SlideShare a Scribd company logo
1 of 13
NEW YORK CITY COLLEGE, MECHANICAL ENGINEERING
Atmospheric Turbulence
For Master’s Project with Dr. Goushcha
Johnaton McAdam
Spring 2017
1
Contents
1. Abstract.................................................................................................................................................2
A. Problem Statement............................................................................................................................2
B. Objective...........................................................................................................................................2
2. Introduction...........................................................................................................................................2
C. Atmospheric Turbulence...................................................................................................................2
D. Governing Equations ........................................................................................................................3
3. Geometry...............................................................................................................................................4
A. Setup .................................................................................................................................................4
B. Materials .......................................................................................................................................6
4. Procedure ..............................................................................................................................................6
5. Results...................................................................................................................................................7
6. Discussion.............................................................................................................................................8
7. Conclusion ............................................................................................................................................9
8. Acknowledgements...............................................................................................................................9
9. References...........................................................................................................................................10
10. Appendix.........................................................................................................................................10
2
1. Abstract
A. Problem Statement
This experiment will measure the turbulence boundary layer that is created from the turbulent
geometries inside a wind tunnel. The velocity profile, Turbulence intensity and Kinetic energy
dissipation will also be studied to improve upon the experiment.
B. Objective
The purpose of this research paper is to generate a working experiment model of atmospheric
turbulence in a wind tunnel to study its effects. The methodology that will be used to tackle this
problem will include the use of three main components, turbulent fins, step barriers and the
turbulence grid. The goal is to create the boundary layer as seen below and to validate the results;
the data computed will be compared to those found in literature.
2. Introduction
C. Atmospheric Turbulence
In many engineering and physics research the study of the turbulent spectrum and its
influence of the atmospheric are important for many applications such as wind turbine, air craft
design and even weather phenomenon. The term Atmospheric turbulence is used to describe the
dynamic irregular motion of winds that varies in velocities and directions, this occurrence causes
the water vapor, smoke and as well as the energies to become distributed horizontally and
vertically in 3D. The boundary layers created at the lowest part of the atmospheric are created
from the effects of earth surface roughness, temperature and other turbulent movements.
Scientist has always wanted to replicate this phenomenon to study its effect on aerodynamic
bodies such as rockets because it has been argue that the upper atmosphere wind conditions is a
contributing factor to rocket crashes or to simply harvest this natural energy with the use of wind
turbines.
Figure 1:
Atmospheric
Turbulent Boundary
Layer illustration
3
D. Governing Equations
Continuity
1.
πœ•π‘ˆπ‘–
πœ•π‘₯ 𝑖
= 0
Momentum
2. 𝜌 (
πœ•π‘ˆπ‘–
πœ•π‘‘
+
πœ•(π‘ˆπ‘– π‘ˆ 𝑗)
πœ•π‘₯ 𝑗
) = βˆ’
πœ•π‘ƒ 𝑖
πœ•π‘₯ 𝑖
+ πœ‡ (
πœ•2 π‘ˆπ‘–
πœ•π‘₯ 𝑗
2) + πœŒπ‘”π‘–
Reynolds-averaged Naiver–Stokes equations
Let: π‘ˆπ‘–
β€²Μ…Μ…Μ…Μ… = 0 π‘ˆπ‘–
β€²β€²Μ…Μ…Μ…Μ… β‰  0 = π‘ˆπ‘–
β€² 2Μ…Μ…Μ…Μ…Μ… π‘ˆπ‘–=π‘ˆΜ…π‘– + π‘ˆπ‘–
β€²
π‘ˆΜ…π‘–
Μ… = π‘ˆΜ…π‘–
Plug in appropriates values
πœ•(π‘ˆΜ…π‘– + π‘ˆπ‘–
β€²
)
πœ•π‘₯𝑖
= 0
𝜌 (
πœ•(π‘ˆΜ…π‘– + π‘ˆπ‘–
β€²
)
πœ•π‘‘
+
πœ•(π‘ˆΜ…π‘– + π‘ˆπ‘–
β€²
)(π‘ˆΜ…π‘— + π‘ˆπ‘—
β€²
)
πœ•π‘₯𝑗
) = βˆ’
πœ•(𝑃̅𝑖 + 𝑃𝑖
β€²
)
πœ•π‘₯𝑖
+ πœ‡ (
πœ•2(π‘ˆΜ…π‘– + π‘ˆπ‘–
β€²
)
πœ•π‘₯𝑗
2 ) + πœŒπ‘”π‘–
Take the Average of both equations
πœ•(π‘ˆΜ…π‘– + π‘ˆπ‘–
β€²Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…)
πœ•π‘₯𝑖
= 0
3.
