SlideShare a Scribd company logo
1 of 49
Oral Radilogy
Dr. Rawand Samy Mohamed Abu Nahla
Oral Medicine, periodontology& oral Radiology Department.
Dr. Haydar. A. Shafy Faculty Of Dentistry.Dr. Haydar. A. Shafy Faculty Of Dentistry.
El Azhar University.El Azhar University.
1
Lecture 8
Biological effect of radiation
And radiation protection
2
Radiobiology
When x-rays enter the body, they interact at
the atomic level to cause ionization.
Radiobiology is the response of living
systems to ionizing radiation.
3
threshold
linear
non-linear
Dose-Response Curves
non-threshold
Response
Dose
Dose-Response curves represent the relationship
between the dose of radiation a person receives and
the cellular response to that exposure. These
responses may be linear or non-linear and may, or may
not, have a threshold dose; the responses (effects)
may be stochastic or deterministic. (See next two
slides for definitions of these terms).
4
Linear: the response is directly related to the dose. As
the dose increases, the response increases
proportionately.
Non-linear: the response is not proportionate to the
dose. An increase in dose may result in a larger or
smaller increase in the response depending on the
location on the dose-response curve.
Threshold: this represents the dose at which effects
are produced; below this dose, there are no obvious
effects.
Non-threshold: any dose, no matter how small, will
produce a response. 5
Stochastic effect: occurs by chance, usually without
a threshold level of dose. The probability of a
stochastic effect is increased with increasing
doses, but the severity of the response is not
proportional to the dose (e.g., two people may get
the same dose of radiation, but the response will
not be the same in both people). Genetic mutations
and cancer are the two main stochastic effects.
Deterministic effect: health effects that increase in
severity with increasing dose above a threshold
level. Usually associated with a relatively high dose
delivered over a short period of time. Skin erythema
(reddening) and cataract formation from radiation
are two examples of deterministic effects. 6
DNA
Radiation effects at the cellular level
result from changes in a critical or
“target” molecule. This target molecule
is DNA (deoxyribonucleic acid), which
regulates cellular activity and contains
genetic information needed for cell
replication. The DNA molecule is called
a chromosome. Permanent changes in
this molecule will alter cell function and
may result in cell death.
7
Direct vs. Indirect Effect
DNA
If an x-ray or some type of particulate radiation
interacts with the DNA molecule, this is
considered a direct effect. Particulate radiation,
because of its mass, is more apt to cause damage
to the DNA by this direct effect. Other molecules
that contribute to cell function, such as RNA,
proteins, and enzymes, may also be affected by
the direct effect.
x-ray or particulate
radiation
Direct effect=
8
Direct vs. Indirect Effect
H2O ions and
free radicals
Most of the damage to DNA molecules from x-rays is
accomplished through the indirect effect. When x-rays
enter a cell, they are much more likely to hit a water
molecule because there are a large number of water
molecules in each cell. When the x-ray ionizes the
water molecule, ions and free radicals are produced
which in turn bond with a DNA molecule, changing its
structure. Since the x-ray interacted with the water
molecule before the DNA was involved, this is
considered an indirect effect.
x-ray or particulate
radiation
DNA =
Indirect
effect
9
A free radical is an atom or molecule that has
an unpaired electron in the valence shell,
making it highly reactive. These free radicals
aggressively join with the DNA molecule to
produce damage. In the presence of oxygen,
the hydroperoxyl free radical is formed; this is
one of the most damaging free radicals that
can be produced. Free radicals are the
primary mediator of the indirect effects on
DNA.
Free Radical
10
Cells undamaged: ionization alters the structure of
the cells but has no overall negative effect.
Sublethal injury: cells are damaged by ionization
but the damage is repaired.
Mutation: cell injury may be incorrectly repaired,
and cell function is altered or the cell may
reproduce at an uncontrolled rate (cancer).
Cell death: the cell damage is so extensive that the
cell is no longer able to reproduce.
Cellular Effects
11
Sublethal Injury: Cellular Repair
1. Ionization causes damage to DNA
(single-strand break of DNA).
2. Cellular enzymes recognize the damage
and coordinate the removal of the
damaged section.
3. Additional cell enzymes organize
replacement of the damaged section with
new material.
12
When the DNA is damaged,
cell function may be altered
or reproductive capacity may
be accelerated. Cancer is the
most harmful result of
cellular mutation.
Mutation
Normal
Mutation
13
Cell Death
If there is extensive damage to the cell following
irradiation or if cell division (mitosis) is disrupted,
the cell may die. This will depend on how
sensitive the cells are to radiation. The loss of a
few cells or small group of cells is usually of no
consequence, since there are so many cells
present in the body. In most cases, the dead cells
will soon be replaced through normal reparative
processes.
14
Cell Cycle
More damage results when the cell is irradiated during
the G1/early S portion of the cell cycle (before DNA
synthesis); the damaged DNA (chromosome) will be
duplicated during DNA synthesis and will result in a
break in both arms of the chromosome at the next
mitosis.
G1 = gap phase 1 in which nuclear
components are replicated
S = synthesis phase; DNA is
synthesized during the last 2/3 of
this phase
G2 = gap phase 2, a preparatory
stage to cell division
M = mitosis, during which cells
divide
Cell most sensitive
to radiation
15
1. High reproductive rate (many mitoses)
2. Undifferentiated (immature)
3. High metabolic rate
Radiosensitive Cells
Cells that are more easily damaged by radiation are
radiosensitive. The characteristics of radiosensitive
cells are:
Lymphocytes, germ cells, basal cells of skin and
mucosa, and erythroblasts are examples of
radiosensitive cells.
16
Radioresistant Cells
1. Low reproductive rate (few mitoses)
2. Well differentiated (mature)
3. Low metabolic rate
Cells that are not as susceptible to damage from
radiation are radioresistant. The characteristics of
radioresistant cells are:
Nerve and muscle cells are examples of
radioresistant cells.
17
Radiation Effect Modifiers
The biological response to radiation is dependent on
several different factors. These include:
• Total Dose: the higher the radiation dose, the
greater the potential cellular damage.
• Dose Rate: A high dose given over a short
period of time (or all at once) will produce more
damage than the same dose received over a
longer period of time.
• Total Area Covered: the more cells that are
exposed to radiation, the greater the effects will
be. 18
Radiation Effect Modifiers (continued)
• Type of tissue: As discussed earlier,
radiosensitive cells are more likely to be
damaged by radiation than are radioresistant
cells.
• Age: Because the cells are dividing more
frequently in a growing child, young people are
affected more by radiation than are older people.
• Linear Energy Transfer: This measures the rate
of the loss of energy as radiation moves
through tissue. Particulate radiation (alpha
particles, electrons, etc.) has a higher LET
because it has mass and interacts with
tissues much more readily than do x-rays.
19
• Oxygen Effect: Radiation effects are more pronounced
in the presence of oxygen. Oxygen is required for the
formation of the hydroperoxyl free radical, which is
the most damaging free radical formed following
ionization.
Radiation Effect Modifiers (continued)
20
The amount of exposure a patient receives
from dental diagnostic radiography (effective
dose) is relatively small. Most of the radiation
damage will be repaired. The effects of the
radiation damage that is not repaired may not
show up for many years. The time between the
exposure and the appearance of the effects of
that exposure is called the latent period. In
general, the higher the dose, the shorter the
latent period.
Latent Period
21
Since repair of radiation injury is not 100%,
radiation effects are accumulative. However,
these effects will usually not be noticeable,
since they are masked by the normal aging
processes.
The effects from extreme levels of radiation
exposure are potentially life threatening.
22
Somatic Cells vs. Germ Cells
There are two general types of cells in the body; these
are somatic and genetic. Somatic cells are all the cells
except for the germ (reproductive) cells. If somatic
cells are irradiated, only the person exposed will be
affected. Germ cells are the sperm and ova. If the germ
cells are irradiated, the offspring of the individual may
be affected.
23
Dosimetry
Measuring the dose of radiation emitted
by a radioactive source.
As mentioned previously, radiation effects are
dependent on the total area covered. If the entire body
is exposed, it would be considered whole-body
radiation. If only a localized area is exposed, as in
dental radiography, it would be called specific-area
radiation. The effects from a given dose of radiation
would be expected to be more severe if the whole
body is exposed to that dose rather than a specific
area. 24
Traditional Units SI* Units
Roentgen (R) Coulombs per kilogram
rad Gray
rem Sievert
Units of Radiation Measurement
* SI = International System of Units; used worldwide
25
Roentgen
The Roentgen (R) is the traditional unit of
measuring radiation exposure. This measures
