SlideShare a Scribd company logo
1 of 48
Electron
Electron model
Photon -
Traveling wave of
helical geometry
Electron –
Closed-loop
standing wave
of toroidal
geometry
Spin 1 boson
Spin ½ fermion
Pair production and annihilation
• Collision of an electron e- and a
positron e+ results in production
of two oppositely directed photons
(gamma rays).
• A high energy photon in the vicinity
of an atomic nucleus can decay into
an electron e- and a positron e+.
Toriodal electron model
Parameter Symbol Relation Value Units
Electric charge e = F/E = mwC =
√(aqP
2)
1.60217E-19 C
Mass me
= E/c2 = ħc/RC =
e/wC
9.10938E-31 kg
Compton wavelength lC = h/mc = h/p 2.4263E-12 m
Compton frequency fC = mc2/h = c/lC = wC
/2p
1.2355E20 Hz
Compton radius: RC = lC/2p = aa0 =
√(E/mw2)
3.8616E-13 m
Compton angular
frequency
wC = c/RC = mc2/ħ =
e/m
7.7634E20 rad/s
Zitterbewegung angular
frequency
wzbw
= 2wC 1.5527E21 rad/s
Spin angular momentum s = ½ ħ = iw =
½meRC
2w
5.2725E-5 J∙s
Bohr magneton mB = e ħ /2m 9.274E-24 J/T
Rest Energy E = ħ c/RC 8.187E-14 J
• Toroidal electron formed
by a high energy photon
topologically confined
inside the Compton radius.
• Propagation of the rotating
spin wave describes a
current loop equal to ½
of Compton radius.
• Charge path rotation
generates toroidal swept
volume.
Electron model cross-section
Parameter Symbol Relation Value Units
Charge radius Re = √2(lC/4p) =
Rzbw/sing
2.7305E-13 m
Classical electron
radius
R0 = (1/4pe0) e2/mec2 =
ke(e2/mec2)
2.8179E-15 m
Compton radius RC = lC/2p = aa0 3.8616E-13 m
Helix radius Rphoton = Rhelix = lC/2p =
√(E/me∙w2)
3.8616E-13 m
Mass radius (max) Rm = ħc/E = ħ/mc 3.8613E-13 m
Poloidal radius Rp = Rm/2 1.9308E-13 m
Spindle (inversion)
radius
Rs = RC – Rm 2.6983E-17 m
Toroidal radius Rt = RC(1 + a/2p) 3.8616E-13 m
Zitterbewegung radius Rzbw
= <Rm> = lC/4p =
ħ/2mc = c/2wC =
Resing
1.9308E-13 m
Chracteristic dimensions
• Toroidal circumference equals Compton wavelength lC.
• Electron Compton radius equals lC/2p
Electron ring configuration
• Electron depicted as a
precessing epitrochoid
charge path composed of
two orthogonal spinors of
2:1 rotary octave
• Spin ratio of Compton
angular frequency wC and
Zitterbewegung frequency
wzbw (= 2wC) corresponds
to observed spin ½.
• Electric charge arises as a
result of a slight precession
of angular frequency we/m.
Electron spin precession
• Electron spin precession we/m
is due primarily to imbalance
of electrostatic and magnetostatic
energy resulting in an eccentric
whirl orbit of the charge path
about the spin axis.
• Precession follows a zoom-orbit
whirl with a periapsis advance q137
that is a function of the fine
structure constant a and the
Compton radius RC.
• Synchronization occurs every a-1
revolutions. Electric charge is a
result of a slight spin precession.
• Electron mass me = e/wC.
Electron toroidal electric field
• Electrostatic E-field of an
electron is shown time
averaged over one rotation
period.
• For a positron, the electric
flux is directed radially
inward.
• At distances greater than
the Compton radius RC,
the electric flux distribution
for an electron at rest is
spherically symmetric
equivalent to a point charge.
Electron as a rotating spin wave
• The electron continuously
generates an external dipolar
spin wave in the form of a
Archimedian spiral rotating
at the Compton frequency fC
(= 1.236E20 Hz).
• The electron acts as a spinning
dipole antenna with virtual
radiation of a pair of entangled
photon wavetrains emitted
along the spin axis.
Electric field of an oscillating electron
• Oscillation of the electron
at frequencies less than the
Compton frequency fC in
response to excitation by an
external EM field results in
generation of observed EM
waves in resonance with
the imposed frequency.
• Entangled states represent
different points on the same
wavefront.
• Acceleration over time Dt
creates a local flux field
distortion with the farfield
flux pointing in direction of
the retarded initial starting
position.
Electron toroidal magnetic field
• Magnetostatic B-field of an
electron is shown time
averaged over one rotation
period.
• External magnetic field is
toroidal while the internal
field is poloidal.
• Magnetic flux is concentrated
in the central region with
increased potential magnetic
energy.
Electron represented schematically
as a primative electrical machine
Electron energy storage
• During acceleration of an electron, kinetic energy is stored in the magnetic field.
• The radiation field dissipates during and subsequent to electron deceleration as
the electromagnetic field regains symmetry.
Electrostatic & Magnetostatic energy
vs. Velocity ratio b
Variation of electron energy as a function of velocity ratio b (= v/c)
Electromagnetic energy E vs. Lorentz factor g
After Bergman
The Lorentz factor g is inversely proportional to the Lorentz contraction g.
g = 1/√(1 – v2/c2) = 1/√(1 – b2) = 1/g
Electromagnetic energy of an electron as a function of Lorentz factor g.
Electron Compton radius RC vs. Lorentz factor g
• Absorption of energy causes electrons to contract in size increasing the
wave function curvature, kinetic energy and volumetric energy density.
Variation in electron radius as a function of Lorentz factor g (= 1/√(1 – b2)
Electron Compton radius RC vs. Velocity ratio b
Variation in electron radius as a function of velocity ratio b (= v/c)
• The Compton radius reflects an equilibrium between torsion and the
gravitomagnetic field. Contraction in radius occurs as spin remains
constant and torsion decreases accordingly.
Electron mass energy MeV/c2 vs. Velocity ratio b
Relativistic increase in electron mass energy as a function of velocity ratio b (= v/c)
Electron Inductance L & Capacitance C
vs. Velocity ratio b
Relativistic variation in electron inductance L and capacitance C
as a function of velocity ratio b (= v/c = Df/p = r/g)
Electron wave-function eigenstates in a deep
harmonic oscillator 2D potential well
• Electron represented as a
resonant spin density wave
confined in an oscillating
deep potential well in a
quantum vacuum.
• Zitterbewegung corresponds
to the motion of the center of
charge around the center of
mass with a frequency twice
the Compton frequency.
Quantum electrodynamics (QED) diagrams
Electron/positron pair production
Electron Compton wavelength, zitterbewegung wavelength, and de Broglie
wavelength compared to the wavelength of an energetic photon required
for pair production of an electron e- and positron e+.
Energy diagram
electron/positron pair production
Electron/positron production
from an energetic photon
Electron Coulombic repulsion
• Maximum Coulomb repulsive
force between electrons occurs
at closest proximity equal to a
separation distance ar Compton’s
radius RC.
• The radiated EM wavefronts are in
the form of of Archimedean spiral
forms. Two electrons on approach
