SlideShare a Scribd company logo
1 of 1
Download to read offline
1. Definition of Anonymity
How can users enjoy music when using an online music service while preserving their demographic anonymity?
We listed up five factors to consider for realizing Listener Anonymizer.
Not-first-anonymity
…
k-flat-anonymity
…
The probability of French
is not the highest.
Top k nationalities have
almost the same probabilities.
2. Method for Predicting Demographics
 It is common to use music metadata extracted from the user’s play log
 The state-of-the-art method is the one proposed by Krismayer et al[1].
𝑡𝑡
10,000 dims
for artists
10,000 dims
for artist’s tags
PCA SVM …
[1] Prediction of User Demographics from Music Listening Habits
T. Krismayer, M. Schedl, P. Knees, R. Rabiser
CBMI 2017
3. Timing of Anonymization 4. User’s True Demographics 5. Multiple Demographics
When anonymity is no longer satisfied
When a user does not use a smartphone
Z
Z
The system is required to select
as few songs as possible so that
the user can soon resume
listening to her favorite songs.
Some users still hope to play as
few recommended songs as
possible to save on the packet
communication fee.
When the system does not know it
When the system knows it
? ALERT
ALERT Alert is displayed with proper
timing. The user will tell her
true demographic if the system
is a stand-alone application.
In exchange for complete
anonymity, songs will be
frequently recommended:
this is a heavy burden for her.
♀20’s
…
♀ ♂
…
30’s 20’s 50’s
When a user tells many
demographics that she
wants to preserve the
anonymity of, alerts may
frequently be displayed.
1. Counterbalance
METHOD EVALUATION
DISCUSSION
FACTORS
We are fully aware of the importance and usefulness of music recommendation.
We dared to propose this controversial approach to raise privacy issues in the ISMIR community.
…
0.21 0.04 0.77 0.89
0.48 0.92 0.25 0.33
0.82 0.29 0.46 0.86
𝑢𝑢1
𝑢𝑢2
𝑢𝑢𝑟𝑟
𝑠𝑠1 𝑠𝑠2 𝑠𝑠3 𝑠𝑠𝑚𝑚
…
…
 Detect the nationality having the second-highest probability (e.g., German)
 Collect the top 𝑟𝑟 users in terms of the probability of a user on German
 Remove the 𝑙𝑙th song from 𝑢𝑢’s play log and compute the new probability
by using the remaining 𝑚𝑚-1 songs
 Collect the top c artists based on the probability gap
 32,991 users with ≥ 500 play logs from Last.fm dataset
 For each user, use the first 30 songs from the oldest songs
in the play logs (i.e., 𝑚𝑚 = 30)
 Factors
- Not-first-anonymity
- Camouflage the play log with as few songs as possible
- The system knows the user’s true demographic
- Single demographic anonymity
Age Gender Nationality
Random 15.34 27.18 17.60
Popularity 24.10 29.44 29.42
Proposed 3.22 9.28 4.36
2. Give a choice to a user 3. User’s Taste in Music
Recommendation
accuracy Anonymization
When Listener Anonymizer recommends
songs, if they match the user’s taste in music,
she will not be reluctant to keep listening to
the songs. Reflecting user’s taste would also
be beneficial to satisfy both anonymization
and good recommendation.
0.32
1.59
1.44
0.86
……
2.02
0.71
…
Listener Anonymizer:
Camouflaging Play Logs to Preserve User’s Demographic Anonymity
Kosetsu Tsukuda, Satoru Fukayama, Masataka Goto National Institute of Advanced Industrial Science and Technology (AIST)
𝑚𝑚: #songs in a user’s play log
𝑢𝑢: user 𝑠𝑠: song
 It is important to show that preserving users’
demographic attributes is technically possible
 Listener Anonymizer gives a choice to a user
 It is beneficial to predict users’
demographic attributes
 It is also important to think about
a counterbalance
Technique to leverage play logs
for predicting demographic attr.
Technique to camouflage play logs
for preserving demographic attr.
I can enjoy music while
preserving my demographic
anonymity!
Without Listener Anonymizer With Listener Anonymizer
High rec.
accuracy
I do not care about
my demographic
anonymity!
Demographic
anonymity
(songs)
Compute the effectiveness of each candidate song
to anonymize the user’s demographic attribute
Results: avg numbers of songs for camouflaging play logs
(the smaller, the better)
[ISMIR 2018]