the ionization of air. (The exact definition of
Roentgen is complicated and not worth
remembering). The Roentgen measures
radiation quantity before the radiation enters
the body. There is no exact SI unit comparable
to the Roentgen, but in keeping with the metric
system it is measured in coulombs per
kilogram.
26
The rad (radiation absorbed dose) is the traditional
unit used to measure the energy absorbed by the
body. The SI unit is the Gray (Gy). 1 Gray = 100
rads; 1 cGy (centiGray) = .01 Gray = 1 rad.
rad/Gray
27
The rem (roentgen equivalent man) is the traditional
unit used for comparing the effects of different types
of ionizing radiation (electromagnetic and particulate).
The dose (in rads) is multiplied by a quality
(weighting) factor. The quality factor for x-rays is 1.
Therefore the dose in rems (dose equivalent) is the
same as the dose in rads. For alpha particles the
quality factor is 20. Therefore the dose in rems (dose
equivalent) would be 20 times the dose in rads for
alpha particles. The higher the LET, the higher the
qualifying factor.
The SI unit is the Sievert (Sv). 1 Sievert = 100 rems;
1cSv (.01 Sievert) = 1 rem.
rem/Sievert
28
Effective Dose Equivalent
Exposure and dose are not related to the amount or
type of tissue covered by the x-ray beam. A dose (or
exposure) of 1 Sv could cover just the teeth or the
entire body. Obviously, the overall effects would be
different, even though the dose is the same. The
effective dose equivalent takes into account the
dose, the volume of tissue covered and the
radiosensitivity of the cells. Using the effective dose
equivalent, different types of x-ray examinations can
be more realistically compared regarding the risk
factor of each.
29
The accepted cumulative dose of ionizing radiation
during pregnancy is 5 rad (.05 Sv).
The decision to order films during pregnancy is a
personal one. Because of the relatively low dose, it is not
expected that there will be any harm to the fetus.
However, my recommendation is to limit the films to
those needed to treat the patient during the pregnancy
(symptomatic teeth or very active caries).
Pregnancy
30
Radiation Protection
for
Patient and Operator
31
Maximum Permissible Dose (MPD)
The maximum permissible dose is the amount of
radiation (dose limit) that a person can receive
from artificial radiation (effective dose
equivalent). These dose limits are recommended
by the NCRP* and required by the state in which a
dentist practices. The dose limits may vary
between the NCRP and the state.
There are no dose limits for patients being
radiographed. The dentist should only order films
that are needed for a diagnosis, and thus keep
patient exposure to a minimum (See ALARA).
* National Council on Radiation Protection and Measurements32
Dose limits (MPD’s) are set for occupationally
exposed personnel (dentist, dental hygienist, and
dental assistant) and for non-occupationally
exposed individuals (front-office staff, people in
waiting room, etc.). The dose limits are as follows:
Maximum Permissible Dose (MPD)
33
Patient Protection
It is important to do everything we can to reduce the
amount of exposure when a patient has dental
radiographs taken. The following slides identify the
ways in which we can do this.
34
ALARA
ALARA stands for “As Low As Reasonably
Achievable”. If we assume that there is no threshold for
stochastic effects (mutations and cancer) to occur, then
it is important to keep the exposure to the minimum
needed to provide an accurate diagnosis. In other
words, take only those films needed to properly identify
patient problems.
35
Equipment Reliability
X-ray equipment must be functioning properly to
insure that the patient does not receive unnecessary
radiation exposure. The settings for the exposure
factors (exposure time, mA, kVp) must accurately
reflect the output
36
Direct Current (Constant Potential)
60-cycle Alternating Current
Many machines now convert the alternating current
into a direct current (constant potential). Instead of
cycles going from zero to the maximum, both positive
and negative, the voltage stays at the maximum
positive value, creating more effective x-ray
production. This allows for shorter exposure times and
a 20% reduction in patient exposure.
Constant Potential X-ray Machine
37
Filtration
Low-energy x-rays do not contribute to the formation
of an x-ray image; all they do is expose the body to
radiation. Therefore, we need to get rid of them. The
process of removing these low-energy x-rays from
the x-ray beam is known as filtration. Filtration
increases the average energy (quality) of the x-ray
beam. The x-ray beam becomes more penetrating,
providing good image formation on the film with
reduced patient exposure.
Low-energy
x-rays
high-energy
x-ray 38
Collimation
Collimation is used to restrict the size of the x-ray beam,
covering the entire film with the x-ray beam but not
exposing unnecessary tissue. By reducing the amount
of tissue exposed, the production of scatter radiation is
also reduced.
The shape of the opening (round or rectangular) in the
collimator determines the shape of the x-ray beam. The
size of the opening determines the size of the beam at
the end of the PID. If you switch from a 7 cm diameter
round PID to a 6 cm diameter round PID, the patient
receives 25% less radiation. Rectangular collimation
results in the patient receiving 55 % less radiation when
compared to what they would receive with a 7 cm round
PID.
39
Focus Film Distance
Extending the distance between the target of the x-
ray tube (focal spot) and the teeth makes the beam
less divergent as it passes through the head,
exposing a smaller area of the patient. (The diameter
of the beam at the skin surface is the same for both
distances. The beam from the 8” target-teeth
distance spreads out much more as it passes
through the head).
16” 8”
Target-teeth
16”
Target-teeth
8”
40
Using a faster film requires less radiation. Using
F-speed film (Insight) instead of D-speed film
reduces patient exposure by 60%. F-speed film
has larger silver halide crystals, which more
readily intercept the x-rays.
Intraoral Film Speed
41
Extraoral Screen Speed
Extraoral films are exposed by light from intensifying
screens; this light is produced when x-rays contact
phosphor crystals on the surface of the screens. The
light is either blue or green, depending on the type of
screen. Intensifying screens have different speeds,
depending on the type of phosphor crystal (rare earth
recommended) and the thickness of the phosphor layer.
The faster the screen is, the less the patient exposure
will be. However, image detail decreases as the speed
of the screens increases.
42
The American Dental Association
recommends that a lead apron and
thyroid collar be used on all patients.
The actual exposure from scatter
radiation to other parts of the body is
minimal, but considering the ease of
placing the lead apron and thyroid
collar, there is no reason not to use
them. Patients will appreciate your
efforts in keeping their exposure to a
minimum. (The thyroid collar is not
used for panoramic films).
Lead Apron/Thyroid Collar
43
Good technique in taking films is essential in
producing diagnostic radiographs. Proper film
placement and selection of the correct
exposure factors will maximize the value of
the films and will reduce or eliminate the need
for retakes, which would increase the patient’s
overall exposure.
Technique
44
Processing
Processing films for the correct amount of time
and at the proper temperature produces films of
good diagnostic quality, assuming the films were
exposed properly. It is necessary to have
appropriate safelighting in a light-tight
darkroom. Inadequate processing will result in
retaking films which will add to the patient’s
overall radiation exposure.
45
The operator should never hold films in the
patient’s mouth during an exposure. Some
patient’s, due to physical or mental impairments,
may need help in stabilizing the films, but this
assistance should be provided by a friend or
relative of the patient. This person should wear a
lead apron and leaded gloves when holding films
in the patient’s mouth.
X-ray Protection for the Operator
The photo at right shows a
squamous cell carcinoma on the
finger of a dentist who routinely
held films for the patient.
46
The operator should stand behind a protective
barrier if available. It has been determined that
drywall is adequate protection for this purpose.
The operator must be able to observe the patient
during the exposure to make sure the patient
doesn’t move prior to or during the exposure. If a
direct line of sight is not possible, mirrors can be
mounted on a wall opposite the doorway to allow
visualization of the patient.
If barriers are not available, the operator should
follow the position and distance rule (next slide).
X-ray Protection for the Operator
47
Position and Distance Rule
The operator should stand at least six feet away from
the patient at an angle between 90 and 135 degrees. As
the tubehead is moved, this safe position will change
relative to the patient’s head (see below).
48
Personnel-monitoring devices (film badges) can be
used to determine the exposure an operator receives
during a given period (often quarterly). Film badges
are required in some states if you expect to exceed
25% of the MPD during any calendar quarter (12.5
mSv). Although you should not expect to exceed this
dose following normal safe operating procedures, it is
beneficial to have a dosimetry service. The cost is
minimal and the reports, which hopefully identify the
lack of exposure to the operators, reduces any
apprehension the office staff may have about
radiation exposure.
Film Badges
49

