
  the	
  trash	
  bottle	
  methodology	
  can	
  generate	
  these	
  
benefits	
   for	
   the	
   global	
   community.	
   A	
   reduction	
   in	
   landfill	
   waste	
   volumes	
   reduces	
  
collection	
   costs	
   and	
   the	
   amount	
   of	
   land	
   dedicated	
   to	
   waste	
   disposal,	
   which	
   saves	
  
money	
  for	
  the	
  city	
  (and	
  for	
  taxpayers).	
  Participants	
  earn	
  money	
  when	
  their	
  bottles	
  
are	
  delivered	
  to	
  redemption	
  centers.	
  	
  
Psychologically,	
   it	
   is	
   empowering	
   for	
   a	
   community	
   to	
   seize	
   control	
   of	
   its	
   waste	
  
problem.	
  Communities	
  across	
  the	
  globe	
  have	
  no	
  answer	
  to	
  the	
  problem	
  of	
  plastic	
  
waste	
  and	
  traditional	
  cultural	
  knowledge	
  is	
  of	
  no	
  use	
  with	
  respect	
  to	
  foreign,	
  non-­‐
biodegradable	
   waste	
   materials.	
   Litter	
   has	
   degraded	
   landscapes	
   that	
   have	
  
considerable	
   cultural	
   value,	
   but	
   community	
   wellbeing	
   can	
   improve	
   if	
   the	
   tools	
   to	
  
combat	
  the	
  waste	
  problem	
  are	
  available.	
  	
  
17	
  
POLICIES	
  	
  	
  
Regulations	
   generally	
   do	
   not	
   target	
   plastic	
   waste	
   specifically	
   but	
   rather	
   group	
   it	
  
under	
   the	
   broad	
   umbrella	
   of	
   solid	
   waste	
   (Mudgal	
   et	
   al.,	
   2011).	
   This	
   failure	
   to	
  
compartmentalize	
  the	
  waste	
  streams	
  hinders	
  our	
  ability	
  to	
  respond	
  with	
  flexibility	
  
to	
   evolving	
   trends	
   in	
   production,	
   consumption	
   and	
   disposal.	
   Instead,	
   policies	
  
governing	
  aspects	
  of	
  plastics	
  management,	
  which	
  range	
  from	
  local	
  to	
  international,	
  
target	
   distinctive	
   stages	
   in	
   the	
   material	
   life	
   cycle.	
   From	
   an	
   administrative	
  
standpoint,	
   the	
   geographical	
   management	
   boundary	
   for	
   post-­‐consumer	
   waste	
   is	
  
typically	
   the	
   municipality.	
   Nevertheless,	
   the	
   global	
   nature	
   of	
   the	
   plastic	
   problem	
  
demands	
  that	
  targeted	
  strategies	
  be	
  coordinated	
  with	
  broader	
  waste	
  policy.	
  
	
  
At	
   the	
   international	
   level,	
   legally	
   non-­‐binding	
   standards	
   include	
   the	
   Brundtland	
  
Report	
   and	
   Agenda	
   21.	
   These	
   documents	
   define	
   objectives	
   and	
   goals	
   for	
   a	
  
sustainable	
   future.	
   The	
   Brundtland	
   Commission	
   produced	
   the	
   first	
   major	
  
international	
   mandate	
   with	
   its	
   1987	
   report	
   entitled	
   “Our	
   Common	
   Future.”	
   The	
  
report	
   appealed	
   to	
   the	
   international	
   community	
   to	
   work	
   towards	
   reconciling	
  
development	
   goals	
   with	
   environmental	
   protection	
   and	
   social	
   equality.	
   Since	
   its	
  
release,	
   it	
   has	
   framed	
   the	
   sustainability	
   dialogue	
   across	
   disciplines.	
   Agenda	
   21,	
  
detailed	
  below,	
  expands	
  upon	
  this	
  idea	
  with	
  comprehensive	
  guidelines.	
  
	
  
Legally	
   binding	
   policies	
   from	
   the	
   national	
   level	
   down	
   to	
   the	
   local	
   level	
   employ	
  
regulatory	
   and	
   economic	
   instruments.	
   These	
   approaches	
   function	
   differently	
   and	
  
combine	
   to	
   achieve	
   an	
   integrated	
   management	
   strategy.	
   Regulatory	
   instruments,	
  
also	
  known	
  as	
  ‘command	
  and	
  control’	
  policies,	
  such	
  as	
  Hawaii’s	
  recent	
  ban	
  on	
  the	
  
plastic	
   shopping	
   bag,	
   set	
   legal	
   limits	
   and	
   standards.	
   Economic	
   instruments,	
   also	
  
known	
  as	
  market-­‐based	
  instruments,	
  offer	
  financial	
  incentives	
  and	
  disincentives	
  to	
  
affect	
  changes	
  in	
  behavior.	
  Daly	
  and	
  Farley	
  contend	
  that	
  when	
  designing	
  policy	
  for	
  
complex	
   problems,	
   each	
   independent	
   policy	
   goal	
   requires	
   an	
   independent	
   policy	
  
instrument	
   (Daly	
   and	
   Farley,	
   2011).	
   This	
   section	
   will	
   review	
   relevant	
   policies	
   at	
  
various	
  scales.	
  	
  
18	
  
AGENDA	
  21	
  
Perhaps	
  the	
  most	
  influential	
  report	
  guiding	
  improved	
  management	
  of	
  waste	
  at	
  the	
  
international	
  level	
  is	
  Agenda	
  21.	
  This	
  is	
  a	
  comprehensive	
  sustainable	
  development	
  
blueprint	
   with	
   solid	
   waste	
   management	
   identified	
   as	
   one	
   of	
   many	
   priorities.	
   The	
  
Agenda	
  was	
  drafted	
  between	
  1989	
  and	
  1992	
  and	
  was	
  adopted	
  by	
  178	
  countries	
  at	
  
the	
  United	
  Nations	
  Conference	
  on	
  Environment	
  and	
  Development	
  in	
  Rio	
  de	
  Janeiro,	
  
Brazil.	
   	
   The	
   consensus	
   reflects	
   an	
   interest	
   in	
   sustainable	
   development	
   goals	
   and	
  
environmental	
  cooperation	
  (United	
  Nations,	
  2009).	
  	
  
	
  
Chapter	
  21	
  of	
  the	
  Agenda	
  describes	
  the	
  priorities	
  of	
  solid	
  waste	
  management.	
  The	
  
four	
   sections	
   in	
   the	
   chapter	
   are:	
   (a)	
   minimizing	
   waste,	
   (b)	
   maximizing	
  
environmentally	
  sound	
  waste	
  reuse	
  and	
  recycling,	
  (c)	
  promoting	
  environmentally	
  
sound	
   waste	
   disposal	
   and	
   treatment	
   and	
   (d)	
   extending	
   waste	
   service	
   coverage.	
  
Section	
  B	
  encourages	
  the	
  pursuit	
  of	
  best	
  management	
  practices	
  and	
  highlights	
  the	
  
need	
  for	
  governments,	
  based	
  on	
  their	
  capacity	
  and	
  available	
  resources,	
  to	
  explore	
  
new	
   approaches.	
   Of	
   particular	
   relevance	
   to	
   the	
   trash	
   bottle	
   methodology	
   are	
   the	
  
following	
  objectives:	
  
a) Providing	
   technical	
   assistance	
   to	
   informal	
   waste	
   reuse	
   and	
   recycling	
  
operations;	
  
b) Providing	
   legal	
   and	
   economic	
   conditions	
   conducive	
   to	
   investments	
   in	
   waste	
  
reuse	
  and	
  recycling;	
  
c) Implementing	
   specific	
   mechanisms	
   such	
   as	
   deposit/refund	
   systems	
   as	
  
incentives	
  for	
  reuse	
  and	
  recycling;	
  
d) Providing	
   incentives	
   to	
   improve	
   the	
   marketability	
   of	
   technically	
   recyclable	
  
waste;	
  
e) Encouraging	
   non-­‐governmental	
   organizations,	
   community-­‐based	
  
organizations	
   and	
   women's,	
   youth	
   and	
   public	
   interest	
   group	
   programs,	
   in	
  
collaboration	
  with	
  local	
  municipal	
  authorities,	
  to	
  mobilize	
  community	
  support	
  
for	
  waste	
  reuse	
  and	
  recycling	
  through	
  focused	
  community-­‐level	
  campaigns;	
  
f) Applying	
   economic	
   and	
   regulatory	
   instruments,	
   including	
   tax	
   incentives,	
   to	
  
support	
  the	
  principle	
  that	
  generators	
  of	
  wastes	
  pay	
  for	
  their	
  disposal;	
  
g) Facilitating	
  the	
  transfer	
  of	
  waste	
  reuse	
  and	
  recycling	
  technology;	
  
h) Offering	
   incentives	
   to	
   local	
   and	
   municipal	
   authorities	
   that	
   recycle	
   the	
  
maximum	
  proportion	
  of	
  their	
  wastes.	
  
19	
  
Chapter	
   21	
   highlights	
   the	
   importance	
   of	
   governments	
   and	
   civil	
   society	
   launching	
  
pilot	
  programs,	
  in	
  conjunction	
  with	
  public	
  education,	
  to	
  expand	
  waste	
  management	
  
initiatives.	
   As	
   a	
   part	
   of	
   this	
   effort,	
   technical	
   assistance	
   and	
   capacity	
   building	
   is	
  
encouraged	
  across	
  regional	
  and	
  national	
  boundaries.	
  
THE	
  RESOURCE	
  CONSERVATION	
  AND	
  RECOVERY	
  ACT	
  OF	
  THE	
  UNITED	
  STATES	
  
The	
  Resource	
  Conservation	
  and	
  Recovery	
  Act	
  (RCRA)	
  is	
  an	
  amendment	
  to	
  the	
  Solid	
  
Waste	
  Disposal	
  Act	
  of	
  1965	
  and	
  is	
  designed	
  to	
  enforce	
  management	
  standards	
  for	
  
solid	
   and	
   hazardous	
   waste	
   disposal	
   at	
   the	
   national	
   level.	
   Following	
   its	
   passage	
  
through	
  Congress	
  and	
  across	
  President	
  Ford’s	
  desk	
  in	
  1976,	
  the	
  provisions	
  of	
  RCRA	
  
were	
   further	
   strengthened	
   by	
   three	
   subsequent	
   amendments,	
   namely	
   the	
  
Hazardous	
  and	
  Solid	
  Waste	
  Amendments	
  (1984),	
  the	
  Federal	
  Facilities	
  Compliance	
  
Act	
  (1992),	
  and	
  the	
  Land	
  Disposal	
  Program	
  Flexibility	
  Act	
  (1996).	
  	
  
	
  
The	
  goals	
  of	
  RCRA	
  are:	
  (1)	
  to	
  protect	
  human	
  health	
  and	
  the	
  environment	
  from	
  the	
  
potential	
  hazards	
  of	
  waste	
  disposal;	
  (2)	
  to	
  conserve	
  energy	
  and	
  natural	
  resources;	
  
(3)	
   to	
   reduce	
   the	
   amount	
   of	
   waste	
   generated;	
   and,	
   (4)	
   to	
   ensure	
   that	
   wastes	
   are	
  
managed	
  in	
  an	
  environmentally	
  sound	
  manner.	
  Regulations	
  are	
  developed	
  by	
  the	
  
EPA	
   and	
   communicated	
   to	
   the	
   public	
   through	
   guidance	
   documents	
   and	
   policy	
  
statements.	
   While	
   the	
   EPA	
   Administrator	
   has	
   enforcement	
   authority	
   over	
   RCRA	
  
regulations,	
   48	
   states	
   have	
   been	
   empowered	
   to	
   administer	
   their	
   solid	
   waste	
  
programs.	
  Authorized	
  states	
  must	
  meet	
  federal	
  standards	
  (EPA,	
  2010).	
  Solid	
  waste	
  
falls	
  into	
  two	
  broad	
  categories	
  referred	
  to	
  under	
  RCRA	
  as	
  Subtitle	
  C,	
  or	
  hazardous	
  
solid	
  wastes	
  and	
  Subtitle	
  D,	
  or	
  nonhazardous	
  solid	
  wastes	
  (EPA,	
  2008).	
  While	
  the	
  
“nonhazardous”	
   classification	
   is	
   viewed	
   as	
   a	
   misnomer	
   with	
   respect	
   to	
   plastics,	
  
RCRA	
  considers	
  the	
  material	
  relatively	
  innocuous	
  compared	
  to	
  classes	
  of	
  waste	
  that	
  
carry	
  elevated	
  concentrations	
  of	
  toxic	
  material.	
  
Subtitle	
  D	
  approach	
  
As	
  a	
  general	
  rule,	
  the	
  RCRA	
  section	
  governing	
  management	
  of	
  nonhazardous	
  waste	
  
gives	
   state	
   and	
   local	
   governments	
   responsibility	
   over	
   managing	
   wastes	
   such	
   as	
  
20	
  
household	
   garbage	
   and	
   industrial	
   nonhazardous	
   refuse.	
   Within	
   this	
   waste	
  
classification,	
  the	
  EPA	
  provides	
  guidance	
  to	
  agencies	
  working	
  at	
  different	
  scales	
  that	
  
are	
   tasked	
   with	
   design	
   and	
   implementation	
   of	
   waste	
   programs.	
   Guidance	
   and	
  
facilitation	
  responsibilities	
  include	
  helping	
  states	
  and	
  counties	
  increase	
  efficiency	
  by	
  
promoting	
  new	
  strategies	
  for	
  source	
  reduction	
  and	
  recycling,	
  as	
  well	
  as	
  requiring	
  
improvements	
  or	
  closures	
  of	
  substandard	
  disposal	
  facilities	
  (EPA,	
  2008).	
  	
  
MARKET-­‐BASED	
  WASTE	
  MANAGEMENT	
  STRATEGIES	
  	
  
Waste	
   collection	
   and	
   disposal	
   services	
   at	
   the	
   scale	
   of	
   the	
   municipality	
   are	
  
traditionally	
   funded	
   by	
   households	
   via	
   property	
   taxes	
   or	
   by	
   paying	
   a	
   fixed	
   rate.	
  	
  
Such	
   payment	
   schemes	
   may	
   not	
   be	
   as	
   effective	
   as	
   targeted	
   incentives	
   to	
   reduce	
  
waste	
   volume,	
   sort	
   materials	
   or	
   recover	
   reusable	
   items.	
   The	
   trash	
   bottle	
  
methodology	
   requires	
   strong	
   incentives	
   to	
   encourage	
   the	
   behavior	
   as	
   it	
   asks	
  
consumers	
   to	
   go	
   well	
   beyond	
   basic	
   separation	
   of	
   materials	
   and	
   towards	
   actively	
  
packing	
   waste	
   away	
   for	
   long-­‐term	
   storage.	
   In	
   order	
   to	
   achieve	
   the	
   proper	
   buy-­‐in	
  
result,	
  the	
  incentive	
  must	
  be	
  sufficiently	
  appealing.	
  
	
  
With	
   improved	
   awareness	
   and	
   guidance,	
   MSW	
   composition	
   is	
   being	
   sorted	
   into	
  
recyclable	
   and	
   non-­‐recyclable	
   categories	
   and	
   where	
   programs	
   exist,	
   compostable	
  
waste.	
  In	
  most	
  cases,	
  however,	
  separation	
  of	
  the	
  waste	
  stream	
  is	
  entirely	
  voluntary.	
  