πœ•(π‘ˆΜ…π‘–)
πœ•π‘₯ 𝑖
= 0
𝜌 (
πœ•(π‘ˆΜ…π‘– + π‘ˆπ‘–
β€²)
πœ•π‘‘
+
πœ•(π‘ˆΜ…π‘– + π‘ˆπ‘–
β€²)(π‘ˆΜ…π‘— + π‘ˆπ‘—
β€²)
πœ•π‘₯𝑗
Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…
) = βˆ’
πœ•(𝑃̅𝑖 + 𝑃𝑖
β€²Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…)
πœ•π‘₯𝑖
+ πœ‡ (
πœ•2
(π‘ˆΜ…π‘– + π‘ˆπ‘–
β€²Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…)
πœ•π‘₯𝑗
2 ) + πœŒπ‘”π‘–
4. 𝜌 (
πœ•(π‘ˆΜ… 𝑖)
πœ•π‘‘
+
πœ•(π‘ˆΜ… 𝑖 π‘ˆΜ… 𝑗)
πœ•π‘₯ 𝑗
) = βˆ’
πœ•(𝑃̅ 𝑖)
πœ•π‘₯ 𝑖
+ πœ‡ (
πœ•2(π‘ˆΜ… 𝑖)
πœ•π‘₯ 𝑗
2 ) βˆ’ 𝜌
πœ•(π‘ˆπ‘–
β€² π‘ˆπ‘—
β€²Μ…Μ…Μ…Μ…Μ…Μ…Μ…)
πœ•π‘₯ 𝑗
+ πœŒπ‘”π‘–
Κ βˆ’ πœ– π‘€π‘œπ‘‘π‘’π‘™
5.
𝐷 π‘˜
𝐷𝑑
=
πœ•
πœ•π‘₯ 𝑖
(
πœ‡ 𝑒𝑓𝑓
𝜎 π‘˜
πœ• π‘˜
πœ•π‘₯ 𝑖
) + [πœ‡ 𝑇 (
πœ•(π‘ˆΜ…π‘–)
πœ•π‘₯ 𝑗
+
πœ•(π‘ˆΜ… 𝑗)
πœ•π‘₯ 𝑖
) βˆ’
2
3
𝜌 π›Ώπ‘–π‘—π‘˜]
πœ•(π‘ˆΜ… 𝑗)
πœ•π‘₯ 𝑖
βˆ’ 𝐢 𝐷
πœŒπœ…3/2
𝑙 π‘š
6.
𝐷ϡ
𝐷𝑑
=
πœ•
πœ•π‘₯ 𝑖
(
πœ‡ 𝑒𝑓𝑓
𝜎ϡ
πœ•Ο΅
πœ•π‘₯ 𝑖
) + 𝐢1 [πœ‡ 𝑇 (
πœ•(π‘ˆΜ…π‘–)
πœ•π‘₯ 𝑗
+
πœ•(π‘ˆΜ… 𝑗)
πœ•π‘₯ 𝑖
) βˆ’
2
3
𝜌 π›Ώπ‘–π‘—π‘˜]
πœ•(π‘ˆΜ… 𝑗)
πœ•π‘₯ 𝑖
βˆ’ 𝐢2
𝜌ϡ2
πœ…
4
Turbulence Log Wall Law
𝑒 =
𝑒 π‘Ÿ
π‘˜
ln
𝑦
π‘¦π‘œ
3. Geometry
A. Setup
The basic turbulence geometry to simulate atmospheric turbulence includes the use of an
elliptical vortex generation, roughness element and a barrier wall. For this experiment the
geometries were replaced, for example the turbulence grid and barrier steps were taken instead of
the roughness element and barrier wall. The elliptical vortex generators were implemented from
the Counihan design with is use in various wind tunnel experiments as seen in figure 5; they
were design to be this way to reduce the effects of wakes which may skew with the data.
