SlideShare a Scribd company logo
1 of 31
Download to read offline
Taste or Addiction?:
Using Play Logs to Infer Song Selection Motivation
Kosetsu Tsukuda and Masataka Goto
National Institute of Advanced Industrial Science and Technology (AIST), Japan
PAKDD 2017
2017/05/26
2Play logs of online music services
Online music service
Play logs of Last.fm
User ID Artist Song title Timestamp
55 Madonna Crazy For You 1/5/2017 11:24:35
141 The Beatles Let It Be 1/5/2017 11:28:16
55 Lady Gaga Poker Face 1/5/2017 11:28:30
⋮
3User’s song selection motivation
𝑡𝑡
 By extracting a user’s logs, his play history can be generated:
it is observable when he listens to music and what he listens to
 It is not observable why the user played each song
I played this song because ⋯
Research goal
Given a user’s play history,
infer the user’s song selection motivation of each played song
4Factor 1: user’s usual taste in music
𝑡𝑡
 User has his/her own taste in music
 Hypothesize that such taste affects use’s song selection
I played these songs because I like rock music.
rockrockrock
5Factor 2: user’s addiction to an artist
𝑡𝑡
 User can be addicted to an artist regardless of his taste in music
(he watched the artist on TV or his friend recommended the artist)
 Hypothesize that such addiction affects use’s song selection
My friend recommended an album of Lady Gaga.
I played these songs because I became addicted to her.
L.G. L.G.
6What can our model do?
𝑡𝑡
Taste Addiction Taste
Taste: 73%
Addiction:
27%
Taste/Addiction ratio Taste
Rock: 45%
Hip-hop:
19%
Addiction
Lady Gaga:
45%Madonna:
32%
Our model can estimate user’s song selection motivation and
user’s statistics (e.g., taste in music and addicted artists)
7What can our model do?
Our model can reveal users’ addiction-based music listening behavior
 Users have high addiction degree in the morning
 Users have low addiction degree on the weekend
𝑡𝑡
Taste Addiction Taste
𝑡𝑡
Addiction Taste
𝑡𝑡
Taste Addiction Addiction
⋮
Model
9Overview
 Estimate user’s song selection motivation by using a topic model
 Our model builds on the one proposed by Zheleve et al.
in WWW’10 that considers only user’s taste in music
Model by Zheleve et al.
Taste
Our model
Taste Addiction+
10Session
𝑡𝑡
 Divide user’s play logs into sessions
 If the time gap between two songs is less than 30 min,
they belong to the same session
41 min 135 min
Session 1 Session 2 Session 3
𝑡𝑡
𝑡𝑡
11Song generative process by Zheleve et al.
𝑡𝑡
 User has a topic distribution that represents the user’s taste
 One topic is assigned to each session based on the user’s taste
 Artist is selected based on the artist distribution of the topic
Topic distribution = User’s taste
Prob
Topic 1 2 3 4 5
⋯
Topic 5
Artist distribution of topic 5
Prob
⋯
Eminem
JayZ
J.Cole
ICECUBE
2Pac
Eminem
J.Cole
Eminem
Topic 5 Topic 2
JayZ
Annekei
Annekei
12Graphical model
Topic distribution = User’s taste
Prob
Topic 1 2 3 4 5
⋯
Artist distribution of topic 5
Prob
⋯
Eminem
JayZ
J.Cole
ICECUBE
2Pac
13Our Model
 User has a taste-addiction weight that affects his song selection
 In an addiction mode, the user directly chooses a song
 User has an artist distribution that represents the user’s addiction
Prob
Taste
Addiction
Taste-addiction weightAddicted artist distribution
Prob
⋯
LadyGaga
DianaRoss
BrunoMars
Adele
LMFAO
14Song generative process in our model
For each session
 Choose a topic
For each song in the session
 Choose a mode (taste or addiction)
 If taste mode, choose an artist according to the topic
 Else if addiction mode, choose an artist
from addiction artist distribution
𝑡𝑡
Topic 5
Eminem
LadyGaga
LadyGaga
Taste
Addiction
Addiction
Addiction
Taste
Addicted artist distribution
Prob
⋯
LadyGaga
DianaRoss
BrunoMars
Adele
LMFAO
Adele
J.Cole
15Graphical model
Prob
Taste
Addiction
Taste-addiction weightAddicted artist distribution
Prob
⋯
LadyGaga
DianaRoss
BrunoMars
Adele
LMFAO
Quantitative Experiments
17Research Question
Is adopting two factors, which are users’ taste in music and
addiction to artists, effective to model music listening behavior?
VS
Model by Zheleve et al.
Taste
Our model
Taste Addiction+
18Dataset 1
 Play logs of a music download service in Japan
 Consists of 10 weeks logs from 1/1/2016 to 10/3/2016
 8 weeks are used as training data and 2 weeks as test data
Users Artists Logs for train Sessions for train Logs for test Sessions for test
13,986 6,431 331,437 82,427 57,126 13,516
⋮
𝑡𝑡
𝑡𝑡
𝑡𝑡
8 weeks: training 2 weeks: test
1/1/2016 25/2/2016 10/3/2016
13,986 users
19Dataset 2
Users Artists Logs for train Sessions for train Logs for test Sessions for test
2,850 12,360 872,614 106,840 201,966 24,958
 Publicly available Play logs of Last.fm by Schedl in ICMR’16
 Consists of 10 weeks logs from 1/1/2013 to 11/3/2013
 8 weeks are used as training data and 2 weeks as test data
⋮
𝑡𝑡
𝑡𝑡
𝑡𝑡
8 weeks: training 2 weeks: test
1/1/2013 26/2/2013 11/3/2013
2,850 users
20Settings
Perplexity
Number of topics
𝐾𝐾 = 5, 10, 20, 30, 40, 50, 100, 200, and 300
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑒𝑒𝑒𝑒𝑒𝑒 −
∑𝑢𝑢∈𝑈𝑈 ∑𝑟𝑟=1
𝑅𝑅𝑢𝑢
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
∑𝑗𝑗=1
𝑉𝑉𝑢𝑢𝑢𝑢
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑝𝑝 𝑎𝑎𝑢𝑢𝑢𝑢𝑢𝑢
∑𝑢𝑢∈𝑈𝑈 ∑𝑟𝑟=1
𝑅𝑅𝑢𝑢
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑉𝑉𝑢𝑢𝑢𝑢
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
21Results
Japanese service
Perplexity
Number of topics (K)
0
100
200
300
400
500
0 100 200 300
Zheleve
Ours
Number of topics (K)
500
800
1100
1400
1700
2000
2300
2600
0 100 200 300
Zheleve
Ours
Last.fm
 Our model outperforms the model by Zheleve regardless of
the number of topics in both datasets
 We did not evaluate for 𝐾𝐾 > 300 because if 𝑲𝑲 becomes too
large, many similar topics appear and it is difficult to carry
out the qualitative evaluation
Qualitative Experiments
23Data
 Use 8 weeks logs of a Japanese service with 𝐾𝐾 = 30
 Compute parameters for the evaluation
8 weeks logs of
a Japanese service
Parameters
Users’ addiction ratio distribution
Per-hour addiction ratio
Per-topic addiction ratio
𝜃𝜃𝑢𝑢𝑢𝑢 =
𝑅𝑅𝑢𝑢𝑢𝑢 + 𝛼𝛼
𝑅𝑅𝑢𝑢 + 𝛼𝛼𝐾𝐾
𝜙𝜙𝑘𝑘𝑘𝑘 =
𝑁𝑁𝑘𝑘𝑘𝑘 + 𝛽𝛽
𝑁𝑁𝑘𝑘 + 𝛽𝛽 𝐴𝐴
𝜓𝜓𝑢𝑢𝑢𝑢 =
𝑁𝑁𝑢𝑢𝑢𝑢𝑢 + 𝛾𝛾
𝑁𝑁𝑢𝑢𝑢 + 𝛾𝛾 𝐴𝐴
𝜆𝜆𝑢𝑢𝑢 =
𝑁𝑁𝑢𝑢𝑢 + 𝜌𝜌
𝑁𝑁𝑢𝑢 + 2𝜌𝜌
𝜆𝜆𝑢𝑢𝑢 =
𝑁𝑁𝑢𝑢𝑢 + 𝜌𝜌
𝑁𝑁𝑢𝑢 + 2𝜌𝜌
24Users’ addiction ratio distribution
Is the addiction ratio different from one user to another?
25Users’ addiction ratio distribution
 Users with > 0.9 addiction ratio achieve the second highest peak
 Many users are addicted to artists to a certain extent: this result
further indicates the usefulness of considering the addiction mode
Prob
T A
0.72
Prob
T A
0.11
Prob
T A
0.53
⋮
13,986 users
0
1500
3000
4500
6000
7500
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Frequencyofusers
Addiction ratio
T: taste
A: addiction
26Per-hour addiction ratio
Is the addiction ratio different according to time?
0.55
0.6
0.65
0.7
0.75
0 2 4 6 8 10 12 14 16 18 20 22
27Per-hour addiction ratio
All users’ play logs between 6 AM and 7 AM
𝑃𝑃 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 0.22
𝑃𝑃 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 0.78
𝑃𝑃 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 0.59
𝑃𝑃 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 0.41
𝑃𝑃 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 0.75
𝑃𝑃 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 0.25
⋮
Sum 𝑝𝑝(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) and 𝑝𝑝(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) of all logs respectively and normalize their sum to 1
Hour
Addictionratio
 Addiction ratio is high in the early morning and low at night
 This knowledge can be applied to music recommendation
(e.g., recommend unknown artists to the user at night)
High addiction
28Day of week based addiction ratio
0.6
0.61
0.62
0.63
0.64
0.65
Mon Tue Wed Thu Fri Sat Sun
Addictionratio
 Addiction ratio is high on weekdays and low on weekends
 These results enable us to analyze people’s music listening
behavior from a new viewpoint
Low addiction
29Per-topic addiction ratio
In which mode do users tend to listen to
artists’ songs in each topic?
30Per-topic addiction ratio
All users’ play logs of top 20 artists in topic 19
Topic ID
0%
20%
40%
60%
80%
100%
10 8 19 20 1 4 26 12 21 30 2 9 13 18 11 6 14 25 5 24 15 3 22 27 23 16 29 7 28 17
addiction taste
𝑃𝑃 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 0.66
𝑃𝑃 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 0.34
𝑃𝑃 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 0.52
𝑃𝑃 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 0.48
𝑃𝑃 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 0.74
𝑃𝑃 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 0.26
⋮
 Topic 8 (low addiction) is related to anime songs and
topic 28 (high addiction) is related to old Japanese artists
 These results would be useful to generate a playlist
31Summary
2Carried our a quantitative evaluation
Our model outperformed the one considering only user’s taste in music
3Carried out qualitative evaluations
Users’ addiction ratio distribution, per-hour addiction ratio etc
1Proposed a new model for music listening behavior
Our model considers user’s usual taste in music and the addiction to artists
Contributions
Future work
 Use the knowledge obtained from log analysis for
artist recommendation and play list generation
 Extend our model by considering the time transition of addiction