Environmental	
   stewardship	
   must	
   be	
   rewarded	
   if	
   it	
   is	
   to	
   be	
   encouraged. Viable	
  
solutions	
  are	
  those	
  that	
  appeal	
  to	
  the	
  economic	
  self-­‐interest	
  of	
  business	
  and	
  people.	
  
With	
   the	
   right	
   incentives,	
   the	
   response	
   is	
   automatic.	
   For	
   instance,	
   since	
   Ireland	
  
placed	
  a	
  tax	
  on	
  each	
  plastic	
  bag	
  in	
  2002,	
  bag	
  use	
  has	
  dropped	
  by	
  75%	
  (Convery	
  et	
  
al.,	
   2007).	
   Coherent	
   policy	
   rewards	
   good	
   behavior	
   with	
   incentives	
   and	
   penalizes	
  
irresponsible	
  behavior	
  with	
  disincentives.	
  	
  
	
  
A	
   holistic	
   solid	
   waste	
   portfolio	
   combines	
   upstream	
   and	
   downstream	
   policies	
   to	
  
drive	
   change.	
   Below	
   are	
   examples	
   of	
   policy	
   instruments	
   designed	
   to	
   influence	
  
upstream	
  and	
  downstream	
  behavior,	
  respectively.	
  
21	
  
Upstream	
  Policy	
  Choices	
  
Policies	
   that	
   target	
   waste	
   management	
   prior	
   to	
   commercial	
   distribution	
   of	
   goods	
  
and	
  services	
  focus	
  on	
  the	
  upstream	
  dimension	
  of	
  the	
  waste	
  issue.	
  Although	
  the	
  trash	
  
bottle	
   methodology	
   is	
   a	
   downstream	
   management	
   approach,	
   it	
   is	
   important	
   to	
  
highlight	
   the	
   upstream	
   interventions	
   that	
   can	
   be	
   combined	
   with	
   downstream	
  
strategies	
  for	
  an	
  integrated	
  scheme.	
  	
  	
  
	
  
Extended	
  Producer	
  Responsibility	
   (EPR)	
   encourages	
   product	
   design	
   innovations	
   by	
  
placing	
  a	
  part	
  of	
  the	
  waste	
  management	
  burden	
  on	
  the	
  producer.	
  Compliance	
  in	
  an	
  
EPR	
   system	
   requires	
   that	
   producers	
   meet	
   a	
   take-­‐back	
   percentage	
   of	
   the	
   post-­‐
consumer	
  waste	
  from	
  their	
  commercial	
  product.	
  Producers	
  and	
  manufacturers	
  held	
  
physically	
  and	
  financially	
  responsible	
  for	
  their	
  end-­‐of-­‐life	
  products	
  are	
  compelled	
  to	
  
innovate.	
  In	
  markets	
  where	
  EPR	
  may	
  impose	
  an	
  excessive	
  financial	
  burden	
  on	
  the	
  
individual	
   producer,	
   a	
   collective	
   producer	
   responsibility	
   system	
   can	
   be	
   used	
   to	
  
improve	
  safeguard	
  the	
  profitability	
  of	
  manufacturers	
  (Plambeck	
  and	
  Wang,	
  2009;	
  
Fleckinger	
  and	
  Glachant,	
  2009).	
  
	
  
Advance	
   Disposal	
   Fee	
   (ADF)	
   is	
   a	
   fee	
   collected	
   from	
   consumers	
   or	
   producers	
   for	
  
disposal	
  costs	
  associated	
  with	
  the	
  purchased	
  or	
  sold	
  product.	
  Consumers	
  pay	
  this	
  at	
  
the	
  time	
  of	
  purchase	
  or	
  the	
  producers	
  are	
  charged	
  on	
  product	
  sales.	
  Generally,	
  in	
  an	
  
ADF	
  system	
  producers	
  or	
  consumers	
  are	
  charged	
  per	
  product	
  or	
  unit	
  weight	
  sold.	
  
With	
  an	
  ADF,	
  production	
  and	
  consumption	
  are	
  expected	
  to	
  decrease	
  and	
  thus,	
  less	
  
virgin	
  material	
  would	
  be	
  used	
  (Walls,	
  2006).	
  If	
  an	
  ADF	
  is	
  charged	
  per	
  unit	
  weight	
  of	
  
the	
  product,	
  then	
  product	
  design	
  can	
  be	
  improved	
  as	
  producers	
  try	
  to	
  reduce	
  the	
  
size	
  and	
  the	
  weight	
  of	
  their	
  products.	
  
Downstream	
  Policy	
  Choices	
  
The	
   goal	
   for	
   resolving	
   the	
   plastics	
   issue	
   should	
   be	
   to	
   replace	
   all	
   the	
   non-­‐
biodegradable	
  varieties.	
  Change	
  comes	
  from	
  the	
  bottom	
  up,	
  however,	
  and	
  therefore	
  
awareness	
   about	
   socially	
   and	
   ecologically	
   responsible	
   consumer	
   behavior	
   is	
   of	
  
paramount	
  importance.	
  Downstream	
  policies	
  can	
  drive	
  this	
  change.	
  	
  
22	
  
	
  
Pigouvian	
   Tax	
   -­‐-­‐	
   Given	
   our	
   limited	
   understanding	
   of	
   the	
   temporal	
   and	
   spatial	
  
dimensions	
  of	
  the	
  waste	
  problem,	
  quantification	
  of	
  the	
  marginal	
  external	
  costs	
  of	
  
waste	
  disposal	
  has	
  been	
  problematic	
  and	
  thus	
  more	
  easily	
  set	
  aside.	
  In	
  economics,	
  a	
  
“Pigouvian	
  tax”	
  is	
  a	
  corrective	
  tax	
  designed	
  to	
  resolve	
  the	
  externality	
  issue.	
  The	
  tax	
  
amount	
   is	
   roughly	
   equal	
   to	
   the	
   marginal	
   external	
   cost	
   of	
   the	
   polluting	
   activity	
   or	
  
product.	
  This	
  can	
  only	
  be	
  an	
  estimate	
  by	
  virtue	
  of	
  the	
  nonmarket	
  characteristics	
  of	
  
externalities.	
  Nevertheless,	
  this	
  economic	
  instrument	
  is	
  a	
  noninvasive	
  tool	
  designed	
  
to	
  remedy	
  a	
  market	
  failure	
  and	
  raise	
  revenue	
  for	
  corrective	
  action	
  (Mankiw,	
  2009).	
  
In	
  the	
  case	
  of	
  solid	
  waste,	
  a	
  per	
  unit	
  tax	
  might	
  be	
  imposed	
  on	
  a	
  good,	
  based	
  on	
  its	
  
disposal	
  costs,	
  and	
  paid	
  for	
  by	
  either	
  the	
  producer	
  or	
  directly	
  by	
  the	
  consumer.	
  As	
  
such,	
   the	
   Pigouvian	
   tax	
   can	
   internalize	
   the	
   waste	
   externality	
   by	
   revealing	
   hidden	
  
costs	
  to	
  producers	
  and	
  consumers.	
  Correspondingly,	
  a	
  Pigouvian	
  subsidy	
  achieves	
  a	
  
similar	
  end	
  by	
  rewarding	
  good	
  behavior	
  that	
  offsets	
  an	
  externality.	
  
	
  
Deposit	
  –	
  Refund	
  is	
  a	
  system	
  that	
  can	
  be	
  used	
  to	
  control	
  pollution	
  in	
  much	
  the	
  same	
  
way	
  as	
  a	
  Pigouvian	
  tax	
  and	
  subsidy.	
  In	
  a	
  deposit-­‐refund	
  system,	
  a	
  tax	
  on	
  production	
  
or	
  consumption	
  is	
  associated	
  with	
  a	
  subsidy	
  proportional	
  to	
  product	
  recyclability.	
  A	
  
recycling	
  subsidy,	
  when	
  combined	
  with	
  an	
  advanced	
  disposal	
  fee,	
  is	
  an	
  example	
  of	
  
such	
  a	
  system.	
  Walls	
  explains	
  how	
  theoretical	
  models	
  have	
  shown	
  that	
  alternative	
  
policies	
  for	
  correcting	
  waste	
  disposal	
  behavior	
  such	
  as	
  recycled	
  content	
  standards	
  
and	
   virgin	
   materials	
   taxes	
   are	
   inferior	
   to	
   a	
   deposit-­‐refund	
   because	
   they	
   are	
   less	
  
tangible	
  to	
  the	
  average	
  consumer.	
  	
  	
  
	
  
Relative	
  to	
  trash	
  bottles,	
  an	
  ADF	
  may	
  be	
  assigned	
  to	
  all	
  products	
  that	
  contain	
  single-­‐
use	
   plastics	
   such	
   as	
   LDPE	
   film,	
   and	
   HDPE	
   and	
   PET	
   bottles.	
   The	
   ADF	
   would	
   be	
  
calculated	
  based	
  on	
  the	
  volume	
  of	
  the	
  taxable	
  material	
  in	
  each	
  unit.	
  Collectors	
  of	
  
materials	
   would	
   receive	
   a	
   refund	
   for	
   delivery	
   of	
   trash	
   bottles	
   to	
   a	
   redemption	
  
center.	
   The	
   product	
   tax	
   would	
   benefit	
   upstream	
   processes	
   by	
   encouraging	
  
producers	
   to	
   improve	
   product	
   design	
   and	
   material	
   composition.	
   By	
   giving	
   a	
  
redemption	
  value	
  to	
  the	
  trash	
  bottle	
  using	
  a	
  refund,	
  a	
  currency	
  for	
  this	
  particular	
  
23	
  
waste	
  product	
  is	
  created	
  when	
  managed	
  in	
  this	
  simple	
  way.	
  Until	
  waste	
  holds	
  an	
  
exchange	
  value,	
  it	
  will	
  continue	
  to	
  be	
  wasted.	
  	
  
	
  
The	
  deposit-­‐refund	
  system	
  is	
  most	
  commonly	
  associated	
  with	
  beverage	
  containers.	
  
This	
  strategy	
  is	
  being	
  implemented	
  in	
  ten	
  U.S.	
  States	
  and	
  eight	
  Canadian	
  Provinces.	
  
The	
   approach	
   is	
   also	
   used	
   for	
   other	
   products	
   including	
   lead-­‐acid	
   batteries,	
   tires,	
  
motor	
   oil,	
   and	
   electronics	
   (Walls,	
   2011).	
   The	
   programs	
   have	
   successfully	
  
transformed	
  nonrecyclers	
  into	
  diligent	
  recyclers	
  according	
  to	
  Viscusi	
  et	
  al.	
  (2011),	
  
who	
  explain	
  that	
  87%	
  of	
  their	
  survey	
  respondents	
  reported	
  recycling	
  80%	
  of	
  their	
  
plastic	
  bottles	
  whereas	
  non	
  deposit-­‐refund	
  states	
  recycle	
  an	
  average	
  of	
  only	
  53%.	
  	
  
	
  
Oregon	
  was	
  the	
  first	
  state	
  in	
  the	
  United	
  States	
  to	
  introduce	
  a	
  ‘bottle	
  bill’	
  in	
  1971.	
  The	
  
most	
   common	
   implementation	
   method	
   of	
   the	
   bottle	
   bill	
   uses	
   the	
   retailer	
   as	
   the	
  
primary	
  agent	
  who	
  charges	
  the	
  deposit	
  fee	
  for	
  beverage	
  containers,	
  transferring	
  the	
  
deposit	
  expense	
  to	
  the	
  consumer,	
  and	
  finally	
  reimburses	
  the	
  consumer	
  upon	
  receipt	
  
of	
   the	
   returned	
   bottle.	
   Retailers	
   agree	
   to	
   provide	
   this	
   service	
   because	
   they	
   keep	
  
deposits,	
  usually	
  five	
  or	
  ten	
  cents,	
  on	
  containers	
  that	
  go	
  unreturned	
  (Oregon	
  DEQ,	
  
2012).	
  	
  
	
  
Hawaii	
   and	
   California	
   employ	
   a	
   slightly	
   different	
   approach	
   where	
   retailers’	
   only	
  
responsibility	
  is	
  the	
  collection	
  of	
  deposits	
  that	
  are	
  then	
  turned	
  over	
  to	
  the	
  state	
  via	
  
the	
   beverage	
   distributors.	
   Consumers	
   return	
   the	
   containers	
   to	
   a	
   variety	
   of	
  
redemption	
  locations	
  and	
  uncollected	
  deposits	
  remain	
  with	
  the	
  state.	
  This	
  version	
  
of	
  the	
  deposit-­‐refund	
  system	
  may	
  be	
  more	
  appropriate	
  for	
  a	
  trash	
  bottle	
  program	
  
given	
  the	
  added	
  value	
  of	
  the	
  bottle’s	
  contents.	
  A	
  funding	
  strategy	
  could	
  place	
  an	
  ADF	
  
on	
  all	
  plastic	
  packaging	
  material.	
  The	
  redemption	
  value	
  for	
  a	
  trash	
  bottle	
  would	
  be	
  
significantly	
  greater	
  than	
  an	
  empty	
  bottle	
  given	
  the	
  extra	
  effort	
  required.	
  The	
  value	
  
might	
  be	
  based	
  on	
  bottle	
  size	
  or	
  weight	
  as	
  well	
  as	
  local	
  socioeconomic	
  factors.	
  
	
  
The	
   efficiency	
   of	
   the	
   deposit-­‐refund	
   system	
   has	
   been	
   tested	
   against	
   alternative	
  
policies	
  that	
  seek	
  to	
  reduce	
  disposal	
  such	
  as	
  recycled	
  content	
  standards,	
  recycling	
  
subsidies,	
   product	
   taxes,	
   take-­‐back	
   mandates,	
   waste	
   disposal	
   fees	
   and	
   virgin	
  
24	
  
materials	
  taxes	
  (Walls,	
  2011).	
  Walls	
  (2011)	
  asserts	
  that	
  the	
  deposit-­‐refund	
  system	
  
provides	
  incentives	
  for	
  both	
  source	
  reduction	
  and	
  recycling	
  whereas	
  upstream	
  taxes	
  
such	
   as	
   virgin	
   material	
   taxes	
   or	
   downstream	
   recycling	
   subsidies	
   alone	
   will	
   not	
  
generate	
   a	
   socially	
   optimum	
   balance.	
   She	
   goes	
   on	
   to	
   say	
   that	
   recycling	
   subsidies	
  
make	
   secondary	
   materials	
   cheaper	
   in	
   the	
   production	
   of	
   new	
   products	
   thereby	
  
increasing	
   volume,	
   while	
   taxes	
   on	
   virgin	
   materials	
   does	
   nothing	
   to	
   incentivize	
  
recycling.	
  	