More Related Content

Similar to Listener Anonymizer: Camouflaging Play Logs to Preserve User’s Demographic Anonymity (ISMIR 2018)

Query By Humming - Music Retrieval Technique
Query By Humming - Music Retrieval TechniqueQuery By Humming - Music Retrieval Technique
Query By Humming - Music Retrieval Technique
Shital Kat
 
App and service ui
App and service uiApp and service ui
App and service ui
Yoon Miyoung
 
Music recognition
Music recognition Music recognition
Music recognition
aaronloklok
 
Sbcrox iitkgp - Audio and Music Sector
Sbcrox iitkgp - Audio and Music SectorSbcrox iitkgp - Audio and Music Sector
Sbcrox iitkgp - Audio and Music Sector
sujit_iit
 

Similar to Listener Anonymizer: Camouflaging Play Logs to Preserve User’s Demographic Anonymity (ISMIR 2018) (20)

Spotify Machine Learning Solution for Music Discovery
Spotify Machine Learning Solution for Music DiscoverySpotify Machine Learning Solution for Music Discovery
Spotify Machine Learning Solution for Music Discovery
 
Machine Learning and Big Data for Music Discovery at Spotify
Machine Learning and Big Data for Music Discovery at SpotifyMachine Learning and Big Data for Music Discovery at Spotify
Machine Learning and Big Data for Music Discovery at Spotify
 
Design Thinking meets the User Experience with SoundCloud
Design Thinking meets the User Experience with SoundCloud  Design Thinking meets the User Experience with SoundCloud
Design Thinking meets the User Experience with SoundCloud
 
Query By Humming - Music Retrieval Technique
Query By Humming - Music Retrieval TechniqueQuery By Humming - Music Retrieval Technique
Query By Humming - Music Retrieval Technique
 
Emofy
Emofy Emofy
Emofy
 
IRJET- Implementation of Emotion based Music Recommendation System using SVM ...
IRJET- Implementation of Emotion based Music Recommendation System using SVM ...IRJET- Implementation of Emotion based Music Recommendation System using SVM ...
IRJET- Implementation of Emotion based Music Recommendation System using SVM ...
 
Music Recommendation Tutorial
Music Recommendation TutorialMusic Recommendation Tutorial
Music Recommendation Tutorial
 
SMART MUSIC PLAYER BASED ON EMOTION DETECTION
SMART MUSIC PLAYER BASED ON EMOTION DETECTIONSMART MUSIC PLAYER BASED ON EMOTION DETECTION
SMART MUSIC PLAYER BASED ON EMOTION DETECTION
 
Spotify Discover Weekly: The machine learning behind your music recommendations
Spotify Discover Weekly: The machine learning behind your music recommendationsSpotify Discover Weekly: The machine learning behind your music recommendations
Spotify Discover Weekly: The machine learning behind your music recommendations
 
Lorenzo Porcaro PhD Defense
Lorenzo Porcaro PhD Defense Lorenzo Porcaro PhD Defense
Lorenzo Porcaro PhD Defense
 
App and service ui
App and service uiApp and service ui
App and service ui
 
Music recognition
Music recognition Music recognition
Music recognition
 
Recommendations 101
Recommendations 101 Recommendations 101
Recommendations 101
 
Sbcrox iitkgp - Audio and Music Sector
Sbcrox iitkgp - Audio and Music SectorSbcrox iitkgp - Audio and Music Sector
Sbcrox iitkgp - Audio and Music Sector
 
Sbcrox iitkgp
Sbcrox iitkgpSbcrox iitkgp
Sbcrox iitkgp
 
Welcome To Music Tech 1
Welcome To Music Tech 1Welcome To Music Tech 1
Welcome To Music Tech 1
 
Welcome To Music Tech 1
Welcome To Music Tech 1Welcome To Music Tech 1
Welcome To Music Tech 1
 