Figure 2: Initial Geometry Representation
5
Figure 3: Modify Geometry Representation
Figure 4: Final Geometry Representation
6
B. Materials
Initial Setup
Features Materials Dimension Quantity
Turbulent Fins Plywood Minor Radius 6in,
Major Radius 24in
3
Trip Wire Plywood 1 in x 0.5in x 48in 1
Surface Roughness Plywood 2in x 2in x 0.5 in
4in x 4in x 2in
12
Modify Setup
Features Materials Dimension Quantity
Turbulent Fins Cardboard Minor Radius 6in,
Major Radius 24in
4
Surface Roughness Plywood 2in x 2in x 0.5 in
4in x 4in x 2in
12
Trip Wire Plywood 1 in x 0.5in x 48in 1
Rectangular Cut outs Cardboard 6in x 3in 3
Final Setup
Features Materials Dimension Quantity
Turbulent Fins Cardboard Minor Radius 14in,
Major Radius 32in
4
Surface Roughness Plywood 1in x 1in x 48in 8
4. Procedure
1. Remove any devices that may be inside of the wind tunnel, and then mount the probe to
begin the calibration process. After this is complete remove the probe from the wind
tunnel.
2. Place the turbulence grid into the wind tunnel to create the distortion in the wind velocity
downstream.
3. Calculate the minor and major radii from various research papers and sketch those
dimensions on to the working material, then cut the quarter ellipses from the material and
place in the wind tunnel with equal distance distances apart.
4. Create the surface roughness according to the specify dimensions and place them in the
wind tunnel with its required distance downstream.
5. Check the experiment, to make sure everything is secured and there are no loose objects.
6. Cautiously start the wind tunnel, while maintaining a finger over the stop button in the
event of loose objects during the experiment.
7. If the initial test was successful, carefully install the test probe.
8. Record the data of the wind velocity at various heights of the input velocity.
9. Repeat until steps 3-9 until the desired velocity profile is achieved.
7
5. Results
Figure 5: Mean Velocity Profile
Figure 6: Turbulence Kinetic Energy
8
Figure 7: Turbulence Intensity
6. Discussion
The results obtain from the first experimental setup failed to achieve the desired
atmospheric boundary layer due to its crude structure. The design was poorly structured from a
number of reasons such as limited number fins, limited roughness element and lack of fin lengths
in the downstream direction. To address this issue an extension of rectangular cut outs of
cardboard were placed in the downstream direction to increase its length; however this created a
new scope of concerns. One of them being the creation of wakes downstream, the wakes were
created from the rectangular cutouts due to the nature of the geometry to create recirculation
zones behind the turbulence fins. The final setup included four turbulence fins; the height was
created to roughly be half of the vertical distance of the wind tunnel and its width to be two-
thirds of its own height. The data measured from the final setup was desirable for the input wind
velocity of 5 m/s and unfortunately due the nature of this experiment being incomplete, the data
was not able to be plotted against the turbulence log wall at this time.
9
7. Conclusion
In conclusion, the experimental study of atmospheric turbulence was a very tedious process;
however the knowledge and experience acquired was very rewarding. I was able to apply my
creativity and problem solving skills to solve a real world problem which I was able to learn
fundamentally from the classroom. This is still a project in progress; therefore there is still room
for improvement in the future.
8. Acknowledgements
I would like to thank the various scientist and engineers who made their research available so
that many young aspiring students may learn and implement our ideas to that field of research. I
would also like to thank my Professor Dr. Goushcha for providing guidance for me when I
needed it the most.