More Related Content

Similar to Taste or Addiction?: Using Play Logs to Infer Song Selection Motivation

Analysis of the Changes in Listening Trends of a Music Streaming Service
Analysis of the Changes in Listening Trends of a Music Streaming ServiceAnalysis of the Changes in Listening Trends of a Music Streaming Service
Analysis of the Changes in Listening Trends of a Music Streaming ServiceMasanori Takano
 
Big data and machine learning @ Spotify
Big data and machine learning @ SpotifyBig data and machine learning @ Spotify
Big data and machine learning @ SpotifyOscar Carlsson
 
Listener Anonymizer: Camouflaging Play Logs to Preserve User’s Demographic An...
Listener Anonymizer: Camouflaging Play Logs to Preserve User’s Demographic An...Listener Anonymizer: Camouflaging Play Logs to Preserve User’s Demographic An...
Listener Anonymizer: Camouflaging Play Logs to Preserve User’s Demographic An...Kosetsu Tsukuda
 
How Live Streaming Is Transforming The Music Industry
How Live Streaming Is Transforming The Music IndustryHow Live Streaming Is Transforming The Music Industry
How Live Streaming Is Transforming The Music IndustryAudiokite Research
 
2. Research (FMP).pptx
2. Research (FMP).pptx2. Research (FMP).pptx
2. Research (FMP).pptxCallumJoy2
 
Personalizing the listening experience
Personalizing the listening experiencePersonalizing the listening experience
Personalizing the listening experienceMounia Lalmas-Roelleke
 
Applied consumer research - Missouri
Applied consumer research - MissouriApplied consumer research - Missouri
Applied consumer research - Missouriutsavm
 
Questionaire for midnight moon
Questionaire for midnight moonQuestionaire for midnight moon
Questionaire for midnight moontayladavis98
 
Prediction of Spotify song popularity.pdf
 Prediction of Spotify song popularity.pdf Prediction of Spotify song popularity.pdf
Prediction of Spotify song popularity.pdfAmanAshutosh3
 

Similar to Taste or Addiction?: Using Play Logs to Infer Song Selection Motivation (13)

MULHER@AVI2012
MULHER@AVI2012MULHER@AVI2012
MULHER@AVI2012
 
Analysis of the Changes in Listening Trends of a Music Streaming Service
Analysis of the Changes in Listening Trends of a Music Streaming ServiceAnalysis of the Changes in Listening Trends of a Music Streaming Service
Analysis of the Changes in Listening Trends of a Music Streaming Service
 
Big data and machine learning @ Spotify
Big data and machine learning @ SpotifyBig data and machine learning @ Spotify
Big data and machine learning @ Spotify
 
Listener Anonymizer: Camouflaging Play Logs to Preserve User’s Demographic An...
Listener Anonymizer: Camouflaging Play Logs to Preserve User’s Demographic An...Listener Anonymizer: Camouflaging Play Logs to Preserve User’s Demographic An...
Listener Anonymizer: Camouflaging Play Logs to Preserve User’s Demographic An...
 