1Us Application - Quick Pitch
1Us Application - Quick Pitch1Us Application - Quick Pitch
1Us Application - Quick Pitch
 
音楽の非専門家が演奏・創作を通じて音楽を楽しめる世界を目指して
音楽の非専門家が演奏・創作を通じて音楽を楽しめる世界を目指して音楽の非専門家が演奏・創作を通じて音楽を楽しめる世界を目指して
音楽の非専門家が演奏・創作を通じて音楽を楽しめる世界を目指して
 
Ijsrdv8 i10550
Ijsrdv8 i10550Ijsrdv8 i10550
Ijsrdv8 i10550
 

More from Kosetsu Tsukuda

Lyric Jumper:アーティストごとの歌詞トピックの傾向に基づき様々な歌詞に出会える歌詞探索サービス
Lyric Jumper:アーティストごとの歌詞トピックの傾向に基づき様々な歌詞に出会える歌詞探索サービス Lyric Jumper:アーティストごとの歌詞トピックの傾向に基づき様々な歌詞に出会える歌詞探索サービス
Lyric Jumper:アーティストごとの歌詞トピックの傾向に基づき様々な歌詞に出会える歌詞探索サービス
Kosetsu Tsukuda
 

More from Kosetsu Tsukuda (20)

【論文紹介】ProtoMF: Prototype-based Matrix Factorization for Effective and Explain...
【論文紹介】ProtoMF: Prototype-based Matrix Factorization for Effective and Explain...【論文紹介】ProtoMF: Prototype-based Matrix Factorization for Effective and Explain...
【論文紹介】ProtoMF: Prototype-based Matrix Factorization for Effective and Explain...
 
音楽聴取者の行動分析で理解する人と音楽とのインタラクション
音楽聴取者の行動分析で理解する人と音楽とのインタラクション音楽聴取者の行動分析で理解する人と音楽とのインタラクション
音楽聴取者の行動分析で理解する人と音楽とのインタラクション
 
KiiteCafe: 同じ楽曲を同じ瞬間に聴きながら楽曲に対する気持ちを伝え合う音楽発掘サービス(インタラクション2022・登壇発表)
KiiteCafe: 同じ楽曲を同じ瞬間に聴きながら楽曲に対する気持ちを伝え合う音楽発掘サービス(インタラクション2022・登壇発表)KiiteCafe: 同じ楽曲を同じ瞬間に聴きながら楽曲に対する気持ちを伝え合う音楽発掘サービス(インタラクション2022・登壇発表)
KiiteCafe: 同じ楽曲を同じ瞬間に聴きながら楽曲に対する気持ちを伝え合う音楽発掘サービス(インタラクション2022・登壇発表)
 
Kiite Cafe: A Web Service for Getting Together Virtually to Listen to Music (...
Kiite Cafe: A Web Service for Getting Together Virtually to Listen to Music (...Kiite Cafe: A Web Service for Getting Together Virtually to Listen to Music (...
Kiite Cafe: A Web Service for Getting Together Virtually to Listen to Music (...
 
Toward an Understanding of Lyrics-viewing Behavior While Listening to Music o...
Toward an Understanding of Lyrics-viewing Behavior While Listening to Music o...Toward an Understanding of Lyrics-viewing Behavior While Listening to Music o...
Toward an Understanding of Lyrics-viewing Behavior While Listening to Music o...
 
人はなぜ・どのように歌詞を閲覧するのか:スマートフォンでの楽曲聴取時の歌詞閲覧行動分析(第17回WI2研究会)
人はなぜ・どのように歌詞を閲覧するのか:スマートフォンでの楽曲聴取時の歌詞閲覧行動分析(第17回WI2研究会)人はなぜ・どのように歌詞を閲覧するのか:スマートフォンでの楽曲聴取時の歌詞閲覧行動分析(第17回WI2研究会)
人はなぜ・どのように歌詞を閲覧するのか:スマートフォンでの楽曲聴取時の歌詞閲覧行動分析(第17回WI2研究会)
 