10
9. References
[1] Adrián Roberto Wittwer, Guilherme Sausen Welter and Acir M. Loredo-Souza (2013). ,
Wind Tunnel Designs and Their Diverse Engineering Applications, Dr. Noor Ahmed (Ed.),
Intech, DOI: 10.5772/54088. Available from: http://www..com/books/wind-tunnel-designs-and-
their-diverse-engineering-applications/statistical-analysis-of-wind-tunnel-and-atmospheric-
boundary-layer-turbulent-flows
10.Appendix
Nomenclature
π‘ˆΜ…π‘– βˆ’ π‘šπ‘’π‘Žπ‘› π‘£π‘’π‘™π‘œπ‘π‘–π‘‘π‘¦ (π‘š 𝑠⁄ )
π‘ˆπ‘–
β€²
βˆ’ 𝑓𝑙𝑒π‘₯π‘Žπ‘‘π‘–π‘›π‘” π‘£π‘’π‘™π‘œπ‘π‘–π‘‘π‘¦ (π‘š 𝑠⁄ )
𝜌 βˆ’ 𝑑𝑒𝑛𝑠𝑖𝑑𝑦 (Kg/L)
𝑃𝑖 βˆ’ π‘π‘Ÿπ‘’π‘ π‘ π‘’π‘Ÿπ‘’ (π‘ƒπ‘Ž)
πœ‡ βˆ’ π‘£π‘–π‘ π‘π‘œπ‘–π‘ π‘‘π‘¦ (π‘ƒπ‘Ž βˆ’ 𝑠)
𝑒 π‘Ÿ βˆ’ π‘Ÿπ‘’π‘“π‘’π‘Ÿπ‘’π‘›π‘π‘’ π‘£π‘’π‘™π‘œπ‘π‘–π‘‘π‘¦ (π‘š 𝑠⁄ )
𝑧 π‘Ÿ βˆ’ π‘Ÿπ‘’π‘“π‘’π‘Ÿπ‘’π‘›π‘π‘’ β„Žπ‘’π‘–π‘”β„Žπ‘‘ (π‘š)
𝑧 βˆ’ β„Žπ‘’π‘–π‘”β„Žπ‘‘ (m)
𝛼 βˆ’ π‘π‘œπ‘€π‘’π‘Ÿ 𝑖𝑛𝑑𝑒π‘₯
πΆπœ€1 πΆπœ€2 πΆπœ‡ πœŽπ‘˜ πœŽπœ€ βˆ’ π‘˜ π‘’π‘π‘–π‘™π‘ π‘œπ‘› π‘π‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘π‘ 
𝑔𝑖 βˆ’ π‘”π‘Ÿπ‘Žπ‘£π‘–π‘‘π‘¦ (𝑁)
Κ βˆ’ π‘‘π‘’π‘Ÿπ‘π‘’π‘™π‘’π‘›π‘‘ π‘˜π‘–π‘›π‘’π‘‘π‘–π‘ π‘’π‘›π‘’π‘Ÿπ‘”π‘¦ (π‘š2
/𝑠2
)
πœ– βˆ’ π‘‘π‘–π‘ π‘ π‘π‘Žπ‘‘π‘–π‘œπ‘› π‘Ÿπ‘Žπ‘‘π‘’ (π‘š2
/𝑠^3)
11
Matlab Code
clear all
close all
clc
load('Calibration.mat')
load('Calibration2.mat')
cd('2017Jan10-Velprofile')
list_files1=ls;
for j= 3:18
y=[35:36:600];
fid=fopen(list_files1(j, :));
C = textscan(fid, '%f %f', 'HeaderLines', 8);
data=[C{1} C{2}];
fclose(fid);
velocityi=polyval(p,data(:, 2));
TKE(j-2,:) = 0.5*(mean((velocityi - mean(velocityi)).^2));
Vm(j-2,:) = mean(velocityi);
TKEP(j-2,:) = (mean(sqrt( (velocityi - Vm(j-2,:)).^2))./ Vm(j-2,:));
end
cd('..')