  	
  
	
  
Pay-­‐As-­‐You-­‐Throw	
   (PAYT)	
  is	
  a	
  program	
  that	
  uses	
  a	
  unit-­‐based	
  pricing	
  strategy	
  to	
  
minimize	
  curbside	
  waste.	
  A	
  per-­‐bag	
  fee	
  for	
  collection	
  and	
  landfill	
  disposal	
  actively	
  
encourages	
  better	
  household	
  waste	
  management.	
  In	
  the	
  absence	
  of	
  illegal	
  disposal	
  
opportunities,	
   this	
   policy	
   successfully	
   reduces	
   household	
   solid	
   waste	
   volume	
  
(Jenkins,	
  1993).	
  According	
  to	
  the	
  EPA,	
  PAYT	
  communities	
  generate	
  49%	
  less	
  trash	
  
than	
  those	
  who	
  pay	
  indirectly	
  for	
  waste	
  collection	
  services	
  through	
  property	
  taxes	
  
or	
   with	
   a	
   fixed	
   fee.	
   Communities	
   that	
   implement	
   PAYT	
   have	
   observed	
   residents	
  
rethinking	
   their	
   personal	
   waste	
   management	
   activities	
   (paytnow.org).	
   With	
   new	
  
disincentives,	
   recycling	
   is	
   increasing,	
   food	
   waste	
   and	
   yard	
   trimmings	
   are	
   being	
  
composted,	
   and	
   reusable	
   items	
   are	
   being	
   donated	
   or	
   resold.	
   Currently	
   there	
   are	
  
over	
   7,000	
   U.S.-­‐based	
   PAYT	
   communities.	
   Program	
   beneficiaries	
   average	
   467	
  
pounds	
  per	
  capita	
  in	
  waste	
  disposal	
  compared	
  to	
  918	
  pounds	
  per	
  capita	
  in	
  the	
  non-­‐
PAYT	
  municipalities.	
  Recycling	
  rates	
  in	
  the	
  first	
  year	
  of	
  PAYT	
  increase	
  between	
  25%	
  
and	
  69%	
  (paytnow.org).	
  	
  
	
  
An	
   alternative	
   scheme	
   known	
   as	
   the	
   Recycling	
   Rewards	
   Program	
   incentivizes	
  
recycling	
   by	
   rewarding	
   individuals	
   with	
   coupons	
   that	
   can	
   be	
   used	
   at	
   local	
   retail	
  
stores	
  according	
  to	
  the	
  amount	
  of	
  waste	
  they	
  have	
  recycled.	
  Based	
  on	
  results	
  from	
  
the	
   pilot	
   program	
   in	
   Miami,	
   Florida,	
   although	
   there	
   was	
   a	
   resulting	
   increase	
   in	
  
recycling,	
   the	
   ‘carrot’	
   approach	
   of	
   recycling	
   incentives	
   was	
   determined	
   to	
   be	
   less	
  
effective	
  than	
  the	
  ‘stick’	
  approach	
  of	
  PAYT	
  (Letcher	
  and	
  Valero,	
  2011).	
  Relating	
  this	
  
back	
   to	
   trash	
   bottles,	
   while	
   a	
   cash	
   refund	
   may	
   be	
   more	
   effective,	
   a	
   modified	
  
Recycling	
  Rewards	
  Program	
  is	
  another	
  option	
  for	
  the	
  toolbox.	
  	
  
25	
  
MSW	
  MANAGEMENT	
  	
  
The	
  MSW	
  stream	
  occupies	
  a	
  key	
  position	
  in	
  waste	
  management	
  discussions	
  since	
  it	
  
is	
  the	
  most	
  public	
  representation	
  of	
  current	
  efforts	
  (Letcher	
  and	
  Valero,	
  2011).	
  Its	
  
management	
   can	
   be	
   quite	
   complex	
   as	
   nuanced	
   local	
   and	
   regional	
   approaches	
  are	
  
influenced	
   by	
   socioeconomic	
   and	
   political	
   factors.	
   MSW	
   policy	
   guides	
   collective	
  
behavior	
   and	
   can	
   educate	
   the	
   public	
   about	
   the	
   material	
   ‘throughputs’	
   in	
   our	
  
economy,	
   product	
   lifecycles,	
   and	
   the	
   importance	
   of	
   social	
   and	
   environmental	
  
responsibility	
  from	
  extraction	
  of	
  resource	
  to	
  ultimate	
  disposal.	
  	
  	
  
	
  
As	
  the	
  trends	
  in	
  the	
  plastics	
  market	
  demonstrate,	
  production	
  is	
  accelerating	
  in	
  spite	
  
of	
   advances	
   in	
   the	
   development	
   of	
   bioplastics.	
   Without	
   an	
   anticipated	
   shift	
   in	
  
production	
  practices	
  on	
  the	
  horizon,	
  management	
  of	
  postconsumer	
  plastic	
  waste	
  is	
  
exceedingly	
  important.	
  
TRADITIONAL	
  APPROACHES	
  	
  
In	
  the	
  industrialized	
  world,	
  the	
  traditional	
  municipal	
  waste	
  management	
  approach	
  
includes	
   collection,	
   recycling,	
   pretreatment,	
   treatment,	
   and	
   disposal	
   (Letcher	
   and	
  
Valero,	
  2011).	
  In	
  cities	
  where	
  the	
  landfills	
  border	
  marginalized	
  communities,	
  “rag	
  
pickers”	
  perform	
  a	
  recovery	
  service.	
  Figure	
  3	
  tracks	
  the	
  material	
  loop	
  of	
  plastics.	
  	
  
26	
  
	
  
	
  
Source:	
  United	
  Nations	
  Environment	
  Program,	
  2009	
  
	
  
Recycling	
  
Recycling	
  is	
  a	
  useful	
  process	
  not	
  only	
  in	
  extending	
  material	
  life	
  spans,	
  saving	
  energy	
  
and	
   reducing	
   demand	
   on	
   virgin	
   materials,	
   but	
   also	
   in	
   building	
   public	
   awareness	
  
about	
  the	
  importance	
  of	
  waste	
  separation.	
  Unfortunately,	
  the	
  infrastructure,	
  energy	
  
and	
  institutional	
  requirements	
  are	
  out	
  of	
  reach	
  for	
  most	
  municipalities.	
  As	
  of	
  2010,	
  
approximately	
   9,000	
   curbside	
   recycling	
   programs	
   existed	
   in	
   the	
   United	
   States,	
  
providing	
  coverage	
  to	
  three	
  quarters	
  of	
  the	
  total	
  population	
  (EPA,	
  2010).	
  In	
  spite	
  of	
  
the	
  widespread	
  availability	
  of	
  recycling	
  services	
  in	
  the	
  U.S.,	
  only	
  8%	
  of	
  all	
  plastics	
  
are	
  recovered	
  while	
  the	
  remainder	
  is	
  sent	
  to	
  landfills	
  (EPA,	
  2010).	
  Yet	
  when	
  PET	
  
bottles,	
  for	
  example,	
  are	
  given	
  a	
  redemption	
  value	
  they	
  have	
  a	
  38%	
  recovery	
  rate	
  
(EPA,	
  2008).	
  As	
  such,	
  the	
  plastic	
  pollution	
  challenge	
  will	
  not	
  be	
  resolved	
  simply	
  by	
  
encouraging	
   voluntary	
   recycling,	
   especially	
   in	
   a	
   global	
   context.	
   Furthermore,	
  
perpetuating	
  the	
  myth	
  of	
  plastic	
  recycling	
  as	
  a	
  solution	
  is	
  delaying	
  the	
  adoption	
  of	
  
Figure	
  3.	
  Waste	
  Plastics	
  Pathways	
  
27	
  
effective	
  and	
  sustainable	
  strategies	
  such	
  as	
  biodegradable	
  alternatives.	
  In	
  its	
  current	
  
form,	
  plastics	
  recycling	
  should	
  be	
  regarded	
  as	
  a	
  last	
  line	
  of	
  defense	
  in	
  order	
  to	
  keep	
  
items	
  out	
  of	
  the	
  landfill	
  and	
  slow	
  the	
  pace	
  of	
  natural	
  resource	
  consumption.	
  	
  
	
  
The	
  recycling	
  process	
  involves	
  five	
  basic	
  steps:	
  1)	
  collection,	
  2)	
  manual	
  sorting,	
  3)	
  
chipping,	
  4)	
  washing,	
  and	
  5)	
  pelleting.	
  Plastics	
  collection	
  occurs	
  at	
  both	
  the	
  post-­‐
industrial	
   and	
   post-­‐consumer	
   end.	
   The	
   manual	
   sorting	
   process	
   depends	
   on	
   the	
  
sophistication	
  of	
  the	
  system.	
  For	
  example,	
  a	
  less	
  sophisticated	
  system	
  might	
  only	
  
separate	
  plastics	
  into	
  PET,	
  HDPE	
  and	
  “other.”	
  
	
  
Only	
   1/10th	
   of	
   the	
   energy	
   required	
   to	
   create	
   plastic	
   from	
   its	
   petrochemical	
   raw	
  
materials	
   is	
   needed	
   to	
   recycle	
   plastics	
   (Kazmeyer,	
   2009).	
   However,	
   as	
   a	
   result	
   of	
  
changes	
   in	
   the	
   chemical	
   structure	
   during	
   the	
   recycling	
   process,	
   most	
   plastics	
  
become	
  products	
  of	
  a	
  lesser	
  quality	
  once	
  recycled,	
  for	
  which	
  reason	
  many	
  refer	
  to	
  
the	
   process	
   as	
   “downcycling”	
   (McDonough	
   &	
   Braungart,	
   2002).	
   Once	
   used,	
   a	
   PET	
  
bottle	
  or	
  HDPE	
  container	
  can	
  be	
  downcycled	
  only	
  once,	
  into	
  polypropylene,	
  before	
  
ultimate	
  disposal.	
  This	
  is	
  not	
  sustainable.	
  Despite	
  the	
  reduced	
  energy	
  expenditure,	
  it	
  
still	
  costs	
  more	
  to	
  recycle	
  PET	
  than	
  to	
  produce	
  new	
  plastics	
  from	
  virgin	
  materials	
  
(Kuruppalil,	
  2011).	
  	
  
	
  
LDPE	
   film	
   is	
   typically	
   not	
   accepted	
   for	
   comingled	
   recycling	
   where	
   curbside	
  
programs	
  exist	
  because	
  it	
  tends	
  to	
  clog	
  processing	
  machines	
  (American	
  Chemistry	
  
Council,	
   2010).	
   It	
   has	
   a	
   relatively	
   high	
   value	
   as	
   scrap,	
   but	
   like	
   any	
   lightweight	
  
material	
  it	
  is	
  difficult	
  to	
  consolidate	
  enough	
  of	
  it	
  to	
  justify	
  the	
  shipping	
  costs.	
  Plastic	
  
bag	
   and	
   film	
   recovery	
   has	
   increased	
   in	
   the	
   US	
   to	
   nearly	
   50%	
   since	
   2005	
   to	
   an	
  
estimated	
  971.8	
  million	
  pounds,	
  or	
  12%	
  of	
  the	
  total	
  amount	
  generated	
  (American	
  
Chemistry	
  Council,	
  2010).	
  	
  
	
  
Recovery	
  options	
  for	
  LDPE	
  film	
  are	
  limited	
  for	
  consumers	
  and	
  consist	
  mostly	
  of	
  the	
  
voluntary	
  delivery	
  to	
  big	
  box	
  stores	
  such	
  as	
  supermarkets	
  that	
  go	
  on	
  to	
  sell	
  large	
  
volumes	
  for	
  scrap.	
  Increasing	
  numbers	
  of	
  businesses	
  are	
  recovering	
  their	
  internally	
  
generated	
   scrap	
   film,	
   and	
   recyclers	
   and	
   haulers	
   are	
   more	
   willing	
   to	
   handle	
   film	
  
Trash Bottle Capstone LBattle
Trash Bottle Capstone LBattle
Trash Bottle Capstone LBattle
Trash Bottle Capstone LBattle
Trash Bottle Capstone LBattle
Trash Bottle Capstone LBattle
Trash Bottle Capstone LBattle
Trash Bottle Capstone LBattle
Trash Bottle Capstone LBattle
Trash Bottle Capstone LBattle
Trash Bottle Capstone LBattle
Trash Bottle Capstone LBattle
Trash Bottle Capstone LBattle
Trash Bottle Capstone LBattle
Trash Bottle Capstone LBattle
Trash Bottle Capstone LBattle

More Related Content

What's hot

Non-Projected Visuals Presentations
Non-Projected Visuals PresentationsNon-Projected Visuals Presentations
Non-Projected Visuals PresentationsAlvinLaguidao
 
(institutional sector) rev
(institutional  sector) rev(institutional  sector) rev
(institutional sector) revPrimum Nocere
 
The Nature of the Communication Process
The Nature of the Communication ProcessThe Nature of the Communication Process
The Nature of the Communication ProcessJovy Elimanao - Mihm
 
(VINCENT M. MATERIAL) PRELIMINARY EXAM NEW NSTP 1 2021-2022 1st Semester-conv...
(VINCENT M. MATERIAL) PRELIMINARY EXAM NEW NSTP 1 2021-2022 1st Semester-conv...(VINCENT M. MATERIAL) PRELIMINARY EXAM NEW NSTP 1 2021-2022 1st Semester-conv...
(VINCENT M. MATERIAL) PRELIMINARY EXAM NEW NSTP 1 2021-2022 1st Semester-conv...Vincent Material
 
Interactive Communication Model
Interactive Communication ModelInteractive Communication Model
Interactive Communication ModelGwynne Brunet
 
LFN Community Action Plan FINAL COMPLETE (1)
LFN Community Action Plan FINAL COMPLETE (1)LFN Community Action Plan FINAL COMPLETE (1)
LFN Community Action Plan FINAL COMPLETE (1)Samantha Goyret
 
The Cone of Experience
The Cone of ExperienceThe Cone of Experience
The Cone of ExperienceAinelle Jordan
 
Classifying Instructional Media
Classifying Instructional MediaClassifying Instructional Media
Classifying Instructional Mediaerwin marlon sario
 
Public awareness to protect environment
Public awareness to protect environmentPublic awareness to protect environment
Public awareness to protect environmentAbhilasha Lahigude
 
The ASSURE Model
The ASSURE ModelThe ASSURE Model
The ASSURE ModelIra Sagu
 
Functions of communication
Functions of communicationFunctions of communication
Functions of communicationNEO NEWS NETWORK
 
21st Century Skills- Learning and Innovation
21st Century Skills- Learning and Innovation21st Century Skills- Learning and Innovation
21st Century Skills- Learning and InnovationJoevi Jhun Idul
 

What's hot (20)

Non-Projected Visuals Presentations
Non-Projected Visuals PresentationsNon-Projected Visuals Presentations
Non-Projected Visuals Presentations
 
(institutional sector) rev
(institutional  sector) rev(institutional  sector) rev
(institutional sector) rev
 
The Nature of the Communication Process
The Nature of the Communication ProcessThe Nature of the Communication Process
The Nature of the Communication Process
 
Environment and development
Environment and developmentEnvironment and development
Environment and development
 
(VINCENT M. MATERIAL) PRELIMINARY EXAM NEW NSTP 1 2021-2022 1st Semester-conv...
(VINCENT M. MATERIAL) PRELIMINARY EXAM NEW NSTP 1 2021-2022 1st Semester-conv...(VINCENT M. MATERIAL) PRELIMINARY EXAM NEW NSTP 1 2021-2022 1st Semester-conv...
(VINCENT M. MATERIAL) PRELIMINARY EXAM NEW NSTP 1 2021-2022 1st Semester-conv...
 
