SlideShare a Scribd company logo
1 of 67
FEA Theory -1-
Section 2: Finite Element Analysis Theory
1. Method of Weighted Residuals
2. Calculus of Variations
Two distinct ways to develop the underlying
equations of FEA!
FEA Theory -2-
Section 2: FEA Theory
 Some definitions:
•V = volume of object
•A = surface area
= Au + As
•Au = surface of known
displacements
•As = surface of known stresses
•b = body force
•t = surface stresses (tractions)
   
 
 
 
, ,
, , ; , , .
, ,
u x y z
x y z v x y z
w x y z
 
 
   
 
 
x u x
FEA Theory -3-
 A group of methods that take governing
equations in the strong form and turn them into
(related) statements in the weak form.
 Applicable to a wide class of problems
(elasticity, heat conduction, mass flow, …).
 A “purely mathematical” concept.
Section 2.1: Weighted Residual Methods
FEA Theory -4-
2.1: Weighted residual methods (cont.)
 Need to write the equilibrium equations and boundary
conditions in an abstract form as follows:
 
 
  
 
 
0
0
0 ,
0
on
.
ˆ on
xy
x xz
x
xy y yz
y
yz
xz z
z
u
b
x y z
b
x y z
b
x y z
A
As

s 
 s 

 s
 
 
    
   

   
     

   


 
    
   

  
 

  
E u x 0
u u 0
B u x 0
σ n t 0
Solve these for u(x)!
FEA Theory -5-
2.1: Weighted residual methods (cont.)
 Let be the exact solution to the problem
(differential equation and boundary conditions)
 Then, for any choice of vectors W and W’:
 
exact
u x
 
 
 
 
in !
on !
exact
exact
everywhere V
everywhere A
 

E u x 0
B u x 0
 
 
 
 
0 in !
0 on !
exact
exact
everywhere V
everywhere A

 
W E u x
W B u x
FEA Theory -6-
2.1: Weighted residual methods (cont.)
 Integrate these “results” over the entire volume
and surface:
 Previous expression is still true if W and W’ are
functions of x (called weighting functions):
 
   
  0
exact exact
V A
dV dA

 
 
W E u x W B u x
 
 
 
 
 
 
 
 
   
     
 
1 1
2 2
3 3
, , , ,
, , , , ,
, , , ,
0
exact exact
V A
W x y z W x y z
W x y z W x y z
W x y z W x y z
dV dA

   
   
 
 
   
   

   

  
 
W x W x
W x E u x W x B u x
FEA Theory -7-
 Now, consider an approximate solution to the
same problem:
 Matrix/vector form of this:
2.1: Weighted residual methods (cont.)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11 12 1
1 21 2 22 n 2
31 32 3
, , , , , , , , , ,
, , a * , , a * , , a * , , , ,
, , , , , , , , , ,
approx n exact
approx n exact
approx n exact
u x y z N x y z N x y z N x y z u x y z
v x y z N x y z N x y z N x y z v x y z
w x y z N x y z N x y z N x y z w x y z
        
        
    
        
     
 
      
 
     
1
.
a
n
approx k k exact
k



 

  

u x N x u x
Known functions
Unknown constants
 
 
 
     
     
     
1
11 12 1
2
21 22 2
31 32 3
n
unknowns
a
, , , , , , , ,
a
, , , , , , , ,
, , , , , , , ,
a
known functions
approx n exact
approx n
approx n
u x y z N x y z N x y z N x y z u
v x y z N x y z N x y z N x y z
w x y z N x y z N x y z N x y z
 
     
     
 
     
     
 
 
 
 
 
 
       
, ,
, , .
, ,
exact
exact
approx exact
x y z
v x y z
w x y z
 
 
 
 
 
    
 
u x N x a u x
FEA Theory -8-
2.1: Weighted residual methods (cont.)
 Plugging this approximate solution into the
differential equation and boundary conditions
results in some errors, called the residuals.
 Repeating the previous process now gives us an
integral close to but not exactly equal to zero!
         
, , 0 .
E B
V A
I dV dA

  
 
a W x R x a W x R x a
   
 
   
 
, in !
, on !
E approx
B approx
V
A
 
 
R x a E u x 0
R x a B u x 0
FEA Theory -9-
2.1: Weighted residual methods (cont.)
 Goal: Find the value of a that makes this integral
as close as possible to zero – “best approximation”.
 Idea: for n different choices of the weighting
functions, derive an equation for a by requiring
that the above integral equal zero:
 Solve these equations for a!
         
         
   
1 1 1
2 2 2
Equation #1: , , 0 .
Equation #2: , , 0 .
Equation #n:
E B
V A
E B
V A
n n E
I dV dA
I dV dA
I

  

  

 
 
a W x R x a W x R x a
a W x R x a W x R x a
a W x R x
     
, , 0 .
n B
V A
dV dA

 
 
a W x R x a
FEA Theory -10-
2.1: Weighted residual methods (cont.)
 Notes on weighted residual methods:
 It is typical (but not required) to assume that the
known functions satisfy the displacement boundary
conditions exactly on Au. (Essential conditions)
 In some methods, one must integrate the volume
integral by parts to get “appropriate” equations.
 Different methods result from different ideas about
how to choose the weighting functions.
         
, , 0 , 1,2, , .
k k E k B
V A
I dV dA k n
s

   
 
a W x R x a W x R x a
FEA Theory -11-
2.1: Weighted residual methods (cont.)
1.Collocation Method:
 Assume only one PDE and one BC to solve!
 Idea: pick n points in object
(at least one in V and one
on A) and require residual
to be zero at each point!
       
, , ; , , .
E E B B
R R
 
R x a x a R x a x a
 
 
 
, =0, 1,2, , .
, =0, 1,2, , .
.
E i V
B j A
V A
R i n
R j n
n n n


 
x a
x a
FEA Theory -12-
2.1: Weighted residual methods (cont.)
2. Subdomain Method:
 Assume only one PDE and one BC to solve!
 Divide object up into n distinct regions (at least one
in V and one on A).
 Require integral over
each region to be zero.
       
, , ; , , .
E E B B
R R
 
R x a x a R x a x a
   
   
 
, 0, 1,2, ,
, 0, 1,2, , .
.
i
j
i E V
V
j B A
A
V A
I R dV i n
I R dA j n
n n n
  
  
 


a x a
a x a
FEA Theory -13-
2.1: Weighted residual methods (cont.)
 Notes on collocation and subdomain methods:
 Weighting functions for collocation method are the Dirac
delta functions:
 Weighting functions for subdomain method are the
indicator functions:
 Advantage: Simple to formulate.
 Disadvantage: Used mostly for problems with only one
governing equation (axial bar, beam, heat,…).
       
, 1,2, , . , 1,2, , .
i i V j j A
i n j n
 

     
W x x x W x x x
   
1 if
1 if
, 1,2, , . , 1,2, , .
0 if
0 if
j j
i i
i V j A
i j
i i
A
V
i n j n
A
V

 


   
 


 
x
x
W x W x
x
x
FEA Theory -14-
2.1: Weighted residual methods (cont.)
3. Least Squares Method:
 Considers magnitude of residual over the object.
 Finds minimum by setting derivatives to zero
         
, , , , 0.
LS E E B B
V A
I dV dA
s

  
 
a R x a R x a R x a R x a
 
 
       
k k k
, , , , 0 .
a a a
LS E B
k E B
V A
I
I dV dA
s

  
   
  
 
a R R
a x a R x a x a R x a
 
 W x  

 W x
FEA Theory -15-
2.1: Weighted residual methods (cont.)
4.Galerkin’s Method:
 Idea: Project residual of differential equation
onto original approximating functions!
 To get W’, must integrate any derivatives in
volume integral by parts!
 
 
 
k
, 1,2, , .
a
approx
k k k n

  

u x
W x N x
     
   
, ,
, ,
Let , , , ;
, , . (Assume derivative involves .)
E E deriv E noderiv
E deriv E deriv dx x
 
 
R x a R x a R x a
R x a R x a
FEA Theory -16-
2.1: Weighted residual methods (cont.)
 Must use integrated-by-parts version of !
       
 
 
   
,
Introduces the boundary conditions!
,
,
, ,
,
,
k E k E deriv x
V A
k
E deriv
V
k E noderiv
V
k
dV n dA
dV
x
dV
I
 





 


N x R x a N x R x a
N x
R x a
N x R x a
     
, 0 , 1,2, , .
k E
V
dV k n
  

a N x R x a
 
k
I a
FEA Theory -17-
2.1: Weighted residual methods (cont.)
 Notes on least square and Galerkin methods:
 More widely used than collocation and subdomain,
since they are truly global methods.
 For least squares method:
 Equations to solve for a are always symmetric but tend
to be ill-conditioned.
 Approximate solution needs to be very smooth.
 For Galerkin’s method:
 Equations to solve for a are usually symmetric but much
more “robust”.
 Integrating by parts produces “less smooth” version of
approximate solution; more useful for FEA!
FEA Theory -18-
2.1: Weighted residual methods (cont.)
 Example: 1D Axial Rod “dynamics”
 Given: Axial rod has constant density ρ, area A, length L, and spins at
constant rate ω. It is pinned at x = 0 and has applied force -F at x = L. The
governing equation and boundary conditions for the steady-state rotation of
the rod are:
 Required: Using each of the four weighted residual methods and the
approximate solution , estimate the displacement of the rod.
   