Explainable Recommendation for Repeat Consumption (RecSys 2020)
Explainable Recommendation for Repeat Consumption (RecSys 2020)Explainable Recommendation for Repeat Consumption (RecSys 2020)
Explainable Recommendation for Repeat Consumption (RecSys 2020)
 
繰り返し消費されるコンテンツを対象とした推薦理由の提示(IFAT142・登壇発表)
繰り返し消費されるコンテンツを対象とした推薦理由の提示(IFAT142・登壇発表)繰り返し消費されるコンテンツを対象とした推薦理由の提示(IFAT142・登壇発表)
繰り返し消費されるコンテンツを対象とした推薦理由の提示(IFAT142・登壇発表)
 
Kiite Cafe: 同じ楽曲を同じ瞬間に楽しんで「好き」が伝わる音楽発掘カフェ(SIGMUS132・登壇発表)
Kiite Cafe: 同じ楽曲を同じ瞬間に楽しんで「好き」が伝わる音楽発掘カフェ(SIGMUS132・登壇発表)Kiite Cafe: 同じ楽曲を同じ瞬間に楽しんで「好き」が伝わる音楽発掘カフェ(SIGMUS132・登壇発表)
Kiite Cafe: 同じ楽曲を同じ瞬間に楽しんで「好き」が伝わる音楽発掘カフェ(SIGMUS132・登壇発表)
 
Explainable Recommendation for Repeat Consumption(RecSys2020論文読み会)
Explainable Recommendation for Repeat Consumption(RecSys2020論文読み会)Explainable Recommendation for Repeat Consumption(RecSys2020論文読み会)
Explainable Recommendation for Repeat Consumption(RecSys2020論文読み会)
 
Explainable Recommendation for Repeat Consumption (RecSys 2020)
Explainable Recommendation for Repeat Consumption (RecSys 2020)Explainable Recommendation for Repeat Consumption (RecSys 2020)
Explainable Recommendation for Repeat Consumption (RecSys 2020)
 
Query/Task Satisfaction and Grid-based Evaluation Metrics Under Different Ima...
Query/Task Satisfaction and Grid-based Evaluation Metrics Under Different Ima...Query/Task Satisfaction and Grid-based Evaluation Metrics Under Different Ima...
Query/Task Satisfaction and Grid-based Evaluation Metrics Under Different Ima...
 
The Web Conference 2020 国際会議報告(ACM SIGMOD 日本支部第73回支部大会・依頼講演)
The Web Conference 2020 国際会議報告(ACM SIGMOD 日本支部第73回支部大会・依頼講演)The Web Conference 2020 国際会議報告(ACM SIGMOD 日本支部第73回支部大会・依頼講演)
The Web Conference 2020 国際会議報告(ACM SIGMOD 日本支部第73回支部大会・依頼講演)
 
DualDiv: Diversifying Items and Explanation Styles in Explainable Hybrid Reco...
DualDiv: Diversifying Items and Explanation Styles in Explainable Hybrid Reco...DualDiv: Diversifying Items and Explanation Styles in Explainable Hybrid Reco...
DualDiv: Diversifying Items and Explanation Styles in Explainable Hybrid Reco...
 
ABCPRec:何を創作したかという情報がコンテンツの消費時に反映されるユーザ生成コンテンツ推薦手法(WebDB Forum 2019・登壇発表)
ABCPRec:何を創作したかという情報がコンテンツの消費時に反映されるユーザ生成コンテンツ推薦手法(WebDB Forum 2019・登壇発表)ABCPRec:何を創作したかという情報がコンテンツの消費時に反映されるユーザ生成コンテンツ推薦手法(WebDB Forum 2019・登壇発表)
ABCPRec:何を創作したかという情報がコンテンツの消費時に反映されるユーザ生成コンテンツ推薦手法(WebDB Forum 2019・登壇発表)
 
DualDiv: Diversifying Items and Explanation Styles in Explainable Hybrid Reco...
DualDiv: Diversifying Items and Explanation Styles in Explainable Hybrid Reco...DualDiv: Diversifying Items and Explanation Styles in Explainable Hybrid Reco...
DualDiv: Diversifying Items and Explanation Styles in Explainable Hybrid Reco...
 