Emofy
Emofy Emofy
Emofy
 
How Live Streaming Is Transforming The Music Industry
How Live Streaming Is Transforming The Music IndustryHow Live Streaming Is Transforming The Music Industry
How Live Streaming Is Transforming The Music Industry
 
Improvise
ImproviseImprovise
Improvise
 
2. Research (FMP).pptx
2. Research (FMP).pptx2. Research (FMP).pptx
2. Research (FMP).pptx
 
Personalizing the listening experience
Personalizing the listening experiencePersonalizing the listening experience
Personalizing the listening experience
 
Applied consumer research - Missouri
Applied consumer research - MissouriApplied consumer research - Missouri
Applied consumer research - Missouri
 
iRECON 2016 Virtual RE Conference - From Models to Stories - Building your Ag...
iRECON 2016 Virtual RE Conference - From Models to Stories - Building your Ag...iRECON 2016 Virtual RE Conference - From Models to Stories - Building your Ag...
iRECON 2016 Virtual RE Conference - From Models to Stories - Building your Ag...
 
Questionaire for midnight moon
Questionaire for midnight moonQuestionaire for midnight moon
Questionaire for midnight moon
 
Prediction of Spotify song popularity.pdf
 Prediction of Spotify song popularity.pdf Prediction of Spotify song popularity.pdf
Prediction of Spotify song popularity.pdf
 

More from Kosetsu Tsukuda

【論文紹介】ProtoMF: Prototype-based Matrix Factorization for Effective and Explain...
【論文紹介】ProtoMF: Prototype-based Matrix Factorization for Effective and Explain...【論文紹介】ProtoMF: Prototype-based Matrix Factorization for Effective and Explain...
【論文紹介】ProtoMF: Prototype-based Matrix Factorization for Effective and Explain...Kosetsu Tsukuda
 
音楽聴取者の行動分析で理解する人と音楽とのインタラクション
音楽聴取者の行動分析で理解する人と音楽とのインタラクション音楽聴取者の行動分析で理解する人と音楽とのインタラクション
音楽聴取者の行動分析で理解する人と音楽とのインタラクションKosetsu Tsukuda
 
KiiteCafe: 同じ楽曲を同じ瞬間に聴きながら楽曲に対する気持ちを伝え合う音楽発掘サービス(インタラクション2022・登壇発表)
KiiteCafe: 同じ楽曲を同じ瞬間に聴きながら楽曲に対する気持ちを伝え合う音楽発掘サービス(インタラクション2022・登壇発表)KiiteCafe: 同じ楽曲を同じ瞬間に聴きながら楽曲に対する気持ちを伝え合う音楽発掘サービス(インタラクション2022・登壇発表)
KiiteCafe: 同じ楽曲を同じ瞬間に聴きながら楽曲に対する気持ちを伝え合う音楽発掘サービス(インタラクション2022・登壇発表)Kosetsu Tsukuda
 
Kiite Cafe: A Web Service for Getting Together Virtually to Listen to Music (...
Kiite Cafe: A Web Service for Getting Together Virtually to Listen to Music (...Kiite Cafe: A Web Service for Getting Together Virtually to Listen to Music (...
Kiite Cafe: A Web Service for Getting Together Virtually to Listen to Music (...Kosetsu Tsukuda
 
Toward an Understanding of Lyrics-viewing Behavior While Listening to Music o...
Toward an Understanding of Lyrics-viewing Behavior While Listening to Music o...Toward an Understanding of Lyrics-viewing Behavior While Listening to Music o...
Toward an Understanding of Lyrics-viewing Behavior While Listening to Music o...Kosetsu Tsukuda
 
人はなぜ・どのように歌詞を閲覧するのか:スマートフォンでの楽曲聴取時の歌詞閲覧行動分析(第17回WI2研究会)
人はなぜ・どのように歌詞を閲覧するのか:スマートフォンでの楽曲聴取時の歌詞閲覧行動分析(第17回WI2研究会)人はなぜ・どのように歌詞を閲覧するのか:スマートフォンでの楽曲聴取時の歌詞閲覧行動分析(第17回WI2研究会)
人はなぜ・どのように歌詞を閲覧するのか:スマートフォンでの楽曲聴取時の歌詞閲覧行動分析(第17回WI2研究会)Kosetsu Tsukuda
 
繰り返し消費されるコンテンツを対象とした推薦理由の提示(IFAT142・登壇発表)
繰り返し消費されるコンテンツを対象とした推薦理由の提示(IFAT142・登壇発表)繰り返し消費されるコンテンツを対象とした推薦理由の提示(IFAT142・登壇発表)
繰り返し消費されるコンテンツを対象とした推薦理由の提示(IFAT142・登壇発表)Kosetsu Tsukuda
 
Kiite Cafe: 同じ楽曲を同じ瞬間に楽しんで「好き」が伝わる音楽発掘カフェ(SIGMUS132・登壇発表)
Kiite Cafe: 同じ楽曲を同じ瞬間に楽しんで「好き」が伝わる音楽発掘カフェ(SIGMUS132・登壇発表)Kiite Cafe: 同じ楽曲を同じ瞬間に楽しんで「好き」が伝わる音楽発掘カフェ(SIGMUS132・登壇発表)
Kiite Cafe: 同じ楽曲を同じ瞬間に楽しんで「好き」が伝わる音楽発掘カフェ(SIGMUS132・登壇発表)Kosetsu Tsukuda
 
Explainable Recommendation for Repeat Consumption(RecSys2020論文読み会)
Explainable Recommendation for Repeat Consumption(RecSys2020論文読み会)Explainable Recommendation for Repeat Consumption(RecSys2020論文読み会)
Explainable Recommendation for Repeat Consumption(RecSys2020論文読み会)Kosetsu Tsukuda
 
Query/Task Satisfaction and Grid-based Evaluation Metrics Under Different Ima...
Query/Task Satisfaction and Grid-based Evaluation Metrics Under Different Ima...Query/Task Satisfaction and Grid-based Evaluation Metrics Under Different Ima...
Query/Task Satisfaction and Grid-based Evaluation Metrics Under Different Ima...Kosetsu Tsukuda
 
The Web Conference 2020 国際会議報告(ACM SIGMOD 日本支部第73回支部大会・依頼講演)
The Web Conference 2020 国際会議報告(ACM SIGMOD 日本支部第73回支部大会・依頼講演)The Web Conference 2020 国際会議報告(ACM SIGMOD 日本支部第73回支部大会・依頼講演)
The Web Conference 2020 国際会議報告(ACM SIGMOD 日本支部第73回支部大会・依頼講演)Kosetsu Tsukuda
 
DualDiv: Diversifying Items and Explanation Styles in Explainable Hybrid Reco...
DualDiv: Diversifying Items and Explanation Styles in Explainable Hybrid Reco...DualDiv: Diversifying Items and Explanation Styles in Explainable Hybrid Reco...
DualDiv: Diversifying Items and Explanation Styles in Explainable Hybrid Reco...Kosetsu Tsukuda
 