2
2
2
0 for 0 ;
0 0; .
d u
E x x L
dx
du F
u x E x L
dx A

   
    
  2
1 2
u x a x a x
 
FEA Theory -19-
2.1: Weighted residual methods (cont.)
 Some preliminaries:
 Problem has an exact solution given by
 Approximate solution satisfies essential boundary
condition u(x = 0) = 0.
 Two unknown constants → n = 2.
 Notation:
       
 
2 2
3
1 1
2 6
* ; .
x x x
o o
L L L
FL A L
u x u u
EA F
 
 
 
    
 
     
   
2
2
2
0 ; 0 ; .
; .
u
V x L A x A x L
d u du F
E x E
dx dx A
s

      
   
E u B u
FEA Theory -20-
2.1: Weighted residual methods (cont.)
 Solution:
1. Collocation Method --
 Since n=2, have two collocation points. One must be at
x = L (must have one on As). Assume other at x = L/3.
 Equation #1: evaluate residual of E(u) at x = L/3:
 Equation #2: evaluate residual of B(u) at x = L:
   
2
2 2 2
1 2 2
2
2
1
3
2
, a a 2 a .
Equation #1 is: 2 a 0.
E approx
d
R x E x x x E x
dx
E L
 

 
     
 
  
a E u
    2
1 2 1 2
1 2
, a a a 2 a .
Equation #1 is: a 2 a 0.
B approx
d F F
R x E x x E E x
dx A A
F
E E L
A
 
      
 
   
a B u
FEA Theory -21-
2.1: Weighted residual methods (cont.)
 Solution:
1. Collocation Method --
 Solve simultaneous equations:
 Plot results:
       
 
2 2 2
2
1 1
3 6
1 2
a + ; a * .
3 6
x x x
L L L
approx o
F L L
u x u
EA E E
 
  
       
 
FEA Theory -22-
2.1: Weighted residual methods (cont.)
 Solution:
2. Subdomain Method --
 Since n=2, have two subdomains. One must be at
x = L (= As). Other must be 0 < x < L (= V).
 Equation #1: integrate residual of E(u) over V:
 Equation #2: evaluate residual of B(u) at x = L:
     
2 2 2 2
1
2
2 1 2 2
0
2 2
1
2
2
, 2 a 2 a 2 a .
Equation #1 is: 2 a 0.
L
E
R x E x I E x dx EL L
EL L
  

      
  

a a
    2
1 2 1 2
1 2
, a a a 2 a .
Equation #1 is: a 2 a 0.
B approx
d F F
R x E x x E E x
dx A A
F
E E L
A
 
      
 
   
a B u
FEA Theory -23-
2.1: Weighted residual methods (cont.)
 Solution:
2. Subdomain Method --
 Solve simultaneous equations:
 Plot results:
       
 
2 2 2
2
1 1
2 4
1 2
a + ; a * .
2 4
x x x
L L L
approx o
F L L
u x u
EA E E
 
  
       
 
FEA Theory -24-
2.1: Weighted residual methods (cont.)
 Solution:
3. Least Squares Method --
 For dimensional equality, take in ILS(a). Once again,
the “integral” over As is just evaluation at x = L.
 Equation #1: take derivative with respect to a1:
     
2
2 1 2
1 1 1 1
1 2 1 2
, 2 a 0; , a 2 a .
a a a a
Equation #1 is: a 2 a a 2 a 0.
E B
x L
R R F
x E x x E E x E
A
E F E F
E E x E E L
L A L A


     
      
 
     
   
     
   
   
a a
1 L
 
 
 
       
k k k
1
, , , , =0.
a a a
LS E B
k E B
V
I
I dV x L x L
L
  
    
  

a R R
a x a R x a a R a
FEA Theory -25-
2.1: Weighted residual methods (cont.)
 Solution:
3. Least Squares Method --
 Equation #2: take derivative with respect to a2:
 Solve equations:
     
   
2
2 1 2
2 2 2 2
2 2 2 2 2
2 2 1 2 1 2
0
2 2 2 2
1 2
, 2 a 2 ; , a 2 a 2 .
a a a a
2 2
2 2 a + a 2 a 2 a 8 a .
2
So Equation #2 is 2 a 8 a
E B
L
x L
R R F
x E x E x E E x Ex
A
Ex F EF
I E E x dx E E x E E L E L
L A A
EF
E E L E L

 


     
      
 
     
 
 
       
 
 
 
 
  

a a
a
0.
A

       
 
2 2 2
2
1 1
2 4
1 2
a + ; a * .
2 4
x x x
L L L
approx o
F L L
u x u
EA E E
 
  
       
 
Same as subdomain method!
FEA Theory -26-
2.1: Weighted residual methods (cont.)
 Solution:
4.Galerkin’s Method --
 Weighting functions are
 Integrate general expression for volume integral
by parts first:
        2
1 1 2 2
; .
N x x N x x
   
W x W x
       
 
   
   
 
   
2
0
0
0
2
0
, *
*
+ * .
L
k E k approx
V
x L
k approx x
L
k approx
L
k
dV N x Eu x x dx
N x Eu x
N x Eu x dx
N x x dx





 

 
  
 

 


N x R x a
Set this equal to
zero for k = 1,2!
FEA Theory -27-
2.1: Weighted residual methods (cont.)
 Solution:
4.Galerkin’s Method --
 Equation #1 uses N1(x)=x in previous:
 Equation #2 uses N2(x)=x2 in previous:
   
   
   
2
1 1 2
0
0 0
2 2 3
1
3
1 2
* 1* a 2a * 0.
Equation #1 is a a 0.
L L
x L
approx
x
I x Eu x E x dx x x dx
FL
E L E L L
A




 

    
 
     
 
a
   
   
   
2 2 2
2 1 2
0
0 0
2
2 3 2 4
4 1
3 4
1 2
* 2 * a 2a * 0.
Equation #2 is a a 0.
L L
x L
approx
x
I x Eu x x E x dx x x dx
FL
E L E L L
A




 

    
 
     
 
a
FEA Theory -28-
2.1: Weighted residual methods (cont.)
 Solution:
4. Galerkin’s Method --
 Solve simultaneous equations:
 Plot results:
       
 
2 2 2
2
7 1
12 4
1 2
7
a ; a * .
12 4
x x x
L L L
approx o
F L L
u x u
EA E E
 
  
        
 
FEA Theory -29-
Section 2: Finite Element Analysis Theory
1. Method of Weighted Residuals
2. Calculus of Variations
Two distinct ways to develop the underlying
equations of FEA!
FEA Theory -30-
 A formal technique for associating minimum or
maximum principles with weak form equations
that can be solved approximately.
 A more physically motivated approach than
weighted residuals.
 Not all problems amenable to this technique.
Section 2.2: Calculus of Variations
FEA Theory -31-
2.2: Calculus of Variations (cont.)
 Minimum/Maximum Principles (Variational
Principles) involve the following:
 A set of equations and boundary
conditions to solve for .
 A scalar quantity “related” to E and B (called
a functional).
 A variational principle states that solving
and is equivalent to finding the function that
gives a maximum or minimum value.
 Requires -- “First variation of
must be zero (stationarity)”.
 
 
E u x 0
 
 
B u x 0  
u x
 
 
J u x
 
 
E u x 0
 
 
B u x 0
 
 
J u x
 
  0
J
 
u x  
 
J u x
FEA Theory -32-
2.2: Calculus of Variations (cont.)
 What is a functional?
 A function takes a point in space as input and returns
a scalar number as output.
(Vector-valued function gives vector as output.)
 A functional takes a function as input and returns a
scalar number as output.
 
   
 
0
2
1
E.g.,
a
f x f x dx

 

 
E.g., , , 2 3 .
u x y z x y z
  
 
u x
Arc-length of f(x) from
x=0 to x=a.
FEA Theory -33-
2.2: Calculus of Variations (cont.)
 A few examples:
 Recall that straight line is shortest distance
between two points. How do we prove that?
       
   
       
   
4
0
4
0
1
2
2
1
1 2
2 2
1
2 2
1
1 4.4721.
2
1 9.2936.
, = 4,2 ; =
, = 4,2 ; = 6
f x dx
f x x dx
a b f x x
a b f x x
  

  


 
     
   
   
   
1 1 .
Let = scalar #, any function such that 0 0 4 .
Should have for all and
f x g x f x
g x g g
g x



 
  

FEA Theory -34-
 For a given function , consider a Taylor series
expansion of arc-length formula in terms of α:
2.2: Calculus of Variations (cont.)
 
g x
   
   
     
     
 
2
2
1 1 1 1
2
0 0
1
* *
2
d d
f x g x f x f x g x f x g x
d d
 
    
 
 
 
 
      
 
 
   
   
     
 
   
   
   
 
   
 
 
4
2
1 1
0 0 0
4
1
2
0
1
0
4
1
2
0
1
1
1
1
d d
f x g x f x g x dx
d d
f x g x g x
dx
f x g x
f x g x
dx
f x
 

 
 


 

 
   
   
 
 
   
 
  

 

 
 
 
 
 
 





 = some number β;
Assume β > 0.
FEA Theory -35-
 Suppose that α is small and negative:
 Same problem if β < 0 and α small and positive.
So, must have β = 0!
2.2: Calculus of Variations (cont.)
   
   
     
     
 
   
   
   
 
2
2
1 1 1 1
2
0 0
!
1 1 1
1
* *
2
* !
Negligible
d d
f x g x f x f x g x f x g x
d d
f x g x f x f x
 
    
 
  
 
 
 
      
 
 
   
     Can’t happen!!!
   
 
 
4
1
2
0
1
0.
1
f x g x
dx
f x
 
 



FEA Theory -36-
 Integrate by parts:
 But and
2.2: Calculus of Variations (cont.)
   
 
 
 
 
 
 
 
 
 
 
4
4 4
1 1 1
2 2 2
0 0
1 1 1
0
* 0.
1 1 1
x
x
f x g x f x f x
d
dx g x g x dx
dx
f x f x f x


   
   
 
 
   
 
 
 
  
  
 
   
 
 
 
 
 
       
1
1
2
1
1
1 1 2
constant, or some other constant.
1
and must pass through 0,0 and 4,2 !
f x
f x
f x
f x mx b f x x


  


    
 
0 0
g x    
4 0.
g x  
   
 
 
 
 
 
   
4 4
1 1
2 2
0 0
1 1
0 for any choice of .
1 1
f x g x f x
d
dx g x dx g x
dx
f x f x
 
  
 
   
 
 
 
 
 
 
 Must equal zero!!!
FEA Theory -37-
2.2: Calculus of Variations (cont.)
 Key ideas in this “proof”:
 Considered an arbitrary increment of the input
function.
 Derivative of the functional forced to be zero.
 This implies a certain equation must equal zero.
 Calculus of Variations gives you a “direct” way of
performing these calculations!
FEA Theory -38-
2.2: Calculus of Variations (cont.)
 Some definitions:
 General form of a functional is
 A variation of is
 Note: if must satisfy some boundary conditions,
so must .
 