ABCPRec:ユーザの消費者としての役割と創作者としての役割の適応的対応付けによるユーザ生成コンテンツ推薦(第14回WI2研究会)
ABCPRec:ユーザの消費者としての役割と創作者としての役割の適応的対応付けによるユーザ生成コンテンツ推薦(第14回WI2研究会)ABCPRec:ユーザの消費者としての役割と創作者としての役割の適応的対応付けによるユーザ生成コンテンツ推薦(第14回WI2研究会)
ABCPRec:ユーザの消費者としての役割と創作者としての役割の適応的対応付けによるユーザ生成コンテンツ推薦(第14回WI2研究会)
 
ABCPRec: Adaptively Bridging Consumer and Producer Roles for User-Generated C...
ABCPRec: Adaptively Bridging Consumer and Producer Roles for User-Generated C...ABCPRec: Adaptively Bridging Consumer and Producer Roles for User-Generated C...
ABCPRec: Adaptively Bridging Consumer and Producer Roles for User-Generated C...
 
Lyric Jumper: A Lyrics-Based Music Exploratory Web Service by Modeling Lyrics...
Lyric Jumper: A Lyrics-Based Music Exploratory Web Service by Modeling Lyrics...Lyric Jumper: A Lyrics-Based Music Exploratory Web Service by Modeling Lyrics...
Lyric Jumper: A Lyrics-Based Music Exploratory Web Service by Modeling Lyrics...
 
Lyric Jumper:アーティストごとの歌詞トピックの傾向に基づき様々な歌詞に出会える歌詞探索サービス
Lyric Jumper:アーティストごとの歌詞トピックの傾向に基づき様々な歌詞に出会える歌詞探索サービス Lyric Jumper:アーティストごとの歌詞トピックの傾向に基づき様々な歌詞に出会える歌詞探索サービス
Lyric Jumper:アーティストごとの歌詞トピックの傾向に基づき様々な歌詞に出会える歌詞探索サービス
 

Recently uploaded

Chemistry Data Delivery from the US-EPA Center for Computational Toxicology a...
Chemistry Data Delivery from the US-EPA Center for Computational Toxicology a...Chemistry Data Delivery from the US-EPA Center for Computational Toxicology a...
Chemistry Data Delivery from the US-EPA Center for Computational Toxicology a...
US Environmental Protection Agency (EPA), Center for Computational Toxicology and Exposure
 
Warming the earth and the atmosphere.pptx
Warming the earth and the atmosphere.pptxWarming the earth and the atmosphere.pptx
Warming the earth and the atmosphere.pptx
GlendelCaroz
 

Recently uploaded (20)

Chemistry Data Delivery from the US-EPA Center for Computational Toxicology a...
Chemistry Data Delivery from the US-EPA Center for Computational Toxicology a...Chemistry Data Delivery from the US-EPA Center for Computational Toxicology a...
Chemistry Data Delivery from the US-EPA Center for Computational Toxicology a...
 
FORENSIC CHEMISTRY ARSON INVESTIGATION.pdf
FORENSIC CHEMISTRY ARSON INVESTIGATION.pdfFORENSIC CHEMISTRY ARSON INVESTIGATION.pdf
FORENSIC CHEMISTRY ARSON INVESTIGATION.pdf
 
Manganese‐RichSandstonesasanIndicatorofAncientOxic LakeWaterConditionsinGale...
Manganese‐RichSandstonesasanIndicatorofAncientOxic  LakeWaterConditionsinGale...Manganese‐RichSandstonesasanIndicatorofAncientOxic  LakeWaterConditionsinGale...
Manganese‐RichSandstonesasanIndicatorofAncientOxic LakeWaterConditionsinGale...
 
Fun for mover student's book- English book for teaching.pdf
Fun for mover student's book- English book for teaching.pdfFun for mover student's book- English book for teaching.pdf
Fun for mover student's book- English book for teaching.pdf
 
NUMERICAL Proof Of TIme Electron Theory.
NUMERICAL Proof Of TIme Electron Theory.NUMERICAL Proof Of TIme Electron Theory.
NUMERICAL Proof Of TIme Electron Theory.
 