are repelled by constructive EM
wavefront interference.
• Positron spin waves rotate in a
direction opposite to electrons.
Electron and positron interaction
give rise to destructive interference.
Spin wave precession
• Electric charge is intrinsic to matter and exhibits similarities to topological
and vortical charge.
• Electric charge of the electron has dimensions of spin angular momentum
and appears to be the result of a slight precession equal to the inverse
fine structure constant a-1.
Elementary Particles of Matter
Mass, charge and spin characteristics of fundamental particles and anti-particles
Electric and color charge symmetry
• When there is symmetry,
there is conserved charge.
• Symmetry alone does not
provide a dynamical origin
of charge or define underlying
fundamental dimensionality
Electric charge vs. topological charge
• Geometrical relation of electric charge (e-, e+) to topological charge F
is illustrated in the form of a Tusci couple (2-cusp hypocycloid) which
corresponds to Special Unitary Group SU(2)
Spinor representation of ½ spin characteristic
Spinor examples of 720 degree rotation to return to initial orientation
involving two rotational frequencies differing by a factor of 2.
Quark color charge
Twist ribbon represention of quark color charge interactions
and equivalent 3-phase circuit
Neutral Pi-meson (Pion)
• Neutral Pion p0 consists of a
spin 0 neutral pi-meson
composed of positron-electron
pair (Sternglass model)
• The positron and electron pair
each have spin angular
momentum oriented either
parallel or anti-parallel to each
other.
• The orbital angular momentum
is equal to twice the spin
angular momentum (L = ħ). A
spin 0 neutral pion has a life-
time of ~0.83E-16 sec and can
decay into gamma rays.
• Binding energy is decreased
when magnetic moments are
parallel due to mutual repulsion.
Positively charged Mu-meson (Muon)
• Positive Muon m+ consists of a
positron-electron pair and orbital
positron (Sternglass model)
• Positron e+ is at rest relative to
the precessing frame KP of the
central pair system consisting
of a spin 1 neutral pi-meson p0
1.
Positively charged Pi-meson (Pion)
• Positive pion p+ consisting of
a positron-electron pair and
orbital positron (Sternglass
model)
• A positron e+ is in orbital
motion relative to the
precessing frame Kp of a
central pair system consisting
of a spin 1 neutral pi-meson
p0
1.
Negatively charged Tau-meson (Tauon)
• Negative Tauon t- consisting of
a positron-electron pair and
orbital electron (Sternglass
model).
• Electron e- is in orbital motion
relative to the precessing
frame Kp of the central pair
system consisting of a spin 1
neutral pi-meson p0
1.
Gluon field Fresnel zone pattern
• In-phase and out-phase gluon
field Fresnel zone patterns
with Airy diffraction cross-
section.
• Quark separation in a proton
with Compton radius RCp of
2.1031E-16 m suggest a gluon
field with a minimum distance
of ~0.33E-15 m or ~1.56 RCp.
Electron-positron coaxial wave interference
• Coaxial coupling of an e-e+ pair with
aligned spins as a hypothetical quark
model with a massless spin 1 field.
• A charge screen formed by depolar-
ized Planck mass dipoles prevents
Coulombic attraction.
• The electron and positron oscillate
along the spin axis alternating
between a state where charge
screening is effective at close
distance and further out where
charge screening is ineffective
thus exhibiting asymptotic freedom.
Quantum Chromodynamic models
Quantum chromodynamics (QCD) representations of protons and
neutrons shown as quark composites
Proton model
• A proton composed of
electrons and positrons
equivalent to QCD quark
representation.
• Proton absorption of an
antineutrino results in
transformation into a
neutron with emission of
a positron and neutrino
in inverse beta decay.
• The bulk of the proton’s mass
is due to kinetic energy of
component quarks.
Gravitational force on electron
In free fall, the acceleration of gravity and associated frequency
difference is equal to zero
Electric flux lines
• Faraday electric flux lines fE are
postulated to be an effect of
synchronous alignment of
positive and negative Planck mass
dipoles of the quantum vacuum.
• Alignment results in tension along
the flux lines due to attraction of
positive and negative masses and
compression perpendicular to the
flux lines.
• Electric field intensity E is a function
of the product of the Planck electric
dipole moment m0P and the Planck
mass mP.
Magnetic flux lines
• Magnetic flux lines fB are interpreted
as vortex filaments of rotating Planck
mass dipoles. Magnetic field lines
are the result of spin axis alignment
of multiple dipoles.
• Magnetic field intensity H is a measure
of the vortex strength of entrained
dipoles
• Photons and electrons are spin waves
in the Planck quantum vacuum
composed of positive and negative
Planck masses. Photons are traveling
waves. Electrons are standing waves.
Electron vacuum resonance
Electron and Planck vacuum resonance characterized by lP /lC ratio
Book Details:
Author: Larry Reed
Pages: 710
Publisher: BookLocker
Language: English
ISBN: 978-1-63492-964-6 paperback
Publication date: 2019-01-13
Abstract
A comprehensive description of the nature of light, electricity and gravity is provided in
terms of quantum wave mechanics. Detailed models include the photon as a travelling
electromagnetic wave and the electron as a closed loop standing wave formed by a
confined photon. An electron is modeled as a torus generated by a spinning Hopf link
as a result of an imbalance of electrostatic and magnetostatic energy. Electric charge is a
manifestation of a slight precession characterized by the fine structure constant. The
physical vacuum as a polarizable medium enables wave propagation and appears
ultimately to be quantized at the Planck scale. Standing wave transformations for objects
in motion are reviewed and Lorentz Doppler effects compared. The mechanism for
generation De Broglie matter waves for objects in motion is depicted including the inverse
effect of induced motion of an object by synthesis of contracted moving standing waves.
Gravity is viewed as a frequency synchronization interaction between coupled mass
oscillators. The acceleration of gravity is described by a spectral energy density gradient.
Antigravity corresponds an inversion of the naturally occuring energy density gradient.
Gravitons are shown to be phase conjugate photons. The metric of curved spacetime
corresponds to the electromagnetic wave front interference node metric. Hence, the
gravitational field becomes quantized.
Quantum Wave Mechanics
To order print copies of this book, contact:
https://booklocker.com/10176
https://booklocker.com/books/10176.html
or
https://www.amazon.com/Quantum-Wave-Mechanics-Larry-Reed/
dp/16349249640/ref=sr_1_1
Quantum Wave Mechanics
Electric charge