             
           
2
2
2
2
, , , , , , ,
+ , , , , , , , .
n
n
V
m
m
A
J E dV
x y z x z
B dA
x y z x z
 
    
  
    
 
 
    
 
    
 


u u u u u
u x x u x x x x x x
u u u u u
x u x x x x x x
   , 1.
  

u x v x
 
u x
 
u x
   


u x u x
FEA Theory -39-
2.2: Calculus of Variations (cont.)
FEA Theory -40-
2.2: Calculus of Variations (cont.)
 Some properties of the variation of :
 Derivatives and variations can interchange.
 Integrals and variations can interchange.
 Variation of sum is sum of variations.
 Variation of product obeys “product rule”.
 
u x
   
         .
  
 
u x u x u x u x u x u x
 
   
 
    .
z z z z
   
 
 
 
    
   
 
v x u x
u x v x
   
     .
  
  
u x u x u x u x
    .
V V
dV dV
 

 
u x u x
FEA Theory -41-
2.2: Calculus of Variations (cont.)
 Some properties of the variation of :
 “Chain rule” applies to dependent variables only!
 
u x
           
 
     
, , , , , , , ,
+ , , , ,
n n
n n
n
n
x
E
E
x z x z
E
x z x
 



   
    

   
    
   
 
   
 
 
 
   
 
 
u
u u u u
x u x x x x u x x x u
u
u u u
x u x x x
 
     
+
+ , , , , .
n
n
n n
n n
z
E
x z z



   
   
   
  
    
u
u u u
x u x x x
FEA Theory -42-
2.2: Calculus of Variations (cont.)
 Let’s go back to arc-length example:
   
   
     
 
1 1 1
0
*
d
f x g x f x f x g x
d 
  
 
 
    
 
 
=  
1
f x

=  
 
1 .
f x

 
   
   
 
 
 
 
 
   
 
 
4 4
2 2
1 1 1
0 0
2
1
4 1
2
2
0
1
4 1
1 1
2
2
0
1
1 1
*
1
*2 *
1
f x f x dx f x dx
f x
dx
f x
f x f x
dx
f x
  


 
   
 

 
 



 



 


Thus, we see that
Just like before!
 
 
   
 
 
4
1
1 2
0
1
1
f x g x
f x dx
f x
 
 




=  
g x
 
FEA Theory -43-
2.2: Calculus of Variations (cont.)
 Minimum/Maximum Principles (Variational
Principles) involve the following:
 A set of equations and boundary
conditions to solve for .
 A scalar quantity “related” to E and B (called
a functional).
 
 
E u x 0
 
 
B u x 0  
u x
 
 
J u x
What is the relation?
FEA Theory -44-
2.2: Calculus of Variations (cont.)
 Let’s consider a 1D version of this:
 Want to minimize J(u), so require δJ(u) = 0:
     
   
   
   
; ; , , , .
b
a
x
x
u x E u x J u x E x u u u dx
 
   
u x E u x
 
   
   
2
2
, , ,
0.
b
a
b
a
b
a
x
x
x
x
x
x
J u x E x u u u dx
E E E
u u u dx
u u u
E E d E d
u u u dx
u u dx u dx
 
  
  
 

 
  
 
  
 
 
  
 
 
  
   
 
 
  
 



FEA Theory -45-
2.2: Calculus of Variations (cont.)
 Integrate 2nd term by parts:
 involves the boundary conditions!
 Essential BC’s: E.g.,
 Natural BC’s: E.g,
 Other BC’s: E.g.,
  *
b
b b
a a
a
x x
x x
x x
x x
E d E d E
u dx u u dx
u dx u dx u
  


 
   
  
   
 
 
  
  
   
 
 
*
b
a
x x
x x
E
u
u



 

 


 
   
0 or 0.
a b
u x x u x x
 
   
   
0 or 0.
a b
E E
x x x x
u u
 
   
 
 
  some number.
a
E
x x
u

 


FEA Theory -46-
2.2: Calculus of Variations (cont.)
 Integrate 3rd term by parts twice:
     
 
2
2
2
2
* *
* * * .
b
b b
a a
a
b
b b
a
a a
x x
x x
x x
x x
x x
x x x
x
x x x x
E d E d d E d
u dx u u dx
u dx u dx dx u dx
E d d E d E
u u u dx
u dx dx u dx u
  
  




 
 
   
  
   
 
 
  
  
   
 
   
     
  
    
 
   
 
  
  
     
   
 

 
* and * involve BC's!
b
b
a a
x x
x x
x x x x
E d d E
u u
u dx dx u
 


 
 
   
 
 
 
 
 
 
   
 
FEA Theory -47-
2.2: Calculus of Variations (cont.)
 Pull all of this together:
 
 
 
2
2
0 * *
* * * .
b
b b
a a
a
b
b b
a
a a
x x
x x
x x
x x
x x
x x x
x
x x x x
E E d E
J u x u dx u u dx
u u dx u
E d d E d E
u u u dx
u dx dx u dx u
   
  




 
 
     
  
   
   
 
 
 
  
     
 
   
     
  
    
 
   
 
  
  
     
   
 

 
 
2
2
0 *
+ boundary condition terms.
b
a
x
x
E d E d E
J u x u dx
u dx u dx u
 
 
   
  
    
 
   
 
  
   
 

FEA Theory -48-
2.2: Calculus of Variations (cont.)
 Assuming all boundary conditions are either essential
or natural, end up with:
for any choice of
2
2
0!
E d E d E
u dx u u
dx
   
  
   
   
 
  
   
The Euler equation for
2
2
0 *
b
a
x
x
E d E d E
u dx
u dx u dx u

 
   
  
  
 
   
 
  
   
 
 u

 
 
J u x
FEA Theory -49-
2.2: Calculus of Variations (cont.)
 The “relation” between being minimum and
is as follows:
 
 
J u x
 
  0
E u x 
If you can find an operator such that
then solving is the
same as solving .
 
, , ,
E x u u u
 
 
 
2
2
0,
E d E d E
E u x
u dx u dx u
   
  
   
   
 
  
   
 
   
, , , 0
b
a
x
x
J u x E x u u u dx
   
 

 
  0
E u x 
FEA Theory -50-
2.2: Calculus of Variations (cont.)
 Some notes:
 If you have boundary conditions that neither essential nor natural,
then must explicitly include a “boundary term” in the functional.
 As number of dependent variables increases (e.g., 2D), one
functional will produce multiple Euler equations:
 
     
, , , , , , , .
b
b
a
a
x
x x
x x
x
J u x E x u u u dx B x u u u u


 
    
   

   
   
, , , , , , , , , ,
0 and 0
u v u v
x x y y
Area
u u v v
x y x y
J u x y v x y E x y u v dA
E E E E E E
u x y v x y
   
   
   
   

   
   
         
      
   
   
   
         
   
   

(See Slide #10 for general statement of this idea.)
FEA Theory -51-
2.2: Calculus of Variations (cont.)
 Notes:
 There are no general procedures for finding the operator
for a given set of equations
 However, is known for many of the more common finite
element analysis problems.
 Special case for which can always be found:
 
  .

E u x 0
E
E
E
 
     
   
           
   
2 2 1
2
;
= matrix of derivative operators such that satisfies
BC's
for all possible choices of and .
V V
dV dV
 
  
 
   
   
   
 
   
 
1
1
E u x M x u x b 0
M x M x
u x M x u x u x M x u x
u x u x “Self-adjoint” equations
FEA Theory -52-
2.2: Calculus of Variations (cont.)
 Notes:
 For self-adjoint equations, and can be shown
to be:
(Depending on problem details, may be necessary to
integrate by parts before taking variation.)
       
         
1
;
2
1
.
2
V
E
J dV
 
 
 
 
 
 
 
 
 

u x M x u x u x b
u u x M x u x u x b
E  
J u
 
J u
FEA Theory -53-
2.2: Calculus of Variations (cont.)
 Example: axial deformation of fixed rod with axial load –
 Can re-write governing equations as:
 
 
 
 
 
0 0
.
1 0
0
f x
d
dx E
d
dx
u x
x

 
 
   
 
 
 
   
  
    
b
M u x
 
 
 
   
0; .
0 0 .
f x
d du
x x
dx E dx
u x u x L


  
   
FEA Theory -54-
2.2: Calculus of Variations (cont.)
 Example:
 Functional is then calculated as follows:
 Euler equations for this functional:
 
 
   
 
2
1 1 1
2 2 2
2
1 1 1
2 2 2
0
0
1
= ;
1
2 0
.
f x
d
uf x
dx E d du
dx dx E
d
dx
L
uf x
d du
dx dx E
u u u
E u
J u dx


 
  
 
 
 
     
    
 
 
     

     
   
   

u
 
   
 
1 1
2 2
1 1
2 2
0 + 0, or + 0.
0 0, or 0.
f x f x
d d d
dx E dx dx E
du
dx
du d du
dx dx dx
d
dx
E d E
u dx
E d E
u
dx
 


 

 
 
      
 
 
 
 
 
       
 
 
 
FEA Theory -55-
2.2: Calculus of Variations (cont.)
 So, what’s all of this have to do with finite elements?
 Have a set of equations and boundary
conditions to solve for .
 Have a functional
related to and via the Euler equations on .
 Finite element analysis attempts to find the best
approximate solution to
 
 
E u x 0
 
 
B u x 0  
u x
E B
 
   
, , , ,
x y z
V
J E dV
  
  
  u u u
u x x u
E
 
   
, , , , 0.
x y z
V
J E dV
    
  
 
 u u u
u x x u
Weak form of governing equations!
FEA Theory -56-
2.2: Calculus of Variations (cont.)
 Look more closely at 1D version:
 Suppose we make “usual” approximation –
     
