SlideShare a Scribd company logo
1 of 57
Download to read offline
Medical BiologyRuijter et al, London, December 2017
Discordance between
replicate qPCR reactions
Jan M Ruijter
Department of Medical Biology
Academic Medical Center
Amsterdam, the Netherlands
Medical BiologyRuijter et al, London, December 2017
qPCR data
N N En 0
n
=
number of PCR cycles
start concentration
PCR product
after n cycles
Efficiency (1-2; 2=100%)
20 21 22 23
1
2
2
4
cycles
N
0
1
3
8
etc.
PCR Efficiency = fold increase per cycle
Medical BiologyRuijter et al, London, December 2017
0.00000001
0.0000001
0.000001
0.00001
0.0001
0.001
0.01
0.1
1
10
100
0 5 10 15 20 25 30 35 40
Amplification Curve
Nn
𝑁𝑐 = 𝑁0 𝐸 𝐶
Medical BiologyRuijter et al, London, December 2017
0.00000001
0.0000001
0.000001
0.00001
0.0001
0.001
0.01
0.1
1
10
100
0 5 10 15 20 25 30 35 40
qPCR Analysis Principle
Nq
Cq
Nn
𝑁𝑐 = 𝑁0 𝐸 𝐶
Medical BiologyRuijter et al, London, December 2017
0.00000001
0.0000001
0.000001
0.00001
0.0001
0.001
0.01
0.1
1
10
100
0 5 10 15 20 25 30 35 40
Nn
qPCR Analysis Principle
Nq
Cq
𝑁𝑞 = 𝑁0 𝐸 𝑪 𝒒𝑁0 = Τ𝑁𝑞 𝐸 𝐶 𝑞
Medical BiologyRuijter et al, London, December 2017
0.00000001
0.0000001
0.000001
0.00001
0.0001
0.001
0.01
0.1
1
10
100
0 5 10 15 20 25 30 35 40
Nn
qPCR Amplification curve analysis
𝑁𝑞 = 𝑁0 𝐸 𝑪 𝒒𝑁0 = Τ𝑁𝑞 𝐸 𝐶 𝑞
Slope = log(E)
↓
Eindiv = 10slope
↓
Emean per target
mean
without standard curve
MIC
Data analysis based on
LinRegPCR
Medical BiologyRuijter et al, London, December 2017
Relative Quantification
Target Gene
𝑅𝑎𝑡𝑖𝑜 = Τ𝑁0,𝑇 𝑔𝑒𝑜𝑚𝑒𝑎𝑛(𝑁0,𝑅𝑠)
Reference Genes
𝑁0,𝑇 = Τ𝑁𝑞 𝐸 𝑇
𝐶 𝑞,𝑇
𝑁0,𝑅 = Τ𝑁𝑞 𝐸 𝑅
𝐶 𝑞,𝑅
𝑅𝑎𝑡𝑖𝑜 𝐶𝑅𝑎𝑡𝑖𝑜 𝑇𝑟
𝐹𝑜𝑙𝑑 = Τ𝑅𝑎𝑡𝑖𝑜 𝑇𝑟 𝑅𝑎𝑡𝑖𝑜 𝐶
𝐹𝑜𝑙𝑑 = 𝐸 𝑅
𝐶 𝑞,𝑅,𝑇𝑟−𝐶 𝑞,𝑅,𝐶
/𝐸 𝑇
𝐶 𝑞,𝑇,𝑇𝑟−𝐶 𝑞,𝑇,𝐶
normalization: correct for sample size, composition, processing
Treated tissue Control tissue
‘treatment effect'
combined Pfaffl (2001)
Medical BiologyRuijter et al, London, December 2017
Efficiency corrected relative quantification
𝐹𝑜𝑙𝑑 = 𝐸 𝑅
𝐶 𝑞,𝑅,𝑇𝑟−𝐶 𝑞,𝑅,𝐶
/𝐸 𝑇
𝐶 𝑞,𝑇,𝑇𝑟−𝐶 𝑞,𝑇,𝐶
Pfaffl (2001)
Medical BiologyRuijter et al, London, December 2017
Efficiency corrected relative quantification
𝐹𝑜𝑙𝑑 = 2−DD 𝐶 𝑞
𝐹𝑜𝑙𝑑 = 𝐸 𝑅
𝐶 𝑞,𝑅,𝑇𝑟−𝐶 𝑞,𝑅,𝐶
/𝐸 𝑇
𝐶 𝑞,𝑇,𝑇𝑟−𝐶 𝑞,𝑇,𝐶
Assumes ET = ER = 2
Medical BiologyRuijter et al, London, December 2017
Efficiency corrected relative quantification
𝐹𝑜𝑙𝑑 = 2−DD 𝐶 𝑞
𝐹𝑜𝑙𝑑 = 𝐸 𝑅
𝐶 𝑞,𝑅,𝑇𝑟−𝐶 𝑞,𝑅,𝐶
/𝐸 𝑇
𝐶 𝑞,𝑇,𝑇𝑟−𝐶 𝑞,𝑇,𝐶
Assumes ET = ER = 2
Uses ET and ER
Medical BiologyRuijter et al, London, December 2017
Efficiency corrected relative quantification
𝐹𝑜𝑙𝑑 = 2−DD 𝐶 𝑞
𝐹𝑜𝑙𝑑 = 𝐸 𝑅
𝐶 𝑞,𝑅,𝑇𝑟−𝐶 𝑞,𝑅,𝐶
/𝐸 𝑇
𝐶 𝑞,𝑇,𝑇𝑟−𝐶 𝑞,𝑇,𝐶
Medical BiologyRuijter et al, London, December 2017
Efficiency corrected relative quantification
𝐹𝑜𝑙𝑑 = 2−DD 𝐶 𝑞
𝐹𝑜𝑙𝑑 = 𝐸 𝑅
𝐶 𝑞,𝑅,𝑇𝑟−𝐶 𝑞,𝑅,𝐶
/𝐸 𝑇
𝐶 𝑞,𝑇,𝑇𝑟−𝐶 𝑞,𝑇,𝐶
Medical BiologyRuijter et al, London, December 2017
Efficiency corrected relative quantification
0
10
20
30
40
50
60
70
80
432143214321
321
Treatment/Control
target
treatment
Efficiency per target
Medical BiologyRuijter et al, London, December 2017
Efficiency corrected relative quantification
0
10
20
30
40
50
60
70
80
432143214321
321
Treatment/Control
target
treatment
Efficiency per target
Medical BiologyRuijter et al, London, December 2017
Efficiency corrected relative quantification
𝐹𝑜𝑙𝑑 = 2−DD 𝐶 𝑞
𝐹𝑜𝑙𝑑 = 𝐸 𝑅
𝐶 𝑞,𝑅,𝑇𝑟−𝐶 𝑞,𝑅,𝐶
/𝐸 𝑇
𝐶 𝑞,𝑇,𝑇𝑟−𝐶 𝑞,𝑇,𝐶
Assumes ET = ER = 2
Medical BiologyRuijter et al, London, December 2017
Efficiency corrected relative quantification
0
10
20
30
40
50
60
70
80
432143214321
321
Treatment/Control
target
treatment
Efficiency per target
Efficiency = 2 (100%)
Medical BiologyRuijter et al, London, December 2017
Efficiency corrected relative quantification
0
10
20
30
40
50
60
70
80
432143214321
321
Treatment/Control
target
treatment
Efficiency per target
Efficiency = 2 (100%)
https://www.qbaseplus.com/knowledge/blog/why-pcr-amplification-efficiency-still-ignored
Medical BiologyRuijter et al, London, December 2017
qPCR: Data and Analysis
𝑁𝑐 = 𝑁0 𝐸 𝐶
𝑁0 = Τ𝑁𝑞 𝐸 𝐶 𝑞
Medical BiologyRuijter et al, London, December 2017
qPCR: Data and Analysis
𝑁𝑐 = 𝑁0 𝐸 𝐶
𝑁0 = Τ𝑁𝑞 𝐸 𝐶 𝑞
Medical BiologyRuijter et al, London, December 2017
Example data
Validation of miRNA biomarkers for heart failure
• 834 patients
• 12 miRNA targets
10008 measurements
• technical duplicates
20016 reactions
1 cycle
difference
between
replicates
Medical BiologyRuijter et al, London, December 2017
Discordant Cq values between replicates
Step 57
Examine replicates. All replicates should be
within 0.5 cycles of each other. At low Cq the
tolerance should be lower than at high Cq.
Above cycle 35 the variability will be greater
and quantification may be unreliable.
Nolan et al. (2006)
Medical BiologyRuijter et al, London, December 2017
Discordant Cq values between replicates
Validation of miRNA biomarkers for heart failure
• 834 patients
• 12 miRNA targets
10008 measurements
• technical duplicates
20016 reactions
0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%
0
200
400
600
800
1000
1200
<25
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
≥40
Frequency
mean Cq per measurement
Medical BiologyRuijter et al, London, December 2017
Discordant Cq values between replicates
Validation of miRNA biomarkers for heart failure