More Related Content

What's hot

Radiation physics
Radiation physicsRadiation physics
Radiation physicsDr Kumar
 
5.radiation protection
5.radiation protection5.radiation protection
5.radiation protectionsamad shaik
 
Acute radiation syndrome
Acute radiation syndromeAcute radiation syndrome
Acute radiation syndromeDrAyush Garg
 
Radiation safety and protection for dental radiography
Radiation safety and protection for dental radiographyRadiation safety and protection for dental radiography
Radiation safety and protection for dental radiographyNitin Sharma
 
Radiation Protection and Dosimetry
Radiation Protection and DosimetryRadiation Protection and Dosimetry
Radiation Protection and DosimetryVibhuti Kaul
 
Processing of x ray film
Processing of x ray filmProcessing of x ray film
Processing of x ray filmshilakandel
 
Biological effects of radiation
Biological effects of radiationBiological effects of radiation
Biological effects of radiationDR.URVASHI NIKTE
 
Radiographic errors and artifacts
Radiographic errors and artifactsRadiographic errors and artifacts
Radiographic errors and artifactsWAlid Salem
 
Quality assurance in dental radiography
Quality assurance in dental radiographyQuality assurance in dental radiography
Quality assurance in dental radiographyMammootty Ik
 
Irradiation products of water & Fricks dosimetry
Irradiation products of water & Fricks dosimetryIrradiation products of water & Fricks dosimetry
Irradiation products of water & Fricks dosimetryGopi krishna Giri
 
Effects of radiation on oral tissues
Effects of radiation on oral tissuesEffects of radiation on oral tissues
Effects of radiation on oral tissuesAdwiti Vidushi
 
BIOLOGICAL EFFECTS OF IONIZING RADIATION
BIOLOGICAL EFFECTS OF IONIZING RADIATIONBIOLOGICAL EFFECTS OF IONIZING RADIATION
BIOLOGICAL EFFECTS OF IONIZING RADIATIONGanesan Yogananthem
 
Collimation & filtration
Collimation & filtrationCollimation & filtration
Collimation & filtrationPOOJAKUMARI277
 
Extra-oral films
Extra-oral filmsExtra-oral films
Extra-oral filmsamira gamal
 
Dental radiology ppt
Dental radiology pptDental radiology ppt
Dental radiology pptAbeer Tohmazy
 
Intra oral radiographs
Intra oral radiographsIntra oral radiographs
Intra oral radiographsmelbia shine
 

What's hot (20)

X-ray Production/ dental courses
X-ray Production/ dental coursesX-ray Production/ dental courses
X-ray Production/ dental courses
 
Radiation physics
Radiation physicsRadiation physics
Radiation physics
 
5.radiation protection
5.radiation protection5.radiation protection
5.radiation protection
 
Acute radiation syndrome
Acute radiation syndromeAcute radiation syndrome
Acute radiation syndrome
 
Radiation safety and protection for dental radiography
Radiation safety and protection for dental radiographyRadiation safety and protection for dental radiography
Radiation safety and protection for dental radiography
 
Radiation Protection and Dosimetry
Radiation Protection and DosimetryRadiation Protection and Dosimetry
Radiation Protection and Dosimetry
 
Image receptors 2014.ppt
Image receptors 2014.pptImage receptors 2014.ppt
Image receptors 2014.ppt
 
Processing of x ray film
Processing of x ray filmProcessing of x ray film
Processing of x ray film
 
Biological effects of radiation
Biological effects of radiationBiological effects of radiation
Biological effects of radiation
 
Radiographic errors and artifacts
Radiographic errors and artifactsRadiographic errors and artifacts
Radiographic errors and artifacts
 
Quality assurance in dental radiography
Quality assurance in dental radiographyQuality assurance in dental radiography
Quality assurance in dental radiography
 
Irradiation products of water & Fricks dosimetry
Irradiation products of water & Fricks dosimetryIrradiation products of water & Fricks dosimetry
Irradiation products of water & Fricks dosimetry
 
Effects of radiation on oral tissues
Effects of radiation on oral tissuesEffects of radiation on oral tissues
Effects of radiation on oral tissues
 
Orthopantomogram.ppt
Orthopantomogram.pptOrthopantomogram.ppt
Orthopantomogram.ppt
 
BIOLOGICAL EFFECTS OF IONIZING RADIATION
BIOLOGICAL EFFECTS OF IONIZING RADIATIONBIOLOGICAL EFFECTS OF IONIZING RADIATION
BIOLOGICAL EFFECTS OF IONIZING RADIATION
 
Collimation & filtration
Collimation & filtrationCollimation & filtration
Collimation & filtration
 
Extra-oral films
Extra-oral filmsExtra-oral films
Extra-oral films
 
Dental radiology ppt
Dental radiology pptDental radiology ppt
Dental radiology ppt
 
Intra oral radiographs
Intra oral radiographsIntra oral radiographs
Intra oral radiographs
 
Properties of x rays
Properties of x raysProperties of x rays
Properties of x rays
 

Similar to Biological effect of radiation and radiation safety

ZOM703_Biological_Effects_of_Ionizing_Radiation.ppt
ZOM703_Biological_Effects_of_Ionizing_Radiation.pptZOM703_Biological_Effects_of_Ionizing_Radiation.ppt
ZOM703_Biological_Effects_of_Ionizing_Radiation.ppticchapipesh
 
zom703biologicaleffectsofionizingradiation-221228102135-accdae82.pdf
zom703biologicaleffectsofionizingradiation-221228102135-accdae82.pdfzom703biologicaleffectsofionizingradiation-221228102135-accdae82.pdf
zom703biologicaleffectsofionizingradiation-221228102135-accdae82.pdfsudheendrapv
 
Chapter 4: Radiation Biology
Chapter 4: Radiation BiologyChapter 4: Radiation Biology
Chapter 4: Radiation BiologyKatieHenkel1
 
Ionizing radiation protection
Ionizing radiation protectionIonizing radiation protection
Ionizing radiation protectionAhmed Bahnassy
 
Injuries from radiations
Injuries from radiationsInjuries from radiations
Injuries from radiationsUmar Tauqir
 
Biological effects of radiation- RAVISHWAR NARAYAN
Biological effects of radiation- RAVISHWAR NARAYANBiological effects of radiation- RAVISHWAR NARAYAN
Biological effects of radiation- RAVISHWAR NARAYANRavishwar Narayan
 
Biological effects of radiation
Biological effects of radiationBiological effects of radiation
Biological effects of radiationpavithra vinayak
 
Biological effects of radiations
Biological effects of radiationsBiological effects of radiations
Biological effects of radiationsMirza Anwar Baig
 
Radiotherapy in gynaecology
Radiotherapy in gynaecologyRadiotherapy in gynaecology
Radiotherapy in gynaecologydrmcbansal
 
ZOM703_Radiation_Toxicity.ppt
ZOM703_Radiation_Toxicity.pptZOM703_Radiation_Toxicity.ppt
ZOM703_Radiation_Toxicity.ppticchapipesh
 
4 r’s of radiobiology
4 r’s of radiobiology4 r’s of radiobiology
4 r’s of radiobiologysaikishore15
 
New Microsoft Office PowerPoint Presentation.pptx
New Microsoft Office PowerPoint Presentation.pptxNew Microsoft Office PowerPoint Presentation.pptx
New Microsoft Office PowerPoint Presentation.pptxdrjatin2
 
BIOLOGICAL EFFECTS OF RADIATION USHA YADAV.pptx
BIOLOGICAL EFFECTS OF RADIATION USHA YADAV.pptxBIOLOGICAL EFFECTS OF RADIATION USHA YADAV.pptx
BIOLOGICAL EFFECTS OF RADIATION USHA YADAV.pptxSubamProjects
 
Radiation effects
Radiation effectsRadiation effects
Radiation effectsnobuggingme
 
When ionizing radiation strike atoms or molecules in their paths they.docx
When ionizing radiation strike atoms or molecules in their paths they.docxWhen ionizing radiation strike atoms or molecules in their paths they.docx
When ionizing radiation strike atoms or molecules in their paths they.docxSUKHI5
 
Biological effects of radiation.ppt
Biological effects of radiation.pptBiological effects of radiation.ppt
Biological effects of radiation.pptNuhuUsman1
 

Similar to Biological effect of radiation and radiation safety (20)

ZOM703_Biological_Effects_of_Ionizing_Radiation.ppt
ZOM703_Biological_Effects_of_Ionizing_Radiation.pptZOM703_Biological_Effects_of_Ionizing_Radiation.ppt
ZOM703_Biological_Effects_of_Ionizing_Radiation.ppt
 
zom703biologicaleffectsofionizingradiation-221228102135-accdae82.pdf
zom703biologicaleffectsofionizingradiation-221228102135-accdae82.pdfzom703biologicaleffectsofionizingradiation-221228102135-accdae82.pdf
zom703biologicaleffectsofionizingradiation-221228102135-accdae82.pdf
 