ABCPRec:何を創作したかという情報がコンテンツの消費時に反映されるユーザ生成コンテンツ推薦手法(WebDB Forum 2019・登壇発表)
ABCPRec:何を創作したかという情報がコンテンツの消費時に反映されるユーザ生成コンテンツ推薦手法(WebDB Forum 2019・登壇発表)ABCPRec:何を創作したかという情報がコンテンツの消費時に反映されるユーザ生成コンテンツ推薦手法(WebDB Forum 2019・登壇発表)
ABCPRec:何を創作したかという情報がコンテンツの消費時に反映されるユーザ生成コンテンツ推薦手法(WebDB Forum 2019・登壇発表)Kosetsu Tsukuda
 
DualDiv: Diversifying Items and Explanation Styles in Explainable Hybrid Reco...
DualDiv: Diversifying Items and Explanation Styles in Explainable Hybrid Reco...DualDiv: Diversifying Items and Explanation Styles in Explainable Hybrid Reco...
DualDiv: Diversifying Items and Explanation Styles in Explainable Hybrid Reco...Kosetsu Tsukuda
 
ABCPRec:ユーザの消費者としての役割と創作者としての役割の適応的対応付けによるユーザ生成コンテンツ推薦(第14回WI2研究会)
ABCPRec:ユーザの消費者としての役割と創作者としての役割の適応的対応付けによるユーザ生成コンテンツ推薦(第14回WI2研究会)ABCPRec:ユーザの消費者としての役割と創作者としての役割の適応的対応付けによるユーザ生成コンテンツ推薦(第14回WI2研究会)
ABCPRec:ユーザの消費者としての役割と創作者としての役割の適応的対応付けによるユーザ生成コンテンツ推薦(第14回WI2研究会)Kosetsu Tsukuda
 
ABCPRec: Adaptively Bridging Consumer and Producer Roles for User-Generated C...
ABCPRec: Adaptively Bridging Consumer and Producer Roles for User-Generated C...ABCPRec: Adaptively Bridging Consumer and Producer Roles for User-Generated C...
ABCPRec: Adaptively Bridging Consumer and Producer Roles for User-Generated C...Kosetsu Tsukuda
 
Lyric Jumper: A Lyrics-Based Music Exploratory Web Service by Modeling Lyrics...
Lyric Jumper: A Lyrics-Based Music Exploratory Web Service by Modeling Lyrics...Lyric Jumper: A Lyrics-Based Music Exploratory Web Service by Modeling Lyrics...
Lyric Jumper: A Lyrics-Based Music Exploratory Web Service by Modeling Lyrics...Kosetsu Tsukuda
 
Listener Anonymizer: Camouflaging Play Logs to Preserve User’s Demographic An...
Listener Anonymizer: Camouflaging Play Logs to Preserve User’s Demographic An...Listener Anonymizer: Camouflaging Play Logs to Preserve User’s Demographic An...
Listener Anonymizer: Camouflaging Play Logs to Preserve User’s Demographic An...Kosetsu Tsukuda
 
Lyric Jumper:アーティストごとの歌詞トピックの傾向に基づき様々な歌詞に出会える歌詞探索サービス
Lyric Jumper:アーティストごとの歌詞トピックの傾向に基づき様々な歌詞に出会える歌詞探索サービス Lyric Jumper:アーティストごとの歌詞トピックの傾向に基づき様々な歌詞に出会える歌詞探索サービス
Lyric Jumper:アーティストごとの歌詞トピックの傾向に基づき様々な歌詞に出会える歌詞探索サービス Kosetsu Tsukuda
 
Lyric Jumper:アーティストごとの歌詞トピックの傾向に基づく歌詞探索サービス
Lyric Jumper:アーティストごとの歌詞トピックの傾向に基づく歌詞探索サービスLyric Jumper:アーティストごとの歌詞トピックの傾向に基づく歌詞探索サービス
Lyric Jumper:アーティストごとの歌詞トピックの傾向に基づく歌詞探索サービスKosetsu Tsukuda
 

More from Kosetsu Tsukuda (20)

【論文紹介】ProtoMF: Prototype-based Matrix Factorization for Effective and Explain...
【論文紹介】ProtoMF: Prototype-based Matrix Factorization for Effective and Explain...【論文紹介】ProtoMF: Prototype-based Matrix Factorization for Effective and Explain...
【論文紹介】ProtoMF: Prototype-based Matrix Factorization for Effective and Explain...
 
音楽聴取者の行動分析で理解する人と音楽とのインタラクション
音楽聴取者の行動分析で理解する人と音楽とのインタラクション音楽聴取者の行動分析で理解する人と音楽とのインタラクション
音楽聴取者の行動分析で理解する人と音楽とのインタラクション
 
KiiteCafe: 同じ楽曲を同じ瞬間に聴きながら楽曲に対する気持ちを伝え合う音楽発掘サービス(インタラクション2022・登壇発表)
KiiteCafe: 同じ楽曲を同じ瞬間に聴きながら楽曲に対する気持ちを伝え合う音楽発掘サービス(インタラクション2022・登壇発表)KiiteCafe: 同じ楽曲を同じ瞬間に聴きながら楽曲に対する気持ちを伝え合う音楽発掘サービス(インタラクション2022・登壇発表)
KiiteCafe: 同じ楽曲を同じ瞬間に聴きながら楽曲に対する気持ちを伝え合う音楽発掘サービス(インタラクション2022・登壇発表)
 
Kiite Cafe: A Web Service for Getting Together Virtually to Listen to Music (...
Kiite Cafe: A Web Service for Getting Together Virtually to Listen to Music (...Kiite Cafe: A Web Service for Getting Together Virtually to Listen to Music (...
Kiite Cafe: A Web Service for Getting Together Virtually to Listen to Music (...
 
Toward an Understanding of Lyrics-viewing Behavior While Listening to Music o...
Toward an Understanding of Lyrics-viewing Behavior While Listening to Music o...Toward an Understanding of Lyrics-viewing Behavior While Listening to Music o...
Toward an Understanding of Lyrics-viewing Behavior While Listening to Music o...
 
人はなぜ・どのように歌詞を閲覧するのか:スマートフォンでの楽曲聴取時の歌詞閲覧行動分析(第17回WI2研究会)
人はなぜ・どのように歌詞を閲覧するのか:スマートフォンでの楽曲聴取時の歌詞閲覧行動分析(第17回WI2研究会)人はなぜ・どのように歌詞を閲覧するのか:スマートフォンでの楽曲聴取時の歌詞閲覧行動分析(第17回WI2研究会)
人はなぜ・どのように歌詞を閲覧するのか:スマートフォンでの楽曲聴取時の歌詞閲覧行動分析(第17回WI2研究会)
 
繰り返し消費されるコンテンツを対象とした推薦理由の提示(IFAT142・登壇発表)
繰り返し消費されるコンテンツを対象とした推薦理由の提示(IFAT142・登壇発表)繰り返し消費されるコンテンツを対象とした推薦理由の提示(IFAT142・登壇発表)
繰り返し消費されるコンテンツを対象とした推薦理由の提示(IFAT142・登壇発表)
 
Kiite Cafe: 同じ楽曲を同じ瞬間に楽しんで「好き」が伝わる音楽発掘カフェ(SIGMUS132・登壇発表)
Kiite Cafe: 同じ楽曲を同じ瞬間に楽しんで「好き」が伝わる音楽発掘カフェ(SIGMUS132・登壇発表)Kiite Cafe: 同じ楽曲を同じ瞬間に楽しんで「好き」が伝わる音楽発掘カフェ(SIGMUS132・登壇発表)
Kiite Cafe: 同じ楽曲を同じ瞬間に楽しんで「好き」が伝わる音楽発掘カフェ(SIGMUS132・登壇発表)
 
Explainable Recommendation for Repeat Consumption(RecSys2020論文読み会)
Explainable Recommendation for Repeat Consumption(RecSys2020論文読み会)Explainable Recommendation for Repeat Consumption(RecSys2020論文読み会)
Explainable Recommendation for Repeat Consumption(RecSys2020論文読み会)
 
Query/Task Satisfaction and Grid-based Evaluation Metrics Under Different Ima...
Query/Task Satisfaction and Grid-based Evaluation Metrics Under Different Ima...Query/Task Satisfaction and Grid-based Evaluation Metrics Under Different Ima...
Query/Task Satisfaction and Grid-based Evaluation Metrics Under Different Ima...
 