     
1
1
a
a .
n
approx k k
k
n
approx k k
k
u x u x N x
u x u x N x
  


 
  


   
 
 
   
, , , ,
* boundary terms 0.
b
a
x
E x u u E x u u
d
u dx u
x
u dx

 
 
 

  

   
2 2
0 1 2 0 1 2
E.g., if a a a ,then a a a .
approx approx
u x x x u x x x
   
     
A “space” of trial functions Must belong to same “space”
FEA Theory -57-
2.2: Calculus of Variations (cont.)
 Plug in approximations (ignoring boundary terms for
now) –
 Since each ak is arbitrary, best approximation comes
from
     
 
 
 
, , , ,
* 0, 1,2, ,
b
approx approx approx approx
a
x
E x u u u u E x u u u u
d
k u dx u
x
N x dx k n
   
     
 

  

 
     
 
 
 
     
 
 
 
, , , ,
1
, , , ,
1
a * 0,
or a * * 0.
b
approx approx approx approx
a
b
approx approx approx approx
a
x n
E x u u u u E x u u u u
d
k k u dx u
k
x
x
n
E x u u u u E x u u u u
d
k k u dx u
k x
N x dx
N x dx


   
     
 


   
     
 


 
 


 
Function of a1, a2, …, an  Get n equations for n constants!
FEA Theory -58-
 Notice the following:
Galerkin’s Method and Calculus of Variations give
same equations when “proper” is used!
 
 
   
 
     
   
, , , ,
If , then
, .
* , 0, 1,2, , .
approx approx approx approx
b
a
E x u u u u E x u u u u
d
approx E
u dx u
x
k E
x
E d E
E u x
u dx u
E u u R x
N x R x dx k n
   
     
 

 
 
 
 

 
 
   
  

a
a
2.2: Calculus of Variations (cont.)
Galerkin’s
method!
E
FEA Theory -59-
2.2: Calculus of Variations (cont.)
 Notice something else:
     
   
, , .
b
a
approx exact
x
approx approx exact
x
J u u J u u
E x u u u u dx J u u
    
 
    

a
 
   
 
 
   
a a
, , , ,
a a
, , , ,
, ,
* *
* *
b
k k
a
b
approx approx approx approx
approx approx
k k
a
approx approx approx approx
x
E
approx approx
x
x
E x u u u u E x u u u u
u u
u u
x
E x u u u u E x u u u u
k
u u
x u u u u dx
dx
N x N

 
 
   
      
 

   
   
     

 
 
   
 

 


 
 
b
a
x
k
x
x dx

FEA Theory -60-
2.2: Calculus of Variations (cont.)
 Integrate 2nd term by parts (and ignore boundary
terms again):
Rayleigh-Ritz Method on  gives same equations as
J = 0 !
 
   
   
 
     
 
 
   
, , , ,
a
, , , ,
, ,
a
* *
* .
0 *
b
approx approx approx approx
k
a
b
approx approx approx approx
a
approx approx
k
x
E x u u u u E x u u u u
d
k k
u dx u
x
x
E x u u u u E x u u u u
d
k u dx u
x
E x u u u u
k
N x N x dx
N x dx
N x


   
     


  
   
     

 
 
  

 
 
 
  


 
 
 
, ,
0.
b
approx approx
a
x
E x u u u u
d
u dx u
x
dx
 
  


 

FEA Theory -61-
2.2: Calculus of Variations (cont.)
 Example: 1D Axial Rod “dynamics”
 Given: Axial rod has constant density ρ, area A, length L, and spins at
constant rate ω. It is pinned at x = 0 and has applied force -F at x = L. The
governing equation and boundary conditions for the steady-state rotation of
the rod are:
 Required: Using the calculus of variations on an appropriate variational
principle along with the approximate solution , estimate the
displacement of the rod.
   
2
2
2
0 for 0 ;
0 0; .
d u
E x x L
dx
du F
u x E x L
dx A

   
    
  2
1 2
u x a x a x
 
FEA Theory -62-
   
 
2 2
2 2
2 2
2 2
2 2
2 2
1 1
2 2
0
is self-adjoint, with and .
* * .
L
d u d u
dx dx
d u d
E x E x
dx dx
E u E u x J u E u x dx
 
 
   
     

E u M b
2.2: Calculus of Variations (cont.)
 Solution:
 Find appropriate variational principle:
 Problem: there is a nonzero boundary condition –
 
   
2
2
1
2
2
1 1
2 2
0
* (Work done by applied force.)
* * .
F
A
L
d u
F
A dx
B u x L
J u x L u E u x dx

  
     

Needs to be integrated by parts!
FEA Theory -63-
     
   
   
   
2 2
1 1 1
2 2 2
0
0 0
2 2
1
2
0 0
* *
= * .
L L
x L
du du
F
A dx dx
x
L L
du
F
A dx
J u x L u E E dx u x dx
u x L E dx u x dx




     
   
 
 
2.2: Calculus of Variations (cont.)
 Solution:
 Doing this gives:
 Require the first variation to equal zero:
   
 
2
0
* * * 0.
L
d u
du
F
A dx dx
J u x L u x E dx

   
     

FEA Theory -64-
2.2: Calculus of Variations (cont.)
 Solution:
 Using the given approximate function:
 After some integrating, result is:
   
 
     
 
2 2
1 2 1 2
2
1 2
2 2
1 2 1 2 1 2
0
a a a a .
a a *
a a * a 2a * a 2 a 0.
F
A
L
u x x x u x x x
J L L
x x x E x x dx
  
  
    
    
  
     

 
 
2
2 3 2
1
1 2 1
3
2 4 2 3
1 4
1 2 2
4 3
a a a
a a a 0.
FL
A
FL
A
J L EL EL
L EL EL
  
 
   
    
=0
=0
FEA Theory -65-
2.2: Calculus of Variations (cont.)
 Solution:
 Solve the two equations to get:
       
 
2 2 2
2
7 1
12 4
1 2
7
a ; a * .
12 4
x x x
L L L
approx o
F L L
u x u
EA E E
 
  
        
 
Same as Galerkin’s method solution!
FEA Theory -66-
 What if we had forgotten about the BC?
 Functional becomes:
 So the first variation becomes:
   
   
   
   
2 2
1 1
2 2
0
0 0
2 2
1 1
2 2
0 0
*
= * .
L L
x L
du du
dx dx
x
L L
du
F
A dx
J u E E dx u x dx
u x L E dx u x dx




  
   
 
 
2.2: Calculus of Variations (cont.)
   
 
2
2
0
* * * 0.
L
d u
du
F
A dx dx
J u x L u x E dx

   
     

Force is cut in half!
FEA Theory -67-
2.2: Calculus of Variations (cont.)
 Solution:
 Solution becomes:
       
 
2 2 2
2
7 1
12 4 2
1 2
7
a ; a * .
2 12 4
x x x
L L L
approx o
F L L
u x u
EA E E
 
  
        
 

More Related Content

What's hot

Tensor algebra and tensor analysis for engineers
Tensor algebra and tensor analysis for engineersTensor algebra and tensor analysis for engineers
Tensor algebra and tensor analysis for engineersSpringer
 
Series solution to ordinary differential equations
Series solution to ordinary differential equations Series solution to ordinary differential equations
Series solution to ordinary differential equations University of Windsor
 
Ch6 series solutions algebra
Ch6 series solutions algebraCh6 series solutions algebra
Ch6 series solutions algebraAsyraf Ghani
 
Electrical Circuit Analysis Ch 01 basic concepts
Electrical Circuit Analysis Ch 01 basic conceptsElectrical Circuit Analysis Ch 01 basic concepts
Electrical Circuit Analysis Ch 01 basic conceptsAli Farooq
 
Metodos jacobi y gauss seidel
Metodos jacobi y gauss seidelMetodos jacobi y gauss seidel
Metodos jacobi y gauss seidelCesar Mendoza
 
Electromagnetic theory Chapter 1
Electromagnetic theory Chapter 1Electromagnetic theory Chapter 1
Electromagnetic theory Chapter 1Ali Farooq
 
Helmholtz equation (Motivations and Solutions)
Helmholtz equation (Motivations and Solutions)Helmholtz equation (Motivations and Solutions)
Helmholtz equation (Motivations and Solutions)Hassaan Saleem
 
Cap 2_Nouredine Zettili - Quantum Mechanics.pdf
Cap 2_Nouredine Zettili - Quantum Mechanics.pdfCap 2_Nouredine Zettili - Quantum Mechanics.pdf
Cap 2_Nouredine Zettili - Quantum Mechanics.pdfOñatnom Adnara
 
honey jose presentation
honey jose presentationhoney jose presentation
honey jose presentationHoney jose
 
Outgoing ingoingkleingordon
Outgoing ingoingkleingordonOutgoing ingoingkleingordon
Outgoing ingoingkleingordonfoxtrot jp R
 
Outgoing ingoingkleingordon julups
Outgoing ingoingkleingordon julupsOutgoing ingoingkleingordon julups
Outgoing ingoingkleingordon julupsfoxtrot jp R
 
01.04 orthonormal basis_eigen_vectors
01.04 orthonormal basis_eigen_vectors01.04 orthonormal basis_eigen_vectors
01.04 orthonormal basis_eigen_vectorsAndres Mendez-Vazquez
 
Ode powerpoint presentation1
Ode powerpoint presentation1Ode powerpoint presentation1
Ode powerpoint presentation1Pokkarn Narkhede
 
Higher order ODE with applications
Higher order ODE with applicationsHigher order ODE with applications
Higher order ODE with applicationsPratik Gadhiya
 

What's hot (20)

Tensor algebra and tensor analysis for engineers
Tensor algebra and tensor analysis for engineersTensor algebra and tensor analysis for engineers
Tensor algebra and tensor analysis for engineers
 
Chemistry Assignment Help
Chemistry Assignment HelpChemistry Assignment Help
Chemistry Assignment Help
 