More Related Content

What's hot

De broglie waves
De broglie wavesDe broglie waves
De broglie wavesLarryReed15
 
Electrostatics Class 12- Part 3
Electrostatics Class 12- Part 3Electrostatics Class 12- Part 3
Electrostatics Class 12- Part 3Self-employed
 
Drude Model-Dielectric constant of metals
Drude Model-Dielectric constant of metalsDrude Model-Dielectric constant of metals
Drude Model-Dielectric constant of metalsGandhimathi Muthuselvam
 
12.1 - Faraday's law
12.1  - Faraday's law12.1  - Faraday's law
12.1 - Faraday's lawsimonandisa
 
Class 12 th semiconductor part 1
Class 12 th semiconductor part 1Class 12 th semiconductor part 1
Class 12 th semiconductor part 1Priyanka Jakhar
 
Dual nature of Radiation and Matter - MR. RAJA DURAI APS
Dual nature of Radiation and Matter - MR. RAJA DURAI APSDual nature of Radiation and Matter - MR. RAJA DURAI APS
Dual nature of Radiation and Matter - MR. RAJA DURAI APSRajaDuraiDurai4
 
Engineering physics 5(Quantum free electron theory)
Engineering physics 5(Quantum free electron theory)Engineering physics 5(Quantum free electron theory)
Engineering physics 5(Quantum free electron theory)Nexus
 
Classical mechanics vs quantum mechanics
Classical mechanics vs quantum mechanicsClassical mechanics vs quantum mechanics
Classical mechanics vs quantum mechanicsZahid Mehmood
 
9.3 - Electric Potential
9.3 - Electric Potential9.3 - Electric Potential
9.3 - Electric Potentialsimonandisa
 
Gamow theory of alpha decay by prerna
Gamow theory of alpha decay by prernaGamow theory of alpha decay by prerna
Gamow theory of alpha decay by prernaPrernaVashisht4
 
Hartree-Fock Review
Hartree-Fock Review Hartree-Fock Review
Hartree-Fock Review Inon Sharony
 