The Web Conference 2020 国際会議報告(ACM SIGMOD 日本支部第73回支部大会・依頼講演)
The Web Conference 2020 国際会議報告(ACM SIGMOD 日本支部第73回支部大会・依頼講演)The Web Conference 2020 国際会議報告(ACM SIGMOD 日本支部第73回支部大会・依頼講演)
The Web Conference 2020 国際会議報告(ACM SIGMOD 日本支部第73回支部大会・依頼講演)
 
DualDiv: Diversifying Items and Explanation Styles in Explainable Hybrid Reco...
DualDiv: Diversifying Items and Explanation Styles in Explainable Hybrid Reco...DualDiv: Diversifying Items and Explanation Styles in Explainable Hybrid Reco...
DualDiv: Diversifying Items and Explanation Styles in Explainable Hybrid Reco...
 
ABCPRec:何を創作したかという情報がコンテンツの消費時に反映されるユーザ生成コンテンツ推薦手法(WebDB Forum 2019・登壇発表)
ABCPRec:何を創作したかという情報がコンテンツの消費時に反映されるユーザ生成コンテンツ推薦手法(WebDB Forum 2019・登壇発表)ABCPRec:何を創作したかという情報がコンテンツの消費時に反映されるユーザ生成コンテンツ推薦手法(WebDB Forum 2019・登壇発表)
ABCPRec:何を創作したかという情報がコンテンツの消費時に反映されるユーザ生成コンテンツ推薦手法(WebDB Forum 2019・登壇発表)
 
DualDiv: Diversifying Items and Explanation Styles in Explainable Hybrid Reco...
DualDiv: Diversifying Items and Explanation Styles in Explainable Hybrid Reco...DualDiv: Diversifying Items and Explanation Styles in Explainable Hybrid Reco...
DualDiv: Diversifying Items and Explanation Styles in Explainable Hybrid Reco...
 
ABCPRec:ユーザの消費者としての役割と創作者としての役割の適応的対応付けによるユーザ生成コンテンツ推薦(第14回WI2研究会)
ABCPRec:ユーザの消費者としての役割と創作者としての役割の適応的対応付けによるユーザ生成コンテンツ推薦(第14回WI2研究会)ABCPRec:ユーザの消費者としての役割と創作者としての役割の適応的対応付けによるユーザ生成コンテンツ推薦(第14回WI2研究会)
ABCPRec:ユーザの消費者としての役割と創作者としての役割の適応的対応付けによるユーザ生成コンテンツ推薦(第14回WI2研究会)
 
ABCPRec: Adaptively Bridging Consumer and Producer Roles for User-Generated C...
ABCPRec: Adaptively Bridging Consumer and Producer Roles for User-Generated C...ABCPRec: Adaptively Bridging Consumer and Producer Roles for User-Generated C...
ABCPRec: Adaptively Bridging Consumer and Producer Roles for User-Generated C...
 
Lyric Jumper: A Lyrics-Based Music Exploratory Web Service by Modeling Lyrics...
Lyric Jumper: A Lyrics-Based Music Exploratory Web Service by Modeling Lyrics...Lyric Jumper: A Lyrics-Based Music Exploratory Web Service by Modeling Lyrics...
Lyric Jumper: A Lyrics-Based Music Exploratory Web Service by Modeling Lyrics...
 
Listener Anonymizer: Camouflaging Play Logs to Preserve User’s Demographic An...
Listener Anonymizer: Camouflaging Play Logs to Preserve User’s Demographic An...Listener Anonymizer: Camouflaging Play Logs to Preserve User’s Demographic An...
Listener Anonymizer: Camouflaging Play Logs to Preserve User’s Demographic An...
 
Lyric Jumper:アーティストごとの歌詞トピックの傾向に基づき様々な歌詞に出会える歌詞探索サービス
Lyric Jumper:アーティストごとの歌詞トピックの傾向に基づき様々な歌詞に出会える歌詞探索サービス Lyric Jumper:アーティストごとの歌詞トピックの傾向に基づき様々な歌詞に出会える歌詞探索サービス
Lyric Jumper:アーティストごとの歌詞トピックの傾向に基づき様々な歌詞に出会える歌詞探索サービス
 
Lyric Jumper:アーティストごとの歌詞トピックの傾向に基づく歌詞探索サービス
Lyric Jumper:アーティストごとの歌詞トピックの傾向に基づく歌詞探索サービスLyric Jumper:アーティストごとの歌詞トピックの傾向に基づく歌詞探索サービス
Lyric Jumper:アーティストごとの歌詞トピックの傾向に基づく歌詞探索サービス
 

Recently uploaded

20240419 - Measurecamp Amsterdam - SAM.pdf
20240419 - Measurecamp Amsterdam - SAM.pdf20240419 - Measurecamp Amsterdam - SAM.pdf
20240419 - Measurecamp Amsterdam - SAM.pdfHuman37
 
Beautiful Sapna Vip Call Girls Hauz Khas 9711199012 Call /Whatsapps
Beautiful Sapna Vip  Call Girls Hauz Khas 9711199012 Call /WhatsappsBeautiful Sapna Vip  Call Girls Hauz Khas 9711199012 Call /Whatsapps
Beautiful Sapna Vip Call Girls Hauz Khas 9711199012 Call /Whatsappssapnasaifi408
 
Indian Call Girls in Abu Dhabi O5286O24O8 Call Girls in Abu Dhabi By Independ...
Indian Call Girls in Abu Dhabi O5286O24O8 Call Girls in Abu Dhabi By Independ...Indian Call Girls in Abu Dhabi O5286O24O8 Call Girls in Abu Dhabi By Independ...
Indian Call Girls in Abu Dhabi O5286O24O8 Call Girls in Abu Dhabi By Independ...dajasot375
 
Identifying Appropriate Test Statistics Involving Population Mean
Identifying Appropriate Test Statistics Involving Population MeanIdentifying Appropriate Test Statistics Involving Population Mean
Identifying Appropriate Test Statistics Involving Population MeanMYRABACSAFRA2
 