Mining Activity and Investment Opportunity in Myanmar.pptx
Mining Activity and Investment Opportunity in Myanmar.pptxMining Activity and Investment Opportunity in Myanmar.pptx
Mining Activity and Investment Opportunity in Myanmar.pptx
 
NuGOweek 2024 programme final FLYER short.pdf
NuGOweek 2024 programme final FLYER short.pdfNuGOweek 2024 programme final FLYER short.pdf
NuGOweek 2024 programme final FLYER short.pdf
 
GBSN - Microbiology (Unit 5) Concept of isolation
GBSN - Microbiology (Unit 5) Concept of isolationGBSN - Microbiology (Unit 5) Concept of isolation
GBSN - Microbiology (Unit 5) Concept of isolation
 
Warming the earth and the atmosphere.pptx
Warming the earth and the atmosphere.pptxWarming the earth and the atmosphere.pptx
Warming the earth and the atmosphere.pptx
 
MODERN PHYSICS_REPORTING_QUANTA_.....pdf
MODERN PHYSICS_REPORTING_QUANTA_.....pdfMODERN PHYSICS_REPORTING_QUANTA_.....pdf
MODERN PHYSICS_REPORTING_QUANTA_.....pdf
 
X-rays from a Central “Exhaust Vent” of the Galactic Center Chimney
X-rays from a Central “Exhaust Vent” of the Galactic Center ChimneyX-rays from a Central “Exhaust Vent” of the Galactic Center Chimney
X-rays from a Central “Exhaust Vent” of the Galactic Center Chimney
 
GBSN - Microbiology (Unit 7) Microbiology in Everyday Life
GBSN - Microbiology (Unit 7) Microbiology in Everyday LifeGBSN - Microbiology (Unit 7) Microbiology in Everyday Life
GBSN - Microbiology (Unit 7) Microbiology in Everyday Life
 
Factor Causing low production and physiology of mamary Gland
Factor Causing low production and physiology of mamary GlandFactor Causing low production and physiology of mamary Gland
Factor Causing low production and physiology of mamary Gland
 
Technical english Technical english.pptx
Technical english Technical english.pptxTechnical english Technical english.pptx
Technical english Technical english.pptx
 
Costs to heap leach gold ore tailings in Karamoja region of Uganda
Costs to heap leach gold ore tailings in Karamoja region of UgandaCosts to heap leach gold ore tailings in Karamoja region of Uganda
Costs to heap leach gold ore tailings in Karamoja region of Uganda
 
POST TRANSCRIPTIONAL GENE SILENCING-AN INTRODUCTION.pptx
POST TRANSCRIPTIONAL GENE SILENCING-AN INTRODUCTION.pptxPOST TRANSCRIPTIONAL GENE SILENCING-AN INTRODUCTION.pptx
POST TRANSCRIPTIONAL GENE SILENCING-AN INTRODUCTION.pptx
 
Film Coated Tablet and Film Coating raw materials.pdf
Film Coated Tablet and Film Coating raw materials.pdfFilm Coated Tablet and Film Coating raw materials.pdf
Film Coated Tablet and Film Coating raw materials.pdf
 
A Scientific PowerPoint on Albert Einstein
A Scientific PowerPoint on Albert EinsteinA Scientific PowerPoint on Albert Einstein
A Scientific PowerPoint on Albert Einstein
 
Molecular and Cellular Mechanism of Action of Hormones such as Growth Hormone...
Molecular and Cellular Mechanism of Action of Hormones such as Growth Hormone...Molecular and Cellular Mechanism of Action of Hormones such as Growth Hormone...
Molecular and Cellular Mechanism of Action of Hormones such as Growth Hormone...
 