Franck hertz quantization of energy levels
Franck hertz quantization of energy levelsFranck hertz quantization of energy levels
Franck hertz quantization of energy levelsUCP
 
electromagnetic induction ( part 2 )
electromagnetic induction ( part 2 )electromagnetic induction ( part 2 )
electromagnetic induction ( part 2 )Priyanka Jakhar
 

What's hot (20)

De broglie waves
De broglie wavesDe broglie waves
De broglie waves
 
ELECTRIC POTENTIAL
ELECTRIC POTENTIALELECTRIC POTENTIAL
ELECTRIC POTENTIAL
 
Electrostatics Class 12- Part 3
Electrostatics Class 12- Part 3Electrostatics Class 12- Part 3
Electrostatics Class 12- Part 3
 
Quantum gravity
Quantum gravityQuantum gravity
Quantum gravity
 
Drude Model-Dielectric constant of metals
Drude Model-Dielectric constant of metalsDrude Model-Dielectric constant of metals
Drude Model-Dielectric constant of metals
 
12.1 - Faraday's law
12.1  - Faraday's law12.1  - Faraday's law
12.1 - Faraday's law
 
Electrostatics 3
Electrostatics 3Electrostatics 3
Electrostatics 3
 
Class 12 th semiconductor part 1
Class 12 th semiconductor part 1Class 12 th semiconductor part 1
Class 12 th semiconductor part 1
 
Dual nature of Radiation and Matter - MR. RAJA DURAI APS
Dual nature of Radiation and Matter - MR. RAJA DURAI APSDual nature of Radiation and Matter - MR. RAJA DURAI APS
Dual nature of Radiation and Matter - MR. RAJA DURAI APS
 
Engineering physics 5(Quantum free electron theory)
Engineering physics 5(Quantum free electron theory)Engineering physics 5(Quantum free electron theory)
Engineering physics 5(Quantum free electron theory)
 
Course dielectric materials
Course dielectric materialsCourse dielectric materials
Course dielectric materials
 
08 chapter 1
08 chapter 108 chapter 1
08 chapter 1
 
Classical mechanics vs quantum mechanics
Classical mechanics vs quantum mechanicsClassical mechanics vs quantum mechanics
Classical mechanics vs quantum mechanics
 
9.3 - Electric Potential
9.3 - Electric Potential9.3 - Electric Potential
9.3 - Electric Potential
 
Gamow theory of alpha decay by prerna
Gamow theory of alpha decay by prernaGamow theory of alpha decay by prerna
Gamow theory of alpha decay by prerna
 
Hartree-Fock Review
Hartree-Fock Review Hartree-Fock Review
Hartree-Fock Review
 
dieletric materials
dieletric materialsdieletric materials
dieletric materials
 
Nuclear
NuclearNuclear
Nuclear
 
Franck hertz quantization of energy levels
Franck hertz quantization of energy levelsFranck hertz quantization of energy levels
Franck hertz quantization of energy levels
 
electromagnetic induction ( part 2 )
electromagnetic induction ( part 2 )electromagnetic induction ( part 2 )
electromagnetic induction ( part 2 )
 

Similar to Electric charge

Contracted moving standing waves
Contracted moving standing wavesContracted moving standing waves
Contracted moving standing wavesLarryReed15
 
Fm khan chapter 5 mod
Fm khan chapter 5 modFm khan chapter 5 mod
Fm khan chapter 5 modHarvin Nelson
 
2415_web_Lec_30_EM_Waves.5234524524045040pptx
2415_web_Lec_30_EM_Waves.5234524524045040pptx2415_web_Lec_30_EM_Waves.5234524524045040pptx
2415_web_Lec_30_EM_Waves.5234524524045040pptxvikknaguem
 
INTERACTION OF IONIZING RADIATION WITH MATTER
INTERACTION OF IONIZING RADIATION WITH MATTERINTERACTION OF IONIZING RADIATION WITH MATTER
INTERACTION OF IONIZING RADIATION WITH MATTERVinay Desai
 
Matter wave synthesis
Matter wave synthesisMatter wave synthesis
Matter wave synthesisLarryReed15
 
Electron spin resonance electron paramagnetic resonance
Electron spin resonance electron paramagnetic resonanceElectron spin resonance electron paramagnetic resonance
Electron spin resonance electron paramagnetic resonancekanhaiya kumawat
 
Compton Effect.pptx
Compton Effect.pptxCompton Effect.pptx
Compton Effect.pptxArshad999014
 
Matter wave propulsion
Matter wave propulsionMatter wave propulsion
Matter wave propulsionLarryReed15
 
Dielectric constant and polarizibality
Dielectric constant and polarizibalityDielectric constant and polarizibality
Dielectric constant and polarizibalityjunaidhassan71
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)IJERD Editor
 
Optical properties and hall effect
Optical properties and hall effectOptical properties and hall effect
Optical properties and hall effectutpal sarkar
 
ESR SPECTROSCOPY
ESR SPECTROSCOPYESR SPECTROSCOPY
ESR SPECTROSCOPYRaguM6
 
Electromagnetic radiation
Electromagnetic radiationElectromagnetic radiation
Electromagnetic radiationLarryReed15
 
EEE Chapter 1_Part 1.pdf
EEE Chapter 1_Part 1.pdfEEE Chapter 1_Part 1.pdf
EEE Chapter 1_Part 1.pdfDhyanShah10
 