• 834 patients
• 12 miRNA targets
10008 measurements
• technical duplicates
20016 reactions
0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%
0
200
400
600
800
1000
1200
<25
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
≥40
Frequency
mean Cq per measurement
Diff Cq > 0.5
Medical BiologyRuijter et al, London, December 2017
Discordant Cq values between replicates
Validation of miRNA biomarkers for heart failure
• 834 patients
• 12 miRNA targets
10008 measurements
• technical duplicates
20016 reactions
0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%
0
200
400
600
800
1000
1200
<25
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
≥40
Frequency
mean Cq per measurement
Diff Cq > 0.5
Medical BiologyRuijter et al, London, December 2017
Exclusion of discordant replicates
0
2000
4000
6000
8000
10000
<25 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 ≥40
numberofmeasurements
Cq value
Cq <0.5
total n 39% rejected
Medical BiologyRuijter et al, London, December 2017
Causes of variation between replicates
Technical replicates differ because of
• Threshold level
• Pipetting error
• Sampling error
Medical BiologyRuijter et al, London, December 2017
1
0.1
0.01
0.001
0.0001
Dilution
0.001
0.01
0.1
1
10
10 20 30
Cycle
Fluorescence
5 10 15 20 25 30 35
Cq (mean ± SD per dilution)
Nq
Less Cq variance with high threshold
Ruijter et al. Nucleic Acids Res, 2009
Medical BiologyRuijter et al, London, December 2017
Pipetting error in replicates
𝑁𝑞 = 𝑁0 𝐸 𝐶 𝑞
𝐶 𝑞 =
𝐿𝑜𝑔 𝑁𝑞 − 𝐿𝑜𝑔 𝑁0
𝐿𝑜𝑔(𝐸)
𝐶 𝑞,𝑟𝑎𝑛𝑔𝑒 =
𝐿𝑜𝑔(1 + 𝑃) − 𝐿𝑜𝑔(1 − 𝑃)
𝐿𝑜𝑔(𝐸)
Cq range = Cq,low input – Cq,high input
1 − 𝑃 𝑁0
1 + 𝑃 𝑁0
Pipetting
error: P
Cq range is independent of Nq and N0
Medical BiologyRuijter et al, London, December 2017
Pipetting error in replicates
30.5
31.0
31.5
32.0
0% 5% 10% 15% 20% 25%
Cq
pipetting error
1 − 𝑃 𝑁0
1 + 𝑃 𝑁0
De Ronde et al. RNA 23: 811-821, 2017
pipetting error of 15% causes a Cq difference of 0.5 cycles
Medical BiologyRuijter et al, London, December 2017
Pipetting error in replicates
30.5
31.0
31.5
32.0
0% 5% 10% 15% 20% 25%
Cq
pipetting error
De Ronde et al. RNA 23: 811-821, 2017
1 − 𝑃 𝑁0
1 + 𝑃 𝑁0
pipetting error of 15% causes a Cq difference of 0.5 cycles
NO reason to relax the 0.5 cycles criterion
Medical BiologyRuijter et al, London, December 2017
Sampling error
variation source: Poisson effect
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0 2 4 6 8 10 12 14 16 18 20
probability
copy number in reaction (N0)
4
2
10 copies in input
Medical BiologyRuijter et al, London, December 2017
Sampling error
Sampling error in N0 gives a range in Cq
variation source: Poisson effect
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0 2 4 6 8 10 12 14 16 18 20
probability
copy number in reaction (N0)
4
2
10 copies in input
Medical BiologyRuijter et al, London, December 2017
1.E+00
1.E+01
1.E+02
1.E+03
1.E+04
1.E+05
1.E+06
1.E+07
1.E+08
1.E+09
1.E+10
1.E+11
1.E+12
0 5 10 15 20 25 30 35 40
target
primer
Relation of N0 and Cq
Primer concentration:
1 pmol = 6.1011 molecules
rule of thumb: 10 copies in reaction gives Cq of about 35
exponential
phase ends
at ±35 cycles
10
De Ronde et al. RNA 23: 811-821, 2017
Competition
gives loss of
PCR efficiency
Medical BiologyRuijter et al, London, December 2017
For each Cq:
• Calculate N0
• Determine range of N0 because of Poisson effect:
Relation of N0 and Cq
𝑁𝑞 = 𝑁0 𝐸 𝐶 𝑞 𝑁𝑞 = 10𝐸35
𝑁0 = 10𝐸(35−𝐶 𝑞)
copies
1
2
 0.025;2𝑁
2
≤ 𝑁0 ≤
1
2
 0.975;2𝑁+2
2
rule of thumb: 10 copies in reaction gives Cq of about 35
For each Cq:
• Calculate N0
Medical BiologyRuijter et al, London, December 2017
Relation of N0 and Cq
1E-08
0.0000001
0.000001
0.00001
0.0001
0.001
0.01
0 5 10
1
2
 0.025;2𝑁
2
≤ 𝑁0 ≤
1
2
 0.975;2𝑁+2
2
10
103
102
Range of N because of Poisson effect:
Medical BiologyRuijter et al, London, December 2017
Relation of N0 and Cq
1E-08
0.0000001
0.000001
0.00001
0.0001
0.001
0.01
0 5 10
1
2
 0.025;2𝑁
2
≤ 𝑁0 ≤
1
2
 0.975;2𝑁+2
2
10
103
102
Range of N because of Poisson effect:
Medical BiologyRuijter et al, London, December 2017
Relation of N0 and Cq
1E-08
0.0000001
0.000001
0.00001
0.0001
0.001
0.01
0 5 10
10
103
102
1
2
 0.025;2𝑁
2
≤ 𝑁0 ≤
1
2
 0.975;2𝑁+2
2
Range of N because of Poisson effect:
Medical BiologyRuijter et al, London, December 2017
Relation of N0 and Cq
0.1
1
10
100
1000
10000
0 5 10 15 20 25 30 35 40 45
l
m
u
l
m
u
l
m
u
Nq-Cq
1E-08
0.0000001
0.000001
0.00001
0.0001
0.001
0.01
0 5 10
Poisson effect causes an
unavoidable range in Cq values
10
103
102
𝑁𝑞 = 10𝐸35
Medical BiologyRuijter et al, London, December 2017
Expected range in Cq values
0.1
1
10
100
1000
10000
0 5 10 15 20 25 30 35 40 45
l
m
u
l
m
u
l
m
u
Nq-Cq
Poisson effect causes an
unavoidable range in Cq values
Acceptable Cq range depends on
PCR efficiency and Cq
1E-08
0.0000001
0.000001
0.00001
0.0001
0.001
0.01
0 5 10
10
103
102
Medical BiologyRuijter et al, London, December 2017
Acceptable Cq range
De Ronde et al. RNA 23: 811-821, 2017
Medical BiologyRuijter et al, London, December 2017
Application of acceptable Cq range
0
2000
4000
6000
8000
10000
<25 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 ≥40