Interactive Communication Model
Interactive Communication ModelInteractive Communication Model
Interactive Communication Model
 
LFN Community Action Plan FINAL COMPLETE (1)
LFN Community Action Plan FINAL COMPLETE (1)LFN Community Action Plan FINAL COMPLETE (1)
LFN Community Action Plan FINAL COMPLETE (1)
 
The Cone of Experience
The Cone of ExperienceThe Cone of Experience
The Cone of Experience
 
Meaning of Educational Technology
Meaning of Educational TechnologyMeaning of Educational Technology
Meaning of Educational Technology
 
Classifying Instructional Media
Classifying Instructional MediaClassifying Instructional Media
Classifying Instructional Media
 
Public awareness to protect environment
Public awareness to protect environmentPublic awareness to protect environment
Public awareness to protect environment
 
Proper waste disposal
Proper waste disposalProper waste disposal
Proper waste disposal
 
The ASSURE Model
The ASSURE ModelThe ASSURE Model
The ASSURE Model
 
Functions of communication
Functions of communicationFunctions of communication
Functions of communication
 
21st Century Skills- Learning and Innovation
21st Century Skills- Learning and Innovation21st Century Skills- Learning and Innovation
21st Century Skills- Learning and Innovation
 
Community Engagement
Community EngagementCommunity Engagement
Community Engagement
 
Pr1 research paper
Pr1 research paperPr1 research paper
Pr1 research paper
 
Questionnaire
QuestionnaireQuestionnaire
Questionnaire
 
Special topic 1
Special topic 1Special topic 1
Special topic 1
 
Final thesis-jen
Final thesis-jenFinal thesis-jen
Final thesis-jen
 

Viewers also liked

сокровища черной бороды (бл)
сокровища черной бороды (бл)сокровища черной бороды (бл)
сокровища черной бороды (бл)Сергей Асконак
 

Viewers also liked (19)

Творческий синдикат (бл)
Творческий синдикат (бл)Творческий синдикат (бл)
Творческий синдикат (бл)
 
Шуточная олимпиада (бл)
Шуточная олимпиада (бл)Шуточная олимпиада (бл)
Шуточная олимпиада (бл)
 
Farace
FaraceFarace
Farace
 
петля времени (бл)
петля времени (бл)петля времени (бл)
петля времени (бл)
 
Рафтбилдинг на тюбингах
Рафтбилдинг на тюбингахРафтбилдинг на тюбингах
Рафтбилдинг на тюбингах
 
Farace (бл)
Farace (бл)Farace (бл)
Farace (бл)
 
Вконтакте
ВконтактеВконтакте
Вконтакте
 
Сплав на байдарках
Сплав на байдаркахСплав на байдарках
Сплав на байдарках
 
Русский тимбилдинг
Русский тимбилдингРусский тимбилдинг
Русский тимбилдинг
 
форт боярд (бл)
форт боярд (бл)форт боярд (бл)
форт боярд (бл)
 
сокровища черной бороды (бл)
сокровища черной бороды (бл)сокровища черной бороды (бл)
сокровища черной бороды (бл)
 
Спортивный марафон
Спортивный марафонСпортивный марафон
Спортивный марафон
 
Вконтакте (бл)
Вконтакте (бл)Вконтакте (бл)
Вконтакте (бл)
 
русский тимбилдинг (бл)
русский тимбилдинг (бл)русский тимбилдинг (бл)
русский тимбилдинг (бл)
 
Творческий синдикат
Творческий синдикатТворческий синдикат
Творческий синдикат
 
Сокровища черной бороды
Сокровища черной бородыСокровища черной бороды
Сокровища черной бороды
 
Петля времени
Петля времениПетля времени
Петля времени
 
Вконтакте
ВконтактеВконтакте
Вконтакте
 
Форт боярд
Форт боярдФорт боярд
Форт боярд
 

Similar to Trash Bottle Capstone LBattle

vision_globaltourismplasticsinitiative.pdf
vision_globaltourismplasticsinitiative.pdfvision_globaltourismplasticsinitiative.pdf
vision_globaltourismplasticsinitiative.pdfSGB Media Group
 
Merve Dogan_Final Report_Circular Economy& Waste Management
Merve Dogan_Final Report_Circular Economy& Waste ManagementMerve Dogan_Final Report_Circular Economy& Waste Management
Merve Dogan_Final Report_Circular Economy& Waste ManagementMERVE DO?AN
 
Unlock the new plastics economy
Unlock the new plastics economyUnlock the new plastics economy
Unlock the new plastics economyjohn guamani
 
10 green business ideas
10 green business ideas10 green business ideas
10 green business ideasKudumula Joshi
 
EDC Packaging
EDC PackagingEDC Packaging
EDC PackagingInfo EDCW
 
Tearfund Virtuous Circle
Tearfund Virtuous CircleTearfund Virtuous Circle
Tearfund Virtuous CircleNatasha Varian
 
From Trash to Treasure_ Creative Ways to Reduce, Reuse and Recycle.pptx
From Trash to Treasure_ Creative Ways to Reduce, Reuse and Recycle.pptxFrom Trash to Treasure_ Creative Ways to Reduce, Reuse and Recycle.pptx
From Trash to Treasure_ Creative Ways to Reduce, Reuse and Recycle.pptxjiyalouis
 
Practice Note Environment and Climate Change 2011
Practice Note Environment and Climate Change 2011Practice Note Environment and Climate Change 2011
Practice Note Environment and Climate Change 2011Dr Lendy Spires
 
Plastic Waste Management Market.pdf
Plastic Waste Management Market.pdfPlastic Waste Management Market.pdf
Plastic Waste Management Market.pdfAmolKusmude
 
The Dirty Truth_ Uncovering Behind-the-Scenes of Waste Management.pptx
The Dirty Truth_ Uncovering Behind-the-Scenes of Waste Management.pptxThe Dirty Truth_ Uncovering Behind-the-Scenes of Waste Management.pptx
The Dirty Truth_ Uncovering Behind-the-Scenes of Waste Management.pptxjiyalouis
 
waste reduction at WMU final
waste reduction at WMU finalwaste reduction at WMU final
waste reduction at WMU finalLindsey Makos
 
Agile For Sustainability IAD 2022
Agile For Sustainability IAD 2022 Agile For Sustainability IAD 2022
Agile For Sustainability IAD 2022 Vincenzo Lanza
 
A green-guide to better waste management
A green-guide to better waste managementA green-guide to better waste management
A green-guide to better waste managementIPPTS Associates
 
Is Recycling The Best Waste Management Option?
Is Recycling The Best Waste Management Option?Is Recycling The Best Waste Management Option?
Is Recycling The Best Waste Management Option?Swag Cycle
 
Important Recycling Trends For Better Waste Management
 Important Recycling Trends For Better Waste Management Important Recycling Trends For Better Waste Management
Important Recycling Trends For Better Waste ManagementSwag Cycle
 
Source_Segregation_of_Plastics_Waste.pptx
Source_Segregation_of_Plastics_Waste.pptxSource_Segregation_of_Plastics_Waste.pptx
Source_Segregation_of_Plastics_Waste.pptxChandrimaManna1
 
Questions On Open Education Resources Essay
Questions On Open Education Resources EssayQuestions On Open Education Resources Essay
Questions On Open Education Resources EssayAnn Johnson
 

Similar to Trash Bottle Capstone LBattle (20)

vision_globaltourismplasticsinitiative.pdf
vision_globaltourismplasticsinitiative.pdfvision_globaltourismplasticsinitiative.pdf
vision_globaltourismplasticsinitiative.pdf
 
Merve Dogan_Final Report_Circular Economy& Waste Management
Merve Dogan_Final Report_Circular Economy& Waste ManagementMerve Dogan_Final Report_Circular Economy& Waste Management
Merve Dogan_Final Report_Circular Economy& Waste Management
 
Unlock the new plastics economy
Unlock the new plastics economyUnlock the new plastics economy
Unlock the new plastics economy
 
10 green business ideas
10 green business ideas10 green business ideas
10 green business ideas
 
10 green business ideas
10 green business ideas10 green business ideas
10 green business ideas
 
EDC Packaging
EDC PackagingEDC Packaging
EDC Packaging
 
Tearfund Virtuous Circle
Tearfund Virtuous CircleTearfund Virtuous Circle
Tearfund Virtuous Circle
 
The New Plastics Economy
The New Plastics EconomyThe New Plastics Economy
The New Plastics Economy
 
From Trash to Treasure_ Creative Ways to Reduce, Reuse and Recycle.pptx
From Trash to Treasure_ Creative Ways to Reduce, Reuse and Recycle.pptxFrom Trash to Treasure_ Creative Ways to Reduce, Reuse and Recycle.pptx
From Trash to Treasure_ Creative Ways to Reduce, Reuse and Recycle.pptx
 
Practice Note Environment and Climate Change 2011
Practice Note Environment and Climate Change 2011Practice Note Environment and Climate Change 2011
Practice Note Environment and Climate Change 2011
 
Plastic Waste Management Market.pdf
Plastic Waste Management Market.pdfPlastic Waste Management Market.pdf
Plastic Waste Management Market.pdf
 
The Dirty Truth_ Uncovering Behind-the-Scenes of Waste Management.pptx
The Dirty Truth_ Uncovering Behind-the-Scenes of Waste Management.pptxThe Dirty Truth_ Uncovering Behind-the-Scenes of Waste Management.pptx
The Dirty Truth_ Uncovering Behind-the-Scenes of Waste Management.pptx
 
waste reduction at WMU final
waste reduction at WMU finalwaste reduction at WMU final
waste reduction at WMU final
 
Agile For Sustainability IAD 2022
Agile For Sustainability IAD 2022 Agile For Sustainability IAD 2022
Agile For Sustainability IAD 2022
 
Test6
Test6Test6
Test6
 
A green-guide to better waste management
A green-guide to better waste managementA green-guide to better waste management
A green-guide to better waste management
 
Is Recycling The Best Waste Management Option?
Is Recycling The Best Waste Management Option?Is Recycling The Best Waste Management Option?
Is Recycling The Best Waste Management Option?
 
Important Recycling Trends For Better Waste Management
 Important Recycling Trends For Better Waste Management Important Recycling Trends For Better Waste Management
Important Recycling Trends For Better Waste Management
 
Source_Segregation_of_Plastics_Waste.pptx
Source_Segregation_of_Plastics_Waste.pptxSource_Segregation_of_Plastics_Waste.pptx
Source_Segregation_of_Plastics_Waste.pptx
 
Questions On Open Education Resources Essay
Questions On Open Education Resources EssayQuestions On Open Education Resources Essay
Questions On Open Education Resources Essay
 