Chapter 4: Radiation Biology
Chapter 4: Radiation BiologyChapter 4: Radiation Biology
Chapter 4: Radiation Biology
 
Radiobiology Lec.ppt
Radiobiology Lec.pptRadiobiology Lec.ppt
Radiobiology Lec.ppt
 
Ionizing radiation protection
Ionizing radiation protectionIonizing radiation protection
Ionizing radiation protection
 
Radiobiology
RadiobiologyRadiobiology
Radiobiology
 
Injuries from radiations
Injuries from radiationsInjuries from radiations
Injuries from radiations
 
Biological effects of radiation- RAVISHWAR NARAYAN
Biological effects of radiation- RAVISHWAR NARAYANBiological effects of radiation- RAVISHWAR NARAYAN
Biological effects of radiation- RAVISHWAR NARAYAN
 
Radiobiology
RadiobiologyRadiobiology
Radiobiology
 
Biological effects of radiation
Biological effects of radiationBiological effects of radiation
Biological effects of radiation
 
Biological effects of radiations
Biological effects of radiationsBiological effects of radiations
Biological effects of radiations
 
Radiotherapy in gynaecology
Radiotherapy in gynaecologyRadiotherapy in gynaecology
Radiotherapy in gynaecology
 
ZOM703_Radiation_Toxicity.ppt
ZOM703_Radiation_Toxicity.pptZOM703_Radiation_Toxicity.ppt
ZOM703_Radiation_Toxicity.ppt
 
4 r’s of radiobiology
4 r’s of radiobiology4 r’s of radiobiology
4 r’s of radiobiology
 
Radiobiology
RadiobiologyRadiobiology
Radiobiology
 
New Microsoft Office PowerPoint Presentation.pptx
New Microsoft Office PowerPoint Presentation.pptxNew Microsoft Office PowerPoint Presentation.pptx
New Microsoft Office PowerPoint Presentation.pptx
 
BIOLOGICAL EFFECTS OF RADIATION USHA YADAV.pptx
BIOLOGICAL EFFECTS OF RADIATION USHA YADAV.pptxBIOLOGICAL EFFECTS OF RADIATION USHA YADAV.pptx
BIOLOGICAL EFFECTS OF RADIATION USHA YADAV.pptx
 
Radiation effects
Radiation effectsRadiation effects
Radiation effects
 
When ionizing radiation strike atoms or molecules in their paths they.docx
When ionizing radiation strike atoms or molecules in their paths they.docxWhen ionizing radiation strike atoms or molecules in their paths they.docx
When ionizing radiation strike atoms or molecules in their paths they.docx
 
Biological effects of radiation.ppt
Biological effects of radiation.pptBiological effects of radiation.ppt
Biological effects of radiation.ppt
 

More from Lama K Banna

The TikTok Masterclass Deck.pdf
The TikTok Masterclass Deck.pdfThe TikTok Masterclass Deck.pdf
The TikTok Masterclass Deck.pdfLama K Banna
 
دليل كتابة المشاريع.pdf
دليل كتابة المشاريع.pdfدليل كتابة المشاريع.pdf
دليل كتابة المشاريع.pdfLama K Banna
 
Investment proposal
Investment proposalInvestment proposal
Investment proposalLama K Banna
 
Lecture 3 facial cosmetic surgery
Lecture 3 facial cosmetic surgery Lecture 3 facial cosmetic surgery
Lecture 3 facial cosmetic surgery Lama K Banna
 
lecture 1 facial cosmatic surgery
lecture 1 facial cosmatic surgery lecture 1 facial cosmatic surgery
lecture 1 facial cosmatic surgery Lama K Banna
 
Facial neuropathology Maxillofacial Surgery
Facial neuropathology Maxillofacial SurgeryFacial neuropathology Maxillofacial Surgery
Facial neuropathology Maxillofacial SurgeryLama K Banna
 
Lecture 2 Facial cosmatic surgery
Lecture 2 Facial cosmatic surgery Lecture 2 Facial cosmatic surgery
Lecture 2 Facial cosmatic surgery Lama K Banna
 
Lecture 12 general considerations in treatment of tmd
Lecture 12 general considerations in treatment of tmdLecture 12 general considerations in treatment of tmd
Lecture 12 general considerations in treatment of tmdLama K Banna
 
Lecture 10 temporomandibular joint
Lecture 10 temporomandibular jointLecture 10 temporomandibular joint
Lecture 10 temporomandibular jointLama K Banna
 
Lecture 11 temporomandibular joint Part 3
Lecture 11 temporomandibular joint Part 3Lecture 11 temporomandibular joint Part 3
Lecture 11 temporomandibular joint Part 3Lama K Banna
 
Lecture 9 TMJ anatomy examination
Lecture 9 TMJ anatomy examinationLecture 9 TMJ anatomy examination
Lecture 9 TMJ anatomy examinationLama K Banna
 
Lecture 7 correction of dentofacial deformities Part 2
Lecture 7 correction of dentofacial deformities Part 2Lecture 7 correction of dentofacial deformities Part 2
Lecture 7 correction of dentofacial deformities Part 2Lama K Banna
 
Lecture 8 management of patients with orofacial clefts
Lecture 8 management of patients with orofacial cleftsLecture 8 management of patients with orofacial clefts
Lecture 8 management of patients with orofacial cleftsLama K Banna
 
Lecture 5 Diagnosis and management of salivary gland disorders Part 2
Lecture 5 Diagnosis and management of salivary gland disorders Part 2Lecture 5 Diagnosis and management of salivary gland disorders Part 2
Lecture 5 Diagnosis and management of salivary gland disorders Part 2Lama K Banna
 
Lecture 6 correction of dentofacial deformities
Lecture 6 correction of dentofacial deformitiesLecture 6 correction of dentofacial deformities
Lecture 6 correction of dentofacial deformitiesLama K Banna
 
lecture 4 Diagnosis and management of salivary gland disorders
lecture 4 Diagnosis and management of salivary gland disorderslecture 4 Diagnosis and management of salivary gland disorders
lecture 4 Diagnosis and management of salivary gland disordersLama K Banna
 
Lecture 3 maxillofacial trauma part 3
Lecture 3 maxillofacial trauma part 3Lecture 3 maxillofacial trauma part 3
Lecture 3 maxillofacial trauma part 3Lama K Banna
 
Lecture 2 maxillofacial trauma
Lecture 2 maxillofacial traumaLecture 2 maxillofacial trauma
Lecture 2 maxillofacial traumaLama K Banna
 

More from Lama K Banna (20)

The TikTok Masterclass Deck.pdf
The TikTok Masterclass Deck.pdfThe TikTok Masterclass Deck.pdf
The TikTok Masterclass Deck.pdf
 
دليل كتابة المشاريع.pdf
دليل كتابة المشاريع.pdfدليل كتابة المشاريع.pdf
دليل كتابة المشاريع.pdf
 
Investment proposal
Investment proposalInvestment proposal
Investment proposal
 
Funding proposal
Funding proposalFunding proposal
Funding proposal
 
5 incisions
5 incisions5 incisions
5 incisions
 
Lecture 3 facial cosmetic surgery
Lecture 3 facial cosmetic surgery Lecture 3 facial cosmetic surgery
Lecture 3 facial cosmetic surgery
 
lecture 1 facial cosmatic surgery
lecture 1 facial cosmatic surgery lecture 1 facial cosmatic surgery
lecture 1 facial cosmatic surgery
 
Facial neuropathology Maxillofacial Surgery
Facial neuropathology Maxillofacial SurgeryFacial neuropathology Maxillofacial Surgery
Facial neuropathology Maxillofacial Surgery
 
Lecture 2 Facial cosmatic surgery
Lecture 2 Facial cosmatic surgery Lecture 2 Facial cosmatic surgery
Lecture 2 Facial cosmatic surgery
 
Lecture 12 general considerations in treatment of tmd
Lecture 12 general considerations in treatment of tmdLecture 12 general considerations in treatment of tmd
Lecture 12 general considerations in treatment of tmd
 
Lecture 10 temporomandibular joint
Lecture 10 temporomandibular jointLecture 10 temporomandibular joint
Lecture 10 temporomandibular joint
 
Lecture 11 temporomandibular joint Part 3
Lecture 11 temporomandibular joint Part 3Lecture 11 temporomandibular joint Part 3
Lecture 11 temporomandibular joint Part 3
 