Series solution to ordinary differential equations
Series solution to ordinary differential equations Series solution to ordinary differential equations
Series solution to ordinary differential equations
 
Ch6 series solutions algebra
Ch6 series solutions algebraCh6 series solutions algebra
Ch6 series solutions algebra
 
Quantum chaos in clean many-body systems - Tomaž Prosen
Quantum chaos in clean many-body systems - Tomaž ProsenQuantum chaos in clean many-body systems - Tomaž Prosen
Quantum chaos in clean many-body systems - Tomaž Prosen
 
Electrical Circuit Analysis Ch 01 basic concepts
Electrical Circuit Analysis Ch 01 basic conceptsElectrical Circuit Analysis Ch 01 basic concepts
Electrical Circuit Analysis Ch 01 basic concepts
 
Metodos jacobi y gauss seidel
Metodos jacobi y gauss seidelMetodos jacobi y gauss seidel
Metodos jacobi y gauss seidel
 
Electromagnetic theory Chapter 1
Electromagnetic theory Chapter 1Electromagnetic theory Chapter 1
Electromagnetic theory Chapter 1
 
Helmholtz equation (Motivations and Solutions)
Helmholtz equation (Motivations and Solutions)Helmholtz equation (Motivations and Solutions)
Helmholtz equation (Motivations and Solutions)
 
Introduction to tensor calculus
Introduction to tensor calculusIntroduction to tensor calculus
Introduction to tensor calculus
 
Cap 2_Nouredine Zettili - Quantum Mechanics.pdf
Cap 2_Nouredine Zettili - Quantum Mechanics.pdfCap 2_Nouredine Zettili - Quantum Mechanics.pdf
Cap 2_Nouredine Zettili - Quantum Mechanics.pdf
 
Fourier series
Fourier seriesFourier series
Fourier series
 
honey jose presentation
honey jose presentationhoney jose presentation
honey jose presentation
 
Outgoing ingoingkleingordon
Outgoing ingoingkleingordonOutgoing ingoingkleingordon
Outgoing ingoingkleingordon
 
Outgoing ingoingkleingordon julups
Outgoing ingoingkleingordon julupsOutgoing ingoingkleingordon julups
Outgoing ingoingkleingordon julups
 
01.04 orthonormal basis_eigen_vectors
01.04 orthonormal basis_eigen_vectors01.04 orthonormal basis_eigen_vectors
01.04 orthonormal basis_eigen_vectors
 
Ode powerpoint presentation1
Ode powerpoint presentation1Ode powerpoint presentation1
Ode powerpoint presentation1
 
Higher order ODE with applications
Higher order ODE with applicationsHigher order ODE with applications
Higher order ODE with applications
 
magnt
magntmagnt
magnt
 
Intro
IntroIntro
Intro
 

Similar to Ce 595 section 2

Integrability and weak diffraction in a two-particle Bose-Hubbard model
 Integrability and weak diffraction in a two-particle Bose-Hubbard model  Integrability and weak diffraction in a two-particle Bose-Hubbard model
Integrability and weak diffraction in a two-particle Bose-Hubbard model jiang-min zhang
 
Newton Raphson method for load flow analysis
Newton Raphson method for load flow analysisNewton Raphson method for load flow analysis
Newton Raphson method for load flow analysisdivyanshuprakashrock
 
Ph 101-9 QUANTUM MACHANICS
Ph 101-9 QUANTUM MACHANICSPh 101-9 QUANTUM MACHANICS
Ph 101-9 QUANTUM MACHANICSChandan Singh
 
My paper for Domain Decomposition Conference in Strobl, Austria, 2005
My paper for Domain Decomposition Conference in Strobl, Austria, 2005My paper for Domain Decomposition Conference in Strobl, Austria, 2005
My paper for Domain Decomposition Conference in Strobl, Austria, 2005Alexander Litvinenko
 
On Application of Power Series Solution of Bessel Problems to the Problems of...
On Application of Power Series Solution of Bessel Problems to the Problems of...On Application of Power Series Solution of Bessel Problems to the Problems of...
On Application of Power Series Solution of Bessel Problems to the Problems of...BRNSS Publication Hub
 
Applied Quantum Mechanics_part 2.pdf
Applied Quantum Mechanics_part 2.pdfApplied Quantum Mechanics_part 2.pdf
Applied Quantum Mechanics_part 2.pdfDr Biplab Bag
 
Numerical Analysis Assignment Help
Numerical Analysis Assignment HelpNumerical Analysis Assignment Help
Numerical Analysis Assignment HelpMath Homework Solver
 
Functional analysis in mechanics 2e
Functional analysis in mechanics  2eFunctional analysis in mechanics  2e
Functional analysis in mechanics 2eSpringer
 
Functional analysis in mechanics
Functional analysis in mechanicsFunctional analysis in mechanics
Functional analysis in mechanicsSpringer
 
Linearprog, Reading Materials for Operational Research
Linearprog, Reading Materials for Operational Research Linearprog, Reading Materials for Operational Research
Linearprog, Reading Materials for Operational Research Derbew Tesfa
 
Numerical_PDE_Paper
Numerical_PDE_PaperNumerical_PDE_Paper
Numerical_PDE_PaperWilliam Ruys
 
Schrodinger equation in quantum mechanics
Schrodinger equation in quantum mechanicsSchrodinger equation in quantum mechanics
Schrodinger equation in quantum mechanicsRakeshPatil2528
 
Laplace equation
Laplace equationLaplace equation
Laplace equationalexkhan129
 

Similar to Ce 595 section 2 (20)

dalrymple_slides.ppt
dalrymple_slides.pptdalrymple_slides.ppt
dalrymple_slides.ppt
 
Bird’s-eye view of Gaussian harmonic analysis
Bird’s-eye view of Gaussian harmonic analysisBird’s-eye view of Gaussian harmonic analysis
Bird’s-eye view of Gaussian harmonic analysis
 
Integrability and weak diffraction in a two-particle Bose-Hubbard model
 Integrability and weak diffraction in a two-particle Bose-Hubbard model  Integrability and weak diffraction in a two-particle Bose-Hubbard model
Integrability and weak diffraction in a two-particle Bose-Hubbard model
 
Newton Raphson method for load flow analysis
Newton Raphson method for load flow analysisNewton Raphson method for load flow analysis
Newton Raphson method for load flow analysis
 
Ph 101-9 QUANTUM MACHANICS
Ph 101-9 QUANTUM MACHANICSPh 101-9 QUANTUM MACHANICS
Ph 101-9 QUANTUM MACHANICS
 
My paper for Domain Decomposition Conference in Strobl, Austria, 2005
My paper for Domain Decomposition Conference in Strobl, Austria, 2005My paper for Domain Decomposition Conference in Strobl, Austria, 2005
My paper for Domain Decomposition Conference in Strobl, Austria, 2005
 
On Application of Power Series Solution of Bessel Problems to the Problems of...
On Application of Power Series Solution of Bessel Problems to the Problems of...On Application of Power Series Solution of Bessel Problems to the Problems of...
On Application of Power Series Solution of Bessel Problems to the Problems of...
 
03_AJMS_209_19_RA.pdf
03_AJMS_209_19_RA.pdf03_AJMS_209_19_RA.pdf
03_AJMS_209_19_RA.pdf
 
03_AJMS_209_19_RA.pdf
03_AJMS_209_19_RA.pdf03_AJMS_209_19_RA.pdf
03_AJMS_209_19_RA.pdf
 
Boyd chap10
Boyd chap10Boyd chap10
Boyd chap10
 
Applied Quantum Mechanics_part 2.pdf
Applied Quantum Mechanics_part 2.pdfApplied Quantum Mechanics_part 2.pdf
Applied Quantum Mechanics_part 2.pdf
 
Numerical Analysis Assignment Help
Numerical Analysis Assignment HelpNumerical Analysis Assignment Help
Numerical Analysis Assignment Help
 
Functional analysis in mechanics 2e
Functional analysis in mechanics  2eFunctional analysis in mechanics  2e
Functional analysis in mechanics 2e
 
Functional analysis in mechanics
Functional analysis in mechanicsFunctional analysis in mechanics
Functional analysis in mechanics
 
Exp integrals
Exp integralsExp integrals
Exp integrals
 
Linearprog, Reading Materials for Operational Research
Linearprog, Reading Materials for Operational Research Linearprog, Reading Materials for Operational Research
Linearprog, Reading Materials for Operational Research
 
Numerical_PDE_Paper
Numerical_PDE_PaperNumerical_PDE_Paper
Numerical_PDE_Paper
 
Schrodinger equation in quantum mechanics
Schrodinger equation in quantum mechanicsSchrodinger equation in quantum mechanics
Schrodinger equation in quantum mechanics
 
paper
paperpaper
paper
 
Laplace equation
Laplace equationLaplace equation
Laplace equation
 

Recently uploaded

Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Christo Ananth
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...Call Girls in Nagpur High Profile
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Dr.Costas Sachpazis
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
Online banking management system project.pdf
Online banking management system project.pdfOnline banking management system project.pdf
Online banking management system project.pdfKamal Acharya
 
Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)simmis5
 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSISrknatarajan
 
University management System project report..pdf
University management System project report..pdfUniversity management System project report..pdf
University management System project report..pdfKamal Acharya
 
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...ranjana rawat
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
MANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTING
MANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTINGMANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTING
MANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTINGSIVASHANKAR N
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxupamatechverse
 
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...Call Girls in Nagpur High Profile
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdfankushspencer015
 
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfKamal Acharya
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 

Recently uploaded (20)

Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
 
Online banking management system project.pdf
Online banking management system project.pdfOnline banking management system project.pdf
Online banking management system project.pdf
 
Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)
 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSIS
 
University management System project report..pdf
University management System project report..pdfUniversity management System project report..pdf
University management System project report..pdf
 
Roadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and RoutesRoadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and Routes
 
Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024
 
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
MANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTING
MANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTINGMANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTING
MANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTING
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptx
 