Trash Bottle Capstone LBattle

  • 1. Trash  Bottles   A  Practical  Approach  To  Postconsumer  Plastic  Waste   Management   Lars  Battle     Submitted  as  part  of  the  Requirements  for     Masters  of  Natural  Resources     From     Virginia  Tech   July  2012     ABSTRACT   As  the  severity  of  the  global  waste  problem  deepens,  society  must  respond   commensurately   by   rethinking   our   linear   cradle-­‐to-­‐grave   system   of   production,  consumption,  and  final  disposal.  The  vision  of  a  future  where   our   waste   can   enhance   the   environment   rather   than   compromise   it   may   seem   unattainable   to   contemporary   society   even   though   it   is   wholly   necessary  if  our  goal  is  to  preserve  the  biosphere  as  we  know  it  for  future   generations.  Incremental  steps  are  needed  to  drive  this  change.  In  the  era   of   commercial   globalization,   plastic   bottles   and   product   packaging   are   ubiquitous.  As  such,  simple  household  management  solutions  for  this  waste   stream  can  be  globally  replicable.  Until  the  uncontrolled  spread  of  single-­‐ use   plastics   can   be   reduced   to   a   socially   tolerable   scale   or   altogether   eliminated,  the  safe  storage  of  plastic  packaging  film  in  empty,  disposable   plastic   bottles   can   help   to   educate   populations,   decontaminate   the   environment,   and   give   value   to   waste   through   its   productive   reuse   in   constructive  applications.  A  trash  bottle  is  any  plastic  bottle  manually  filled   to   capacity   with   clean,   dry,   plastic   trash.   Improved   treatment   of   plastic   waste  can  turn  this  societal  burden  into  a  resource  of  value.    
  • 2. i     TABLE  OF  CONTENTS   Preface  .....................................................................................................................................................  ii   Introduction  ...........................................................................................................................................  1   Waste  ........................................................................................................................................................  5   The  Municipal  Solid  Waste  Stream  ...........................................................................................................  7   Plastics  ...............................................................................................................................................................  8   Ecological  Impacts  of  Plastic  ............................................................................................................  9   Market  Trends  .....................................................................................................................................  10   Bioplastics  .......................................................................................................................................................  13   Global  Implications  ...........................................................................................................................  14   Policies  ...................................................................................................................................................  17   Agenda  21  ........................................................................................................................................................  18   The  Resource  Conservation  and  Recovery  Act  of  the  United  States  ............................................  19   Subtitle  D  approach  .....................................................................................................................................................  19   Market-­‐based  Waste  Management  Strategies  ....................................................................................  20   Upstream  Policy  Choices  ...........................................................................................................................................  21   Downstream  Policy  Choices  ....................................................................................................................................  21   MSW  Management  .............................................................................................................................  25   Traditional  Approaches  ..............................................................................................................................  25   Recycling  ..........................................................................................................................................................................  26   Incineration  ....................................................................................................................................................................  28   Landfill  Disposal  ...........................................................................................................................................................  29   Alternative  Management  ............................................................................................................................  29   Reuse  and  Repurposing  ..............................................................................................................................  30   The  Trash  Bottle  Program  Concept  ......................................................................................................................  31   Trash  Bottles  in  Practice  ...........................................................................................................................................  33   Long  Way  Home  ............................................................................................................................................................  34   Hug  It  Forward  ..............................................................................................................................................................  36   Challenges  .......................................................................................................................................................................  36   Recommendations  .............................................................................................................................  37   Conclusion  ............................................................................................................................................  38   References  ............................................................................................................................................  39    
  • 3. ii   PREFACE   Based   on   the   research   conducted   for   this   report,   there   appears   to   be   no   literature   that   elaborates   on   the   idea   of   filling   plastic   bottles   with   compacted   trash   as   an   approach   to   mitigating   the   impacts   of   post-­‐consumer   plastic   waste.   There   are,   however,   numerous   efforts   around   the   globe   that   promote   and   implement   this   methodology   with   success.   Additionally,   websites   and   instructional   videos   online   advertise   the   idea   and   extoll   the   myriad  benefits.  Nevertheless,  the  concept  is  relatively  unknown.       To  me,  the  trash  bottle  approach  is  an  obvious  temporary  fix  for  capturing  loose  plastic  in   the   absence   of   proactive   waste   management   controls.   The   following   report   seeks   to   introduce  the  problem  and  present  the  trash  bottle  strategy  as  one  promising  component   in  what  must  be  an  integrated  waste  management  approach.  Together  with  the  resources   available  online,  I  hope  this  document  can  be  used  as  a  foundation  upon  which  to  build   pilot  programs  that  will  test  and  evaluate  the  viability  of  the  trash  bottle  methodology.       This   paper   is   intended   for   a   variety   of   audiences   including   but   not   limited   to   parties/organizations   that   support   decision-­‐makers;   consultants   working   on   urban   services,  recycling  or  waste  management;  representatives  of  local  stakeholders  including   community   groups,   NGOs   and   the   private   sector;   entrepreneurs   seeking   to   expand   their   solid  waste  portfolios;  academicians  and  scholars  involved  in  environmental  management;   donors  interested  in  supporting  waste  management  activities;  and  local  experts  interested   in  program  implementation.     To  provide  a  brief  background  on  the  author,  my  interest  in  this  concept  emerged  from   personal  experience  working  in  community  development  in  Guatemala  between  2007  and   the   present.   I   was   inspired   by   the   potential   of   this   simple   idea   after   observing   the   community   response   to   a   small   financial   incentive   that   encouraged   residents   to   manage   their   waste   in   this   way.   Given   this   positive   experience,   I   am   invested   in   the   idea   and   I   practice  and  promote  it  in  my  daily  life.  
  • 4. 1   INTRODUCTION   Today,  the  world’s  cultures  are  as  diverse  as  its  landscapes  are  unique.  As  economic   globalization   permeates   even   the   most   isolated   populations,   however,   society   at   large   faces   a   common   threat   from   the   accumulation   of   foreign   waste   materials.   Plastic  waste  in  particular  threatens  public  health  and  the  integrity  of  ecosystems,   causing  hazardous  changes  in  concentrations  of  toxic  substances  in  biogeochemical   cycles,  in  biodiversity  and  in  climate.  Each  year  the  production  and  consumption  of   plastics  grow,  as  does  the  concern  of  informed  individuals  about  the  environmental   consequences.       The  question  highlighted  in  this  paper  concerns  the  management  of  postconsumer   plastics:   Why   not   stem   the   flow   of   this   waste   stream   into   landfills   and   across   landscapes  by  packing  the  loose  plastic  into  plastic  bottle  containers?  It  is  herein   argued   that   this   is   not   only   universally   applicable,   but   the   end   result   is   a   packed   block  that  carries  a  marginal  exchange  value  given  its  reuse  potential  in  productive   applications.       Industrialized  nations  rely  on  complex  systems  and  extensive  networks  to  collect,   process   and   dispose   of   waste.   Yet   even   these   reactive   efforts   are   arguably   an   insufficient   damage   control.   Recycling   is   touted   as   a   solution,   yet   with   regard   to   plastics  it  is  a  failed  approach  in  its  current  form.  A  common  misconception  is  that   when  sent  to  the  curb  for  recycling,  plastic  containers,  like  aluminum  and  glass,  are   literally  reprocessed  into  an  identical  product.  The  truth  is  that  in  many  cases  none   of  the  recovered  plastic  is  recycled  back  into  its  former  use  but  rather  ‘downcycled’   into  secondary  products  such  as  textiles,  parking  lot  bumpers  or  plastic  lumber  …all   unrecyclable   products   (Berkeley   Plastics   Task   Force,   1996).   After   one   trip   to   the   recycling   plant,   the   material   is   used   one   final   time   before   its   ultimate   disposal.   Furthermore,  voluntary  recycling  strategies  have  not  been  effective  in  encouraging   the  practice.  In  2010  for  example,  the  United  States  recovered  and  recycled  only  8%  
  • 5. 2   of   its   postconsumer   plastics   (EPA,   2010).   Only   5%   of   the   1   trillion   plastic   bags   produced  annually  in  the  U.S.  are  being  recovered  (Sivan,  2011).     Less-­‐industrialized   countries   have   a   considerably   weaker   ability   to   address   the   waste  management  challenge  due  to  a  lack  of  institutional  capacity,  infrastructure,   regulation   and   public   guidance   on   appropriate   disposal   options.   Consequently,   improved  solutions  are  needed  to  alleviate  the  worldwide  management  burdens  of   plastic  waste,  particularly  in  ill-­‐equipped  regions.  Borrowing  language  from  a  2012   United   Nations   Environment   Program   report   entitled   “Converting   Plastics   Waste   into  a  Resource,”  emerging  economies  have  a  “latecomer’s  advantage”  in  that  they   can  learn  from  the  experimentation  in  industrialized  nations  and  avoid  unsuccessful   policies.  This  may  be  particularly  relevant  with  respect  to  the  recycling  of  plastics   (UNEP,  2009).     Admittedly,   the   trash   bottle   methodology   focuses   on   a   symptom   of   the   waste   problem   rather   than   targeting   the   root   causes.   Nevertheless,   in   the   absence   of   radical  change  that  addresses  the  fundamental  drivers  of  waste  generation,  namely   our   current   brand   of   economic   development   and   population   size   and   growth,   incremental  changes  from  the  ground  up  can  support  a  necessary  cultural  response   to  our  evolving  ecological  context.  Ultimately,  the  solution  to  the  waste  issue  resides   upstream,  with  a  paradigm  shift  in  product  design  and  industrial  processes  that  will   eliminate   harmful   waste   from   commerce.   McDonough   and   Braungart   (2002)   express  this  vision  succinctly  by  promoting  a  “waste  equals  food”  paradigm  where   the  economic  system  mimics  the  closed  material  loops  occurring  within  and  among   ecosystems.   To   a   small   degree,   this   shift   is   taking   root   with   advances   in   the   development  of  bioplastics  that  decompose  naturally.  This  news  is  promising,  but  in   its  present  form  it  does  nothing  to  mitigate  the  immediate  problem  of  plastic  waste   accumulation.   Until   industry   can   stop   the   bleeding   from   upstream,   new   management   strategies   that   collect   and   consolidate   plastics   downstream   at   the   postconsumer  end  are  vital.      
  • 6. 3   The  goal  of  the  trash  bottle  methodology  is  to  capture  and  repurpose  plastic  waste.   The  intended  benefits  are  environmental  decontamination,  improved  human  health,   increased   public   engagement   and   poverty   alleviation.   Additionally,   the   cultural   impact   of   assigning   value,   whether   it   is   a   positive   value   in   the   form   of   the   trash   bottle  or  a  negative  value  as  loose  waste,  can  have  far-­‐reaching  implications  for  the   future   of   waste   management.   By   giving   a   tangible,   monetary   value   to   waste   materials,   society   can   rationally   assess   the   costs   of   the   waste   problem.   The   trash   bottle   methodology   is   regarded   here   as   a   sensible   and   practical   solution   to   be   implemented   until   ecologically   appropriate   substitutes   for   single-­‐use   plastics   emerge.  The  strategy  buys  extra  time  to  transition  to  a  sustainable  economic  model   that  does  not  achieve  progress  at  the  expense  of  the  environment.             There  are  various  policy  instruments  that  can  be  applied  to  encourage  this  waste   management  behavior.  For  example,  one  scenario  uses  a  refund  incentive  funded  by   a  tax  on  all  retail  items  that  contain  single-­‐use  plastics.  The  tax  would  raise  revenue   to  cover  program  costs,  including  a  public  awareness  campaign,  and  a  redemption   value  per  trash  bottle  that  is  high  enough,  depending  on  the  local  context,  to  achieve   Also  referred  to  as  “bottle  bricks”  or  “ecobricks,”  trash  bottles  are  transformed  into   solid  bricks  when  filled  to  capacity.  The  20  oz.  trash  bottle  holds  roughly  one  lb.  of   plastic  waste.  A  one  half-­‐gallon  container  can  sequester  up  to  100  grocery  bags.     Image  source:  Temple  and  Rose,  2011    
  • 7. 4   public  buy-­‐in.  While  the  tax  would  compel  producers  to  limit  or  eliminate  the  use  of   plastic   packaging,   the   refund   would   encourage   environmental   stewardship.   The   approach  requires  minimal  infrastructure  and  can  yield  significant  ecological,  social   and  economic  benefits.       An   example   to   be   revisited   later   elaborates   on   the   work   of   the   community   development   organization   Long   Way   Home   (LWH),   which   has   been   charging   an   admission  fee  of  one  trash  bottle  per  visitor  at  a  popular  five-­‐acre  recreational  park   it  has  built  in  the  central  highlands  of  Guatemala.  In  offering  a  small  incentive  to   produce  trash  bottles,  a  liability  has  been  transformed  into  a  product  with  practical   use-­‐value.   The   trash   bottle   campaign   has   achieved   a   vastly   cleaner   landscape,   exposed  local  families  to  a  new  waste  management  solution  and  has  simultaneously   created  a  stream  of  building  materials  for  Long  Way  Home’s  construction  projects.   The  social  and  environmental  benefits  of  collecting  and  building  with  waste  have   visibly   impacted   the   community.   Environmental   decontamination   is   helping   to   restore  ecosystem  integrity.  Ridding  the  landscape  of  litter  has  led  to  an  enhanced   cultural  value  for  the  predominantly  indigenous  population.  The  educational  value   of   community   exposure   to   improved   waste   management   has   empowered   the   community   and   fostered   environmental   stewardship.   The   LWH   experience   and   another  example  from  Central  America  are  regarded  as  a  first  iteration  of  a  trash   bottle  program  that  can  be  expanded  and  modified  to  satisfy  site-­‐specific  dynamics.     This   paper   will   begin   by   developing   a   contextual   understanding   of   the   problem   including  an  overview  of  the  waste  challenge  in  general,  an  assessment  of  plastics  in   particular,  a  quantification  and  characterization  of  the  municipal  solid  waste  stream,   scale,   impacts,   targeted   legislation   and   management   approaches.   Taken   together,   this   information   is   intended   to   establish   the   fact   that   current   measures   are   insufficient  to  address  this  challenge.  This  information  is  followed  by  a  presentation   of   the   trash   bottle   concept,   repurposing   opportunities   and   policies   that   can   separately   encourage   bottle   packing   behavior   and   repurposing.   Finally,   basic   program  design  recommendations  are  offered  to  target  audiences.  