Lecture 9 TMJ anatomy examination
Lecture 9 TMJ anatomy examinationLecture 9 TMJ anatomy examination
Lecture 9 TMJ anatomy examination
 
Lecture 7 correction of dentofacial deformities Part 2
Lecture 7 correction of dentofacial deformities Part 2Lecture 7 correction of dentofacial deformities Part 2
Lecture 7 correction of dentofacial deformities Part 2
 
Lecture 8 management of patients with orofacial clefts
Lecture 8 management of patients with orofacial cleftsLecture 8 management of patients with orofacial clefts
Lecture 8 management of patients with orofacial clefts
 
Lecture 5 Diagnosis and management of salivary gland disorders Part 2
Lecture 5 Diagnosis and management of salivary gland disorders Part 2Lecture 5 Diagnosis and management of salivary gland disorders Part 2
Lecture 5 Diagnosis and management of salivary gland disorders Part 2
 
Lecture 6 correction of dentofacial deformities
Lecture 6 correction of dentofacial deformitiesLecture 6 correction of dentofacial deformities
Lecture 6 correction of dentofacial deformities
 
lecture 4 Diagnosis and management of salivary gland disorders
lecture 4 Diagnosis and management of salivary gland disorderslecture 4 Diagnosis and management of salivary gland disorders
lecture 4 Diagnosis and management of salivary gland disorders
 
Lecture 3 maxillofacial trauma part 3
Lecture 3 maxillofacial trauma part 3Lecture 3 maxillofacial trauma part 3
Lecture 3 maxillofacial trauma part 3
 
Lecture 2 maxillofacial trauma
Lecture 2 maxillofacial traumaLecture 2 maxillofacial trauma
Lecture 2 maxillofacial trauma
 

Recently uploaded

Call Girl Number in Vashi Mumbai📲 9833363713 💞 Full Night Enjoy
Call Girl Number in Vashi Mumbai📲 9833363713 💞 Full Night EnjoyCall Girl Number in Vashi Mumbai📲 9833363713 💞 Full Night Enjoy
Call Girl Number in Vashi Mumbai📲 9833363713 💞 Full Night Enjoybabeytanya
 
CALL ON ➥9907093804 🔝 Call Girls Hadapsar ( Pune) Girls Service
CALL ON ➥9907093804 🔝 Call Girls Hadapsar ( Pune)  Girls ServiceCALL ON ➥9907093804 🔝 Call Girls Hadapsar ( Pune)  Girls Service
CALL ON ➥9907093804 🔝 Call Girls Hadapsar ( Pune) Girls ServiceMiss joya
 
Bangalore Call Girls Nelamangala Number 7001035870 Meetin With Bangalore Esc...
Bangalore Call Girls Nelamangala Number 7001035870  Meetin With Bangalore Esc...Bangalore Call Girls Nelamangala Number 7001035870  Meetin With Bangalore Esc...
Bangalore Call Girls Nelamangala Number 7001035870 Meetin With Bangalore Esc...narwatsonia7
 
Call Girls Service Chennai Jiya 7001305949 Independent Escort Service Chennai
Call Girls Service Chennai Jiya 7001305949 Independent Escort Service ChennaiCall Girls Service Chennai Jiya 7001305949 Independent Escort Service Chennai
Call Girls Service Chennai Jiya 7001305949 Independent Escort Service ChennaiNehru place Escorts
 
Artifacts in Nuclear Medicine with Identifying and resolving artifacts.
Artifacts in Nuclear Medicine with Identifying and resolving artifacts.Artifacts in Nuclear Medicine with Identifying and resolving artifacts.
Artifacts in Nuclear Medicine with Identifying and resolving artifacts.MiadAlsulami
 
High Profile Call Girls Coimbatore Saanvi☎️ 8250192130 Independent Escort Se...
High Profile Call Girls Coimbatore Saanvi☎️  8250192130 Independent Escort Se...High Profile Call Girls Coimbatore Saanvi☎️  8250192130 Independent Escort Se...
High Profile Call Girls Coimbatore Saanvi☎️ 8250192130 Independent Escort Se...narwatsonia7
 
💎VVIP Kolkata Call Girls Parganas🩱7001035870🩱Independent Girl ( Ac Rooms Avai...
💎VVIP Kolkata Call Girls Parganas🩱7001035870🩱Independent Girl ( Ac Rooms Avai...💎VVIP Kolkata Call Girls Parganas🩱7001035870🩱Independent Girl ( Ac Rooms Avai...
💎VVIP Kolkata Call Girls Parganas🩱7001035870🩱Independent Girl ( Ac Rooms Avai...Taniya Sharma
 
Bangalore Call Girls Majestic 📞 9907093804 High Profile Service 100% Safe
Bangalore Call Girls Majestic 📞 9907093804 High Profile Service 100% SafeBangalore Call Girls Majestic 📞 9907093804 High Profile Service 100% Safe
Bangalore Call Girls Majestic 📞 9907093804 High Profile Service 100% Safenarwatsonia7
 
Best Rate (Hyderabad) Call Girls Jahanuma ⟟ 8250192130 ⟟ High Class Call Girl...
Best Rate (Hyderabad) Call Girls Jahanuma ⟟ 8250192130 ⟟ High Class Call Girl...Best Rate (Hyderabad) Call Girls Jahanuma ⟟ 8250192130 ⟟ High Class Call Girl...
Best Rate (Hyderabad) Call Girls Jahanuma ⟟ 8250192130 ⟟ High Class Call Girl...astropune
 
CALL ON ➥9907093804 🔝 Call Girls Baramati ( Pune) Girls Service
CALL ON ➥9907093804 🔝 Call Girls Baramati ( Pune)  Girls ServiceCALL ON ➥9907093804 🔝 Call Girls Baramati ( Pune)  Girls Service
CALL ON ➥9907093804 🔝 Call Girls Baramati ( Pune) Girls ServiceMiss joya
 
Call Girls Service Pune Vaishnavi 9907093804 Short 1500 Night 6000 Best call ...
Call Girls Service Pune Vaishnavi 9907093804 Short 1500 Night 6000 Best call ...Call Girls Service Pune Vaishnavi 9907093804 Short 1500 Night 6000 Best call ...
Call Girls Service Pune Vaishnavi 9907093804 Short 1500 Night 6000 Best call ...Miss joya
 
VIP Mumbai Call Girls Hiranandani Gardens Just Call 9920874524 with A/C Room ...
VIP Mumbai Call Girls Hiranandani Gardens Just Call 9920874524 with A/C Room ...VIP Mumbai Call Girls Hiranandani Gardens Just Call 9920874524 with A/C Room ...
VIP Mumbai Call Girls Hiranandani Gardens Just Call 9920874524 with A/C Room ...Garima Khatri
 
Russian Call Girls in Pune Tanvi 9907093804 Short 1500 Night 6000 Best call g...
Russian Call Girls in Pune Tanvi 9907093804 Short 1500 Night 6000 Best call g...Russian Call Girls in Pune Tanvi 9907093804 Short 1500 Night 6000 Best call g...
Russian Call Girls in Pune Tanvi 9907093804 Short 1500 Night 6000 Best call g...Miss joya
 
Call Girls Service Jaipur Grishma WhatsApp ❤8445551418 VIP Call Girls Jaipur
Call Girls Service Jaipur Grishma WhatsApp ❤8445551418 VIP Call Girls JaipurCall Girls Service Jaipur Grishma WhatsApp ❤8445551418 VIP Call Girls Jaipur
Call Girls Service Jaipur Grishma WhatsApp ❤8445551418 VIP Call Girls Jaipurparulsinha
 
College Call Girls Pune Mira 9907093804 Short 1500 Night 6000 Best call girls...
College Call Girls Pune Mira 9907093804 Short 1500 Night 6000 Best call girls...College Call Girls Pune Mira 9907093804 Short 1500 Night 6000 Best call girls...
College Call Girls Pune Mira 9907093804 Short 1500 Night 6000 Best call girls...Miss joya
 
Low Rate Call Girls Pune Esha 9907093804 Short 1500 Night 6000 Best call girl...
Low Rate Call Girls Pune Esha 9907093804 Short 1500 Night 6000 Best call girl...Low Rate Call Girls Pune Esha 9907093804 Short 1500 Night 6000 Best call girl...
Low Rate Call Girls Pune Esha 9907093804 Short 1500 Night 6000 Best call girl...Miss joya
 
Call Girls Service Surat Samaira ❤️🍑 8250192130 👄 Independent Escort Service ...
Call Girls Service Surat Samaira ❤️🍑 8250192130 👄 Independent Escort Service ...Call Girls Service Surat Samaira ❤️🍑 8250192130 👄 Independent Escort Service ...
Call Girls Service Surat Samaira ❤️🍑 8250192130 👄 Independent Escort Service ...CALL GIRLS
 