cd('2017Feb17-Velprofile')
list_files3=ls;
for i= 3:17
fid3=fopen(list_files3(i, :));
C3 = textscan(fid3, '%f %f', 'HeaderLines', 8);
data3=[C3{1} C3{2}];
fclose(fid3);
velocity3i=polyval(p2,data3(:, 2));
TKE3(i-2,:) = 0.5*(mean((velocity3i - mean(velocity3i)).^2));
Vm3(i-2,:) = mean(velocity3i);
TKEP3(i-2,:) = (mean(sqrt( (velocity3i - Vm3(i-2,:)).^2))./ Vm3(i-2,:));
end
cd('..')
cd('2017Apr25-Velprofile')
list_files4=ls;
for i= 3:29
fid5=fopen(list_files4(i, :));
C3 = textscan(fid5, '%f %f', 'HeaderLines', 8);
data4=[C3{1} C3{2}];
fclose(fid5);
velocity5i=polyval(p2,data4(:, 2));
TKE5(i-2,:) = 0.5*(mean((velocity5i - mean(velocity5i)).^2));
Vm5(i-2,:) = mean(velocity5i);
TKEP5(i-2,:) = (mean(sqrt( (velocity5i - Vm5(i-2,:)).^2))./ Vm5(i-2,:));
height(i-2) = str2num(list_files4(i, 25:27));
end
12
cd('..')
% y4 = 600e-3/exp(3.5/5);
y3=[0:300];
yo = 0.300;
Uo =5;
nu = 1.5e-05;
K=0.41;
% U = (Uo/K)* log(y3./y4)+ 5.1 ;
% plot(Vm5, height, U, y3)
y1=[40:40:600];
figure(1)
hold on
plot(TKE,y,'-o', TKE3,y1,'-*', TKE5, height,'k')
xlabel('Turbulence Kinetic Energy, m^2/s^2')
ylabel('Height, mm')
title('Turbulence Kinetic Energy vs. Height')
legend('Initial Setup','Modify Setup','Final Setup')
%legend('Jan 10 Data','Jan 19 Data', 'Feb 2 Data','Feb 17 Data','April 21
Data')
axis([0 0.3 0 600 ])
figure(2)
hold on
plot(Vm,y,'-o',Vm3,y1,'-*',Vm5 ,height,'k')
xlabel('Velocity, m/s')
ylabel('Height, mm')
title('Mean Velocity')
legend('Initial Setup','Modify Setup','Final Setup')
axis([2 6 0 600 ])
figure(3)
hold on
plot(TKEP,y,'-o',TKEP3,y1,'-*', TKEP5, height,'k')
xlabel('Percent Turbulence')
ylabel('Height, mm')
title('Percent Turbulence')
%legend('Jan 10 Data','Jan 19 Data', 'Feb 2 Data','Feb 17 Data','April 21
Data')
legend('Initial Setup','Modify Setup','Final Setup')
axis([0 0.2 0 600 ])

More Related Content

What's hot

Performance of a Wind System: Case Study of Sidi Daoud Site
Performance of a Wind System: Case Study of Sidi Daoud SitePerformance of a Wind System: Case Study of Sidi Daoud Site
Performance of a Wind System: Case Study of Sidi Daoud SiteIJERA Editor
Β 
TIME INTEGRATION OF EVAPOTRANSPIRATION USING A TWO SOURCE SURFACE ENERGY BALA...
TIME INTEGRATION OF EVAPOTRANSPIRATION USING A TWO SOURCE SURFACE ENERGY BALA...TIME INTEGRATION OF EVAPOTRANSPIRATION USING A TWO SOURCE SURFACE ENERGY BALA...
TIME INTEGRATION OF EVAPOTRANSPIRATION USING A TWO SOURCE SURFACE ENERGY BALA...Ramesh Dhungel
Β 
THEORETICAL AND EXPERIMENTAL STUDIES ON STEPPED SOLAR STILL
THEORETICAL AND EXPERIMENTAL STUDIES ON STEPPED SOLAR STILLTHEORETICAL AND EXPERIMENTAL STUDIES ON STEPPED SOLAR STILL
THEORETICAL AND EXPERIMENTAL STUDIES ON STEPPED SOLAR STILLIAEME Publication
Β 
Atmospheric Turbulence
Atmospheric TurbulenceAtmospheric Turbulence
Atmospheric TurbulenceJohnaton McAdam
Β 
Modelling deposition and resuspension of aerosols in an Euler/Euler approach
Modelling deposition and resuspension of aerosols in an Euler/Euler approachModelling deposition and resuspension of aerosols in an Euler/Euler approach
Modelling deposition and resuspension of aerosols in an Euler/Euler approachFLUIDIAN
Β 
Simulate the dispersion pattern of Suspended Particulate Matter in the vicini...