  • 8. 5   WASTE   Historically,  waste  generation,  distribution  and  composition  has  been  inextricably   linked   to   economic   expansion   and   the   demographic   trends   of   our   growing   population.  Until  the  unbridled  growth  in  these  areas  is  drawn  back  to  a  sustainable   scale,   a   sustainable   future   is   not   possible.   Resource   overconsumption   and   the   resulting   accumulation   of   waste   are   among   the   most   important   issues   presently   facing   the   global   community.   Without   a   course-­‐correction,   the   trend   threatens   to   compromise  the  lives  of  generations  to  come.  Sustainable  development,  a  concept   that  is  value  laden  and  can  be  quite  arbitrary,  is  defined  here  using  the  definition   provided   by   the   Brundtland   Report   from   1987:   "Sustainable   development   is   development  that  meets  the  needs  of  the  present  without  compromising  the  ability   of  future  generations  to  meet  their  own  needs.”  (Brundtland  Commission,  1987)     With  this  definition  in  mind,  the  widespread  notion  that  pro-­‐growth  policies  are  the   answer   to   global   economic   challenges   must   first   be   exposed   as   a   self-­‐destructive   approach  to  progress.  Staying  the  course  while  seeking  to  maximize  efficiency  and   relying  on  the  promise  of  technological  innovation  to  resolve  future  resource  issues   is  not  a  realistic  solution  in  a  world  with  finite  resources.  Rather,  a  focal  point  for   achieving   sustainability   should   be   the   issue   of   sustainable   scale.     The   size   of   an   economy  should  be  directly  informed  by  the  regenerative  and  absorptive  capacities   of  the  ecosystems  that  sustain  it.  In  other  words,  resource  use  should  be  constrained   by   the   ecosystem’s   renewability   rates   while   the   economy’s   waste   output   volume   should  respect  the  ecosystem’s  capacity  to  metabolize  the  waste  stream.  This  calls   for   a   steady-­‐state   economy   that   strives   for   qualitative   improvements   in   the   provision   of   goods   and   services   without   the   quantitative   increase   in   material   throughput  passing  in  and  out  of  the  system  (O’Neill,  Dietz  &  Jones,  2010).       As   previously   mentioned,   unlike   the   material   cycle   in   nature   where   one   system’s   material  output  is  a  corresponding  system’s  input,  our  economic  output  generally  is  
  • 9. 6   not   fed   back   into   any   kind   of   useful   circulation.   Martin   Pawley,   the   author   of   Garbage  Housing  (1975),  explains  this  inefficiency  well:       “We  in  the  West  have  come  to  identify  the  termination  of  one  use  with  the   termination   of   all   usefulness,   and   we   carry   this   simple   idea   through   ruthlessly,  in  our  own  treatment  of  the  old  as  much  as  our  treatment  of   waste   products   our   society   generates   in   such   profusion…   While   waste   remains  valueless  it  will  be  wasted:  and  this  valuelessness  is  a  consequence   of  the  tunnel  vision  from  which  we  in  the  West  all  suffer.”     This  “simple  idea,”  as  Pawley  puts  it,  originates  from  a  conceptual  oversimplification   of   the   economy   according   to   the   neoclassical   model,   our   prevailing   school   of   economic  thought.  The  neoclassical  philosophy  views  the  economic  dimension  as  a   closed   system   with   waste   outputs   ‘external’   or   inconsequential   to   its   proper   functioning.  ‘Externalities,’  the  misnomer  by  which  this  class  of  economic  actors  are   known,  can  be  positive  or  negative.  What  all  externalities  share  is  the  fact  that  they   are   nonmarket   goods   or   services   without   an   assigned   monetary   value.   Examples   include  the  intangible  benefits  of  an  ecosystem’s  waste  assimilation  capacity  or  the   costs   of   waste   emissions.   Without   an   economic   value   or   sufficient   regulatory   controls,   externalities   represent   a   market   failure   and   have   not   received   adequate   attention  in  spite  of  their  relative  importance.     As  the  waste  problem  becomes  increasingly  burdensome,  the  conceptualization  of   the  economy  as  a  closed  system  is  no  longer  appropriate.  The  feedback  relationship   of   accumulating   waste   in   the   environment   is   a   story   of   growing   stressors   that   adversely   affect   the   economy.   To   paraphrase   McDonough   and   Braungart,   the   authors  of  Cradle  to  Cradle,  we  are  all  downstream  from  the  wastes  we  produce.       Internalizing   the   solid   waste   externality   can   be   accomplished   through   its   incorporation  into  the  monetized  economy.  Assigning  an  economic  value  to  waste   materials  will  facilitate  rational  decision-­‐making  by  revealing  costs  associated  with  
  • 10. 7   waste  and  wasteful  behavior.  A  trash  bottle  program  that  can  effectively  impart  an   exchange  value  on  each  unit  can  demonstrate  this  idea.  Items  that  carry  an  exchange   value   function   as   a   form   of   currency   and   as   such   can   change   the   way   they   are   viewed  by  society.       THE  MUNICIPAL  SOLID  WASTE  STREAM   The  waste  materials  that  make  up  the  trash  bottle  are  found  in  the  Municipal  Solid   Waste  (MSW)  stream.  The  MSW  stream  comprises  only  7%  of  overall  waste  output   in   the   U.S.   compared   to   the   larger   waste   categories   including   industrial   and   commercial   (20%),   agricultural   (17%),   mining   (19%),   and   demolition   and   construction   (22%).   Nevertheless,   MSW   management   is   the   most   visible   demonstration  of  current  efforts  to  address  the  waste  challenge  and  therefore  has  a   high  potential  to  guide  public  awareness  and  affect  positive  change.  This  category  of   waste  is  particularly  challenging  to  manage  due  to  its  broad  spatial  distribution  and   diverse   composition.   The   stream   primarily   includes   durable   goods,   nondurable   goods,   containers,   packaging,   food   and   yard   waste.   Within   the   U.S.   MSW   stream,   plastics  account  for  12.4%  of  its  total,  with  an  annual  average  volume  of  roughly  14   million  tons  (EPA,  2010).       A  rapid  increase  in  the  cost  of  waste  disposal  services  in  the  U.S.  is  attributed  to   increasing  waste  volume,  evolving  government  regulations  and  limited  space.  The   U.S.  Environmental  Protection  Agency  estimates  the  cost  of  MSW  disposal  at  $100   per  ton,  with  costs  growing  at  $1.64  per  ton  each  year.    The  annual  cost  of  MSW   management  in  the  U.S.  could  therefore  be  as  much  as  $23.8  billion  (Letcher  and   Valero,  2011).  This  figure  does  not  include  the  ‘external  costs’  to  society  such  as  the   impacts  on  atmospheric  CO2  concentration,  public  health  and  habitat  degradation.  In   less-­‐industrialized   nations,   external   costs   are   often   more   visible   given   the   higher   incidence  of  illegal  dumping  and  open  burning  of  waste.      
  • 11. 8   PLASTICS   The  term  ‘plastics’  refers  to  biomass  and  petroleum-­‐based  materials  that  at  some   stage  in  the  production  process  reach  a  viscous  state  that  allows  them  to  be  molded,   cast,  spun  or  applied  as  a  coating  (Thompson  et  al,  2009).  Polymers  are  typically   produced  by  polymerization  of  oil  or  gas  monomers,  incorporating  various  chemical   additives  in  the  process  such  as  antioxidants,  stabilizers,  softeners,  flame-­‐retardants   and   pigments   in   order   to   give   the   product   different   aesthetic   and   performance   attributes   (UNEP,   2009).   Plastics   are   versatile   and   lightweight   materials   with   properties  that  yield  innumerable  social  benefits  (Andrady  &  Neal  2009).       The   history   of   plastics   began   in   1868   when   John   W.   Hyatt   invented   celluloid   (Freinkel,  2011).  Celluloid  is  made  from  wood  pulp,  plant  fibers  (cellulose)  or  cotton   fibers   treated   with   nitrogen   and   camphor.   By   treating   cellulose   with   acids   and   solvents,  cellophane  and  rayon  were  invented.  This  class  of  plant-­‐based  plastics  is   referred   to   as   bioplastics.   In   1907,   when   Leo   Bakeland   developed   the   first   petroleum-­‐based   plastics,   the   attention   on   bioplastics   development   essentially   halted.  The  versatility  of  plastics  originating  from  crude  oil  or  natural  gas  was  clear.       The  material  is  relatively  inexpensive,  lightweight,  strong,  durable,  and  corrosion-­‐ resistant   and   has   high   thermal   and   electrical   insulation   properties.   With   degradation  periods  ranging  from  hundreds  to  thousands  of  years,  there  simply  has   not   been   time   to   understand   the   long-­‐term   impacts.   Only   recently,   as   the   repercussions  of  petroleum-­‐based  plastics  become  more  apparent,  has  the  industry   returned  to  the  research  and  development  of  bioplastics.     While  plastics  are  primarily  comprised  of  organic  material,  they  typically  degrade   by  exposure  to  light,  heat,  moisture  and  pollutants  rather  than  through  biological   processes  (Moore,  2011).  Though  only  8%  of  all  petroleum  use  is  directed  towards   plastics   manufacturing,   the   source   is   a   concern,   as   is   the   fact   that   the   product   is   neither  compostable  nor  biodegradable.  In  the  past  70  years,  the  plastic  industry   has   seen   a   dramatic   increase   in   the   production   of   synthetic   polymers,   or   plastics  
  • 12. 9   produced  with  additives  to  modify  their  structural  properties.  These  plastics  include   two   categories   known   as   thermoplastics   and   thermosets.   Thermoplastics   can   be   softened  and  melted  when  reheated  and  then  formed  into  new  shapes  when  cooled,   while   thermosets   cannot.   Thermoplastics   constitute   80%   of   global   plastics   production  and  are  the  focus  of  the  trash  bottle  methodology.  This  category  includes   polyethylene  (PE),  polypropylene  (PP),  polystyrene  (PS),  polyethylene  terephthalate   (PET),  and  polyvinyl  chloride  (PVC)  (UNEP,  2009).     ECOLOGICAL  IMPACTS  OF  PLASTIC   Traditional  polymers  such  as  PE  use  fossil  feedstocks  with  carbon  fixation  rates  in   the  millions  of  years.  Once  processed,  their  carbon  release  rate  into  the  environment   is   1-­‐10   years.   This   increases   atmospheric   CO2.     In   contrast,   plant-­‐based   polymers   use  renewable  feedstocks,  and  their  release  of  CO2  can  be  neutralized  the  following   season  simply  by  replanting  the  feedstock  (Bastioli,  2005).       When  plastic  debris  is  exposed  to  UV  irradiation  from  sunlight  it  undergoes  photo   oxidation.   It   deteriorates   by   losing   its   tensile   strength   and   crumbling   into   progressively  smaller  fragments  known  as  microplastics.  A  loss  of  molecular  weight   occurs  during  plastic  fragmentation  through  the  departure  or  ‘leaching’  of  chemical   compounds,  outgassing  of  petrochemicals  as  well  as  the  attraction  of  nearby  toxins   (Moore  et  al.,  2001).       Plastics  that  contain  various  synthetic  additives  are  a  concern  for  human  and  animal   health.   Styrene,   for   instance,   is   a   known   carcinogen.   The   petrochemical   BPA,   currently  applied  as  a  hardening  agent,  was  first  used  as  a  synthetic  estrogen.  BPA  is   a   known   endocrine   system   disruptor   (Yang   et   al.,   2011).   In   spite   of   growing   awareness   about   the   public   health   implications,   the   demand   for   plastics   steadily   grows.       The   spatial   distribution   of   plastic   waste   is   astounding.   Terrestrial   landscapes,   particularly   in   less-­‐industrialized   countries,   are   often   blanketed   with   windblown  
  • 13. 10   debris.  Wind  and  rains  flush  much  of  this  waste  into  rivers  and  streams  that  in  turn   transport   it   to   the   oceans.   Ocean   currents   carry   plastic   indiscriminately   to   seashores,   seafloors   and   throughout   the   surface.   It   is   an   impermeable   material,   preventing  the  passage  of  water  or  air,  presenting  a  hazard  to  plants  and  animals   alike.       The  most  dramatic  example  of  marine  debris  is  the  North  Pacific  Gyre,  also  known   as  the  Great  Pacific  Garbage  Patch.  This  is  an  immense  cluster  of  marine  debris  that   highlights   plastics’   uncontrolled   spread.   According   to   the   National   Oceanic   and   Atmospheric   Administration,   it   is   not   possible   to   accurately   provide   the   exact   location,  size  or  volume  of  trash  here,  but  estimates  are  as  high  as  4  million  tons   spread  out  over  an  area  one  or  two  times  the  size  of  Texas.  Plastic  bags  and  PET   bottles  are  the  most  pervasive  type  of  marine  litter  around  the  world,  accounting  for   more  than  80%  of  all  rubbish  collected  in  a  regional  seas  assessment  (UNEP,  2009).     Plastics  damage  coral  reefs,  ensnare  animals  and  can  be  misidentified  as  food  and   ingested.  Plastic  debris  accumulating  in  the  food  chain  is  exerting  multiple  hazards   on   wildlife   and   ultimately   on   humans   with   repercussions   that   are   poorly   understood,   but   certain   nonetheless   (Sivan,   2011).   Ingesting   plastic   can   cause   internal  injury,  blockage  of  the  digestive  tract  and  starvation.  The  United  Nations   Environment   Program   estimates   that   more   than   1   million   seabirds   and   100,000   non-­‐avian  marine  animals  die  every  year  from  ingesting  plastics  (UNEP,  2005).   MARKET  TRENDS   Plastics  are  now  used  in  most  aspects  of  everyday  life.  Over  the  past  12  years,  more   plastics  have  been  produced  than  in  the  entire  20th  century  (Freinkel,  2011).  From   1990  to  2007,  production  of  all  types  of  plastics  more  than  tripled  from  80  million  to   260   million   tons,   now   accounting   for   approximately   8%   of   world   oil   production   (Letcher  and  Valero,  2011).  It  is  estimated  that  production  of  plastics  worldwide  is   growing  at  a  rate  of  approximately  5%  per  year  (Letcher  and  Valero,  2011).    This   growth  far  exceeds  global  recycling  and  reuse  rates.  
  • 14. 11     Data Source: http://cipet.gov.in/plastics_statics.html   Any  type  of  plastic  that  can  fit  into  the  trash  bottle  via  the  bottleneck  is  appropriate.   Polyethylene   is   the   most   consumed   synthetic   polymer   with   a   current   global   production  of  roughly  140  million  tons  per  year  (Sivan,  2011).    The  content  of  trash   bottles   generally   falls   into   two   of   the   three   categories   of   PE   that   exist.   The   first   category   is   LDPE   or   low-­‐density   polyethylene,   manufactured   through   a   high-­‐ pressure  method  that  achieves  soft,  ductile  and  flexible  properties.  LDPE  accounts   for  1/3  of  household  trash  in  the  United  States  in  the  form  of  packaging  film  and   bags.  Roughly  67%  of  global  LDPE  demand  corresponds  to  these  uses.  The  second   category,   with   similar   properties   to   LDPE   is   LLDPE   or   linear   low-­‐density   polyethylene,  which  is  used  in  agricultural  films,  stretch  wrap  for  covering  food  and   bubble  wrap.  Packaging  consisting  of  PE  represents  a  key  growth  segment  (Figure   2.)  accounting  for  over  35%  of  the  global  consumption  (CIPET,  2012).  Once  again,   this   is   the   primary   material   targeted   for   safe   storage   by   the   trash   bottle   methodology.     0   2   4   6   8   10   12   PS   PVC   PE   PP   PET   %  Average   Annual     Growth  Rate   Figure  1.  Global  Growth  Rates  (2004  -­‐   2010)  
  • 15. 12   Data Source: http://cipet.gov.in/plastics_statics.html   The   container   element   of   the   trash   bottle   is   typically   made   from   polyethylene   terephthalate  or  PET  used  in  carbonated  and  non-­‐carbonated  beverages,  but  high-­‐ density  polyethylene  or  HDPE  used  in  milk  and  detergent  bottles  is  equally  suitable.   In  the  U.S.  market,  95%  of  all  plastic  bottles  are  either  PET  or  HDPE  (Headwaters   Cooperative  Recycling,  2012).  The  bottle  industry  continues  to  experience  annual   growth,  with  the  greatest  demand  coming  from  the  United  States,  China  and  Mexico.       Corporate   social   and   environmental   responsibility   is   becoming   increasingly   important  in  the  global  marketplace.  According  to  a  2010  Accenture  report  titled   The   New   Era   of  Sustainability,   93%   of   CEOs   affirm   that   pursuing   a   sustainable   business  model  is  critical  to  success.  At  present,  however,  there  is  no  single  business   enterprise   that   has   achieved   carbon   neutrality.   Nevertheless,   studies   have   shown   that   companies   adapting   to   the   evolving   social   and   environmental   context   with   innovative   solutions   tend   to   demonstrate   above   average   financial   performance   (Lacy  et  al.,  2010).  Rather  than  eliminate  adverse  impacts  from  industry,  however,   most  companies  strive  to  maximize  the  efficiency  of  existing  processes.  Efficiency  in   0   200   400   600   800   1000   1200   1400   1600   1800   2000   2000   2002   2004   2006   2008   2010   2012   thousand  tons  per  year     Figure  2.  Global  Polyethylene  (PE)   Demand  Growth   HDPE   LLDPE   LDPE  