Biochemistry and Biomolecules - Science - 9th Grade by Slidesgo.pptx
Biochemistry and Biomolecules - Science - 9th Grade by Slidesgo.pptxBiochemistry and Biomolecules - Science - 9th Grade by Slidesgo.pptx
Biochemistry and Biomolecules - Science - 9th Grade by Slidesgo.pptx
 

Listener Anonymizer: Camouflaging Play Logs to Preserve User’s Demographic Anonymity (ISMIR 2018)

  • 1. 1. Definition of Anonymity How can users enjoy music when using an online music service while preserving their demographic anonymity? We listed up five factors to consider for realizing Listener Anonymizer. Not-first-anonymity … k-flat-anonymity … The probability of French is not the highest. Top k nationalities have almost the same probabilities. 2. Method for Predicting Demographics  It is common to use music metadata extracted from the user’s play log  The state-of-the-art method is the one proposed by Krismayer et al[1]. 𝑡𝑡 10,000 dims for artists 10,000 dims for artist’s tags PCA SVM … [1] Prediction of User Demographics from Music Listening Habits T. Krismayer, M. Schedl, P. Knees, R. Rabiser CBMI 2017 3. Timing of Anonymization 4. User’s True Demographics 5. Multiple Demographics When anonymity is no longer satisfied When a user does not use a smartphone Z Z The system is required to select as few songs as possible so that the user can soon resume listening to her favorite songs. Some users still hope to play as few recommended songs as possible to save on the packet communication fee. When the system does not know it When the system knows it ? ALERT ALERT Alert is displayed with proper timing. The user will tell her true demographic if the system is a stand-alone application. In exchange for complete anonymity, songs will be frequently recommended: this is a heavy burden for her. ♀20’s … ♀ ♂ … 30’s 20’s 50’s When a user tells many demographics that she wants to preserve the anonymity of, alerts may frequently be displayed. 1. Counterbalance METHOD EVALUATION DISCUSSION FACTORS We are fully aware of the importance and usefulness of music recommendation. We dared to propose this controversial approach to raise privacy issues in the ISMIR community. … 0.21 0.04 0.77 0.89 0.48 0.92 0.25 0.33 0.82 0.29 0.46 0.86 𝑢𝑢1 𝑢𝑢2 𝑢𝑢𝑟𝑟 𝑠𝑠1 𝑠𝑠2 𝑠𝑠3 𝑠𝑠𝑚𝑚 … …  Detect the nationality having the second-highest probability (e.g., German)  Collect the top 𝑟𝑟 users in terms of the probability of a user on German  Remove the 𝑙𝑙th song from 𝑢𝑢’s play log and compute the new probability by using the remaining 𝑚𝑚-1 songs  Collect the top c artists based on the probability gap  32,991 users with ≥ 500 play logs from Last.fm dataset  For each user, use the first 30 songs from the oldest songs in the play logs (i.e., 𝑚𝑚 = 30)  Factors - Not-first-anonymity - Camouflage the play log with as few songs as possible - The system knows the user’s true demographic - Single demographic anonymity Age Gender Nationality Random 15.34 27.18 17.60 Popularity 24.10 29.44 29.42 Proposed 3.22 9.28 4.36 2. Give a choice to a user 3. User’s Taste in Music Recommendation accuracy Anonymization When Listener Anonymizer recommends songs, if they match the user’s taste in music, she will not be reluctant to keep listening to the songs. Reflecting user’s taste would also be beneficial to satisfy both anonymization and good recommendation. 0.32 1.59 1.44 0.86 …… 2.02 0.71 … Listener Anonymizer: Camouflaging Play Logs to Preserve User’s Demographic Anonymity Kosetsu Tsukuda, Satoru Fukayama, Masataka Goto National Institute of Advanced Industrial Science and Technology (AIST) 𝑚𝑚: #songs in a user’s play log 𝑢𝑢: user 𝑠𝑠: song  It is important to show that preserving users’ demographic attributes is technically possible  Listener Anonymizer gives a choice to a user  It is beneficial to predict users’ demographic attributes  It is also important to think about a counterbalance Technique to leverage play logs for predicting demographic attr. Technique to camouflage play logs for preserving demographic attr. I can enjoy music while preserving my demographic anonymity! Without Listener Anonymizer With Listener Anonymizer High rec. accuracy I do not care about my demographic anonymity! Demographic anonymity (songs) Compute the effectiveness of each candidate song to anonymize the user’s demographic attribute Results: avg numbers of songs for camouflaging play logs (the smaller, the better) [ISMIR 2018]