numberofmeasurements
Cq value
Cq <0.5
total n
61% included
Medical BiologyRuijter et al, London, December 2017
Application of acceptable Cq range
0
2000
4000
6000
8000
10000
<25 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 ≥40
numberofmeasurements
Cq value
Cq <0.5
Cq acceptable
total n
leads to rescue of 32% of the reactions
93% included
Medical BiologyRuijter et al, London, December 2017
Application of acceptable Cq range
2.E-13
2.E-12
2.E-11
2.E-10
2.E-09
2.E-08
0 1 2 3 4 5 6 7 8 9 10 11 12 13
Excluded Cq >0.5
Excluded Cq not acceptable
0
2
4
6
8
10
12
14
miR-320
miR-22-3p
miR-622
miR-133b
miR-1306
miR-1254
miR-345-5p
miR-423-5p
miR-133a
miR-378
miR-499
miR-208a
miRNA
miRN
10
100
1000
1
N0(copies±95%CI)
Diff Cq > 0.5 excluded
Medical BiologyRuijter et al, London, December 2017
Application of acceptable Cq range
leads to increased sensitivity and precision
2.E-13
2.E-12
2.E-11
2.E-10
2.E-09
2.E-08
0 1 2 3 4 5 6 7 8 9 10 11 12 13
Excluded Cq >0.5
Excluded Cq not acceptable
0
2
4
6
8
10
12
14
miR-320
miR-22-3p
miR-622
miR-133b
miR-1306
miR-1254
miR-345-5p
miR-423-5p
miR-133a
miR-378
miR-499
miR-208a
miRNA
miRN
10
100
1000
1
Diff Cq > 0.5 excluded
Unaccept Diff Cq excluded
N0(copies±95%CI)
Medical BiologyRuijter et al, London, December 2017
Example data
Validation of miRNA biomarkers for heart failure
• 834 patients
• 12 miRNA targets
10008 measurements
• technical duplicates
20016 reactions
no amplification
no Cq
Medical BiologyRuijter et al, London, December 2017
Efficiency-corrected relative quantification
𝐹𝑜𝑙𝑑 = 𝐸 𝑅
𝐶 𝑞,𝑅,𝑇𝑟−𝐶 𝑞,𝑅,𝐶
/𝐸 𝑇
𝐶 𝑞,𝑇,𝑇𝑟−𝐶 𝑞,𝑇,𝐶
𝐹𝑜𝑙𝑑 = 2−DD 𝐶 𝑞
no amplification
no Cq
Medical BiologyRuijter et al, London, December 2017
Substitution of missing Cq values
Common approach:
Substitute missing Cq with the number of cycles
𝐹𝑜𝑙𝑑 = 𝐸 𝑅
𝐶 𝑞,𝑅,𝑇𝑟−𝐶 𝑞,𝑅,𝐶
/𝐸 𝑇
𝐶 𝑞,𝑇,𝑇𝑟−𝐶 𝑞,𝑇,𝐶
𝐹𝑜𝑙𝑑 = 2−DD 𝐶 𝑞
Medical BiologyRuijter et al, London, December 2017
Substitution of missing Cq values
Common approach:
Substitute missing Cq with the number of cycles
𝐹𝑜𝑙𝑑 = 𝐸 𝑅
𝐶 𝑞,𝑅,𝑇𝑟−𝐶 𝑞,𝑅,𝐶
/𝐸 𝑇
𝐶 𝑞,𝑇,𝑇𝑟−𝐶 𝑞,𝑇,𝐶
𝑁𝑞 = 𝑁0 𝐸 𝐶 𝑞 𝑁𝑞 = 10𝐸35
rule of thumb: 10 copies in reaction gives Cq of about 35
𝑁0 = 10𝐸(35−𝐶 𝑞)
copies
Medical BiologyRuijter et al, London, December 2017
Substitution of missing Cq values
Common approach:
Substitute missing Cq with the number of cycles
𝐹𝑜𝑙𝑑 = 𝐸 𝑅
𝐶 𝑞,𝑅,𝑇𝑟−𝐶 𝑞,𝑅,𝐶
/𝐸 𝑇
𝐶 𝑞,𝑇,𝑇𝑟−𝐶 𝑞,𝑇,𝐶
𝑁𝑞 = 𝑁0 𝐸 𝐶 𝑞 𝑁𝑞 = 10𝐸35
rule of thumb: 10 copies in reaction gives Cq of about 35
𝑁0 = 10 × 1.8(35−45)
Medical BiologyRuijter et al, London, December 2017
Substitution of missing Cq values
Common approach:
Substitute missing Cq with the number of cycles
𝐹𝑜𝑙𝑑 = 𝐸 𝑅
𝐶 𝑞,𝑅,𝑇𝑟−𝐶 𝑞,𝑅,𝐶
/𝐸 𝑇
𝐶 𝑞,𝑇,𝑇𝑟−𝐶 𝑞,𝑇,𝐶
𝑁𝑞 = 𝑁0 𝐸 𝐶 𝑞 𝑁𝑞 = 10𝐸35
𝑁0 = 10 × 1.8(35−45)
= 0.03 copies
rule of thumb: 10 copies in reaction gives Cq of about 35
Medical BiologyRuijter et al, London, December 2017
Substitution of missing Cq values
Proposed approach:
Substitute missing Cq with maximum observed Cq +1
per target
𝐹𝑜𝑙𝑑 = 𝐸 𝑅
𝐶 𝑞,𝑅,𝑇𝑟−𝐶 𝑞,𝑅,𝐶
/𝐸 𝑇
𝐶 𝑞,𝑇,𝑇𝑟−𝐶 𝑞,𝑇,𝐶
maximum Cq max Cq + 1
miR-320 35.38 36.38
miR-22-3p 39.32 40.32
𝑁0 = 10 × 1.8(35−40.32)
= 0.41 copies
De Ronde et al. RNA 23: 811-821, 2017
Medical BiologyRuijter et al, London, December 2017
Substitution of missing Cq values
2.E-13
2.E-12
2.E-11
2.E-10
2.E-09
2.E-08
1 2 3 4 5 6 7 8 9 10 11 12 13
Excluded Cq > 0.5
Excluded Cq not acceptable
Missing Cq substituted
0
2
4
6
8
10
12
14
miR-320
miR-22-3p
miR-622
miR-133b
miR-1306
miR-1254
miR-345-5p
miR-423-5p
miR-133a
miR-378
miR-499
miR-208a
miRNA
m
10
100
1000
1
N0(copies±95%CI)
Diff Cq > 0.5 excluded
Unaccept Diff Cq excl
Missing Cq substituted
(6% of reactions)
Medical BiologyRuijter et al, London, December 2017
Substitution of missing Cq values
2.E-13
2.E-12
2.E-11
2.E-10
2.E-09
2.E-08
1 2 3 4 5 6 7 8 9 10 11 12 13
Excluded Cq > 0.5
Excluded Cq not acceptable
Missing Cq substituted
0
2
4
6
8
10
12
14
miR-320
miR-22-3p
miR-622
miR-133b
miR-1306
miR-1254
miR-345-5p
miR-423-5p
miR-133a
miR-378
miR-499
miR-208a
miRNA
m
10
100
1000
1
N0(copies±95%CI)
Diff Cq > 0.5 excluded
Unaccept Diff Cq excl
Missing Cq substituted
(6% of reactions)
Medical BiologyRuijter et al, London, December 2017
Reference / Acknowledgement
De Ronde et al. RNA 23: 811-821, 2017
https://www.qbaseplus.com/knowledge/blog/why-pcr-amplification-efficiency-still-ignored
Medical BiologyRuijter et al, London, December 2017
Medical BiologyRuijter et al, London, December 2017
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0 2 4 6 8 10 12 14 16 18 20
number in reaction
probability copies in input
10
Limit of quantification (LOQ)
Input in reaction is determined by Poisson distribution
10 copies input results
in CV of ~30%
SD=3.3
Shipley. in PCR Technology: Current Innovations 2013
Medical BiologyRuijter et al, London, December 2017
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0 2 4 6 8 10 12 14 16 18 20
number in reaction
probability copies in input
10
3
Limit of detection (LOD)
Input in reaction is determined by Poisson distribution
3 copies input will show
amplification in only
95% of the reactions
Shipley. in PCR Technology: Current Innovations 2013