  • 16. 13   this   context   implies   doing   less   harm,   which   is   fundamentally   different   from   a   sustainable  approach  that  calls  for  corrective  actions  at  the  root  of  the  problem.     Take   as   an   example   the   three   largest   suppliers   of   bottled   beverages:   Coca-­‐Cola,   Pepsi   and   Nestlé.   These   companies   are   touting   their   efforts   of   minimizing   their   packaging   footprint   but   the   focus   on   biodegradable   and   compostable   bioplastics   does   not   appear   to   be   a   priority.   For   instance,   blasted   as   greenwashing   by   environmentalists,  Coke’s  recently  released  “PlantBottle”  is  still  mostly  petroleum-­‐ based  (Loepp,  2011).  Instead,  the  companies  are  setting  ambitious  recycling  goals   and  minimizing  packaging  volume  while  essentially  using  the  same  materials  (Pepsi,   2010;  Coca-­‐Cola,  2011;  Nestlé,  2011).  Each  company  has  outlined  efforts  to  reduce   bottle  weight  (light-­‐weighting)  while  increasing  the  amount  of  recycled  PET.  Coca-­‐ Cola’s   2010/2011   Sustainability   Review   explains   the   rationale:   “Capturing   the   embodied  energy  and  raw  materials  in  beverage  bottles  for  reuse  through  recycling,   we   believe,   is   a   better   option   for   our   business   and   for   the   environment   than   a   biodegradable   packaging   when   considered   over   the   package   lifecycle.”   While   demand  grows  for  their  products  as  the  global  economy  expands,  this  approach  is   not  sustainable.   BIOPLASTICS   Bioplastics  fall  into  one  or  both  of  two  general  categories:  biomass-­‐based  plastics   and  biodegradable  plastics.  Biomass-­‐based  plastics  can  be  either  biodegradable  or   non-­‐biodegradable   just   as   biodegradable   polymers   can   also   be   petroleum-­‐based   (Mugdal  et  al.,  2011).  Bioplastics  in  general  have  shown  growth  over  the  past  two   years,  in  spite  of  the  global  economic  downturn,  but  their  production  base  remains   quite  small  compared  to  the  petroleum-­‐based  plastics  market.  Greater  awareness   about   environmental   concerns   and   government   initiatives   are   cited   as   drivers   behind  this  growth  (Killam,  2010).       The  sources  of  bioplastics  are  diverse,  but  the  benefits  are  similar.  Biomass-­‐derived   plastics  require  less  energy  to  produce  than  conventional  plastics  and  they  are  made  
  • 17. 14   with   renewable   biomass.   Conventional   plastics   accumulate   in   landfills   and   take   thousands  of  years  to  disintegrate  while  biodegradable  plastics  can  be  ‘upcycled’  as   compost  to  nourish  soil.  The  result  is  less  landfill  usage,  less  pollution  and  a  smaller   carbon  footprint.   Cornstarch-­‐based   bioplastics   have   been   in   existence   for   20   years   and   claim   a   majority   market   share   of   biodegradable   plastics   (Center   for   American   Progress,   2011).   Other   bioplastics   under   development   include   those   using   sources   such   as   potatoes,  sugar  cane  and  mushrooms.  The  mycelium  in  a  mushroom’s  root  structure   is  a  particularly  promising  discovery  for  bioplastics.  Entrepreneurs  Gavin  McIntyre   and   Eben   Bayer   use   mycelium   as   an   all-­‐natural   and   self-­‐assembling   styrene   substitute.   It   is   a   green   packaging   alternative   that   requires   98%   less   energy   to   produce  than  conventional  packaging  materials.  In  essence,  agricultural  crop  waste   is  ground  up,  infused  with  mycelium  and  placed  into  a  mold  for  five  days.  During   this  period,  the  mycelium  grows  and  binds  the  material.  The  postconsumer  product   is  fully  compostable  (Bayer,  2010).     There   are   a   number   of   biodegradable   plastic   products   currently   available   to   consumers.  These  products  range  from  water  bottles  to  garbage  bags  to  amenities   and  are  made  in  traditional  plastics-­‐processing  plants.    Indications  of  the  emergence   of   mainstream   bioplastics   are   promising,   but   the   growth   of   synthetic   polymers   remains  largely  unaffected.   GLOBAL  IMPLICATIONS   Over  half  of  the  global  population  now  lives  in  urban  areas  (Macdonald,  2008).  The   UN  Population  Division  estimates  an  additional  1.7  billion  new  urban  residents  to   arrive   in   the   next   25   years   (UNPD,   2008).   This   demographic   shift   may   help   to   alleviate  pressure  on  rural  ecology  even  though  most  of  the  urban  growth  observed   is   occurring   in   less-­‐industrialized   countries   where   poor   waste   management   can   exacerbate  public  health  risks.  Mike  Davis  (2005)  describes  the  magnitude  of  the   problem:  
  • 18. 15      “…of   all   the   dangerous   ecological   symptoms   of   runaway   urban   poverty,   none  poses  a  bigger  threat  than  overflowing  waste.  The  chronic  shortfalls   between  the  rates  of  trash  generation  and  disposal  in  third  world  cities  are   often  staggering:  the  average  collection  rate  in  Dar  el  Salaam  is  barely  25   percent;  in  Karachi,  40  percent;  in  Jakarta,  60  percent.  The  city-­‐planning   director   in   Kabul   complained   to   the   Washington   Post   that   his   city   is   becoming   one   big   reservoir   of   solid   waste…   Every   24   hours,   2   million   people  produce  800  cubic  meters  of  solid  waste.  If  all  40  of  our  trucks  make   three  trips  a  day,  they  can  still  transport  only  200  to  300  cubic  meters.”     Whereas   the   pioneer   industrialized   cities   of   the   world   have   confronted   environmental   challenges   in   a   sequential   order   corresponding   with   their   gradual   infrastructural  growth,  rapidly  urbanizing  cities  in  less-­‐industrialized  countries  are   undergoing  a  “time-­‐space  compression”  in  that  they  must  grapple  simultaneously   with  compounded  environmental  impacts  (Marcotullio  et  al.,  2003,  p  220;  Harvey,   1989).   These   sets   of   environmental   challenges,   (e.g.   localized   solid   waste   management,  regionalized  water  contamination  and  global  air  pollution)  have  been   faced  concurrently  by  the  emerging  actors  in  the  global  marketplace  whose  capacity   to  effectively  address  them  is  limited.  As  of  2007,  the  Western  European  and  North   American   markets   accounted   for   44%   of   global   demand   for   synthetic   polymers   (Mudgal   et   al.,   2011).   Emerging   economies   in   Eastern   Europe,   Russia,   the   Asian   Pacific  and  the  Middle  East  are  increasingly  expanding  their  market  share.       Industrialized  countries  have  by  no  means  ‘solved’  the  waste  issue  either.  Rather,   they  have  merely  managed  to  mitigate  short-­‐term  public  health  risks  by  displacing   pollution   to   landfills,   to   downstream   ecosystems,   into   the   atmosphere   or   by   exporting  the  polluting  activities  of  industry  abroad.  To  the  public,  what  is  out  of   sight  is  also  out  of  mind,  suggesting  that  hiding  the  problem  from  view  impedes  the   type   of   cultural   adaptation   that   responds   to   changes   in   the   environment.   The   challenge  for  any  urban  area  now  is  how  to  reduce  resource  consumption  and  waste   generation  for  the  benefit  of  long-­‐term  human  and  environmental  health.  
  • 19. 16   Disempowered  social  groups  with  perspectives  valuable  to  resource  management   have   been   forced   into   a   cycle   of   unstable   dependency   as   profit-­‐driven   power   structures   focus   on   the   process   of   global   integration.   As   a   consequence,   globalization  has  hindered  the  social  capacity  to  combat  environmental  injustice.  In   terms  of  managing  urban  solid  waste,  adopting  capital-­‐intensive  technologies  may   fail  to  recognize  the  value  of  existing  informal  sector  recycling  systems.  Scavenging   for  waste  materials  with  reuse  value  at  dumping  sites  may  be  an  underappreciated   activity  practiced  by  the  urban  poor.  It  is  reported  that  as  much  as  2%  of  the  urban   population  in  Asia  and  Latin  America  depends  on  waste  picking  for  their  livelihood   (Medina,   2000).   An   important   lesson   for   policymakers   rests   in   the   experience   of   waste   scavenging   communities   in   global   cities.   Countless   examples   demonstrate   how   informal   networks   can   explore   flexible   opportunities   for   resolving   resource   issues.  As  urban  growth  continues,  these  informal  sector  groups  also  grow.  Current   patterns  can  serve  as  models  for  how  the  urban  poor,  given  the  chance,  can  develop   strong  livelihoods  within  a  formalized  waste-­‐picking  sector,  with  trash  bottles  as  a   component  in  the  strategy.     Materials   recovery   strategies   using   the   refund   formula   carry   significant   social   benefits   in   terms   of   public   health,   livelihoods   development   and   environmental   education.  It  is  firmly  believed  that  the  trash  bottle  methodology  can  generate  these   benefits   for   the   global   community.   A   reduction   in   landfill   waste   volumes   reduces   collection   costs   and   the   amount   of   land   dedicated   to   waste   disposal,   which   saves   money  for  the  city  (and  for  taxpayers).  Participants  earn  money  when  their  bottles   are  delivered  to  redemption  centers.     Psychologically,   it   is   empowering   for   a   community   to   seize   control   of   its   waste   problem.  Communities  across  the  globe  have  no  answer  to  the  problem  of  plastic   waste  and  traditional  cultural  knowledge  is  of  no  use  with  respect  to  foreign,  non-­‐ biodegradable   waste   materials.   Litter   has   degraded   landscapes   that   have   considerable   cultural   value,   but   community   wellbeing   can   improve   if   the   tools   to   combat  the  waste  problem  are  available.    
  • 20. 17   POLICIES       Regulations   generally   do   not   target   plastic   waste   specifically   but   rather   group   it   under   the   broad   umbrella   of   solid   waste   (Mudgal   et   al.,   2011).   This   failure   to   compartmentalize  the  waste  streams  hinders  our  ability  to  respond  with  flexibility   to   evolving   trends   in   production,   consumption   and   disposal.   Instead,   policies   governing  aspects  of  plastics  management,  which  range  from  local  to  international,   target   distinctive   stages   in   the   material   life   cycle.   From   an   administrative   standpoint,   the   geographical   management   boundary   for   post-­‐consumer   waste   is   typically   the   municipality.   Nevertheless,   the   global   nature   of   the   plastic   problem   demands  that  targeted  strategies  be  coordinated  with  broader  waste  policy.     At   the   international   level,   legally   non-­‐binding   standards   include   the   Brundtland   Report   and   Agenda   21.   These   documents   define   objectives   and   goals   for   a   sustainable   future.   The   Brundtland   Commission   produced   the   first   major   international   mandate   with   its   1987   report   entitled   “Our   Common   Future.”   The   report   appealed   to   the   international   community   to   work   towards   reconciling   development   goals   with   environmental   protection   and   social   equality.   Since   its   release,   it   has   framed   the   sustainability   dialogue   across   disciplines.   Agenda   21,   detailed  below,  expands  upon  this  idea  with  comprehensive  guidelines.     Legally   binding   policies   from   the   national   level   down   to   the   local   level   employ   regulatory   and   economic   instruments.   These   approaches   function   differently   and   combine   to   achieve   an   integrated   management   strategy.   Regulatory   instruments,   also  known  as  ‘command  and  control’  policies,  such  as  Hawaii’s  recent  ban  on  the   plastic   shopping   bag,   set   legal   limits   and   standards.   Economic   instruments,   also   known  as  market-­‐based  instruments,  offer  financial  incentives  and  disincentives  to   affect  changes  in  behavior.  Daly  and  Farley  contend  that  when  designing  policy  for   complex   problems,   each   independent   policy   goal   requires   an   independent   policy   instrument   (Daly   and   Farley,   2011).   This   section   will   review   relevant   policies   at   various  scales.    
  • 21. 18   AGENDA  21   Perhaps  the  most  influential  report  guiding  improved  management  of  waste  at  the   international  level  is  Agenda  21.  This  is  a  comprehensive  sustainable  development   blueprint   with   solid   waste   management   identified   as   one   of   many   priorities.   The   Agenda  was  drafted  between  1989  and  1992  and  was  adopted  by  178  countries  at   the  United  Nations  Conference  on  Environment  and  Development  in  Rio  de  Janeiro,   Brazil.     The   consensus   reflects   an   interest   in   sustainable   development   goals   and   environmental  cooperation  (United  Nations,  2009).       Chapter  21  of  the  Agenda  describes  the  priorities  of  solid  waste  management.  The   four   sections   in   the   chapter   are:   (a)   minimizing   waste,   (b)   maximizing   environmentally  sound  waste  reuse  and  recycling,  (c)  promoting  environmentally   sound   waste   disposal   and   treatment   and   (d)   extending   waste   service   coverage.   Section  B  encourages  the  pursuit  of  best  management  practices  and  highlights  the   need  for  governments,  based  on  their  capacity  and  available  resources,  to  explore   new   approaches.   Of   particular   relevance   to   the   trash   bottle   methodology   are   the   following  objectives:   a) Providing   technical   assistance   to   informal   waste   reuse   and   recycling   operations;   b) Providing   legal   and   economic   conditions   conducive   to   investments   in   waste   reuse  and  recycling;   c) Implementing   specific   mechanisms   such   as   deposit/refund   systems   as   incentives  for  reuse  and  recycling;   d) Providing   incentives   to   improve   the   marketability   of   technically   recyclable   waste;   e) Encouraging   non-­‐governmental   organizations,   community-­‐based   organizations   and   women's,   youth   and   public   interest   group   programs,   in   collaboration  with  local  municipal  authorities,  to  mobilize  community  support   for  waste  reuse  and  recycling  through  focused  community-­‐level  campaigns;   f) Applying   economic   and   regulatory   instruments,   including   tax   incentives,   to   support  the  principle  that  generators  of  wastes  pay  for  their  disposal;   g) Facilitating  the  transfer  of  waste  reuse  and  recycling  technology;   h) Offering   incentives   to   local   and   municipal   authorities   that   recycle   the   maximum  proportion  of  their  wastes.  
  • 22. 19   Chapter   21   highlights   the   importance   of   governments   and   civil   society   launching   pilot  programs,  in  conjunction  with  public  education,  to  expand  waste  management   initiatives.   As   a   part   of   this   effort,   technical   assistance   and   capacity   building   is   encouraged  across  regional  and  national  boundaries.   THE  RESOURCE  CONSERVATION  AND  RECOVERY  ACT  OF  THE  UNITED  STATES   The  Resource  Conservation  and  Recovery  Act  (RCRA)  is  an  amendment  to  the  Solid   Waste  Disposal  Act  of  1965  and  is  designed  to  enforce  management  standards  for   solid   and   hazardous   waste   disposal   at   the   national   level.   Following   its   passage   through  Congress  and  across  President  Ford’s  desk  in  1976,  the  provisions  of  RCRA   were   further   strengthened   by   three   subsequent   amendments,   namely   the   Hazardous  and  Solid  Waste  Amendments  (1984),  the  Federal  Facilities  Compliance   Act  (1992),  and  the  Land  Disposal  Program  Flexibility  Act  (1996).       The  goals  of  RCRA  are:  (1)  to  protect  human  health  and  the  environment  from  the   potential  hazards  of  waste  disposal;  (2)  to  conserve  energy  and  natural  resources;   (3)   to   reduce   the   amount   of   waste   generated;   and,   (4)   to   ensure   that   wastes   are   managed  in  an  environmentally  sound  manner.  Regulations  are  developed  by  the   EPA   and   communicated   to   the   public   through   guidance   documents   and   policy   statements.   While   the   EPA   Administrator   has   enforcement   authority   over   RCRA   regulations,   48   states   have   been   empowered   to   administer   their   solid   waste   programs.  Authorized  states  must  meet  federal  standards  (EPA,  2010).  Solid  waste   falls  into  two  broad  categories  referred  to  under  RCRA  as  Subtitle  C,  or  hazardous   solid  wastes  and  Subtitle  D,  or  nonhazardous  solid  wastes  (EPA,  2008).  While  the   “nonhazardous”   classification   is   viewed   as   a   misnomer   with   respect   to   plastics,   RCRA  considers  the  material  relatively  innocuous  compared  to  classes  of  waste  that   carry  elevated  concentrations  of  toxic  material.   Subtitle  D  approach   As  a  general  rule,  the  RCRA  section  governing  management  of  nonhazardous  waste   gives   state   and   local   governments   responsibility   over   managing   wastes   such   as  