Simulate the dispersion pattern of Suspended Particulate Matter in the vicini...Simulate the dispersion pattern of Suspended Particulate Matter in the vicini...
Simulate the dispersion pattern of Suspended Particulate Matter in the vicini...IJERA Editor
Β 
Bi4301333340
Bi4301333340Bi4301333340
Bi4301333340IJERA Editor
Β 
Final Year Dissertation Report
Final Year Dissertation ReportFinal Year Dissertation Report
Final Year Dissertation ReportMark C. R. Gilbert
Β 
minor project ppt (2)
minor project ppt (2)minor project ppt (2)
minor project ppt (2)Charu Kamra
Β 
Time integration of evapotranspiration using a two source surface energy bala...
Time integration of evapotranspiration using a two source surface energy bala...Time integration of evapotranspiration using a two source surface energy bala...
Time integration of evapotranspiration using a two source surface energy bala...Ramesh Dhungel
Β 
MC2016_Lazaridou_Konstantina
MC2016_Lazaridou_KonstantinaMC2016_Lazaridou_Konstantina
MC2016_Lazaridou_KonstantinaNadia Lazaridou
Β 

What's hot (13)

30120140505021
3012014050502130120140505021
30120140505021
Β 
Performance of a Wind System: Case Study of Sidi Daoud Site
Performance of a Wind System: Case Study of Sidi Daoud SitePerformance of a Wind System: Case Study of Sidi Daoud Site
Performance of a Wind System: Case Study of Sidi Daoud Site
Β 
TIME INTEGRATION OF EVAPOTRANSPIRATION USING A TWO SOURCE SURFACE ENERGY BALA...
TIME INTEGRATION OF EVAPOTRANSPIRATION USING A TWO SOURCE SURFACE ENERGY BALA...TIME INTEGRATION OF EVAPOTRANSPIRATION USING A TWO SOURCE SURFACE ENERGY BALA...
TIME INTEGRATION OF EVAPOTRANSPIRATION USING A TWO SOURCE SURFACE ENERGY BALA...
Β 
THEORETICAL AND EXPERIMENTAL STUDIES ON STEPPED SOLAR STILL
THEORETICAL AND EXPERIMENTAL STUDIES ON STEPPED SOLAR STILLTHEORETICAL AND EXPERIMENTAL STUDIES ON STEPPED SOLAR STILL
THEORETICAL AND EXPERIMENTAL STUDIES ON STEPPED SOLAR STILL
Β 
Atmospheric Turbulence
Atmospheric TurbulenceAtmospheric Turbulence
Atmospheric Turbulence
Β 
Modelling deposition and resuspension of aerosols in an Euler/Euler approach
Modelling deposition and resuspension of aerosols in an Euler/Euler approachModelling deposition and resuspension of aerosols in an Euler/Euler approach
Modelling deposition and resuspension of aerosols in an Euler/Euler approach
Β 
Simulate the dispersion pattern of Suspended Particulate Matter in the vicini...
Simulate the dispersion pattern of Suspended Particulate Matter in the vicini...Simulate the dispersion pattern of Suspended Particulate Matter in the vicini...
Simulate the dispersion pattern of Suspended Particulate Matter in the vicini...
Β 
Bi4301333340
Bi4301333340Bi4301333340
Bi4301333340
Β 
Final Year Dissertation Report
Final Year Dissertation ReportFinal Year Dissertation Report
Final Year Dissertation Report
Β 
minor project ppt (2)
minor project ppt (2)minor project ppt (2)
minor project ppt (2)
Β 
PosterForAGU
PosterForAGUPosterForAGU
PosterForAGU
Β 
Time integration of evapotranspiration using a two source surface energy bala...