More Related Content

Similar to Discordance Between Replicate qPCR Reactions

uptodate on acute kidney injury
uptodate on acute kidney injuryuptodate on acute kidney injury
uptodate on acute kidney injury
Sherif Mohammed
 
Hussein drug therapy in aki 3 osama alshahat 2 pptx
Hussein drug therapy in aki 3 osama alshahat 2 pptxHussein drug therapy in aki 3 osama alshahat 2 pptx
Hussein drug therapy in aki 3 osama alshahat 2 pptx
FarragBahbah
 

Similar to Discordance Between Replicate qPCR Reactions (20)

Repeated events analyses
Repeated events analysesRepeated events analyses
Repeated events analyses
 
05 2019 manila pleural infection final pdf
05 2019 manila pleural infection final pdf05 2019 manila pleural infection final pdf
05 2019 manila pleural infection final pdf
 
uptodate on acute kidney injury
uptodate on acute kidney injuryuptodate on acute kidney injury
uptodate on acute kidney injury
 
Pancholy SB - AIMRADIAL 2014 Endovascular - Renal denervation
Pancholy SB - AIMRADIAL 2014 Endovascular - Renal denervationPancholy SB - AIMRADIAL 2014 Endovascular - Renal denervation
Pancholy SB - AIMRADIAL 2014 Endovascular - Renal denervation
 
Stich Qol Mark
Stich Qol MarkStich Qol Mark
Stich Qol Mark
 
Star Scholars_Poster
Star Scholars_PosterStar Scholars_Poster
Star Scholars_Poster
 
bon mth1.pptx
bon mth1.pptxbon mth1.pptx
bon mth1.pptx
 
Precombat
Precombat Precombat
Precombat
 
Measurement errors, Statistical Analysis, Uncertainty
Measurement errors, Statistical Analysis, UncertaintyMeasurement errors, Statistical Analysis, Uncertainty
Measurement errors, Statistical Analysis, Uncertainty
 
Unit # 04, chi-square test.ppt
Unit # 04, chi-square test.pptUnit # 04, chi-square test.ppt
Unit # 04, chi-square test.ppt
 
Contrast induced-Acute Kidney Injury
Contrast induced-Acute Kidney InjuryContrast induced-Acute Kidney Injury
Contrast induced-Acute Kidney Injury
 
Class 27 pd, pid electronic controllers
Class 27   pd, pid electronic controllersClass 27   pd, pid electronic controllers
Class 27 pd, pid electronic controllers
 
Sh rn awhitepaper
Sh rn awhitepaperSh rn awhitepaper
Sh rn awhitepaper
 
Chi-square, Yates, Fisher & McNemar
Chi-square, Yates, Fisher & McNemarChi-square, Yates, Fisher & McNemar
Chi-square, Yates, Fisher & McNemar
 
Comparison of reticulocyte count by VCS technology; Beckman Coulter Hematolog...
Comparison of reticulocyte count by VCS technology; Beckman Coulter Hematolog...Comparison of reticulocyte count by VCS technology; Beckman Coulter Hematolog...
Comparison of reticulocyte count by VCS technology; Beckman Coulter Hematolog...
 
Cad and low ef does viability assessment matter
Cad and low ef does viability assessment matterCad and low ef does viability assessment matter
Cad and low ef does viability assessment matter
 
Dr. maryalice stetler stevenson b-all mrd
Dr. maryalice stetler stevenson   b-all mrdDr. maryalice stetler stevenson   b-all mrd
Dr. maryalice stetler stevenson b-all mrd
 
Are venous and arterial blood gas analysis interchangeable in ED assessment o...
Are venous and arterial blood gas analysis interchangeable in ED assessment o...Are venous and arterial blood gas analysis interchangeable in ED assessment o...
Are venous and arterial blood gas analysis interchangeable in ED assessment o...
 
NET - Kennecke
NET - KenneckeNET - Kennecke
NET - Kennecke
 
Hussein drug therapy in aki 3 osama alshahat 2 pptx
Hussein drug therapy in aki 3 osama alshahat 2 pptxHussein drug therapy in aki 3 osama alshahat 2 pptx
Hussein drug therapy in aki 3 osama alshahat 2 pptx
 

More from Kate Barlow

More from Kate Barlow (20)

CoMEHeRe: Co-operative Models for Evidence-based Healthcare Redistribution
CoMEHeRe: Co-operative Models for Evidence-based Healthcare RedistributionCoMEHeRe: Co-operative Models for Evidence-based Healthcare Redistribution
CoMEHeRe: Co-operative Models for Evidence-based Healthcare Redistribution
 
Evaluating How Blockchain Can Transform the Pharmaceutical and Healthcare Ind...
Evaluating How Blockchain Can Transform the Pharmaceutical and Healthcare Ind...Evaluating How Blockchain Can Transform the Pharmaceutical and Healthcare Ind...
Evaluating How Blockchain Can Transform the Pharmaceutical and Healthcare Ind...
 
NIZO: Hotspot for Microbiome Research
NIZO: Hotspot for Microbiome ResearchNIZO: Hotspot for Microbiome Research
NIZO: Hotspot for Microbiome Research
 
Precision in Plant Immune Expression: Not Lost in Translation
Precision in Plant Immune Expression: Not Lost in Translation Precision in Plant Immune Expression: Not Lost in Translation
Precision in Plant Immune Expression: Not Lost in Translation
 
Beyond GWAS QTL Identification and Strategies to Increase Yield
Beyond GWAS QTL Identification and Strategies to Increase YieldBeyond GWAS QTL Identification and Strategies to Increase Yield
Beyond GWAS QTL Identification and Strategies to Increase Yield
 
Information Technology Meets Synthetic Biology for Ag-Tech
Information Technology Meets Synthetic Biology for Ag-Tech Information Technology Meets Synthetic Biology for Ag-Tech
Information Technology Meets Synthetic Biology for Ag-Tech
 
From Simple to Complex – Phytobiomes and the 2050 Vision for Agriculture
From Simple to Complex – Phytobiomes and the 2050 Vision for AgricultureFrom Simple to Complex – Phytobiomes and the 2050 Vision for Agriculture
From Simple to Complex – Phytobiomes and the 2050 Vision for Agriculture
 
A Universal Genetic Switch for Increasing Plant Yields, Stress Tolerance and ...
A Universal Genetic Switch for Increasing Plant Yields, Stress Tolerance and ...A Universal Genetic Switch for Increasing Plant Yields, Stress Tolerance and ...
A Universal Genetic Switch for Increasing Plant Yields, Stress Tolerance and ...
 
Targeted Breeding Applications of CRISPR-Cas
Targeted Breeding Applications of CRISPR-CasTargeted Breeding Applications of CRISPR-Cas
Targeted Breeding Applications of CRISPR-Cas
 
Informatics in Context: Managing Sample-to-Answer Multi-Omics Workflows
Informatics in Context: Managing Sample-to-Answer Multi-Omics WorkflowsInformatics in Context: Managing Sample-to-Answer Multi-Omics Workflows
Informatics in Context: Managing Sample-to-Answer Multi-Omics Workflows
 
Prospects for Digital PCR in Absolute Quantification of DNA and RNA
Prospects for Digital PCR in Absolute Quantification of DNA and RNAProspects for Digital PCR in Absolute Quantification of DNA and RNA
Prospects for Digital PCR in Absolute Quantification of DNA and RNA
 
Challenges and Opportunities for Digital PCR in the CLIA Laboratory of the Mo...
Challenges and Opportunities for Digital PCR in the CLIA Laboratory of the Mo...Challenges and Opportunities for Digital PCR in the CLIA Laboratory of the Mo...
Challenges and Opportunities for Digital PCR in the CLIA Laboratory of the Mo...
 