Similar to Electric charge (20)

Inertia
InertiaInertia
Inertia
 
Matter waves
Matter wavesMatter waves
Matter waves
 
Contracted moving standing waves
Contracted moving standing wavesContracted moving standing waves
Contracted moving standing waves
 
Fm khan chapter 5 mod
Fm khan chapter 5 modFm khan chapter 5 mod
Fm khan chapter 5 mod
 
2415_web_Lec_30_EM_Waves.5234524524045040pptx
2415_web_Lec_30_EM_Waves.5234524524045040pptx2415_web_Lec_30_EM_Waves.5234524524045040pptx
2415_web_Lec_30_EM_Waves.5234524524045040pptx
 
INTERACTION OF IONIZING RADIATION WITH MATTER
INTERACTION OF IONIZING RADIATION WITH MATTERINTERACTION OF IONIZING RADIATION WITH MATTER
INTERACTION OF IONIZING RADIATION WITH MATTER
 
Inertia control
Inertia controlInertia control
Inertia control
 
Matter wave synthesis
Matter wave synthesisMatter wave synthesis
Matter wave synthesis
 
Electron spin resonance electron paramagnetic resonance
Electron spin resonance electron paramagnetic resonanceElectron spin resonance electron paramagnetic resonance
Electron spin resonance electron paramagnetic resonance
 
Electron beam therapy
Electron beam therapyElectron beam therapy
Electron beam therapy
 
Compton Effect.pptx
Compton Effect.pptxCompton Effect.pptx
Compton Effect.pptx
 
Matter wave propulsion
Matter wave propulsionMatter wave propulsion
Matter wave propulsion
 
Dielectric constant and polarizibality
Dielectric constant and polarizibalityDielectric constant and polarizibality
Dielectric constant and polarizibality
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)
 
Optical properties and hall effect
Optical properties and hall effectOptical properties and hall effect
Optical properties and hall effect
 
ESR SPECTROSCOPY
ESR SPECTROSCOPYESR SPECTROSCOPY
ESR SPECTROSCOPY
 
Photon
PhotonPhoton
Photon
 
Light
LightLight
Light
 
Electromagnetic radiation
Electromagnetic radiationElectromagnetic radiation
Electromagnetic radiation
 
EEE Chapter 1_Part 1.pdf
EEE Chapter 1_Part 1.pdfEEE Chapter 1_Part 1.pdf
EEE Chapter 1_Part 1.pdf
 

More from LarryReed15

Electromagnetic spectrum
Electromagnetic spectrumElectromagnetic spectrum
Electromagnetic spectrumLarryReed15
 
Big bang origin of universe
Big bang   origin of universeBig bang   origin of universe
Big bang origin of universeLarryReed15
 
Em propulsion drive
Em propulsion driveEm propulsion drive
Em propulsion driveLarryReed15
 

More from LarryReed15 (6)

Electromagnetic spectrum
Electromagnetic spectrumElectromagnetic spectrum
Electromagnetic spectrum
 
Big bang origin of universe
Big bang   origin of universeBig bang   origin of universe
Big bang origin of universe
 
Em propulsion drive
Em propulsion driveEm propulsion drive
Em propulsion drive
 
Graviton
GravitonGraviton
Graviton
 
Electron
ElectronElectron
Electron
 
Gravitation
GravitationGravitation
Gravitation
 

Recently uploaded

SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxSOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxkessiyaTpeter
 
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCESTERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCEPRINCE C P
 
Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Nistarini College, Purulia (W.B) India
 
TOPIC 8 Temperature and Heat.pdf physics
TOPIC 8 Temperature and Heat.pdf physicsTOPIC 8 Temperature and Heat.pdf physics
TOPIC 8 Temperature and Heat.pdf physicsssuserddc89b
 
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxAnalytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxSwapnil Therkar
 
Ahmedabad Call Girls Service 9537192988 can satisfy every one of your dreams
Ahmedabad Call Girls Service 9537192988 can satisfy every one of your dreamsAhmedabad Call Girls Service 9537192988 can satisfy every one of your dreams
Ahmedabad Call Girls Service 9537192988 can satisfy every one of your dreamsoolala9823
 
Grafana in space: Monitoring Japan's SLIM moon lander in real time
Grafana in space: Monitoring Japan's SLIM moon lander  in real timeGrafana in space: Monitoring Japan's SLIM moon lander  in real time
Grafana in space: Monitoring Japan's SLIM moon lander in real timeSatoshi NAKAHIRA
 
Behavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdfBehavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdfSELF-EXPLANATORY
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoSérgio Sacani
 
Recombination DNA Technology (Microinjection)
Recombination DNA Technology (Microinjection)Recombination DNA Technology (Microinjection)
Recombination DNA Technology (Microinjection)Jshifa
 
Neurodevelopmental disorders according to the dsm 5 tr
Neurodevelopmental disorders according to the dsm 5 trNeurodevelopmental disorders according to the dsm 5 tr
Neurodevelopmental disorders according to the dsm 5 trssuser06f238
 
Orientation, design and principles of polyhouse
Orientation, design and principles of polyhouseOrientation, design and principles of polyhouse
Orientation, design and principles of polyhousejana861314
 
Animal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxAnimal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxUmerFayaz5
 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsAArockiyaNisha
 
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptxUnlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptxanandsmhk
 
Scheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docxScheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docxyaramohamed343013
 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...Sérgio Sacani
 
Work, Energy and Power for class 10 ICSE Physics
Work, Energy and Power for class 10 ICSE PhysicsWork, Energy and Power for class 10 ICSE Physics
Work, Energy and Power for class 10 ICSE Physicsvishikhakeshava1
 

Recently uploaded (20)

SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxSOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
 
The Philosophy of Science
The Philosophy of ScienceThe Philosophy of Science
The Philosophy of Science
 
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCESTERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
 
Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...
 