Time integration of evapotranspiration using a two source surface energy bala...Time integration of evapotranspiration using a two source surface energy bala...
Time integration of evapotranspiration using a two source surface energy bala...
Β 
MC2016_Lazaridou_Konstantina
MC2016_Lazaridou_KonstantinaMC2016_Lazaridou_Konstantina
MC2016_Lazaridou_Konstantina
Β 

Similar to Masters project atmoshperic turbulence

IRJET- Design and Analysis of Solar Chimney for Passive Ventilation System
IRJET-  	  Design and Analysis of Solar Chimney for Passive Ventilation SystemIRJET-  	  Design and Analysis of Solar Chimney for Passive Ventilation System
IRJET- Design and Analysis of Solar Chimney for Passive Ventilation SystemIRJET Journal
Β 
Vibration membranes in_air
Vibration membranes in_airVibration membranes in_air
Vibration membranes in_airA NC
Β 
Low cycle biaxial fatigue behavior of direct aged Nickel-based 718 superalloy
Low cycle biaxial fatigue behavior of direct aged Nickel-based 718 superalloy Low cycle biaxial fatigue behavior of direct aged Nickel-based 718 superalloy
Low cycle biaxial fatigue behavior of direct aged Nickel-based 718 superalloy IJERA Editor
Β 
GEOSYNTHETIC TESTING TECHNIQUES
GEOSYNTHETIC TESTING TECHNIQUESGEOSYNTHETIC TESTING TECHNIQUES
GEOSYNTHETIC TESTING TECHNIQUESCBRI-CSIR
Β 
Experimental and Analytical Study on Uplift Capacity -Formatted Paper.pdf
Experimental and Analytical Study on Uplift Capacity -Formatted Paper.pdfExperimental and Analytical Study on Uplift Capacity -Formatted Paper.pdf
Experimental and Analytical Study on Uplift Capacity -Formatted Paper.pdfSamirsinh Parmar
Β 
Extinction of Millimeter wave on Two Dimensional Slices of Foam-Covered Sea-s...
Extinction of Millimeter wave on Two Dimensional Slices of Foam-Covered Sea-s...Extinction of Millimeter wave on Two Dimensional Slices of Foam-Covered Sea-s...
Extinction of Millimeter wave on Two Dimensional Slices of Foam-Covered Sea-s...IJSRED
Β 
Ba4301283289
Ba4301283289Ba4301283289
Ba4301283289IJERA Editor
Β 
Das b. m._,soil_mechanics_laboratory_manual,_6th_ed,_2002
Das b. m._,soil_mechanics_laboratory_manual,_6th_ed,_2002Das b. m._,soil_mechanics_laboratory_manual,_6th_ed,_2002
Das b. m._,soil_mechanics_laboratory_manual,_6th_ed,_2002Lawrence Omai
Β 
Cfd fundamental study of flow past a circular cylinder with convective heat t...
Cfd fundamental study of flow past a circular cylinder with convective heat t...Cfd fundamental study of flow past a circular cylinder with convective heat t...