Circulating Tumor DNA Detection from Heparinized Plasma Samples by Droplet Di...
Circulating Tumor DNA Detection from Heparinized Plasma Samples by Droplet Di...Circulating Tumor DNA Detection from Heparinized Plasma Samples by Droplet Di...
Circulating Tumor DNA Detection from Heparinized Plasma Samples by Droplet Di...
 
Two-Tailed PCR - New Ultrasensitive and Ultraspecific Technique for the Quant...
Two-Tailed PCR - New Ultrasensitive and Ultraspecific Technique for the Quant...Two-Tailed PCR - New Ultrasensitive and Ultraspecific Technique for the Quant...
Two-Tailed PCR - New Ultrasensitive and Ultraspecific Technique for the Quant...
 
Admix™: Custom lyophilised RT-PCR reagents for point-of-use applications
Admix™: Custom lyophilised RT-PCR reagents for point-of-use applicationsAdmix™: Custom lyophilised RT-PCR reagents for point-of-use applications
Admix™: Custom lyophilised RT-PCR reagents for point-of-use applications
 
Explaining Biocide Tolerance of Gram Negative Bacteria
Explaining Biocide Tolerance of Gram Negative Bacteria Explaining Biocide Tolerance of Gram Negative Bacteria
Explaining Biocide Tolerance of Gram Negative Bacteria
 
Optimized Design of Broadly Detecting qPCR Primers and Probes Using a Conserv...
Optimized Design of Broadly Detecting qPCR Primers and Probes Using a Conserv...Optimized Design of Broadly Detecting qPCR Primers and Probes Using a Conserv...
Optimized Design of Broadly Detecting qPCR Primers and Probes Using a Conserv...
 
MelTree: A Novel Workflow for the Automated Identification of a Large Number ...
MelTree: A Novel Workflow for the Automated Identification of a Large Number ...MelTree: A Novel Workflow for the Automated Identification of a Large Number ...
MelTree: A Novel Workflow for the Automated Identification of a Large Number ...
 
Development and Clinical Validation of Liquid ddPCR Tests for Actionable Soma...
Development and Clinical Validation of Liquid ddPCR Tests for Actionable Soma...Development and Clinical Validation of Liquid ddPCR Tests for Actionable Soma...
Development and Clinical Validation of Liquid ddPCR Tests for Actionable Soma...
 
Clinical Utility of Droplet Digital PCR on Liquid Biopsies from Patients with...
Clinical Utility of Droplet Digital PCR on Liquid Biopsies from Patients with...Clinical Utility of Droplet Digital PCR on Liquid Biopsies from Patients with...
Clinical Utility of Droplet Digital PCR on Liquid Biopsies from Patients with...
 

Recently uploaded

Phenolics: types, biosynthesis and functions.
Phenolics: types, biosynthesis and functions.Phenolics: types, biosynthesis and functions.
Phenolics: types, biosynthesis and functions.
Cherry
 
THE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptx
THE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptxTHE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptx
THE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptx
ANSARKHAN96
 
POGONATUM : morphology, anatomy, reproduction etc.
POGONATUM : morphology, anatomy, reproduction etc.POGONATUM : morphology, anatomy, reproduction etc.
POGONATUM : morphology, anatomy, reproduction etc.
Cherry
 
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
Scintica Instrumentation
 
Digital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptxDigital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptx
MohamedFarag457087
 

Recently uploaded (20)

Clean In Place(CIP).pptx .
Clean In Place(CIP).pptx                 .Clean In Place(CIP).pptx                 .
Clean In Place(CIP).pptx .
 
Early Development of Mammals (Mouse and Human).pdf
Early Development of Mammals (Mouse and Human).pdfEarly Development of Mammals (Mouse and Human).pdf
Early Development of Mammals (Mouse and Human).pdf
 
Plasmid: types, structure and functions.
Plasmid: types, structure and functions.Plasmid: types, structure and functions.
Plasmid: types, structure and functions.
 
Site specific recombination and transposition.........pdf
Site specific recombination and transposition.........pdfSite specific recombination and transposition.........pdf
Site specific recombination and transposition.........pdf
 
Site Acceptance Test .
Site Acceptance Test                    .Site Acceptance Test                    .
Site Acceptance Test .
 
Use of mutants in understanding seedling development.pptx
Use of mutants in understanding seedling development.pptxUse of mutants in understanding seedling development.pptx
Use of mutants in understanding seedling development.pptx
 
Phenolics: types, biosynthesis and functions.
Phenolics: types, biosynthesis and functions.Phenolics: types, biosynthesis and functions.
Phenolics: types, biosynthesis and functions.
 
THE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptx
THE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptxTHE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptx
THE ROLE OF BIOTECHNOLOGY IN THE ECONOMIC UPLIFT.pptx
 
POGONATUM : morphology, anatomy, reproduction etc.
POGONATUM : morphology, anatomy, reproduction etc.POGONATUM : morphology, anatomy, reproduction etc.
POGONATUM : morphology, anatomy, reproduction etc.
 
PATNA CALL GIRLS 8617370543 LOW PRICE ESCORT SERVICE
PATNA CALL GIRLS 8617370543 LOW PRICE ESCORT SERVICEPATNA CALL GIRLS 8617370543 LOW PRICE ESCORT SERVICE
PATNA CALL GIRLS 8617370543 LOW PRICE ESCORT SERVICE
 
Dr. E. Muralinath_ Blood indices_clinical aspects
Dr. E. Muralinath_ Blood indices_clinical  aspectsDr. E. Muralinath_ Blood indices_clinical  aspects
Dr. E. Muralinath_ Blood indices_clinical aspects
 
Thyroid Physiology_Dr.E. Muralinath_ Associate Professor
Thyroid Physiology_Dr.E. Muralinath_ Associate ProfessorThyroid Physiology_Dr.E. Muralinath_ Associate Professor
Thyroid Physiology_Dr.E. Muralinath_ Associate Professor
 
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
 
Concept of gene and Complementation test.pdf
Concept of gene and Complementation test.pdfConcept of gene and Complementation test.pdf
Concept of gene and Complementation test.pdf
 
Terpineol and it's characterization pptx
Terpineol and it's characterization pptxTerpineol and it's characterization pptx
Terpineol and it's characterization pptx
 
GBSN - Microbiology (Unit 3)Defense Mechanism of the body
GBSN - Microbiology (Unit 3)Defense Mechanism of the body GBSN - Microbiology (Unit 3)Defense Mechanism of the body
GBSN - Microbiology (Unit 3)Defense Mechanism of the body
 
FS P2 COMBO MSTA LAST PUSH past exam papers.
FS P2 COMBO MSTA LAST PUSH past exam papers.FS P2 COMBO MSTA LAST PUSH past exam papers.
FS P2 COMBO MSTA LAST PUSH past exam papers.
 