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdf
 
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
 
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 

Ce 595 section 2

  • 1. FEA Theory -1- Section 2: Finite Element Analysis Theory 1. Method of Weighted Residuals 2. Calculus of Variations Two distinct ways to develop the underlying equations of FEA!
  • 2. FEA Theory -2- Section 2: FEA Theory  Some definitions: •V = volume of object •A = surface area = Au + As •Au = surface of known displacements •As = surface of known stresses •b = body force •t = surface stresses (tractions)           , , , , ; , , . , , u x y z x y z v x y z w x y z             x u x
  • 3. FEA Theory -3-  A group of methods that take governing equations in the strong form and turn them into (related) statements in the weak form.  Applicable to a wide class of problems (elasticity, heat conduction, mass flow, …).  A “purely mathematical” concept. Section 2.1: Weighted Residual Methods
  • 4. FEA Theory -4- 2.1: Weighted residual methods (cont.)  Need to write the equilibrium equations and boundary conditions in an abstract form as follows:            0 0 0 , 0 on . ˆ on xy x xz x xy y yz y yz xz z z u b x y z b x y z b x y z A As  s   s    s                                                     E u x 0 u u 0 B u x 0 σ n t 0 Solve these for u(x)!
  • 5. FEA Theory -5- 2.1: Weighted residual methods (cont.)  Let be the exact solution to the problem (differential equation and boundary conditions)  Then, for any choice of vectors W and W’:   exact u x         in ! on ! exact exact everywhere V everywhere A    E u x 0 B u x 0         0 in ! 0 on ! exact exact everywhere V everywhere A    W E u x W B u x
  • 6. FEA Theory -6- 2.1: Weighted residual methods (cont.)  Integrate these “results” over the entire volume and surface:  Previous expression is still true if W and W’ are functions of x (called weighting functions):         0 exact exact V A dV dA      W E u x W B u x                             1 1 2 2 3 3 , , , , , , , , , , , , , 0 exact exact V A W x y z W x y z W x y z W x y z W x y z W x y z dV dA                                 W x W x W x E u x W x B u x
  • 7. FEA Theory -7-  Now, consider an approximate solution to the same problem:  Matrix/vector form of this: 2.1: Weighted residual methods (cont.)                               11 12 1 1 21 2 22 n 2 31 32 3 , , , , , , , , , , , , a * , , a * , , a * , , , , , , , , , , , , , , approx n exact approx n exact approx n exact u x y z N x y z N x y z N x y z u x y z v x y z N x y z N x y z N x y z v x y z w x y z N x y z N x y z N x y z w x y z                                                        1 . a n approx k k exact k           u x N x u x Known functions Unknown constants                         1 11 12 1 2 21 22 2 31 32 3 n unknowns a , , , , , , , , a , , , , , , , , , , , , , , , , a known functions approx n exact approx n approx n u x y z N x y z N x y z N x y z u v x y z N x y z N x y z N x y z w x y z N x y z N x y z N x y z                                                 , , , , . , , exact exact approx exact x y z v x y z w x y z                  u x N x a u x
  • 8. FEA Theory -8- 2.1: Weighted residual methods (cont.)  Plugging this approximate solution into the differential equation and boundary conditions results in some errors, called the residuals.  Repeating the previous process now gives us an integral close to but not exactly equal to zero!           , , 0 . E B V A I dV dA       a W x R x a W x R x a             , in ! , on ! E approx B approx V A     R x a E u x 0 R x a B u x 0
  • 9. FEA Theory -9- 2.1: Weighted residual methods (cont.)  Goal: Find the value of a that makes this integral as close as possible to zero – “best approximation”.  Idea: for n different choices of the weighting functions, derive an equation for a by requiring that the above integral equal zero:  Solve these equations for a!                         1 1 1 2 2 2 Equation #1: , , 0 . Equation #2: , , 0 . Equation #n: E B V A E B V A n n E I dV dA I dV dA I              a W x R x a W x R x a a W x R x a W x R x a a W x R x       , , 0 . n B V A dV dA      a W x R x a
  • 10. FEA Theory -10- 2.1: Weighted residual methods (cont.)  Notes on weighted residual methods:  It is typical (but not required) to assume that the known functions satisfy the displacement boundary conditions exactly on Au. (Essential conditions)  In some methods, one must integrate the volume integral by parts to get “appropriate” equations.  Different methods result from different ideas about how to choose the weighting functions.           , , 0 , 1,2, , . k k E k B V A I dV dA k n s        a W x R x a W x R x a
  • 11. FEA Theory -11- 2.1: Weighted residual methods (cont.) 1.Collocation Method:  Assume only one PDE and one BC to solve!  Idea: pick n points in object (at least one in V and one on A) and require residual to be zero at each point!         , , ; , , . E E B B R R   R x a x a R x a x a       , =0, 1,2, , . , =0, 1,2, , . . E i V B j A V A R i n R j n n n n     x a x a
  • 12. FEA Theory -12- 2.1: Weighted residual methods (cont.) 2. Subdomain Method:  Assume only one PDE and one BC to solve!  Divide object up into n distinct regions (at least one in V and one on A).  Require integral over each region to be zero.         , , ; , , . E E B B R R   R x a x a R x a x a           , 0, 1,2, , , 0, 1,2, , . . i j i E V V j B A A V A I R dV i n I R dA j n n n n           a x a a x a
  • 13. FEA Theory -13- 2.1: Weighted residual methods (cont.)  Notes on collocation and subdomain methods:  Weighting functions for collocation method are the Dirac delta functions:  Weighting functions for subdomain method are the indicator functions:  Advantage: Simple to formulate.  Disadvantage: Used mostly for problems with only one governing equation (axial bar, beam, heat,…).         , 1,2, , . , 1,2, , . i i V j j A i n j n          W x x x W x x x     1 if 1 if , 1,2, , . , 1,2, , . 0 if 0 if j j i i i V j A i j i i A V i n j n A V                x x W x W x x x
  • 14. FEA Theory -14- 2.1: Weighted residual methods (cont.) 3. Least Squares Method:  Considers magnitude of residual over the object.  Finds minimum by setting derivatives to zero           , , , , 0. LS E E B B V A I dV dA s       a R x a R x a R x a R x a             k k k , , , , 0 . a a a LS E B k E B V A I I dV dA s              a R R a x a R x a x a R x a    W x     W x
  • 15. FEA Theory -15- 2.1: Weighted residual methods (cont.) 4.Galerkin’s Method:  Idea: Project residual of differential equation onto original approximating functions!  To get W’, must integrate any derivatives in volume integral by parts!       k , 1,2, , . a approx k k k n      u x W x N x           , , , , Let , , , ; , , . (Assume derivative involves .) E E deriv E noderiv E deriv E deriv dx x     R x a R x a R x a R x a R x a
  • 16. FEA Theory -16- 2.1: Weighted residual methods (cont.)  Must use integrated-by-parts version of !                 , Introduces the boundary conditions! , , , , , , k E k E deriv x V A k E deriv V k E noderiv V k dV n dA dV x dV I            N x R x a N x R x a N x R x a N x R x a       , 0 , 1,2, , . k E V dV k n     a N x R x a   k I a
  • 17. FEA Theory -17- 2.1: Weighted residual methods (cont.)  Notes on least square and Galerkin methods:  More widely used than collocation and subdomain, since they are truly global methods.  For least squares method:  Equations to solve for a are always symmetric but tend to be ill-conditioned.  Approximate solution needs to be very smooth.  For Galerkin’s method:  Equations to solve for a are usually symmetric but much more “robust”.  Integrating by parts produces “less smooth” version of approximate solution; more useful for FEA!
  • 18. FEA Theory -18- 2.1: Weighted residual methods (cont.)  Example: 1D Axial Rod “dynamics”  Given: Axial rod has constant density ρ, area A, length L, and spins at constant rate ω. It is pinned at x = 0 and has applied force -F at x = L. The governing equation and boundary conditions for the steady-state rotation of the rod are:  Required: Using each of the four weighted residual methods and the approximate solution , estimate the displacement of the rod.     2 2 2 0 for 0 ; 0 0; . d u E x x L dx du F u x E x L dx A             2 1 2 u x a x a x  
  • 19. FEA Theory -19- 2.1: Weighted residual methods (cont.)  Some preliminaries:  Problem has an exact solution given by  Approximate solution satisfies essential boundary condition u(x = 0) = 0.  Two unknown constants → n = 2.  Notation:           2 2 3 1 1 2 6 * ; . x x x o o L L L FL A L u x u u EA F                        2 2 2 0 ; 0 ; . ; . u V x L A x A x L d u du F E x E dx dx A s             E u B u
  • 20. FEA Theory -20- 2.1: Weighted residual methods (cont.)  Solution: 1. Collocation Method --  Since n=2, have two collocation points. One must be at x = L (must have one on As). Assume other at x = L/3.  Equation #1: evaluate residual of E(u) at x = L/3:  Equation #2: evaluate residual of B(u) at x = L:     2 2 2 2 1 2 2 2 2 1 3 2 , a a 2 a . Equation #1 is: 2 a 0. E approx d R x E x x x E x dx E L                 a E u     2 1 2 1 2 1 2 , a a a 2 a . Equation #1 is: a 2 a 0. B approx d F F R x E x x E E x dx A A F E E L A                a B u
  • 21. FEA Theory -21- 2.1: Weighted residual methods (cont.)  Solution: 1. Collocation Method --  Solve simultaneous equations:  Plot results:           2 2 2 2 1 1 3 6 1 2 a + ; a * . 3 6 x x x L L L approx o F L L u x u EA E E               