Call Girls Service Bellary Road Just Call 7001305949 Enjoy College Girls Service
Call Girls Service Bellary Road Just Call 7001305949 Enjoy College Girls ServiceCall Girls Service Bellary Road Just Call 7001305949 Enjoy College Girls Service
Call Girls Service Bellary Road Just Call 7001305949 Enjoy College Girls Servicenarwatsonia7
 
Aspirin presentation slides by Dr. Rewas Ali
Aspirin presentation slides by Dr. Rewas AliAspirin presentation slides by Dr. Rewas Ali
Aspirin presentation slides by Dr. Rewas AliRewAs ALI
 
Russian Escorts Girls Nehru Place ZINATHI 🔝9711199012 ☪ 24/7 Call Girls Delhi
Russian Escorts Girls  Nehru Place ZINATHI 🔝9711199012 ☪ 24/7 Call Girls DelhiRussian Escorts Girls  Nehru Place ZINATHI 🔝9711199012 ☪ 24/7 Call Girls Delhi
Russian Escorts Girls Nehru Place ZINATHI 🔝9711199012 ☪ 24/7 Call Girls DelhiAlinaDevecerski
 

Recently uploaded (20)

Call Girl Number in Vashi Mumbai📲 9833363713 💞 Full Night Enjoy
Call Girl Number in Vashi Mumbai📲 9833363713 💞 Full Night EnjoyCall Girl Number in Vashi Mumbai📲 9833363713 💞 Full Night Enjoy
Call Girl Number in Vashi Mumbai📲 9833363713 💞 Full Night Enjoy
 
CALL ON ➥9907093804 🔝 Call Girls Hadapsar ( Pune) Girls Service
CALL ON ➥9907093804 🔝 Call Girls Hadapsar ( Pune)  Girls ServiceCALL ON ➥9907093804 🔝 Call Girls Hadapsar ( Pune)  Girls Service
CALL ON ➥9907093804 🔝 Call Girls Hadapsar ( Pune) Girls Service
 
Bangalore Call Girls Nelamangala Number 7001035870 Meetin With Bangalore Esc...
Bangalore Call Girls Nelamangala Number 7001035870  Meetin With Bangalore Esc...Bangalore Call Girls Nelamangala Number 7001035870  Meetin With Bangalore Esc...
Bangalore Call Girls Nelamangala Number 7001035870 Meetin With Bangalore Esc...
 
Call Girls Service Chennai Jiya 7001305949 Independent Escort Service Chennai
Call Girls Service Chennai Jiya 7001305949 Independent Escort Service ChennaiCall Girls Service Chennai Jiya 7001305949 Independent Escort Service Chennai
Call Girls Service Chennai Jiya 7001305949 Independent Escort Service Chennai
 
Artifacts in Nuclear Medicine with Identifying and resolving artifacts.
Artifacts in Nuclear Medicine with Identifying and resolving artifacts.Artifacts in Nuclear Medicine with Identifying and resolving artifacts.
Artifacts in Nuclear Medicine with Identifying and resolving artifacts.
 
High Profile Call Girls Coimbatore Saanvi☎️ 8250192130 Independent Escort Se...
High Profile Call Girls Coimbatore Saanvi☎️  8250192130 Independent Escort Se...High Profile Call Girls Coimbatore Saanvi☎️  8250192130 Independent Escort Se...
High Profile Call Girls Coimbatore Saanvi☎️ 8250192130 Independent Escort Se...
 
💎VVIP Kolkata Call Girls Parganas🩱7001035870🩱Independent Girl ( Ac Rooms Avai...
💎VVIP Kolkata Call Girls Parganas🩱7001035870🩱Independent Girl ( Ac Rooms Avai...💎VVIP Kolkata Call Girls Parganas🩱7001035870🩱Independent Girl ( Ac Rooms Avai...
💎VVIP Kolkata Call Girls Parganas🩱7001035870🩱Independent Girl ( Ac Rooms Avai...
 
Bangalore Call Girls Majestic 📞 9907093804 High Profile Service 100% Safe
Bangalore Call Girls Majestic 📞 9907093804 High Profile Service 100% SafeBangalore Call Girls Majestic 📞 9907093804 High Profile Service 100% Safe
Bangalore Call Girls Majestic 📞 9907093804 High Profile Service 100% Safe
 
Best Rate (Hyderabad) Call Girls Jahanuma ⟟ 8250192130 ⟟ High Class Call Girl...
Best Rate (Hyderabad) Call Girls Jahanuma ⟟ 8250192130 ⟟ High Class Call Girl...Best Rate (Hyderabad) Call Girls Jahanuma ⟟ 8250192130 ⟟ High Class Call Girl...
Best Rate (Hyderabad) Call Girls Jahanuma ⟟ 8250192130 ⟟ High Class Call Girl...
 
CALL ON ➥9907093804 🔝 Call Girls Baramati ( Pune) Girls Service
CALL ON ➥9907093804 🔝 Call Girls Baramati ( Pune)  Girls ServiceCALL ON ➥9907093804 🔝 Call Girls Baramati ( Pune)  Girls Service
CALL ON ➥9907093804 🔝 Call Girls Baramati ( Pune) Girls Service
 
Call Girls Service Pune Vaishnavi 9907093804 Short 1500 Night 6000 Best call ...
Call Girls Service Pune Vaishnavi 9907093804 Short 1500 Night 6000 Best call ...Call Girls Service Pune Vaishnavi 9907093804 Short 1500 Night 6000 Best call ...
Call Girls Service Pune Vaishnavi 9907093804 Short 1500 Night 6000 Best call ...
 
VIP Mumbai Call Girls Hiranandani Gardens Just Call 9920874524 with A/C Room ...
VIP Mumbai Call Girls Hiranandani Gardens Just Call 9920874524 with A/C Room ...VIP Mumbai Call Girls Hiranandani Gardens Just Call 9920874524 with A/C Room ...
VIP Mumbai Call Girls Hiranandani Gardens Just Call 9920874524 with A/C Room ...
 
Russian Call Girls in Pune Tanvi 9907093804 Short 1500 Night 6000 Best call g...
Russian Call Girls in Pune Tanvi 9907093804 Short 1500 Night 6000 Best call g...Russian Call Girls in Pune Tanvi 9907093804 Short 1500 Night 6000 Best call g...
Russian Call Girls in Pune Tanvi 9907093804 Short 1500 Night 6000 Best call g...
 
Call Girls Service Jaipur Grishma WhatsApp ❤8445551418 VIP Call Girls Jaipur
Call Girls Service Jaipur Grishma WhatsApp ❤8445551418 VIP Call Girls JaipurCall Girls Service Jaipur Grishma WhatsApp ❤8445551418 VIP Call Girls Jaipur
Call Girls Service Jaipur Grishma WhatsApp ❤8445551418 VIP Call Girls Jaipur
 
College Call Girls Pune Mira 9907093804 Short 1500 Night 6000 Best call girls...
College Call Girls Pune Mira 9907093804 Short 1500 Night 6000 Best call girls...College Call Girls Pune Mira 9907093804 Short 1500 Night 6000 Best call girls...
College Call Girls Pune Mira 9907093804 Short 1500 Night 6000 Best call girls...
 
Low Rate Call Girls Pune Esha 9907093804 Short 1500 Night 6000 Best call girl...
Low Rate Call Girls Pune Esha 9907093804 Short 1500 Night 6000 Best call girl...Low Rate Call Girls Pune Esha 9907093804 Short 1500 Night 6000 Best call girl...
Low Rate Call Girls Pune Esha 9907093804 Short 1500 Night 6000 Best call girl...
 
Call Girls Service Surat Samaira ❤️🍑 8250192130 👄 Independent Escort Service ...
Call Girls Service Surat Samaira ❤️🍑 8250192130 👄 Independent Escort Service ...Call Girls Service Surat Samaira ❤️🍑 8250192130 👄 Independent Escort Service ...
Call Girls Service Surat Samaira ❤️🍑 8250192130 👄 Independent Escort Service ...
 