TOPIC 8 Temperature and Heat.pdf physics
TOPIC 8 Temperature and Heat.pdf physicsTOPIC 8 Temperature and Heat.pdf physics
TOPIC 8 Temperature and Heat.pdf physics
 
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxAnalytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
 
Ahmedabad Call Girls Service 9537192988 can satisfy every one of your dreams
Ahmedabad Call Girls Service 9537192988 can satisfy every one of your dreamsAhmedabad Call Girls Service 9537192988 can satisfy every one of your dreams
Ahmedabad Call Girls Service 9537192988 can satisfy every one of your dreams
 
Grafana in space: Monitoring Japan's SLIM moon lander in real time
Grafana in space: Monitoring Japan's SLIM moon lander  in real timeGrafana in space: Monitoring Japan's SLIM moon lander  in real time
Grafana in space: Monitoring Japan's SLIM moon lander in real time
 
Behavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdfBehavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdf
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on Io
 
Recombination DNA Technology (Microinjection)
Recombination DNA Technology (Microinjection)Recombination DNA Technology (Microinjection)
Recombination DNA Technology (Microinjection)
 
Neurodevelopmental disorders according to the dsm 5 tr
Neurodevelopmental disorders according to the dsm 5 trNeurodevelopmental disorders according to the dsm 5 tr
Neurodevelopmental disorders according to the dsm 5 tr
 
Orientation, design and principles of polyhouse
Orientation, design and principles of polyhouseOrientation, design and principles of polyhouse
Orientation, design and principles of polyhouse
 
Animal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxAnimal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptx
 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based Nanomaterials
 
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptxUnlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
 
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
 
Scheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docxScheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docx
 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
 
Work, Energy and Power for class 10 ICSE Physics
Work, Energy and Power for class 10 ICSE PhysicsWork, Energy and Power for class 10 ICSE Physics
Work, Energy and Power for class 10 ICSE Physics
 