  • 22. FEA Theory -22- 2.1: Weighted residual methods (cont.)  Solution: 2. Subdomain Method --  Since n=2, have two subdomains. One must be at x = L (= As). Other must be 0 < x < L (= V).  Equation #1: integrate residual of E(u) over V:  Equation #2: evaluate residual of B(u) at x = L:       2 2 2 2 1 2 2 1 2 2 0 2 2 1 2 2 , 2 a 2 a 2 a . Equation #1 is: 2 a 0. L E R x E x I E x dx EL L EL L                a a     2 1 2 1 2 1 2 , a a a 2 a . Equation #1 is: a 2 a 0. B approx d F F R x E x x E E x dx A A F E E L A                a B u
  • 23. FEA Theory -23- 2.1: Weighted residual methods (cont.)  Solution: 2. Subdomain Method --  Solve simultaneous equations:  Plot results:           2 2 2 2 1 1 2 4 1 2 a + ; a * . 2 4 x x x L L L approx o F L L u x u EA E E               
  • 24. FEA Theory -24- 2.1: Weighted residual methods (cont.)  Solution: 3. Least Squares Method --  For dimensional equality, take in ILS(a). Once again, the “integral” over As is just evaluation at x = L.  Equation #1: take derivative with respect to a1:       2 2 1 2 1 1 1 1 1 2 1 2 , 2 a 0; , a 2 a . a a a a Equation #1 is: a 2 a a 2 a 0. E B x L R R F x E x x E E x E A E F E F E E x E E L L A L A                                          a a 1 L               k k k 1 , , , , =0. a a a LS E B k E B V I I dV x L x L L             a R R a x a R x a a R a
  • 25. FEA Theory -25- 2.1: Weighted residual methods (cont.)  Solution: 3. Least Squares Method --  Equation #2: take derivative with respect to a2:  Solve equations:           2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 1 2 1 2 0 2 2 2 2 1 2 , 2 a 2 ; , a 2 a 2 . a a a a 2 2 2 2 a + a 2 a 2 a 8 a . 2 So Equation #2 is 2 a 8 a E B L x L R R F x E x E x E E x Ex A Ex F EF I E E x dx E E x E E L E L L A A EF E E L E L                                                   a a a 0. A            2 2 2 2 1 1 2 4 1 2 a + ; a * . 2 4 x x x L L L approx o F L L u x u EA E E                Same as subdomain method!
  • 26. FEA Theory -26- 2.1: Weighted residual methods (cont.)  Solution: 4.Galerkin’s Method --  Weighting functions are  Integrate general expression for volume integral by parts first:         2 1 1 2 2 ; . N x x N x x     W x W x                         2 0 0 0 2 0 , * * + * . L k E k approx V x L k approx x L k approx L k dV N x Eu x x dx N x Eu x N x Eu x dx N x x dx                     N x R x a Set this equal to zero for k = 1,2!
  • 27. FEA Theory -27- 2.1: Weighted residual methods (cont.)  Solution: 4.Galerkin’s Method --  Equation #1 uses N1(x)=x in previous:  Equation #2 uses N2(x)=x2 in previous:             2 1 1 2 0 0 0 2 2 3 1 3 1 2 * 1* a 2a * 0. Equation #1 is a a 0. L L x L approx x I x Eu x E x dx x x dx FL E L E L L A                       a             2 2 2 2 1 2 0 0 0 2 2 3 2 4 4 1 3 4 1 2 * 2 * a 2a * 0. Equation #2 is a a 0. L L x L approx x I x Eu x x E x dx x x dx FL E L E L L A                       a
  • 28. FEA Theory -28- 2.1: Weighted residual methods (cont.)  Solution: 4. Galerkin’s Method --  Solve simultaneous equations:  Plot results:           2 2 2 2 7 1 12 4 1 2 7 a ; a * . 12 4 x x x L L L approx o F L L u x u EA E E                
  • 29. FEA Theory -29- Section 2: Finite Element Analysis Theory 1. Method of Weighted Residuals 2. Calculus of Variations Two distinct ways to develop the underlying equations of FEA!
  • 30. FEA Theory -30-  A formal technique for associating minimum or maximum principles with weak form equations that can be solved approximately.  A more physically motivated approach than weighted residuals.  Not all problems amenable to this technique. Section 2.2: Calculus of Variations
  • 31. FEA Theory -31- 2.2: Calculus of Variations (cont.)  Minimum/Maximum Principles (Variational Principles) involve the following:  A set of equations and boundary conditions to solve for .  A scalar quantity “related” to E and B (called a functional).  A variational principle states that solving and is equivalent to finding the function that gives a maximum or minimum value.  Requires -- “First variation of must be zero (stationarity)”.     E u x 0     B u x 0   u x     J u x     E u x 0     B u x 0     J u x     0 J   u x     J u x
  • 32. FEA Theory -32- 2.2: Calculus of Variations (cont.)  What is a functional?  A function takes a point in space as input and returns a scalar number as output. (Vector-valued function gives vector as output.)  A functional takes a function as input and returns a scalar number as output.         0 2 1 E.g., a f x f x dx       E.g., , , 2 3 . u x y z x y z      u x Arc-length of f(x) from x=0 to x=a.
  • 33. FEA Theory -33- 2.2: Calculus of Variations (cont.)  A few examples:  Recall that straight line is shortest distance between two points. How do we prove that?                         4 0 4 0 1 2 2 1 1 2 2 2 1 2 2 1 1 4.4721. 2 1 9.2936. , = 4,2 ; = , = 4,2 ; = 6 f x dx f x x dx a b f x x a b f x x                              1 1 . Let = scalar #, any function such that 0 0 4 . Should have for all and f x g x f x g x g g g x         
  • 34. FEA Theory -34-  For a given function , consider a Taylor series expansion of arc-length formula in terms of α: 2.2: Calculus of Variations (cont.)   g x                       2 2 1 1 1 1 2 0 0 1 * * 2 d d f x g x f x f x g x f x g x d d                                                                 4 2 1 1 0 0 0 4 1 2 0 1 0 4 1 2 0 1 1 1 1 d d f x g x f x g x dx d d f x g x g x dx f x g x f x g x dx f x                                                          = some number β; Assume β > 0.
  • 35. FEA Theory -35-  Suppose that α is small and negative:  Same problem if β < 0 and α small and positive. So, must have β = 0! 2.2: Calculus of Variations (cont.)                                     2 2 1 1 1 1 2 0 0 ! 1 1 1 1 * * 2 * ! Negligible d d f x g x f x f x g x f x g x d d f x g x f x f x                                       Can’t happen!!!         4 1 2 0 1 0. 1 f x g x dx f x       
  • 36. FEA Theory -36-  Integrate by parts:  But and 2.2: Calculus of Variations (cont.)                         4 4 4 1 1 1 2 2 2 0 0 1 1 1 0 * 0. 1 1 1 x x f x g x f x f x d dx g x g x dx dx f x f x f x                                                       1 1 2 1 1 1 1 2 constant, or some other constant. 1 and must pass through 0,0 and 4,2 ! f x f x f x f x mx b f x x               0 0 g x     4 0. g x                     4 4 1 1 2 2 0 0 1 1 0 for any choice of . 1 1 f x g x f x d dx g x dx g x dx f x f x                         Must equal zero!!!
  • 37. FEA Theory -37- 2.2: Calculus of Variations (cont.)  Key ideas in this “proof”:  Considered an arbitrary increment of the input function.  Derivative of the functional forced to be zero.  This implies a certain equation must equal zero.  Calculus of Variations gives you a “direct” way of performing these calculations!
  • 38. FEA Theory -38- 2.2: Calculus of Variations (cont.)  Some definitions:  General form of a functional is  A variation of is  Note: if must satisfy some boundary conditions, so must .                             2 2 2 2 , , , , , , , + , , , , , , , . n n V m m A J E dV x y z x z B dA x y z x z                                    u u u u u u x x u x x x x x x u u u u u x u x x x x x x    , 1.     u x v x   u x   u x       u x u x
  • 39. FEA Theory -39- 2.2: Calculus of Variations (cont.)
  • 40. FEA Theory -40- 2.2: Calculus of Variations (cont.)  Some properties of the variation of :  Derivatives and variations can interchange.  Integrals and variations can interchange.  Variation of sum is sum of variations.  Variation of product obeys “product rule”.   u x              .      u x u x u x u x u x u x             . z z z z                      v x u x u x v x          .       u x u x u x u x     . V V dV dV      u x u x
  • 41. FEA Theory -41- 2.2: Calculus of Variations (cont.)  Some properties of the variation of :  “Chain rule” applies to dependent variables only!   u x                     , , , , , , , , + , , , , n n n n n n x E E x z x z E x z x                                                 u u u u u x u x x x x u x x x u u u u u x u x x x         + + , , , , . n n n n n n z E x z z                        u u u u x u x x x
  • 42. FEA Theory -42- 2.2: Calculus of Variations (cont.)  Let’s go back to arc-length example:                 1 1 1 0 * d f x g x f x f x g x d                  =   1 f x  =     1 . f x                              4 4 2 2 1 1 1 0 0 2 1 4 1 2 2 0 1 4 1 1 1 2 2 0 1 1 1 * 1 *2 * 1 f x f x dx f x dx f x dx f x f x f x dx f x                               Thus, we see that Just like before!             4 1 1 2 0 1 1 f x g x f x dx f x         =   g x  
  • 43. FEA Theory -43- 2.2: Calculus of Variations (cont.)  Minimum/Maximum Principles (Variational Principles) involve the following:  A set of equations and boundary conditions to solve for .  A scalar quantity “related” to E and B (called a functional).     E u x 0     B u x 0   u x     J u x What is the relation?
  • 44. FEA Theory -44- 2.2: Calculus of Variations (cont.)  Let’s consider a 1D version of this:  Want to minimize J(u), so require δJ(u) = 0:                   ; ; , , , . b a x x u x E u x J u x E x u u u dx       u x E u x           2 2 , , , 0. b a b a b a x x x x x x J u x E x u u u dx E E E u u u dx u u u E E d E d u u u dx u u dx u dx                                                   
  • 45. FEA Theory -45- 2.2: Calculus of Variations (cont.)  Integrate 2nd term by parts:  involves the boundary conditions!  Essential BC’s: E.g.,  Natural BC’s: E.g,  Other BC’s: E.g.,   * b b b a a a x x x x x x x x E d E d E u dx u u dx u dx u dx u                                     * b a x x x x E u u                 0 or 0. a b u x x u x x           0 or 0. a b E E x x x x u u             some number. a E x x u     