Defining Constituents, Data Vizzes and Telling a Data Story
Defining Constituents, Data Vizzes and Telling a Data StoryDefining Constituents, Data Vizzes and Telling a Data Story
Defining Constituents, Data Vizzes and Telling a Data StoryJeremy Anderson
 
Advanced Machine Learning for Business Professionals
Advanced Machine Learning for Business ProfessionalsAdvanced Machine Learning for Business Professionals
Advanced Machine Learning for Business ProfessionalsVICTOR MAESTRE RAMIREZ
 
办理学位证中佛罗里达大学毕业证,UCF成绩单原版一比一
办理学位证中佛罗里达大学毕业证,UCF成绩单原版一比一办理学位证中佛罗里达大学毕业证,UCF成绩单原版一比一
办理学位证中佛罗里达大学毕业证,UCF成绩单原版一比一F sss
 
Saket, (-DELHI )+91-9654467111-(=)CHEAP Call Girls in Escorts Service Saket C...
Saket, (-DELHI )+91-9654467111-(=)CHEAP Call Girls in Escorts Service Saket C...Saket, (-DELHI )+91-9654467111-(=)CHEAP Call Girls in Escorts Service Saket C...
Saket, (-DELHI )+91-9654467111-(=)CHEAP Call Girls in Escorts Service Saket C...Sapana Sha
 
How we prevented account sharing with MFA
How we prevented account sharing with MFAHow we prevented account sharing with MFA
How we prevented account sharing with MFAAndrei Kaleshka
 
GA4 Without Cookies [Measure Camp AMS]
GA4 Without Cookies [Measure Camp AMS]GA4 Without Cookies [Measure Camp AMS]
GA4 Without Cookies [Measure Camp AMS]📊 Markus Baersch
 
Consent & Privacy Signals on Google *Pixels* - MeasureCamp Amsterdam 2024
Consent & Privacy Signals on Google *Pixels* - MeasureCamp Amsterdam 2024Consent & Privacy Signals on Google *Pixels* - MeasureCamp Amsterdam 2024
Consent & Privacy Signals on Google *Pixels* - MeasureCamp Amsterdam 2024thyngster
 
1:1定制(UQ毕业证)昆士兰大学毕业证成绩单修改留信学历认证原版一模一样
1:1定制(UQ毕业证)昆士兰大学毕业证成绩单修改留信学历认证原版一模一样1:1定制(UQ毕业证)昆士兰大学毕业证成绩单修改留信学历认证原版一模一样
1:1定制(UQ毕业证)昆士兰大学毕业证成绩单修改留信学历认证原版一模一样vhwb25kk
 
RadioAdProWritingCinderellabyButleri.pdf
RadioAdProWritingCinderellabyButleri.pdfRadioAdProWritingCinderellabyButleri.pdf
RadioAdProWritingCinderellabyButleri.pdfgstagge
 
ASML's Taxonomy Adventure by Daniel Canter
ASML's Taxonomy Adventure by Daniel CanterASML's Taxonomy Adventure by Daniel Canter
ASML's Taxonomy Adventure by Daniel Cantervoginip
 
INTERNSHIP ON PURBASHA COMPOSITE TEX LTD
INTERNSHIP ON PURBASHA COMPOSITE TEX LTDINTERNSHIP ON PURBASHA COMPOSITE TEX LTD
INTERNSHIP ON PURBASHA COMPOSITE TEX LTDRafezzaman
 
RS 9000 Call In girls Dwarka Mor (DELHI)⇛9711147426🔝Delhi
RS 9000 Call In girls Dwarka Mor (DELHI)⇛9711147426🔝DelhiRS 9000 Call In girls Dwarka Mor (DELHI)⇛9711147426🔝Delhi
RS 9000 Call In girls Dwarka Mor (DELHI)⇛9711147426🔝Delhijennyeacort
 
Generative AI for Social Good at Open Data Science East 2024
Generative AI for Social Good at Open Data Science East 2024Generative AI for Social Good at Open Data Science East 2024
Generative AI for Social Good at Open Data Science East 2024Colleen Farrelly
 
MK KOMUNIKASI DATA (TI)komdat komdat.docx
MK KOMUNIKASI DATA (TI)komdat komdat.docxMK KOMUNIKASI DATA (TI)komdat komdat.docx
MK KOMUNIKASI DATA (TI)komdat komdat.docxUnduhUnggah1
 

Recently uploaded (20)

20240419 - Measurecamp Amsterdam - SAM.pdf
20240419 - Measurecamp Amsterdam - SAM.pdf20240419 - Measurecamp Amsterdam - SAM.pdf
20240419 - Measurecamp Amsterdam - SAM.pdf
 
Beautiful Sapna Vip Call Girls Hauz Khas 9711199012 Call /Whatsapps
Beautiful Sapna Vip  Call Girls Hauz Khas 9711199012 Call /WhatsappsBeautiful Sapna Vip  Call Girls Hauz Khas 9711199012 Call /Whatsapps
Beautiful Sapna Vip Call Girls Hauz Khas 9711199012 Call /Whatsapps
 
Call Girls in Saket 99530🔝 56974 Escort Service
Call Girls in Saket 99530🔝 56974 Escort ServiceCall Girls in Saket 99530🔝 56974 Escort Service
Call Girls in Saket 99530🔝 56974 Escort Service
 
Indian Call Girls in Abu Dhabi O5286O24O8 Call Girls in Abu Dhabi By Independ...
Indian Call Girls in Abu Dhabi O5286O24O8 Call Girls in Abu Dhabi By Independ...Indian Call Girls in Abu Dhabi O5286O24O8 Call Girls in Abu Dhabi By Independ...
Indian Call Girls in Abu Dhabi O5286O24O8 Call Girls in Abu Dhabi By Independ...
 
Identifying Appropriate Test Statistics Involving Population Mean
Identifying Appropriate Test Statistics Involving Population MeanIdentifying Appropriate Test Statistics Involving Population Mean
Identifying Appropriate Test Statistics Involving Population Mean
 
Deep Generative Learning for All - The Gen AI Hype (Spring 2024)
Deep Generative Learning for All - The Gen AI Hype (Spring 2024)Deep Generative Learning for All - The Gen AI Hype (Spring 2024)
Deep Generative Learning for All - The Gen AI Hype (Spring 2024)
 
Defining Constituents, Data Vizzes and Telling a Data Story
Defining Constituents, Data Vizzes and Telling a Data StoryDefining Constituents, Data Vizzes and Telling a Data Story
Defining Constituents, Data Vizzes and Telling a Data Story
 
Advanced Machine Learning for Business Professionals
Advanced Machine Learning for Business ProfessionalsAdvanced Machine Learning for Business Professionals
Advanced Machine Learning for Business Professionals
 
办理学位证中佛罗里达大学毕业证,UCF成绩单原版一比一
办理学位证中佛罗里达大学毕业证,UCF成绩单原版一比一办理学位证中佛罗里达大学毕业证,UCF成绩单原版一比一
办理学位证中佛罗里达大学毕业证,UCF成绩单原版一比一
 
Saket, (-DELHI )+91-9654467111-(=)CHEAP Call Girls in Escorts Service Saket C...
Saket, (-DELHI )+91-9654467111-(=)CHEAP Call Girls in Escorts Service Saket C...Saket, (-DELHI )+91-9654467111-(=)CHEAP Call Girls in Escorts Service Saket C...
Saket, (-DELHI )+91-9654467111-(=)CHEAP Call Girls in Escorts Service Saket C...
 