Electric charge

  • 2. Electron model Photon - Traveling wave of helical geometry Electron – Closed-loop standing wave of toroidal geometry Spin 1 boson Spin ½ fermion
  • 3. Pair production and annihilation • Collision of an electron e- and a positron e+ results in production of two oppositely directed photons (gamma rays). • A high energy photon in the vicinity of an atomic nucleus can decay into an electron e- and a positron e+.
  • 4. Toriodal electron model Parameter Symbol Relation Value Units Electric charge e = F/E = mwC = √(aqP 2) 1.60217E-19 C Mass me = E/c2 = ħc/RC = e/wC 9.10938E-31 kg Compton wavelength lC = h/mc = h/p 2.4263E-12 m Compton frequency fC = mc2/h = c/lC = wC /2p 1.2355E20 Hz Compton radius: RC = lC/2p = aa0 = √(E/mw2) 3.8616E-13 m Compton angular frequency wC = c/RC = mc2/ħ = e/m 7.7634E20 rad/s Zitterbewegung angular frequency wzbw = 2wC 1.5527E21 rad/s Spin angular momentum s = ½ ħ = iw = ½meRC 2w 5.2725E-5 J∙s Bohr magneton mB = e ħ /2m 9.274E-24 J/T Rest Energy E = ħ c/RC 8.187E-14 J • Toroidal electron formed by a high energy photon topologically confined inside the Compton radius. • Propagation of the rotating spin wave describes a current loop equal to ½ of Compton radius. • Charge path rotation generates toroidal swept volume.
  • 5. Electron model cross-section Parameter Symbol Relation Value Units Charge radius Re = √2(lC/4p) = Rzbw/sing 2.7305E-13 m Classical electron radius R0 = (1/4pe0) e2/mec2 = ke(e2/mec2) 2.8179E-15 m Compton radius RC = lC/2p = aa0 3.8616E-13 m Helix radius Rphoton = Rhelix = lC/2p = √(E/me∙w2) 3.8616E-13 m Mass radius (max) Rm = ħc/E = ħ/mc 3.8613E-13 m Poloidal radius Rp = Rm/2 1.9308E-13 m Spindle (inversion) radius Rs = RC – Rm 2.6983E-17 m Toroidal radius Rt = RC(1 + a/2p) 3.8616E-13 m Zitterbewegung radius Rzbw = <Rm> = lC/4p = ħ/2mc = c/2wC = Resing 1.9308E-13 m Chracteristic dimensions • Toroidal circumference equals Compton wavelength lC. • Electron Compton radius equals lC/2p
  • 6. Electron ring configuration • Electron depicted as a precessing epitrochoid charge path composed of two orthogonal spinors of 2:1 rotary octave • Spin ratio of Compton angular frequency wC and Zitterbewegung frequency wzbw (= 2wC) corresponds to observed spin ½. • Electric charge arises as a result of a slight precession of angular frequency we/m.
  • 7. Electron spin precession • Electron spin precession we/m is due primarily to imbalance of electrostatic and magnetostatic energy resulting in an eccentric whirl orbit of the charge path about the spin axis. • Precession follows a zoom-orbit whirl with a periapsis advance q137 that is a function of the fine structure constant a and the Compton radius RC. • Synchronization occurs every a-1 revolutions. Electric charge is a result of a slight spin precession. • Electron mass me = e/wC.
  • 8. Electron toroidal electric field • Electrostatic E-field of an electron is shown time averaged over one rotation period. • For a positron, the electric flux is directed radially inward. • At distances greater than the Compton radius RC, the electric flux distribution for an electron at rest is spherically symmetric equivalent to a point charge.
  • 9. Electron as a rotating spin wave • The electron continuously generates an external dipolar spin wave in the form of a Archimedian spiral rotating at the Compton frequency fC (= 1.236E20 Hz). • The electron acts as a spinning dipole antenna with virtual radiation of a pair of entangled photon wavetrains emitted along the spin axis.
  • 10. Electric field of an oscillating electron • Oscillation of the electron at frequencies less than the Compton frequency fC in response to excitation by an external EM field results in generation of observed EM waves in resonance with the imposed frequency. • Entangled states represent different points on the same wavefront. • Acceleration over time Dt creates a local flux field distortion with the farfield flux pointing in direction of the retarded initial starting position.
  • 11. Electron toroidal magnetic field • Magnetostatic B-field of an electron is shown time averaged over one rotation period. • External magnetic field is toroidal while the internal field is poloidal. • Magnetic flux is concentrated in the central region with increased potential magnetic energy.
  • 12. Electron represented schematically as a primative electrical machine
  • 13. Electron energy storage • During acceleration of an electron, kinetic energy is stored in the magnetic field. • The radiation field dissipates during and subsequent to electron deceleration as the electromagnetic field regains symmetry.
  • 14. Electrostatic & Magnetostatic energy vs. Velocity ratio b Variation of electron energy as a function of velocity ratio b (= v/c)
  • 15. Electromagnetic energy E vs. Lorentz factor g After Bergman The Lorentz factor g is inversely proportional to the Lorentz contraction g. g = 1/√(1 – v2/c2) = 1/√(1 – b2) = 1/g Electromagnetic energy of an electron as a function of Lorentz factor g.
  • 16. Electron Compton radius RC vs. Lorentz factor g • Absorption of energy causes electrons to contract in size increasing the wave function curvature, kinetic energy and volumetric energy density. Variation in electron radius as a function of Lorentz factor g (= 1/√(1 – b2)
  • 17. Electron Compton radius RC vs. Velocity ratio b Variation in electron radius as a function of velocity ratio b (= v/c) • The Compton radius reflects an equilibrium between torsion and the gravitomagnetic field. Contraction in radius occurs as spin remains constant and torsion decreases accordingly.
  • 18. Electron mass energy MeV/c2 vs. Velocity ratio b Relativistic increase in electron mass energy as a function of velocity ratio b (= v/c)
  • 19. Electron Inductance L & Capacitance C vs. Velocity ratio b Relativistic variation in electron inductance L and capacitance C as a function of velocity ratio b (= v/c = Df/p = r/g)
  • 20. Electron wave-function eigenstates in a deep harmonic oscillator 2D potential well • Electron represented as a resonant spin density wave confined in an oscillating deep potential well in a quantum vacuum. • Zitterbewegung corresponds to the motion of the center of charge around the center of mass with a frequency twice the Compton frequency.
  • 22. Electron/positron pair production Electron Compton wavelength, zitterbewegung wavelength, and de Broglie wavelength compared to the wavelength of an energetic photon required for pair production of an electron e- and positron e+.
  • 25. Electron Coulombic repulsion • Maximum Coulomb repulsive force between electrons occurs at closest proximity equal to a separation distance ar Compton’s radius RC. • The radiated EM wavefronts are in the form of of Archimedean spiral forms. Two electrons on approach are repelled by constructive EM wavefront interference. • Positron spin waves rotate in a direction opposite to electrons. Electron and positron interaction give rise to destructive interference.