  • 23. 20   household   garbage   and   industrial   nonhazardous   refuse.   Within   this   waste   classification,  the  EPA  provides  guidance  to  agencies  working  at  different  scales  that   are   tasked   with   design   and   implementation   of   waste   programs.   Guidance   and   facilitation  responsibilities  include  helping  states  and  counties  increase  efficiency  by   promoting  new  strategies  for  source  reduction  and  recycling,  as  well  as  requiring   improvements  or  closures  of  substandard  disposal  facilities  (EPA,  2008).     MARKET-­‐BASED  WASTE  MANAGEMENT  STRATEGIES     Waste   collection   and   disposal   services   at   the   scale   of   the   municipality   are   traditionally   funded   by   households   via   property   taxes   or   by   paying   a   fixed   rate.     Such   payment   schemes   may   not   be   as   effective   as   targeted   incentives   to   reduce   waste   volume,   sort   materials   or   recover   reusable   items.   The   trash   bottle   methodology   requires   strong   incentives   to   encourage   the   behavior   as   it   asks   consumers   to   go   well   beyond   basic   separation   of   materials   and   towards   actively   packing   waste   away   for   long-­‐term   storage.   In   order   to   achieve   the   proper   buy-­‐in   result,  the  incentive  must  be  sufficiently  appealing.     With   improved   awareness   and   guidance,   MSW   composition   is   being   sorted   into   recyclable   and   non-­‐recyclable   categories   and   where   programs   exist,   compostable   waste.  In  most  cases,  however,  separation  of  the  waste  stream  is  entirely  voluntary.   Environmental   stewardship   must   be   rewarded   if   it   is   to   be   encouraged. Viable   solutions  are  those  that  appeal  to  the  economic  self-­‐interest  of  business  and  people.   With   the   right   incentives,   the   response   is   automatic.   For   instance,   since   Ireland   placed  a  tax  on  each  plastic  bag  in  2002,  bag  use  has  dropped  by  75%  (Convery  et   al.,   2007).   Coherent   policy   rewards   good   behavior   with   incentives   and   penalizes   irresponsible  behavior  with  disincentives.       A   holistic   solid   waste   portfolio   combines   upstream   and   downstream   policies   to   drive   change.   Below   are   examples   of   policy   instruments   designed   to   influence   upstream  and  downstream  behavior,  respectively.  
  • 24. 21   Upstream  Policy  Choices   Policies   that   target   waste   management   prior   to   commercial   distribution   of   goods   and  services  focus  on  the  upstream  dimension  of  the  waste  issue.  Although  the  trash   bottle   methodology   is   a   downstream   management   approach,   it   is   important   to   highlight   the   upstream   interventions   that   can   be   combined   with   downstream   strategies  for  an  integrated  scheme.         Extended  Producer  Responsibility   (EPR)   encourages   product   design   innovations   by   placing  a  part  of  the  waste  management  burden  on  the  producer.  Compliance  in  an   EPR   system   requires   that   producers   meet   a   take-­‐back   percentage   of   the   post-­‐ consumer  waste  from  their  commercial  product.  Producers  and  manufacturers  held   physically  and  financially  responsible  for  their  end-­‐of-­‐life  products  are  compelled  to   innovate.  In  markets  where  EPR  may  impose  an  excessive  financial  burden  on  the   individual   producer,   a   collective   producer   responsibility   system   can   be   used   to   improve  safeguard  the  profitability  of  manufacturers  (Plambeck  and  Wang,  2009;   Fleckinger  and  Glachant,  2009).     Advance   Disposal   Fee   (ADF)   is   a   fee   collected   from   consumers   or   producers   for   disposal  costs  associated  with  the  purchased  or  sold  product.  Consumers  pay  this  at   the  time  of  purchase  or  the  producers  are  charged  on  product  sales.  Generally,  in  an   ADF  system  producers  or  consumers  are  charged  per  product  or  unit  weight  sold.   With  an  ADF,  production  and  consumption  are  expected  to  decrease  and  thus,  less   virgin  material  would  be  used  (Walls,  2006).  If  an  ADF  is  charged  per  unit  weight  of   the  product,  then  product  design  can  be  improved  as  producers  try  to  reduce  the   size  and  the  weight  of  their  products.   Downstream  Policy  Choices   The   goal   for   resolving   the   plastics   issue   should   be   to   replace   all   the   non-­‐ biodegradable  varieties.  Change  comes  from  the  bottom  up,  however,  and  therefore   awareness   about   socially   and   ecologically   responsible   consumer   behavior   is   of   paramount  importance.  Downstream  policies  can  drive  this  change.    
  • 25. 22     Pigouvian   Tax   -­‐-­‐   Given   our   limited   understanding   of   the   temporal   and   spatial   dimensions  of  the  waste  problem,  quantification  of  the  marginal  external  costs  of   waste  disposal  has  been  problematic  and  thus  more  easily  set  aside.  In  economics,  a   “Pigouvian  tax”  is  a  corrective  tax  designed  to  resolve  the  externality  issue.  The  tax   amount   is   roughly   equal   to   the   marginal   external   cost   of   the   polluting   activity   or   product.  This  can  only  be  an  estimate  by  virtue  of  the  nonmarket  characteristics  of   externalities.  Nevertheless,  this  economic  instrument  is  a  noninvasive  tool  designed   to  remedy  a  market  failure  and  raise  revenue  for  corrective  action  (Mankiw,  2009).   In  the  case  of  solid  waste,  a  per  unit  tax  might  be  imposed  on  a  good,  based  on  its   disposal  costs,  and  paid  for  by  either  the  producer  or  directly  by  the  consumer.  As   such,   the   Pigouvian   tax   can   internalize   the   waste   externality   by   revealing   hidden   costs  to  producers  and  consumers.  Correspondingly,  a  Pigouvian  subsidy  achieves  a   similar  end  by  rewarding  good  behavior  that  offsets  an  externality.     Deposit  –  Refund  is  a  system  that  can  be  used  to  control  pollution  in  much  the  same   way  as  a  Pigouvian  tax  and  subsidy.  In  a  deposit-­‐refund  system,  a  tax  on  production   or  consumption  is  associated  with  a  subsidy  proportional  to  product  recyclability.  A   recycling  subsidy,  when  combined  with  an  advanced  disposal  fee,  is  an  example  of   such  a  system.  Walls  explains  how  theoretical  models  have  shown  that  alternative   policies  for  correcting  waste  disposal  behavior  such  as  recycled  content  standards   and   virgin   materials   taxes   are   inferior   to   a   deposit-­‐refund   because   they   are   less   tangible  to  the  average  consumer.         Relative  to  trash  bottles,  an  ADF  may  be  assigned  to  all  products  that  contain  single-­‐ use   plastics   such   as   LDPE   film,   and   HDPE   and   PET   bottles.   The   ADF   would   be   calculated  based  on  the  volume  of  the  taxable  material  in  each  unit.  Collectors  of   materials   would   receive   a   refund   for   delivery   of   trash   bottles   to   a   redemption   center.   The   product   tax   would   benefit   upstream   processes   by   encouraging   producers   to   improve   product   design   and   material   composition.   By   giving   a   redemption  value  to  the  trash  bottle  using  a  refund,  a  currency  for  this  particular  
  • 26. 23   waste  product  is  created  when  managed  in  this  simple  way.  Until  waste  holds  an   exchange  value,  it  will  continue  to  be  wasted.       The  deposit-­‐refund  system  is  most  commonly  associated  with  beverage  containers.   This  strategy  is  being  implemented  in  ten  U.S.  States  and  eight  Canadian  Provinces.   The   approach   is   also   used   for   other   products   including   lead-­‐acid   batteries,   tires,   motor   oil,   and   electronics   (Walls,   2011).   The   programs   have   successfully   transformed  nonrecyclers  into  diligent  recyclers  according  to  Viscusi  et  al.  (2011),   who  explain  that  87%  of  their  survey  respondents  reported  recycling  80%  of  their   plastic  bottles  whereas  non  deposit-­‐refund  states  recycle  an  average  of  only  53%.       Oregon  was  the  first  state  in  the  United  States  to  introduce  a  ‘bottle  bill’  in  1971.  The   most   common   implementation   method   of   the   bottle   bill   uses   the   retailer   as   the   primary  agent  who  charges  the  deposit  fee  for  beverage  containers,  transferring  the   deposit  expense  to  the  consumer,  and  finally  reimburses  the  consumer  upon  receipt   of   the   returned   bottle.   Retailers   agree   to   provide   this   service   because   they   keep   deposits,  usually  five  or  ten  cents,  on  containers  that  go  unreturned  (Oregon  DEQ,   2012).       Hawaii   and   California   employ   a   slightly   different   approach   where   retailers’   only   responsibility  is  the  collection  of  deposits  that  are  then  turned  over  to  the  state  via   the   beverage   distributors.   Consumers   return   the   containers   to   a   variety   of   redemption  locations  and  uncollected  deposits  remain  with  the  state.  This  version   of  the  deposit-­‐refund  system  may  be  more  appropriate  for  a  trash  bottle  program   given  the  added  value  of  the  bottle’s  contents.  A  funding  strategy  could  place  an  ADF   on  all  plastic  packaging  material.  The  redemption  value  for  a  trash  bottle  would  be   significantly  greater  than  an  empty  bottle  given  the  extra  effort  required.  The  value   might  be  based  on  bottle  size  or  weight  as  well  as  local  socioeconomic  factors.     The   efficiency   of   the   deposit-­‐refund   system   has   been   tested   against   alternative   policies  that  seek  to  reduce  disposal  such  as  recycled  content  standards,  recycling   subsidies,   product   taxes,   take-­‐back   mandates,   waste   disposal   fees   and   virgin  
  • 27. 24   materials  taxes  (Walls,  2011).  Walls  (2011)  asserts  that  the  deposit-­‐refund  system   provides  incentives  for  both  source  reduction  and  recycling  whereas  upstream  taxes   such   as   virgin   material   taxes   or   downstream   recycling   subsidies   alone   will   not   generate   a   socially   optimum   balance.   She   goes   on   to   say   that   recycling   subsidies   make   secondary   materials   cheaper   in   the   production   of   new   products   thereby   increasing   volume,   while   taxes   on   virgin   materials   does   nothing   to   incentivize   recycling.         Pay-­‐As-­‐You-­‐Throw   (PAYT)  is  a  program  that  uses  a  unit-­‐based  pricing  strategy  to   minimize  curbside  waste.  A  per-­‐bag  fee  for  collection  and  landfill  disposal  actively   encourages  better  household  waste  management.  In  the  absence  of  illegal  disposal   opportunities,   this   policy   successfully   reduces   household   solid   waste   volume   (Jenkins,  1993).  According  to  the  EPA,  PAYT  communities  generate  49%  less  trash   than  those  who  pay  indirectly  for  waste  collection  services  through  property  taxes   or   with   a   fixed   fee.   Communities   that   implement   PAYT   have   observed   residents   rethinking   their   personal   waste   management   activities   (paytnow.org).   With   new   disincentives,   recycling   is   increasing,   food   waste   and   yard   trimmings   are   being   composted,   and   reusable   items   are   being   donated   or   resold.   Currently   there   are   over   7,000   U.S.-­‐based   PAYT   communities.   Program   beneficiaries   average   467   pounds  per  capita  in  waste  disposal  compared  to  918  pounds  per  capita  in  the  non-­‐ PAYT  municipalities.  Recycling  rates  in  the  first  year  of  PAYT  increase  between  25%   and  69%  (paytnow.org).       An   alternative   scheme   known   as   the   Recycling   Rewards   Program   incentivizes   recycling   by   rewarding   individuals   with   coupons   that   can   be   used   at   local   retail   stores  according  to  the  amount  of  waste  they  have  recycled.  Based  on  results  from   the   pilot   program   in   Miami,   Florida,   although   there   was   a   resulting   increase   in   recycling,   the   ‘carrot’   approach   of   recycling   incentives   was   determined   to   be   less   effective  than  the  ‘stick’  approach  of  PAYT  (Letcher  and  Valero,  2011).  Relating  this   back   to   trash   bottles,   while   a   cash   refund   may   be   more   effective,   a   modified   Recycling  Rewards  Program  is  another  option  for  the  toolbox.    
  • 28. 25   MSW  MANAGEMENT     The  MSW  stream  occupies  a  key  position  in  waste  management  discussions  since  it   is  the  most  public  representation  of  current  efforts  (Letcher  and  Valero,  2011).  Its   management   can   be   quite   complex   as   nuanced   local   and   regional   approaches  are   influenced   by   socioeconomic   and   political   factors.   MSW   policy   guides   collective   behavior   and   can   educate   the   public   about   the   material   ‘throughputs’   in   our   economy,   product   lifecycles,   and   the   importance   of   social   and   environmental   responsibility  from  extraction  of  resource  to  ultimate  disposal.         As  the  trends  in  the  plastics  market  demonstrate,  production  is  accelerating  in  spite   of   advances   in   the   development   of   bioplastics.   Without   an   anticipated   shift   in   production  practices  on  the  horizon,  management  of  postconsumer  plastic  waste  is   exceedingly  important.   TRADITIONAL  APPROACHES     In  the  industrialized  world,  the  traditional  municipal  waste  management  approach   includes   collection,   recycling,   pretreatment,   treatment,   and   disposal   (Letcher   and   Valero,  2011).  In  cities  where  the  landfills  border  marginalized  communities,  “rag   pickers”  perform  a  recovery  service.  Figure  3  tracks  the  material  loop  of  plastics.    
  • 29. 26       Source:  United  Nations  Environment  Program,  2009     Recycling   Recycling  is  a  useful  process  not  only  in  extending  material  life  spans,  saving  energy   and   reducing   demand   on   virgin   materials,   but   also   in   building   public   awareness   about  the  importance  of  waste  separation.  Unfortunately,  the  infrastructure,  energy   and  institutional  requirements  are  out  of  reach  for  most  municipalities.  As  of  2010,   approximately   9,000   curbside   recycling   programs   existed   in   the   United   States,   providing  coverage  to  three  quarters  of  the  total  population  (EPA,  2010).  In  spite  of   the  widespread  availability  of  recycling  services  in  the  U.S.,  only  8%  of  all  plastics   are  recovered  while  the  remainder  is  sent  to  landfills  (EPA,  2010).  Yet  when  PET   bottles,  for  example,  are  given  a  redemption  value  they  have  a  38%  recovery  rate   (EPA,  2008).  As  such,  the  plastic  pollution  challenge  will  not  be  resolved  simply  by   encouraging   voluntary   recycling,   especially   in   a   global   context.   Furthermore,   perpetuating  the  myth  of  plastic  recycling  as  a  solution  is  delaying  the  adoption  of   Figure  3.  Waste  Plastics  Pathways  
  • 30. 27   effective  and  sustainable  strategies  such  as  biodegradable  alternatives.  In  its  current   form,  plastics  recycling  should  be  regarded  as  a  last  line  of  defense  in  order  to  keep   items  out  of  the  landfill  and  slow  the  pace  of  natural  resource  consumption.       The  recycling  process  involves  five  basic  steps:  1)  collection,  2)  manual  sorting,  3)   chipping,  4)  washing,  and  5)  pelleting.  Plastics  collection  occurs  at  both  the  post-­‐ industrial   and   post-­‐consumer   end.   The   manual   sorting   process   depends   on   the   sophistication  of  the  system.  For  example,  a  less  sophisticated  system  might  only   separate  plastics  into  PET,  HDPE  and  “other.”     Only   1/10th   of   the   energy   required   to   create   plastic   from   its   petrochemical   raw   materials   is   needed   to   recycle   plastics   (Kazmeyer,   2009).   However,   as   a   result   of   changes   in   the   chemical   structure   during   the   recycling   process,   most   plastics   become  products  of  a  lesser  quality  once  recycled,  for  which  reason  many  refer  to   the   process   as   “downcycling”   (McDonough   &   Braungart,   2002).   Once   used,   a   PET   bottle  or  HDPE  container  can  be  downcycled  only  once,  into  polypropylene,  before   ultimate  disposal.  This  is  not  sustainable.  Despite  the  reduced  energy  expenditure,  it   still  costs  more  to  recycle  PET  than  to  produce  new  plastics  from  virgin  materials   (Kuruppalil,  2011).       LDPE   film   is   typically   not   accepted   for   comingled   recycling   where   curbside   programs  exist  because  it  tends  to  clog  processing  machines  (American  Chemistry   Council,   2010).   It   has   a   relatively   high   value   as   scrap,   but   like   any   lightweight   material  it  is  difficult  to  consolidate  enough  of  it  to  justify  the  shipping  costs.  Plastic   bag   and   film   recovery   has   increased   in   the   US   to   nearly   50%   since   2005   to   an   estimated  971.8  million  pounds,  or  12%  of  the  total  amount  generated  (American   Chemistry  Council,  2010).       Recovery  options  for  LDPE  film  are  limited  for  consumers  and  consist  mostly  of  the   voluntary  delivery  to  big  box  stores  such  as  supermarkets  that  go  on  to  sell  large   volumes  for  scrap.  Increasing  numbers  of  businesses  are  recovering  their  internally   generated   scrap   film,   and   recyclers   and   haulers   are   more   willing   to   handle   film