Digital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptxDigital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptx
 
Kanchipuram Escorts 🥰 8617370543 Call Girls Offer VIP Hot Girls
Kanchipuram Escorts 🥰 8617370543 Call Girls Offer VIP Hot GirlsKanchipuram Escorts 🥰 8617370543 Call Girls Offer VIP Hot Girls
Kanchipuram Escorts 🥰 8617370543 Call Girls Offer VIP Hot Girls
 
module for grade 9 for distance learning
module for grade 9 for distance learningmodule for grade 9 for distance learning
module for grade 9 for distance learning
 

Discordance Between Replicate qPCR Reactions

  • 1. Medical BiologyRuijter et al, London, December 2017 Discordance between replicate qPCR reactions Jan M Ruijter Department of Medical Biology Academic Medical Center Amsterdam, the Netherlands
  • 2. Medical BiologyRuijter et al, London, December 2017 qPCR data N N En 0 n = number of PCR cycles start concentration PCR product after n cycles Efficiency (1-2; 2=100%) 20 21 22 23 1 2 2 4 cycles N 0 1 3 8 etc. PCR Efficiency = fold increase per cycle
  • 3. Medical BiologyRuijter et al, London, December 2017 0.00000001 0.0000001 0.000001 0.00001 0.0001 0.001 0.01 0.1 1 10 100 0 5 10 15 20 25 30 35 40 Amplification Curve Nn 𝑁𝑐 = 𝑁0 𝐸 𝐶
  • 4. Medical BiologyRuijter et al, London, December 2017 0.00000001 0.0000001 0.000001 0.00001 0.0001 0.001 0.01 0.1 1 10 100 0 5 10 15 20 25 30 35 40 qPCR Analysis Principle Nq Cq Nn 𝑁𝑐 = 𝑁0 𝐸 𝐶
  • 5. Medical BiologyRuijter et al, London, December 2017 0.00000001 0.0000001 0.000001 0.00001 0.0001 0.001 0.01 0.1 1 10 100 0 5 10 15 20 25 30 35 40 Nn qPCR Analysis Principle Nq Cq 𝑁𝑞 = 𝑁0 𝐸 𝑪 𝒒𝑁0 = Τ𝑁𝑞 𝐸 𝐶 𝑞
  • 6. Medical BiologyRuijter et al, London, December 2017 0.00000001 0.0000001 0.000001 0.00001 0.0001 0.001 0.01 0.1 1 10 100 0 5 10 15 20 25 30 35 40 Nn qPCR Amplification curve analysis 𝑁𝑞 = 𝑁0 𝐸 𝑪 𝒒𝑁0 = Τ𝑁𝑞 𝐸 𝐶 𝑞 Slope = log(E) ↓ Eindiv = 10slope ↓ Emean per target mean without standard curve MIC Data analysis based on LinRegPCR
  • 7. Medical BiologyRuijter et al, London, December 2017 Relative Quantification Target Gene 𝑅𝑎𝑡𝑖𝑜 = Τ𝑁0,𝑇 𝑔𝑒𝑜𝑚𝑒𝑎𝑛(𝑁0,𝑅𝑠) Reference Genes 𝑁0,𝑇 = Τ𝑁𝑞 𝐸 𝑇 𝐶 𝑞,𝑇 𝑁0,𝑅 = Τ𝑁𝑞 𝐸 𝑅 𝐶 𝑞,𝑅 𝑅𝑎𝑡𝑖𝑜 𝐶𝑅𝑎𝑡𝑖𝑜 𝑇𝑟 𝐹𝑜𝑙𝑑 = Τ𝑅𝑎𝑡𝑖𝑜 𝑇𝑟 𝑅𝑎𝑡𝑖𝑜 𝐶 𝐹𝑜𝑙𝑑 = 𝐸 𝑅 𝐶 𝑞,𝑅,𝑇𝑟−𝐶 𝑞,𝑅,𝐶 /𝐸 𝑇 𝐶 𝑞,𝑇,𝑇𝑟−𝐶 𝑞,𝑇,𝐶 normalization: correct for sample size, composition, processing Treated tissue Control tissue ‘treatment effect' combined Pfaffl (2001)
  • 8. Medical BiologyRuijter et al, London, December 2017 Efficiency corrected relative quantification 𝐹𝑜𝑙𝑑 = 𝐸 𝑅 𝐶 𝑞,𝑅,𝑇𝑟−𝐶 𝑞,𝑅,𝐶 /𝐸 𝑇 𝐶 𝑞,𝑇,𝑇𝑟−𝐶 𝑞,𝑇,𝐶 Pfaffl (2001)
  • 9. Medical BiologyRuijter et al, London, December 2017 Efficiency corrected relative quantification 𝐹𝑜𝑙𝑑 = 2−DD 𝐶 𝑞 𝐹𝑜𝑙𝑑 = 𝐸 𝑅 𝐶 𝑞,𝑅,𝑇𝑟−𝐶 𝑞,𝑅,𝐶 /𝐸 𝑇 𝐶 𝑞,𝑇,𝑇𝑟−𝐶 𝑞,𝑇,𝐶 Assumes ET = ER = 2
  • 10. Medical BiologyRuijter et al, London, December 2017 Efficiency corrected relative quantification 𝐹𝑜𝑙𝑑 = 2−DD 𝐶 𝑞 𝐹𝑜𝑙𝑑 = 𝐸 𝑅 𝐶 𝑞,𝑅,𝑇𝑟−𝐶 𝑞,𝑅,𝐶 /𝐸 𝑇 𝐶 𝑞,𝑇,𝑇𝑟−𝐶 𝑞,𝑇,𝐶 Assumes ET = ER = 2 Uses ET and ER
  • 11. Medical BiologyRuijter et al, London, December 2017 Efficiency corrected relative quantification 𝐹𝑜𝑙𝑑 = 2−DD 𝐶 𝑞 𝐹𝑜𝑙𝑑 = 𝐸 𝑅 𝐶 𝑞,𝑅,𝑇𝑟−𝐶 𝑞,𝑅,𝐶 /𝐸 𝑇 𝐶 𝑞,𝑇,𝑇𝑟−𝐶 𝑞,𝑇,𝐶
  • 12. Medical BiologyRuijter et al, London, December 2017 Efficiency corrected relative quantification 𝐹𝑜𝑙𝑑 = 2−DD 𝐶 𝑞 𝐹𝑜𝑙𝑑 = 𝐸 𝑅 𝐶 𝑞,𝑅,𝑇𝑟−𝐶 𝑞,𝑅,𝐶 /𝐸 𝑇 𝐶 𝑞,𝑇,𝑇𝑟−𝐶 𝑞,𝑇,𝐶
  • 13. Medical BiologyRuijter et al, London, December 2017 Efficiency corrected relative quantification 0 10 20 30 40 50 60 70 80 432143214321 321 Treatment/Control target treatment Efficiency per target
  • 14. Medical BiologyRuijter et al, London, December 2017 Efficiency corrected relative quantification 0 10 20 30 40 50 60 70 80 432143214321 321 Treatment/Control target treatment Efficiency per target
  • 15. Medical BiologyRuijter et al, London, December 2017 Efficiency corrected relative quantification 𝐹𝑜𝑙𝑑 = 2−DD 𝐶 𝑞 𝐹𝑜𝑙𝑑 = 𝐸 𝑅 𝐶 𝑞,𝑅,𝑇𝑟−𝐶 𝑞,𝑅,𝐶 /𝐸 𝑇 𝐶 𝑞,𝑇,𝑇𝑟−𝐶 𝑞,𝑇,𝐶 Assumes ET = ER = 2
  • 16. Medical BiologyRuijter et al, London, December 2017 Efficiency corrected relative quantification 0 10 20 30 40 50 60 70 80 432143214321 321 Treatment/Control target treatment Efficiency per target Efficiency = 2 (100%)
  • 17. Medical BiologyRuijter et al, London, December 2017 Efficiency corrected relative quantification 0 10 20 30 40 50 60 70 80 432143214321 321 Treatment/Control target treatment Efficiency per target Efficiency = 2 (100%) https://www.qbaseplus.com/knowledge/blog/why-pcr-amplification-efficiency-still-ignored
  • 18. Medical BiologyRuijter et al, London, December 2017 qPCR: Data and Analysis 𝑁𝑐 = 𝑁0 𝐸 𝐶 𝑁0 = Τ𝑁𝑞 𝐸 𝐶 𝑞
  • 19. Medical BiologyRuijter et al, London, December 2017 qPCR: Data and Analysis 𝑁𝑐 = 𝑁0 𝐸 𝐶 𝑁0 = Τ𝑁𝑞 𝐸 𝐶 𝑞
  • 20. Medical BiologyRuijter et al, London, December 2017 Example data Validation of miRNA biomarkers for heart failure • 834 patients • 12 miRNA targets 10008 measurements • technical duplicates 20016 reactions 1 cycle difference between replicates
  • 21. Medical BiologyRuijter et al, London, December 2017 Discordant Cq values between replicates Step 57 Examine replicates. All replicates should be within 0.5 cycles of each other. At low Cq the tolerance should be lower than at high Cq. Above cycle 35 the variability will be greater and quantification may be unreliable. Nolan et al. (2006)