  • 26. Spin wave precession • Electric charge is intrinsic to matter and exhibits similarities to topological and vortical charge. • Electric charge of the electron has dimensions of spin angular momentum and appears to be the result of a slight precession equal to the inverse fine structure constant a-1.
  • 27. Elementary Particles of Matter Mass, charge and spin characteristics of fundamental particles and anti-particles
  • 28. Electric and color charge symmetry • When there is symmetry, there is conserved charge. • Symmetry alone does not provide a dynamical origin of charge or define underlying fundamental dimensionality
  • 29. Electric charge vs. topological charge • Geometrical relation of electric charge (e-, e+) to topological charge F is illustrated in the form of a Tusci couple (2-cusp hypocycloid) which corresponds to Special Unitary Group SU(2)
  • 30. Spinor representation of ½ spin characteristic Spinor examples of 720 degree rotation to return to initial orientation involving two rotational frequencies differing by a factor of 2.
  • 31. Quark color charge Twist ribbon represention of quark color charge interactions and equivalent 3-phase circuit
  • 32. Neutral Pi-meson (Pion) • Neutral Pion p0 consists of a spin 0 neutral pi-meson composed of positron-electron pair (Sternglass model) • The positron and electron pair each have spin angular momentum oriented either parallel or anti-parallel to each other. • The orbital angular momentum is equal to twice the spin angular momentum (L = ħ). A spin 0 neutral pion has a life- time of ~0.83E-16 sec and can decay into gamma rays. • Binding energy is decreased when magnetic moments are parallel due to mutual repulsion.
  • 33. Positively charged Mu-meson (Muon) • Positive Muon m+ consists of a positron-electron pair and orbital positron (Sternglass model) • Positron e+ is at rest relative to the precessing frame KP of the central pair system consisting of a spin 1 neutral pi-meson p0 1.
  • 34. Positively charged Pi-meson (Pion) • Positive pion p+ consisting of a positron-electron pair and orbital positron (Sternglass model) • A positron e+ is in orbital motion relative to the precessing frame Kp of a central pair system consisting of a spin 1 neutral pi-meson p0 1.
  • 35. Negatively charged Tau-meson (Tauon) • Negative Tauon t- consisting of a positron-electron pair and orbital electron (Sternglass model). • Electron e- is in orbital motion relative to the precessing frame Kp of the central pair system consisting of a spin 1 neutral pi-meson p0 1.
  • 36. Gluon field Fresnel zone pattern • In-phase and out-phase gluon field Fresnel zone patterns with Airy diffraction cross- section. • Quark separation in a proton with Compton radius RCp of 2.1031E-16 m suggest a gluon field with a minimum distance of ~0.33E-15 m or ~1.56 RCp.
  • 37. Electron-positron coaxial wave interference • Coaxial coupling of an e-e+ pair with aligned spins as a hypothetical quark model with a massless spin 1 field. • A charge screen formed by depolar- ized Planck mass dipoles prevents Coulombic attraction. • The electron and positron oscillate along the spin axis alternating between a state where charge screening is effective at close distance and further out where charge screening is ineffective thus exhibiting asymptotic freedom.
  • 38. Quantum Chromodynamic models Quantum chromodynamics (QCD) representations of protons and neutrons shown as quark composites
  • 39. Proton model • A proton composed of electrons and positrons equivalent to QCD quark representation. • Proton absorption of an antineutrino results in transformation into a neutron with emission of a positron and neutrino in inverse beta decay. • The bulk of the proton’s mass is due to kinetic energy of component quarks.
  • 40. Gravitational force on electron In free fall, the acceleration of gravity and associated frequency difference is equal to zero
  • 41. Electric flux lines • Faraday electric flux lines fE are postulated to be an effect of synchronous alignment of positive and negative Planck mass dipoles of the quantum vacuum. • Alignment results in tension along the flux lines due to attraction of positive and negative masses and compression perpendicular to the flux lines. • Electric field intensity E is a function of the product of the Planck electric dipole moment m0P and the Planck mass mP.
  • 42. Magnetic flux lines • Magnetic flux lines fB are interpreted as vortex filaments of rotating Planck mass dipoles. Magnetic field lines are the result of spin axis alignment of multiple dipoles. • Magnetic field intensity H is a measure of the vortex strength of entrained dipoles • Photons and electrons are spin waves in the Planck quantum vacuum composed of positive and negative Planck masses. Photons are traveling waves. Electrons are standing waves.
  • 43. Electron vacuum resonance Electron and Planck vacuum resonance characterized by lP /lC ratio
  • 44.
  • 45. Book Details: Author: Larry Reed Pages: 710 Publisher: BookLocker Language: English ISBN: 978-1-63492-964-6 paperback Publication date: 2019-01-13
  • 46. Abstract A comprehensive description of the nature of light, electricity and gravity is provided in terms of quantum wave mechanics. Detailed models include the photon as a travelling electromagnetic wave and the electron as a closed loop standing wave formed by a confined photon. An electron is modeled as a torus generated by a spinning Hopf link as a result of an imbalance of electrostatic and magnetostatic energy. Electric charge is a manifestation of a slight precession characterized by the fine structure constant. The physical vacuum as a polarizable medium enables wave propagation and appears ultimately to be quantized at the Planck scale. Standing wave transformations for objects in motion are reviewed and Lorentz Doppler effects compared. The mechanism for generation De Broglie matter waves for objects in motion is depicted including the inverse effect of induced motion of an object by synthesis of contracted moving standing waves. Gravity is viewed as a frequency synchronization interaction between coupled mass oscillators. The acceleration of gravity is described by a spectral energy density gradient. Antigravity corresponds an inversion of the naturally occuring energy density gradient. Gravitons are shown to be phase conjugate photons. The metric of curved spacetime corresponds to the electromagnetic wave front interference node metric. Hence, the gravitational field becomes quantized. Quantum Wave Mechanics
  • 47. To order print copies of this book, contact: https://booklocker.com/10176 https://booklocker.com/books/10176.html or https://www.amazon.com/Quantum-Wave-Mechanics-Larry-Reed/ dp/16349249640/ref=sr_1_1 Quantum Wave Mechanics