  • 46. FEA Theory -46- 2.2: Calculus of Variations (cont.)  Integrate 3rd term by parts twice:         2 2 2 2 * * * * * . b b b a a a b b b a a a x x x x x x x x x x x x x x x x x x E d E d d E d u dx u u dx u dx u dx dx u dx E d d E d E u u u dx u dx dx u dx u                                                                                         * and * involve BC's! b b a a x x x x x x x x E d d E u u u dx dx u                              
  • 47. FEA Theory -47- 2.2: Calculus of Variations (cont.)  Pull all of this together:       2 2 0 * * * * * . b b b a a a b b b a a a x x x x x x x x x x x x x x x x x x E E d E J u x u dx u u dx u u dx u E d d E d E u u u dx u dx dx u dx u                                                                                                   2 2 0 * + boundary condition terms. b a x x E d E d E J u x u dx u dx u dx u                                  
  • 48. FEA Theory -48- 2.2: Calculus of Variations (cont.)  Assuming all boundary conditions are either essential or natural, end up with: for any choice of 2 2 0! E d E d E u dx u u dx                         The Euler equation for 2 2 0 * b a x x E d E d E u dx u dx u dx u                                u      J u x
  • 49. FEA Theory -49- 2.2: Calculus of Variations (cont.)  The “relation” between being minimum and is as follows:     J u x     0 E u x  If you can find an operator such that then solving is the same as solving .   , , , E x u u u       2 2 0, E d E d E E u x u dx u dx u                               , , , 0 b a x x J u x E x u u u dx            0 E u x 
  • 50. FEA Theory -50- 2.2: Calculus of Variations (cont.)  Some notes:  If you have boundary conditions that neither essential nor natural, then must explicitly include a “boundary term” in the functional.  As number of dependent variables increases (e.g., 2D), one functional will produce multiple Euler equations:         , , , , , , , . b b a a x x x x x x J u x E x u u u dx B x u u u u                       , , , , , , , , , , 0 and 0 u v u v x x y y Area u u v v x y x y J u x y v x y E x y u v dA E E E E E E u x y v x y                                                                          (See Slide #10 for general statement of this idea.)
  • 51. FEA Theory -51- 2.2: Calculus of Variations (cont.)  Notes:  There are no general procedures for finding the operator for a given set of equations  However, is known for many of the more common finite element analysis problems.  Special case for which can always be found:     .  E u x 0 E E E                             2 2 1 2 ; = matrix of derivative operators such that satisfies BC's for all possible choices of and . V V dV dV                            1 1 E u x M x u x b 0 M x M x u x M x u x u x M x u x u x u x “Self-adjoint” equations
  • 52. FEA Theory -52- 2.2: Calculus of Variations (cont.)  Notes:  For self-adjoint equations, and can be shown to be: (Depending on problem details, may be necessary to integrate by parts before taking variation.)                   1 ; 2 1 . 2 V E J dV                    u x M x u x u x b u u x M x u x u x b E   J u   J u
  • 53. FEA Theory -53- 2.2: Calculus of Variations (cont.)  Example: axial deformation of fixed rod with axial load –  Can re-write governing equations as:           0 0 . 1 0 0 f x d dx E d dx u x x                            b M u x           0; . 0 0 . f x d du x x dx E dx u x u x L         
  • 54. FEA Theory -54- 2.2: Calculus of Variations (cont.)  Example:  Functional is then calculated as follows:  Euler equations for this functional:           2 1 1 1 2 2 2 2 1 1 1 2 2 2 0 0 1 = ; 1 2 0 . f x d uf x dx E d du dx dx E d dx L uf x d du dx dx E u u u E u J u dx                                                   u         1 1 2 2 1 1 2 2 0 + 0, or + 0. 0 0, or 0. f x f x d d d dx E dx dx E du dx du d du dx dx dx d dx E d E u dx E d E u dx                                          
  • 55. FEA Theory -55- 2.2: Calculus of Variations (cont.)  So, what’s all of this have to do with finite elements?  Have a set of equations and boundary conditions to solve for .  Have a functional related to and via the Euler equations on .  Finite element analysis attempts to find the best approximate solution to     E u x 0     B u x 0   u x E B       , , , , x y z V J E dV         u u u u x x u E       , , , , 0. x y z V J E dV            u u u u x x u Weak form of governing equations!
  • 56. FEA Theory -56- 2.2: Calculus of Variations (cont.)  Look more closely at 1D version:  Suppose we make “usual” approximation –             1 1 a a . n approx k k k n approx k k k u x u x N x u x u x N x                         , , , , * boundary terms 0. b a x E x u u E x u u d u dx u x u dx                 2 2 0 1 2 0 1 2 E.g., if a a a ,then a a a . approx approx u x x x u x x x           A “space” of trial functions Must belong to same “space”
  • 57. FEA Theory -57- 2.2: Calculus of Variations (cont.)  Plug in approximations (ignoring boundary terms for now) –  Since each ak is arbitrary, best approximation comes from             , , , , * 0, 1,2, , b approx approx approx approx a x E x u u u u E x u u u u d k u dx u x N x dx k n                                            , , , , 1 , , , , 1 a * 0, or a * * 0. b approx approx approx approx a b approx approx approx approx a x n E x u u u u E x u u u u d k k u dx u k x x n E x u u u u E x u u u u d k k u dx u k x N x dx N x dx                                       Function of a1, a2, …, an  Get n equations for n constants!
  • 58. FEA Theory -58-  Notice the following: Galerkin’s Method and Calculus of Variations give same equations when “proper” is used!                     , , , , If , then , . * , 0, 1,2, , . approx approx approx approx b a E x u u u u E x u u u u d approx E u dx u x k E x E d E E u x u dx u E u u R x N x R x dx k n                                   a a 2.2: Calculus of Variations (cont.) Galerkin’s method! E
  • 59. FEA Theory -59- 2.2: Calculus of Variations (cont.)  Notice something else:           , , . b a approx exact x approx approx exact x J u u J u u E x u u u u dx J u u              a               a a , , , , a a , , , , , , * * * * b k k a b approx approx approx approx approx approx k k a approx approx approx approx x E approx approx x x E x u u u u E x u u u u u u u u x E x u u u u E x u u u u k u u x u u u u dx dx N x N                                                      b a x k x x dx 
  • 60. FEA Theory -60- 2.2: Calculus of Variations (cont.)  Integrate 2nd term by parts (and ignore boundary terms again): Rayleigh-Ritz Method on  gives same equations as J = 0 !                           , , , , a , , , , , , a * * * . 0 * b approx approx approx approx k a b approx approx approx approx a approx approx k x E x u u u u E x u u u u d k k u dx u x x E x u u u u E x u u u u d k u dx u x E x u u u u k N x N x dx N x dx N x                                                      , , 0. b approx approx a x E x u u u u d u dx u x dx          
  • 61. FEA Theory -61- 2.2: Calculus of Variations (cont.)  Example: 1D Axial Rod “dynamics”  Given: Axial rod has constant density ρ, area A, length L, and spins at constant rate ω. It is pinned at x = 0 and has applied force -F at x = L. The governing equation and boundary conditions for the steady-state rotation of the rod are:  Required: Using the calculus of variations on an appropriate variational principle along with the approximate solution , estimate the displacement of the rod.     2 2 2 0 for 0 ; 0 0; . d u E x x L dx du F u x E x L dx A             2 1 2 u x a x a x  
  • 62. FEA Theory -62-       2 2 2 2 2 2 2 2 2 2 2 2 1 1 2 2 0 is self-adjoint, with and . * * . L d u d u dx dx d u d E x E x dx dx E u E u x J u E u x dx                E u M b 2.2: Calculus of Variations (cont.)  Solution:  Find appropriate variational principle:  Problem: there is a nonzero boundary condition –       2 2 1 2 2 1 1 2 2 0 * (Work done by applied force.) * * . F A L d u F A dx B u x L J u x L u E u x dx            Needs to be integrated by parts!
  • 63. FEA Theory -63-                   2 2 1 1 1 2 2 2 0 0 0 2 2 1 2 0 0 * * = * . L L x L du du F A dx dx x L L du F A dx J u x L u E E dx u x dx u x L E dx u x dx                   2.2: Calculus of Variations (cont.)  Solution:  Doing this gives:  Require the first variation to equal zero:       2 0 * * * 0. L d u du F A dx dx J u x L u x E dx            
  • 64. FEA Theory -64- 2.2: Calculus of Variations (cont.)  Solution:  Using the given approximate function:  After some integrating, result is:               2 2 1 2 1 2 2 1 2 2 2 1 2 1 2 1 2 0 a a a a . a a * a a * a 2a * a 2 a 0. F A L u x x x u x x x J L L x x x E x x dx                               2 2 3 2 1 1 2 1 3 2 4 2 3 1 4 1 2 2 4 3 a a a a a a 0. FL A FL A J L EL EL L EL EL               =0 =0
  • 65. FEA Theory -65- 2.2: Calculus of Variations (cont.)  Solution:  Solve the two equations to get:           2 2 2 2 7 1 12 4 1 2 7 a ; a * . 12 4 x x x L L L approx o F L L u x u EA E E                 Same as Galerkin’s method solution!
  • 66. FEA Theory -66-  What if we had forgotten about the BC?  Functional becomes:  So the first variation becomes:                 2 2 1 1 2 2 0 0 0 2 2 1 1 2 2 0 0 * = * . L L x L du du dx dx x L L du F A dx J u E E dx u x dx u x L E dx u x dx                2.2: Calculus of Variations (cont.)       2 2 0 * * * 0. L d u du F A dx dx J u x L u x E dx             Force is cut in half!
  • 67. FEA Theory -67- 2.2: Calculus of Variations (cont.)  Solution:  Solution becomes:           2 2 2 2 7 1 12 4 2 1 2 7 a ; a * . 2 12 4 x x x L L L approx o F L L u x u EA E E                