Call Girls Service Bellary Road Just Call 7001305949 Enjoy College Girls Service
Call Girls Service Bellary Road Just Call 7001305949 Enjoy College Girls ServiceCall Girls Service Bellary Road Just Call 7001305949 Enjoy College Girls Service
Call Girls Service Bellary Road Just Call 7001305949 Enjoy College Girls Service
 
Aspirin presentation slides by Dr. Rewas Ali
Aspirin presentation slides by Dr. Rewas AliAspirin presentation slides by Dr. Rewas Ali
Aspirin presentation slides by Dr. Rewas Ali
 
Russian Escorts Girls Nehru Place ZINATHI 🔝9711199012 ☪ 24/7 Call Girls Delhi
Russian Escorts Girls  Nehru Place ZINATHI 🔝9711199012 ☪ 24/7 Call Girls DelhiRussian Escorts Girls  Nehru Place ZINATHI 🔝9711199012 ☪ 24/7 Call Girls Delhi
Russian Escorts Girls Nehru Place ZINATHI 🔝9711199012 ☪ 24/7 Call Girls Delhi
 

Biological effect of radiation and radiation safety

  • 1. Oral Radilogy Dr. Rawand Samy Mohamed Abu Nahla Oral Medicine, periodontology& oral Radiology Department. Dr. Haydar. A. Shafy Faculty Of Dentistry.Dr. Haydar. A. Shafy Faculty Of Dentistry. El Azhar University.El Azhar University. 1
  • 2. Lecture 8 Biological effect of radiation And radiation protection 2
  • 3. Radiobiology When x-rays enter the body, they interact at the atomic level to cause ionization. Radiobiology is the response of living systems to ionizing radiation. 3
  • 4. threshold linear non-linear Dose-Response Curves non-threshold Response Dose Dose-Response curves represent the relationship between the dose of radiation a person receives and the cellular response to that exposure. These responses may be linear or non-linear and may, or may not, have a threshold dose; the responses (effects) may be stochastic or deterministic. (See next two slides for definitions of these terms). 4
  • 5. Linear: the response is directly related to the dose. As the dose increases, the response increases proportionately. Non-linear: the response is not proportionate to the dose. An increase in dose may result in a larger or smaller increase in the response depending on the location on the dose-response curve. Threshold: this represents the dose at which effects are produced; below this dose, there are no obvious effects. Non-threshold: any dose, no matter how small, will produce a response. 5
  • 6. Stochastic effect: occurs by chance, usually without a threshold level of dose. The probability of a stochastic effect is increased with increasing doses, but the severity of the response is not proportional to the dose (e.g., two people may get the same dose of radiation, but the response will not be the same in both people). Genetic mutations and cancer are the two main stochastic effects. Deterministic effect: health effects that increase in severity with increasing dose above a threshold level. Usually associated with a relatively high dose delivered over a short period of time. Skin erythema (reddening) and cataract formation from radiation are two examples of deterministic effects. 6
  • 7. DNA Radiation effects at the cellular level result from changes in a critical or “target” molecule. This target molecule is DNA (deoxyribonucleic acid), which regulates cellular activity and contains genetic information needed for cell replication. The DNA molecule is called a chromosome. Permanent changes in this molecule will alter cell function and may result in cell death. 7
  • 8. Direct vs. Indirect Effect DNA If an x-ray or some type of particulate radiation interacts with the DNA molecule, this is considered a direct effect. Particulate radiation, because of its mass, is more apt to cause damage to the DNA by this direct effect. Other molecules that contribute to cell function, such as RNA, proteins, and enzymes, may also be affected by the direct effect. x-ray or particulate radiation Direct effect= 8
  • 9. Direct vs. Indirect Effect H2O ions and free radicals Most of the damage to DNA molecules from x-rays is accomplished through the indirect effect. When x-rays enter a cell, they are much more likely to hit a water molecule because there are a large number of water molecules in each cell. When the x-ray ionizes the water molecule, ions and free radicals are produced which in turn bond with a DNA molecule, changing its structure. Since the x-ray interacted with the water molecule before the DNA was involved, this is considered an indirect effect. x-ray or particulate radiation DNA = Indirect effect 9
  • 10. A free radical is an atom or molecule that has an unpaired electron in the valence shell, making it highly reactive. These free radicals aggressively join with the DNA molecule to produce damage. In the presence of oxygen, the hydroperoxyl free radical is formed; this is one of the most damaging free radicals that can be produced. Free radicals are the primary mediator of the indirect effects on DNA. Free Radical 10
  • 11. Cells undamaged: ionization alters the structure of the cells but has no overall negative effect. Sublethal injury: cells are damaged by ionization but the damage is repaired. Mutation: cell injury may be incorrectly repaired, and cell function is altered or the cell may reproduce at an uncontrolled rate (cancer). Cell death: the cell damage is so extensive that the cell is no longer able to reproduce. Cellular Effects 11
  • 12. Sublethal Injury: Cellular Repair 1. Ionization causes damage to DNA (single-strand break of DNA). 2. Cellular enzymes recognize the damage and coordinate the removal of the damaged section. 3. Additional cell enzymes organize replacement of the damaged section with new material. 12
  • 13. When the DNA is damaged, cell function may be altered or reproductive capacity may be accelerated. Cancer is the most harmful result of cellular mutation. Mutation Normal Mutation 13
  • 14. Cell Death If there is extensive damage to the cell following irradiation or if cell division (mitosis) is disrupted, the cell may die. This will depend on how sensitive the cells are to radiation. The loss of a few cells or small group of cells is usually of no consequence, since there are so many cells present in the body. In most cases, the dead cells will soon be replaced through normal reparative processes. 14
  • 15. Cell Cycle More damage results when the cell is irradiated during the G1/early S portion of the cell cycle (before DNA synthesis); the damaged DNA (chromosome) will be duplicated during DNA synthesis and will result in a break in both arms of the chromosome at the next mitosis. G1 = gap phase 1 in which nuclear components are replicated S = synthesis phase; DNA is synthesized during the last 2/3 of this phase G2 = gap phase 2, a preparatory stage to cell division M = mitosis, during which cells divide Cell most sensitive to radiation 15
  • 16. 1. High reproductive rate (many mitoses) 2. Undifferentiated (immature) 3. High metabolic rate Radiosensitive Cells Cells that are more easily damaged by radiation are radiosensitive. The characteristics of radiosensitive cells are: Lymphocytes, germ cells, basal cells of skin and mucosa, and erythroblasts are examples of radiosensitive cells. 16
  • 17. Radioresistant Cells 1. Low reproductive rate (few mitoses) 2. Well differentiated (mature) 3. Low metabolic rate Cells that are not as susceptible to damage from radiation are radioresistant. The characteristics of radioresistant cells are: Nerve and muscle cells are examples of radioresistant cells. 17
  • 18. Radiation Effect Modifiers The biological response to radiation is dependent on several different factors. These include: • Total Dose: the higher the radiation dose, the greater the potential cellular damage. • Dose Rate: A high dose given over a short period of time (or all at once) will produce more damage than the same dose received over a longer period of time. • Total Area Covered: the more cells that are exposed to radiation, the greater the effects will be. 18
  • 19. Radiation Effect Modifiers (continued) • Type of tissue: As discussed earlier, radiosensitive cells are more likely to be damaged by radiation than are radioresistant cells. • Age: Because the cells are dividing more frequently in a growing child, young people are affected more by radiation than are older people. • Linear Energy Transfer: This measures the rate of the loss of energy as radiation moves through tissue. Particulate radiation (alpha particles, electrons, etc.) has a higher LET because it has mass and interacts with tissues much more readily than do x-rays. 19
  • 20. • Oxygen Effect: Radiation effects are more pronounced in the presence of oxygen. Oxygen is required for the formation of the hydroperoxyl free radical, which is the most damaging free radical formed following ionization. Radiation Effect Modifiers (continued) 20
  • 21. The amount of exposure a patient receives from dental diagnostic radiography (effective dose) is relatively small. Most of the radiation damage will be repaired. The effects of the radiation damage that is not repaired may not show up for many years. The time between the exposure and the appearance of the effects of that exposure is called the latent period. In general, the higher the dose, the shorter the latent period. Latent Period 21
  • 22. Since repair of radiation injury is not 100%, radiation effects are accumulative. However, these effects will usually not be noticeable, since they are masked by the normal aging processes. The effects from extreme levels of radiation exposure are potentially life threatening. 22
  • 23. Somatic Cells vs. Germ Cells There are two general types of cells in the body; these are somatic and genetic. Somatic cells are all the cells except for the germ (reproductive) cells. If somatic cells are irradiated, only the person exposed will be affected. Germ cells are the sperm and ova. If the germ cells are irradiated, the offspring of the individual may be affected. 23
  • 24. Dosimetry Measuring the dose of radiation emitted by a radioactive source. As mentioned previously, radiation effects are dependent on the total area covered. If the entire body is exposed, it would be considered whole-body radiation. If only a localized area is exposed, as in dental radiography, it would be called specific-area radiation. The effects from a given dose of radiation would be expected to be more severe if the whole body is exposed to that dose rather than a specific area. 24