  • 22. Medical BiologyRuijter et al, London, December 2017 Discordant Cq values between replicates Validation of miRNA biomarkers for heart failure • 834 patients • 12 miRNA targets 10008 measurements • technical duplicates 20016 reactions 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 0 200 400 600 800 1000 1200 <25 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 ≥40 Frequency mean Cq per measurement
  • 23. Medical BiologyRuijter et al, London, December 2017 Discordant Cq values between replicates Validation of miRNA biomarkers for heart failure • 834 patients • 12 miRNA targets 10008 measurements • technical duplicates 20016 reactions 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 0 200 400 600 800 1000 1200 <25 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 ≥40 Frequency mean Cq per measurement Diff Cq > 0.5
  • 24. Medical BiologyRuijter et al, London, December 2017 Discordant Cq values between replicates Validation of miRNA biomarkers for heart failure • 834 patients • 12 miRNA targets 10008 measurements • technical duplicates 20016 reactions 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 0 200 400 600 800 1000 1200 <25 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 ≥40 Frequency mean Cq per measurement Diff Cq > 0.5
  • 25. Medical BiologyRuijter et al, London, December 2017 Exclusion of discordant replicates 0 2000 4000 6000 8000 10000 <25 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 ≥40 numberofmeasurements Cq value Cq <0.5 total n 39% rejected
  • 26. Medical BiologyRuijter et al, London, December 2017 Causes of variation between replicates Technical replicates differ because of • Threshold level • Pipetting error • Sampling error
  • 27. Medical BiologyRuijter et al, London, December 2017 1 0.1 0.01 0.001 0.0001 Dilution 0.001 0.01 0.1 1 10 10 20 30 Cycle Fluorescence 5 10 15 20 25 30 35 Cq (mean ± SD per dilution) Nq Less Cq variance with high threshold Ruijter et al. Nucleic Acids Res, 2009
  • 28. Medical BiologyRuijter et al, London, December 2017 Pipetting error in replicates 𝑁𝑞 = 𝑁0 𝐸 𝐶 𝑞 𝐶 𝑞 = 𝐿𝑜𝑔 𝑁𝑞 − 𝐿𝑜𝑔 𝑁0 𝐿𝑜𝑔(𝐸) 𝐶 𝑞,𝑟𝑎𝑛𝑔𝑒 = 𝐿𝑜𝑔(1 + 𝑃) − 𝐿𝑜𝑔(1 − 𝑃) 𝐿𝑜𝑔(𝐸) Cq range = Cq,low input – Cq,high input 1 − 𝑃 𝑁0 1 + 𝑃 𝑁0 Pipetting error: P Cq range is independent of Nq and N0
  • 29. Medical BiologyRuijter et al, London, December 2017 Pipetting error in replicates 30.5 31.0 31.5 32.0 0% 5% 10% 15% 20% 25% Cq pipetting error 1 − 𝑃 𝑁0 1 + 𝑃 𝑁0 De Ronde et al. RNA 23: 811-821, 2017 pipetting error of 15% causes a Cq difference of 0.5 cycles
  • 30. Medical BiologyRuijter et al, London, December 2017 Pipetting error in replicates 30.5 31.0 31.5 32.0 0% 5% 10% 15% 20% 25% Cq pipetting error De Ronde et al. RNA 23: 811-821, 2017 1 − 𝑃 𝑁0 1 + 𝑃 𝑁0 pipetting error of 15% causes a Cq difference of 0.5 cycles NO reason to relax the 0.5 cycles criterion
  • 31. Medical BiologyRuijter et al, London, December 2017 Sampling error variation source: Poisson effect 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0 2 4 6 8 10 12 14 16 18 20 probability copy number in reaction (N0) 4 2 10 copies in input
  • 32. Medical BiologyRuijter et al, London, December 2017 Sampling error Sampling error in N0 gives a range in Cq variation source: Poisson effect 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0 2 4 6 8 10 12 14 16 18 20 probability copy number in reaction (N0) 4 2 10 copies in input
  • 33. Medical BiologyRuijter et al, London, December 2017 1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08 1.E+09 1.E+10 1.E+11 1.E+12 0 5 10 15 20 25 30 35 40 target primer Relation of N0 and Cq Primer concentration: 1 pmol = 6.1011 molecules rule of thumb: 10 copies in reaction gives Cq of about 35 exponential phase ends at ±35 cycles 10 De Ronde et al. RNA 23: 811-821, 2017 Competition gives loss of PCR efficiency
  • 34. Medical BiologyRuijter et al, London, December 2017 For each Cq: • Calculate N0 • Determine range of N0 because of Poisson effect: Relation of N0 and Cq 𝑁𝑞 = 𝑁0 𝐸 𝐶 𝑞 𝑁𝑞 = 10𝐸35 𝑁0 = 10𝐸(35−𝐶 𝑞) copies 1 2  0.025;2𝑁 2 ≤ 𝑁0 ≤ 1 2  0.975;2𝑁+2 2 rule of thumb: 10 copies in reaction gives Cq of about 35 For each Cq: • Calculate N0
  • 35. Medical BiologyRuijter et al, London, December 2017 Relation of N0 and Cq 1E-08 0.0000001 0.000001 0.00001 0.0001 0.001 0.01 0 5 10 1 2  0.025;2𝑁 2 ≤ 𝑁0 ≤ 1 2  0.975;2𝑁+2 2 10 103 102 Range of N because of Poisson effect:
  • 36. Medical BiologyRuijter et al, London, December 2017 Relation of N0 and Cq 1E-08 0.0000001 0.000001 0.00001 0.0001 0.001 0.01 0 5 10 1 2  0.025;2𝑁 2 ≤ 𝑁0 ≤ 1 2  0.975;2𝑁+2 2 10 103 102 Range of N because of Poisson effect:
  • 37. Medical BiologyRuijter et al, London, December 2017 Relation of N0 and Cq 1E-08 0.0000001 0.000001 0.00001 0.0001 0.001 0.01 0 5 10 10 103 102 1 2  0.025;2𝑁 2 ≤ 𝑁0 ≤ 1 2  0.975;2𝑁+2 2 Range of N because of Poisson effect:
  • 38. Medical BiologyRuijter et al, London, December 2017 Relation of N0 and Cq 0.1 1 10 100 1000 10000 0 5 10 15 20 25 30 35 40 45 l m u l m u l m u Nq-Cq 1E-08 0.0000001 0.000001 0.00001 0.0001 0.001 0.01 0 5 10 Poisson effect causes an unavoidable range in Cq values 10 103 102 𝑁𝑞 = 10𝐸35
  • 39. Medical BiologyRuijter et al, London, December 2017 Expected range in Cq values 0.1 1 10 100 1000 10000 0 5 10 15 20 25 30 35 40 45 l m u l m u l m u Nq-Cq Poisson effect causes an unavoidable range in Cq values Acceptable Cq range depends on PCR efficiency and Cq 1E-08 0.0000001 0.000001 0.00001 0.0001 0.001 0.01 0 5 10 10 103 102
  • 40. Medical BiologyRuijter et al, London, December 2017 Acceptable Cq range De Ronde et al. RNA 23: 811-821, 2017