How we prevented account sharing with MFA
How we prevented account sharing with MFAHow we prevented account sharing with MFA
How we prevented account sharing with MFA
 
GA4 Without Cookies [Measure Camp AMS]
GA4 Without Cookies [Measure Camp AMS]GA4 Without Cookies [Measure Camp AMS]
GA4 Without Cookies [Measure Camp AMS]
 
Consent & Privacy Signals on Google *Pixels* - MeasureCamp Amsterdam 2024
Consent & Privacy Signals on Google *Pixels* - MeasureCamp Amsterdam 2024Consent & Privacy Signals on Google *Pixels* - MeasureCamp Amsterdam 2024
Consent & Privacy Signals on Google *Pixels* - MeasureCamp Amsterdam 2024
 
1:1定制(UQ毕业证)昆士兰大学毕业证成绩单修改留信学历认证原版一模一样
1:1定制(UQ毕业证)昆士兰大学毕业证成绩单修改留信学历认证原版一模一样1:1定制(UQ毕业证)昆士兰大学毕业证成绩单修改留信学历认证原版一模一样
1:1定制(UQ毕业证)昆士兰大学毕业证成绩单修改留信学历认证原版一模一样
 
RadioAdProWritingCinderellabyButleri.pdf
RadioAdProWritingCinderellabyButleri.pdfRadioAdProWritingCinderellabyButleri.pdf
RadioAdProWritingCinderellabyButleri.pdf
 
ASML's Taxonomy Adventure by Daniel Canter
ASML's Taxonomy Adventure by Daniel CanterASML's Taxonomy Adventure by Daniel Canter
ASML's Taxonomy Adventure by Daniel Canter
 
INTERNSHIP ON PURBASHA COMPOSITE TEX LTD
INTERNSHIP ON PURBASHA COMPOSITE TEX LTDINTERNSHIP ON PURBASHA COMPOSITE TEX LTD
INTERNSHIP ON PURBASHA COMPOSITE TEX LTD
 
RS 9000 Call In girls Dwarka Mor (DELHI)⇛9711147426🔝Delhi
RS 9000 Call In girls Dwarka Mor (DELHI)⇛9711147426🔝DelhiRS 9000 Call In girls Dwarka Mor (DELHI)⇛9711147426🔝Delhi
RS 9000 Call In girls Dwarka Mor (DELHI)⇛9711147426🔝Delhi
 
Generative AI for Social Good at Open Data Science East 2024
Generative AI for Social Good at Open Data Science East 2024Generative AI for Social Good at Open Data Science East 2024
Generative AI for Social Good at Open Data Science East 2024
 
MK KOMUNIKASI DATA (TI)komdat komdat.docx
MK KOMUNIKASI DATA (TI)komdat komdat.docxMK KOMUNIKASI DATA (TI)komdat komdat.docx
MK KOMUNIKASI DATA (TI)komdat komdat.docx
 