  • 25. Traditional Units SI* Units Roentgen (R) Coulombs per kilogram rad Gray rem Sievert Units of Radiation Measurement * SI = International System of Units; used worldwide 25
  • 26. Roentgen The Roentgen (R) is the traditional unit of measuring radiation exposure. This measures the ionization of air. (The exact definition of Roentgen is complicated and not worth remembering). The Roentgen measures radiation quantity before the radiation enters the body. There is no exact SI unit comparable to the Roentgen, but in keeping with the metric system it is measured in coulombs per kilogram. 26
  • 27. The rad (radiation absorbed dose) is the traditional unit used to measure the energy absorbed by the body. The SI unit is the Gray (Gy). 1 Gray = 100 rads; 1 cGy (centiGray) = .01 Gray = 1 rad. rad/Gray 27
  • 28. The rem (roentgen equivalent man) is the traditional unit used for comparing the effects of different types of ionizing radiation (electromagnetic and particulate). The dose (in rads) is multiplied by a quality (weighting) factor. The quality factor for x-rays is 1. Therefore the dose in rems (dose equivalent) is the same as the dose in rads. For alpha particles the quality factor is 20. Therefore the dose in rems (dose equivalent) would be 20 times the dose in rads for alpha particles. The higher the LET, the higher the qualifying factor. The SI unit is the Sievert (Sv). 1 Sievert = 100 rems; 1cSv (.01 Sievert) = 1 rem. rem/Sievert 28
  • 29. Effective Dose Equivalent Exposure and dose are not related to the amount or type of tissue covered by the x-ray beam. A dose (or exposure) of 1 Sv could cover just the teeth or the entire body. Obviously, the overall effects would be different, even though the dose is the same. The effective dose equivalent takes into account the dose, the volume of tissue covered and the radiosensitivity of the cells. Using the effective dose equivalent, different types of x-ray examinations can be more realistically compared regarding the risk factor of each. 29
  • 30. The accepted cumulative dose of ionizing radiation during pregnancy is 5 rad (.05 Sv). The decision to order films during pregnancy is a personal one. Because of the relatively low dose, it is not expected that there will be any harm to the fetus. However, my recommendation is to limit the films to those needed to treat the patient during the pregnancy (symptomatic teeth or very active caries). Pregnancy 30
  • 32. Maximum Permissible Dose (MPD) The maximum permissible dose is the amount of radiation (dose limit) that a person can receive from artificial radiation (effective dose equivalent). These dose limits are recommended by the NCRP* and required by the state in which a dentist practices. The dose limits may vary between the NCRP and the state. There are no dose limits for patients being radiographed. The dentist should only order films that are needed for a diagnosis, and thus keep patient exposure to a minimum (See ALARA). * National Council on Radiation Protection and Measurements32
  • 33. Dose limits (MPD’s) are set for occupationally exposed personnel (dentist, dental hygienist, and dental assistant) and for non-occupationally exposed individuals (front-office staff, people in waiting room, etc.). The dose limits are as follows: Maximum Permissible Dose (MPD) 33
  • 34. Patient Protection It is important to do everything we can to reduce the amount of exposure when a patient has dental radiographs taken. The following slides identify the ways in which we can do this. 34
  • 35. ALARA ALARA stands for “As Low As Reasonably Achievable”. If we assume that there is no threshold for stochastic effects (mutations and cancer) to occur, then it is important to keep the exposure to the minimum needed to provide an accurate diagnosis. In other words, take only those films needed to properly identify patient problems. 35
  • 36. Equipment Reliability X-ray equipment must be functioning properly to insure that the patient does not receive unnecessary radiation exposure. The settings for the exposure factors (exposure time, mA, kVp) must accurately reflect the output 36
  • 37. Direct Current (Constant Potential) 60-cycle Alternating Current Many machines now convert the alternating current into a direct current (constant potential). Instead of cycles going from zero to the maximum, both positive and negative, the voltage stays at the maximum positive value, creating more effective x-ray production. This allows for shorter exposure times and a 20% reduction in patient exposure. Constant Potential X-ray Machine 37
  • 38. Filtration Low-energy x-rays do not contribute to the formation of an x-ray image; all they do is expose the body to radiation. Therefore, we need to get rid of them. The process of removing these low-energy x-rays from the x-ray beam is known as filtration. Filtration increases the average energy (quality) of the x-ray beam. The x-ray beam becomes more penetrating, providing good image formation on the film with reduced patient exposure. Low-energy x-rays high-energy x-ray 38
  • 39. Collimation Collimation is used to restrict the size of the x-ray beam, covering the entire film with the x-ray beam but not exposing unnecessary tissue. By reducing the amount of tissue exposed, the production of scatter radiation is also reduced. The shape of the opening (round or rectangular) in the collimator determines the shape of the x-ray beam. The size of the opening determines the size of the beam at the end of the PID. If you switch from a 7 cm diameter round PID to a 6 cm diameter round PID, the patient receives 25% less radiation. Rectangular collimation results in the patient receiving 55 % less radiation when compared to what they would receive with a 7 cm round PID. 39
  • 40. Focus Film Distance Extending the distance between the target of the x- ray tube (focal spot) and the teeth makes the beam less divergent as it passes through the head, exposing a smaller area of the patient. (The diameter of the beam at the skin surface is the same for both distances. The beam from the 8” target-teeth distance spreads out much more as it passes through the head). 16” 8” Target-teeth 16” Target-teeth 8” 40
  • 41. Using a faster film requires less radiation. Using F-speed film (Insight) instead of D-speed film reduces patient exposure by 60%. F-speed film has larger silver halide crystals, which more readily intercept the x-rays. Intraoral Film Speed 41
  • 42. Extraoral Screen Speed Extraoral films are exposed by light from intensifying screens; this light is produced when x-rays contact phosphor crystals on the surface of the screens. The light is either blue or green, depending on the type of screen. Intensifying screens have different speeds, depending on the type of phosphor crystal (rare earth recommended) and the thickness of the phosphor layer. The faster the screen is, the less the patient exposure will be. However, image detail decreases as the speed of the screens increases. 42
  • 43. The American Dental Association recommends that a lead apron and thyroid collar be used on all patients. The actual exposure from scatter radiation to other parts of the body is minimal, but considering the ease of placing the lead apron and thyroid collar, there is no reason not to use them. Patients will appreciate your efforts in keeping their exposure to a minimum. (The thyroid collar is not used for panoramic films). Lead Apron/Thyroid Collar 43
  • 44. Good technique in taking films is essential in producing diagnostic radiographs. Proper film placement and selection of the correct exposure factors will maximize the value of the films and will reduce or eliminate the need for retakes, which would increase the patient’s overall exposure. Technique 44
  • 45. Processing Processing films for the correct amount of time and at the proper temperature produces films of good diagnostic quality, assuming the films were exposed properly. It is necessary to have appropriate safelighting in a light-tight darkroom. Inadequate processing will result in retaking films which will add to the patient’s overall radiation exposure. 45
  • 46. The operator should never hold films in the patient’s mouth during an exposure. Some patient’s, due to physical or mental impairments, may need help in stabilizing the films, but this assistance should be provided by a friend or relative of the patient. This person should wear a lead apron and leaded gloves when holding films in the patient’s mouth. X-ray Protection for the Operator The photo at right shows a squamous cell carcinoma on the finger of a dentist who routinely held films for the patient. 46
  • 47. The operator should stand behind a protective barrier if available. It has been determined that drywall is adequate protection for this purpose. The operator must be able to observe the patient during the exposure to make sure the patient doesn’t move prior to or during the exposure. If a direct line of sight is not possible, mirrors can be mounted on a wall opposite the doorway to allow visualization of the patient. If barriers are not available, the operator should follow the position and distance rule (next slide). X-ray Protection for the Operator 47
  • 48. Position and Distance Rule The operator should stand at least six feet away from the patient at an angle between 90 and 135 degrees. As the tubehead is moved, this safe position will change relative to the patient’s head (see below). 48
  • 49. Personnel-monitoring devices (film badges) can be used to determine the exposure an operator receives during a given period (often quarterly). Film badges are required in some states if you expect to exceed 25% of the MPD during any calendar quarter (12.5 mSv). Although you should not expect to exceed this dose following normal safe operating procedures, it is beneficial to have a dosimetry service. The cost is minimal and the reports, which hopefully identify the lack of exposure to the operators, reduces any apprehension the office staff may have about radiation exposure. Film Badges 49