  • 41. Medical BiologyRuijter et al, London, December 2017 Application of acceptable Cq range 0 2000 4000 6000 8000 10000 <25 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 ≥40 numberofmeasurements Cq value Cq <0.5 total n 61% included
  • 42. Medical BiologyRuijter et al, London, December 2017 Application of acceptable Cq range 0 2000 4000 6000 8000 10000 <25 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 ≥40 numberofmeasurements Cq value Cq <0.5 Cq acceptable total n leads to rescue of 32% of the reactions 93% included
  • 43. Medical BiologyRuijter et al, London, December 2017 Application of acceptable Cq range 2.E-13 2.E-12 2.E-11 2.E-10 2.E-09 2.E-08 0 1 2 3 4 5 6 7 8 9 10 11 12 13 Excluded Cq >0.5 Excluded Cq not acceptable 0 2 4 6 8 10 12 14 miR-320 miR-22-3p miR-622 miR-133b miR-1306 miR-1254 miR-345-5p miR-423-5p miR-133a miR-378 miR-499 miR-208a miRNA miRN 10 100 1000 1 N0(copies±95%CI) Diff Cq > 0.5 excluded
  • 44. Medical BiologyRuijter et al, London, December 2017 Application of acceptable Cq range leads to increased sensitivity and precision 2.E-13 2.E-12 2.E-11 2.E-10 2.E-09 2.E-08 0 1 2 3 4 5 6 7 8 9 10 11 12 13 Excluded Cq >0.5 Excluded Cq not acceptable 0 2 4 6 8 10 12 14 miR-320 miR-22-3p miR-622 miR-133b miR-1306 miR-1254 miR-345-5p miR-423-5p miR-133a miR-378 miR-499 miR-208a miRNA miRN 10 100 1000 1 Diff Cq > 0.5 excluded Unaccept Diff Cq excluded N0(copies±95%CI)
  • 45. Medical BiologyRuijter et al, London, December 2017 Example data Validation of miRNA biomarkers for heart failure • 834 patients • 12 miRNA targets 10008 measurements • technical duplicates 20016 reactions no amplification no Cq
  • 46. Medical BiologyRuijter et al, London, December 2017 Efficiency-corrected relative quantification 𝐹𝑜𝑙𝑑 = 𝐸 𝑅 𝐶 𝑞,𝑅,𝑇𝑟−𝐶 𝑞,𝑅,𝐶 /𝐸 𝑇 𝐶 𝑞,𝑇,𝑇𝑟−𝐶 𝑞,𝑇,𝐶 𝐹𝑜𝑙𝑑 = 2−DD 𝐶 𝑞 no amplification no Cq
  • 47. Medical BiologyRuijter et al, London, December 2017 Substitution of missing Cq values Common approach: Substitute missing Cq with the number of cycles 𝐹𝑜𝑙𝑑 = 𝐸 𝑅 𝐶 𝑞,𝑅,𝑇𝑟−𝐶 𝑞,𝑅,𝐶 /𝐸 𝑇 𝐶 𝑞,𝑇,𝑇𝑟−𝐶 𝑞,𝑇,𝐶 𝐹𝑜𝑙𝑑 = 2−DD 𝐶 𝑞
  • 48. Medical BiologyRuijter et al, London, December 2017 Substitution of missing Cq values Common approach: Substitute missing Cq with the number of cycles 𝐹𝑜𝑙𝑑 = 𝐸 𝑅 𝐶 𝑞,𝑅,𝑇𝑟−𝐶 𝑞,𝑅,𝐶 /𝐸 𝑇 𝐶 𝑞,𝑇,𝑇𝑟−𝐶 𝑞,𝑇,𝐶 𝑁𝑞 = 𝑁0 𝐸 𝐶 𝑞 𝑁𝑞 = 10𝐸35 rule of thumb: 10 copies in reaction gives Cq of about 35 𝑁0 = 10𝐸(35−𝐶 𝑞) copies
  • 49. Medical BiologyRuijter et al, London, December 2017 Substitution of missing Cq values Common approach: Substitute missing Cq with the number of cycles 𝐹𝑜𝑙𝑑 = 𝐸 𝑅 𝐶 𝑞,𝑅,𝑇𝑟−𝐶 𝑞,𝑅,𝐶 /𝐸 𝑇 𝐶 𝑞,𝑇,𝑇𝑟−𝐶 𝑞,𝑇,𝐶 𝑁𝑞 = 𝑁0 𝐸 𝐶 𝑞 𝑁𝑞 = 10𝐸35 rule of thumb: 10 copies in reaction gives Cq of about 35 𝑁0 = 10 × 1.8(35−45)
  • 50. Medical BiologyRuijter et al, London, December 2017 Substitution of missing Cq values Common approach: Substitute missing Cq with the number of cycles 𝐹𝑜𝑙𝑑 = 𝐸 𝑅 𝐶 𝑞,𝑅,𝑇𝑟−𝐶 𝑞,𝑅,𝐶 /𝐸 𝑇 𝐶 𝑞,𝑇,𝑇𝑟−𝐶 𝑞,𝑇,𝐶 𝑁𝑞 = 𝑁0 𝐸 𝐶 𝑞 𝑁𝑞 = 10𝐸35 𝑁0 = 10 × 1.8(35−45) = 0.03 copies rule of thumb: 10 copies in reaction gives Cq of about 35
  • 51. Medical BiologyRuijter et al, London, December 2017 Substitution of missing Cq values Proposed approach: Substitute missing Cq with maximum observed Cq +1 per target 𝐹𝑜𝑙𝑑 = 𝐸 𝑅 𝐶 𝑞,𝑅,𝑇𝑟−𝐶 𝑞,𝑅,𝐶 /𝐸 𝑇 𝐶 𝑞,𝑇,𝑇𝑟−𝐶 𝑞,𝑇,𝐶 maximum Cq max Cq + 1 miR-320 35.38 36.38 miR-22-3p 39.32 40.32 𝑁0 = 10 × 1.8(35−40.32) = 0.41 copies De Ronde et al. RNA 23: 811-821, 2017
  • 52. Medical BiologyRuijter et al, London, December 2017 Substitution of missing Cq values 2.E-13 2.E-12 2.E-11 2.E-10 2.E-09 2.E-08 1 2 3 4 5 6 7 8 9 10 11 12 13 Excluded Cq > 0.5 Excluded Cq not acceptable Missing Cq substituted 0 2 4 6 8 10 12 14 miR-320 miR-22-3p miR-622 miR-133b miR-1306 miR-1254 miR-345-5p miR-423-5p miR-133a miR-378 miR-499 miR-208a miRNA m 10 100 1000 1 N0(copies±95%CI) Diff Cq > 0.5 excluded Unaccept Diff Cq excl Missing Cq substituted (6% of reactions)
  • 53. Medical BiologyRuijter et al, London, December 2017 Substitution of missing Cq values 2.E-13 2.E-12 2.E-11 2.E-10 2.E-09 2.E-08 1 2 3 4 5 6 7 8 9 10 11 12 13 Excluded Cq > 0.5 Excluded Cq not acceptable Missing Cq substituted 0 2 4 6 8 10 12 14 miR-320 miR-22-3p miR-622 miR-133b miR-1306 miR-1254 miR-345-5p miR-423-5p miR-133a miR-378 miR-499 miR-208a miRNA m 10 100 1000 1 N0(copies±95%CI) Diff Cq > 0.5 excluded Unaccept Diff Cq excl Missing Cq substituted (6% of reactions)
  • 54. Medical BiologyRuijter et al, London, December 2017 Reference / Acknowledgement De Ronde et al. RNA 23: 811-821, 2017 https://www.qbaseplus.com/knowledge/blog/why-pcr-amplification-efficiency-still-ignored
  • 55. Medical BiologyRuijter et al, London, December 2017
  • 56. Medical BiologyRuijter et al, London, December 2017 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0 2 4 6 8 10 12 14 16 18 20 number in reaction probability copies in input 10 Limit of quantification (LOQ) Input in reaction is determined by Poisson distribution 10 copies input results in CV of ~30% SD=3.3 Shipley. in PCR Technology: Current Innovations 2013
  • 57. Medical BiologyRuijter et al, London, December 2017 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0 2 4 6 8 10 12 14 16 18 20 number in reaction probability copies in input 10 3 Limit of detection (LOD) Input in reaction is determined by Poisson distribution 3 copies input will show amplification in only 95% of the reactions Shipley. in PCR Technology: Current Innovations 2013