Taste or Addiction?: Using Play Logs to Infer Song Selection Motivation

  • 1. Taste or Addiction?: Using Play Logs to Infer Song Selection Motivation Kosetsu Tsukuda and Masataka Goto National Institute of Advanced Industrial Science and Technology (AIST), Japan PAKDD 2017 2017/05/26
  • 2. 2Play logs of online music services Online music service Play logs of Last.fm User ID Artist Song title Timestamp 55 Madonna Crazy For You 1/5/2017 11:24:35 141 The Beatles Let It Be 1/5/2017 11:28:16 55 Lady Gaga Poker Face 1/5/2017 11:28:30 ⋮
  • 3. 3User’s song selection motivation 𝑡𝑡  By extracting a user’s logs, his play history can be generated: it is observable when he listens to music and what he listens to  It is not observable why the user played each song I played this song because ⋯ Research goal Given a user’s play history, infer the user’s song selection motivation of each played song
  • 4. 4Factor 1: user’s usual taste in music 𝑡𝑡  User has his/her own taste in music  Hypothesize that such taste affects use’s song selection I played these songs because I like rock music. rockrockrock
  • 5. 5Factor 2: user’s addiction to an artist 𝑡𝑡  User can be addicted to an artist regardless of his taste in music (he watched the artist on TV or his friend recommended the artist)  Hypothesize that such addiction affects use’s song selection My friend recommended an album of Lady Gaga. I played these songs because I became addicted to her. L.G. L.G.
  • 6. 6What can our model do? 𝑡𝑡 Taste Addiction Taste Taste: 73% Addiction: 27% Taste/Addiction ratio Taste Rock: 45% Hip-hop: 19% Addiction Lady Gaga: 45%Madonna: 32% Our model can estimate user’s song selection motivation and user’s statistics (e.g., taste in music and addicted artists)
  • 7. 7What can our model do? Our model can reveal users’ addiction-based music listening behavior  Users have high addiction degree in the morning  Users have low addiction degree on the weekend 𝑡𝑡 Taste Addiction Taste 𝑡𝑡 Addiction Taste 𝑡𝑡 Taste Addiction Addiction ⋮
  • 9. 9Overview  Estimate user’s song selection motivation by using a topic model  Our model builds on the one proposed by Zheleve et al. in WWW’10 that considers only user’s taste in music Model by Zheleve et al. Taste Our model Taste Addiction+
  • 10. 10Session 𝑡𝑡  Divide user’s play logs into sessions  If the time gap between two songs is less than 30 min, they belong to the same session 41 min 135 min Session 1 Session 2 Session 3 𝑡𝑡 𝑡𝑡
  • 11. 11Song generative process by Zheleve et al. 𝑡𝑡  User has a topic distribution that represents the user’s taste  One topic is assigned to each session based on the user’s taste  Artist is selected based on the artist distribution of the topic Topic distribution = User’s taste Prob Topic 1 2 3 4 5 ⋯ Topic 5 Artist distribution of topic 5 Prob ⋯ Eminem JayZ J.Cole ICECUBE 2Pac Eminem J.Cole Eminem Topic 5 Topic 2 JayZ Annekei Annekei
  • 12. 12Graphical model Topic distribution = User’s taste Prob Topic 1 2 3 4 5 ⋯ Artist distribution of topic 5 Prob ⋯ Eminem JayZ J.Cole ICECUBE 2Pac
  • 13. 13Our Model  User has a taste-addiction weight that affects his song selection  In an addiction mode, the user directly chooses a song  User has an artist distribution that represents the user’s addiction Prob Taste Addiction Taste-addiction weightAddicted artist distribution Prob ⋯ LadyGaga DianaRoss BrunoMars Adele LMFAO
  • 14. 14Song generative process in our model For each session  Choose a topic For each song in the session  Choose a mode (taste or addiction)  If taste mode, choose an artist according to the topic  Else if addiction mode, choose an artist from addiction artist distribution 𝑡𝑡 Topic 5 Eminem LadyGaga LadyGaga Taste Addiction Addiction Addiction Taste Addicted artist distribution Prob ⋯ LadyGaga DianaRoss BrunoMars Adele LMFAO Adele J.Cole
  • 15. 15Graphical model Prob Taste Addiction Taste-addiction weightAddicted artist distribution Prob ⋯ LadyGaga DianaRoss BrunoMars Adele LMFAO
  • 17. 17Research Question Is adopting two factors, which are users’ taste in music and addiction to artists, effective to model music listening behavior? VS Model by Zheleve et al. Taste Our model Taste Addiction+
  • 18. 18Dataset 1  Play logs of a music download service in Japan  Consists of 10 weeks logs from 1/1/2016 to 10/3/2016  8 weeks are used as training data and 2 weeks as test data Users Artists Logs for train Sessions for train Logs for test Sessions for test 13,986 6,431 331,437 82,427 57,126 13,516 ⋮ 𝑡𝑡 𝑡𝑡 𝑡𝑡 8 weeks: training 2 weeks: test 1/1/2016 25/2/2016 10/3/2016 13,986 users
  • 19. 19Dataset 2 Users Artists Logs for train Sessions for train Logs for test Sessions for test 2,850 12,360 872,614 106,840 201,966 24,958  Publicly available Play logs of Last.fm by Schedl in ICMR’16  Consists of 10 weeks logs from 1/1/2013 to 11/3/2013  8 weeks are used as training data and 2 weeks as test data ⋮ 𝑡𝑡 𝑡𝑡 𝑡𝑡 8 weeks: training 2 weeks: test 1/1/2013 26/2/2013 11/3/2013 2,850 users
  • 20. 20Settings Perplexity Number of topics 𝐾𝐾 = 5, 10, 20, 30, 40, 50, 100, 200, and 300 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑒𝑒𝑒𝑒𝑒𝑒 − ∑𝑢𝑢∈𝑈𝑈 ∑𝑟𝑟=1 𝑅𝑅𝑢𝑢 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∑𝑗𝑗=1 𝑉𝑉𝑢𝑢𝑢𝑢 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑝𝑝 𝑎𝑎𝑢𝑢𝑢𝑢𝑢𝑢 ∑𝑢𝑢∈𝑈𝑈 ∑𝑟𝑟=1 𝑅𝑅𝑢𝑢 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑉𝑉𝑢𝑢𝑢𝑢 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
  • 21. 21Results Japanese service Perplexity Number of topics (K) 0 100 200 300 400 500 0 100 200 300 Zheleve Ours Number of topics (K) 500 800 1100 1400 1700 2000 2300 2600 0 100 200 300 Zheleve Ours Last.fm  Our model outperforms the model by Zheleve regardless of the number of topics in both datasets  We did not evaluate for 𝐾𝐾 > 300 because if 𝑲𝑲 becomes too large, many similar topics appear and it is difficult to carry out the qualitative evaluation
  • 23. 23Data  Use 8 weeks logs of a Japanese service with 𝐾𝐾 = 30  Compute parameters for the evaluation 8 weeks logs of a Japanese service Parameters Users’ addiction ratio distribution Per-hour addiction ratio Per-topic addiction ratio 𝜃𝜃𝑢𝑢𝑢𝑢 = 𝑅𝑅𝑢𝑢𝑢𝑢 + 𝛼𝛼 𝑅𝑅𝑢𝑢 + 𝛼𝛼𝐾𝐾 𝜙𝜙𝑘𝑘𝑘𝑘 = 𝑁𝑁𝑘𝑘𝑘𝑘 + 𝛽𝛽 𝑁𝑁𝑘𝑘 + 𝛽𝛽 𝐴𝐴 𝜓𝜓𝑢𝑢𝑢𝑢 = 𝑁𝑁𝑢𝑢𝑢𝑢𝑢 + 𝛾𝛾 𝑁𝑁𝑢𝑢𝑢 + 𝛾𝛾 𝐴𝐴 𝜆𝜆𝑢𝑢𝑢 = 𝑁𝑁𝑢𝑢𝑢 + 𝜌𝜌 𝑁𝑁𝑢𝑢 + 2𝜌𝜌 𝜆𝜆𝑢𝑢𝑢 = 𝑁𝑁𝑢𝑢𝑢 + 𝜌𝜌 𝑁𝑁𝑢𝑢 + 2𝜌𝜌
  • 24. 24Users’ addiction ratio distribution Is the addiction ratio different from one user to another?
  • 25. 25Users’ addiction ratio distribution  Users with > 0.9 addiction ratio achieve the second highest peak  Many users are addicted to artists to a certain extent: this result further indicates the usefulness of considering the addiction mode Prob T A 0.72 Prob T A 0.11 Prob T A 0.53 ⋮ 13,986 users 0 1500 3000 4500 6000 7500 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Frequencyofusers Addiction ratio T: taste A: addiction
  • 26. 26Per-hour addiction ratio Is the addiction ratio different according to time?
  • 27. 0.55 0.6 0.65 0.7 0.75 0 2 4 6 8 10 12 14 16 18 20 22 27Per-hour addiction ratio All users’ play logs between 6 AM and 7 AM 𝑃𝑃 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 0.22 𝑃𝑃 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 0.78 𝑃𝑃 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 0.59 𝑃𝑃 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 0.41 𝑃𝑃 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 0.75 𝑃𝑃 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 0.25 ⋮ Sum 𝑝𝑝(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) and 𝑝𝑝(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) of all logs respectively and normalize their sum to 1 Hour Addictionratio  Addiction ratio is high in the early morning and low at night  This knowledge can be applied to music recommendation (e.g., recommend unknown artists to the user at night) High addiction
  • 28. 28Day of week based addiction ratio 0.6 0.61 0.62 0.63 0.64 0.65 Mon Tue Wed Thu Fri Sat Sun Addictionratio  Addiction ratio is high on weekdays and low on weekends  These results enable us to analyze people’s music listening behavior from a new viewpoint Low addiction
  • 29. 29Per-topic addiction ratio In which mode do users tend to listen to artists’ songs in each topic?
  • 30. 30Per-topic addiction ratio All users’ play logs of top 20 artists in topic 19 Topic ID 0% 20% 40% 60% 80% 100% 10 8 19 20 1 4 26 12 21 30 2 9 13 18 11 6 14 25 5 24 15 3 22 27 23 16 29 7 28 17 addiction taste 𝑃𝑃 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 0.66 𝑃𝑃 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 0.34 𝑃𝑃 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 0.52 𝑃𝑃 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 0.48 𝑃𝑃 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 0.74 𝑃𝑃 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 0.26 ⋮  Topic 8 (low addiction) is related to anime songs and topic 28 (high addiction) is related to old Japanese artists  These results would be useful to generate a playlist
  • 31. 31Summary 2Carried our a quantitative evaluation Our model outperformed the one considering only user’s taste in music 3Carried out qualitative evaluations Users’ addiction ratio distribution, per-hour addiction ratio etc 1Proposed a new model for music listening behavior Our model considers user’s usual taste in music and the addiction to artists Contributions Future work  Use the knowledge obtained from log analysis for artist recommendation and play list generation  Extend our model by considering the time transition of addiction