Cfd fundamental study of flow past a circular cylinder with convective heat t...Sammy Jamar
Β 
Bb4301290299
Bb4301290299Bb4301290299
Bb4301290299IJERA Editor
Β 
Pendulum Dampers for Tall RC Chimney Subjected To Wind
Pendulum Dampers for Tall RC Chimney Subjected To WindPendulum Dampers for Tall RC Chimney Subjected To Wind
Pendulum Dampers for Tall RC Chimney Subjected To WindIJERA Editor
Β 
Wind Load Analysis on High Rise Chimney using Computational Fluid Dynamics
Wind Load Analysis on High Rise Chimney using Computational Fluid DynamicsWind Load Analysis on High Rise Chimney using Computational Fluid Dynamics
Wind Load Analysis on High Rise Chimney using Computational Fluid DynamicsIRJET Journal
Β 
ProductSpec.doc
ProductSpec.docProductSpec.doc
ProductSpec.docJulius Chua
Β 
Mini Project Harout Charoian
Mini Project Harout CharoianMini Project Harout Charoian
Mini Project Harout CharoianHarout Charoian
Β 

Similar to Masters project atmoshperic turbulence (20)

IRJET- Design and Analysis of Solar Chimney for Passive Ventilation System
IRJET-  	  Design and Analysis of Solar Chimney for Passive Ventilation SystemIRJET-  	  Design and Analysis of Solar Chimney for Passive Ventilation System
IRJET- Design and Analysis of Solar Chimney for Passive Ventilation System
Β 
Vibration membranes in_air
Vibration membranes in_airVibration membranes in_air
Vibration membranes in_air
Β 
dns
dnsdns
dns
Β 
Low cycle biaxial fatigue behavior of direct aged Nickel-based 718 superalloy
Low cycle biaxial fatigue behavior of direct aged Nickel-based 718 superalloy Low cycle biaxial fatigue behavior of direct aged Nickel-based 718 superalloy
Low cycle biaxial fatigue behavior of direct aged Nickel-based 718 superalloy
Β 
GEOSYNTHETIC TESTING TECHNIQUES
GEOSYNTHETIC TESTING TECHNIQUESGEOSYNTHETIC TESTING TECHNIQUES
GEOSYNTHETIC TESTING TECHNIQUES
Β 
Experimental and Analytical Study on Uplift Capacity -Formatted Paper.pdf
Experimental and Analytical Study on Uplift Capacity -Formatted Paper.pdfExperimental and Analytical Study on Uplift Capacity -Formatted Paper.pdf
Experimental and Analytical Study on Uplift Capacity -Formatted Paper.pdf
Β 
Extinction of Millimeter wave on Two Dimensional Slices of Foam-Covered Sea-s...
Extinction of Millimeter wave on Two Dimensional Slices of Foam-Covered Sea-s...Extinction of Millimeter wave on Two Dimensional Slices of Foam-Covered Sea-s...
Extinction of Millimeter wave on Two Dimensional Slices of Foam-Covered Sea-s...
Β 
Ba4301283289
Ba4301283289Ba4301283289
Ba4301283289
Β 
Das b. m._,soil_mechanics_laboratory_manual,_6th_ed,_2002
Das b. m._,soil_mechanics_laboratory_manual,_6th_ed,_2002Das b. m._,soil_mechanics_laboratory_manual,_6th_ed,_2002
Das b. m._,soil_mechanics_laboratory_manual,_6th_ed,_2002
Β 
L0372066071
L0372066071L0372066071
L0372066071
Β 
Cfd fundamental study of flow past a circular cylinder with convective heat t...
Cfd fundamental study of flow past a circular cylinder with convective heat t...Cfd fundamental study of flow past a circular cylinder with convective heat t...
Cfd fundamental study of flow past a circular cylinder with convective heat t...
Β 
2392-3449
2392-34492392-3449
2392-3449
Β 
Bb4301290299
Bb4301290299Bb4301290299
Bb4301290299
Β 
B1302040611
B1302040611B1302040611
B1302040611
Β 
Pendulum Dampers for Tall RC Chimney Subjected To Wind
Pendulum Dampers for Tall RC Chimney Subjected To WindPendulum Dampers for Tall RC Chimney Subjected To Wind
Pendulum Dampers for Tall RC Chimney Subjected To Wind
Β 
Wind Load Analysis on High Rise Chimney using Computational Fluid Dynamics
Wind Load Analysis on High Rise Chimney using Computational Fluid DynamicsWind Load Analysis on High Rise Chimney using Computational Fluid Dynamics
Wind Load Analysis on High Rise Chimney using Computational Fluid Dynamics
Β 
ProductSpec.doc
ProductSpec.docProductSpec.doc
ProductSpec.doc
Β 
wind tunnel 2057164.pptx
wind tunnel 2057164.pptxwind tunnel 2057164.pptx
wind tunnel 2057164.pptx
Β 
Wind tunnels
  Wind tunnels   Wind tunnels
Wind tunnels
Β 
Mini Project Harout Charoian
Mini Project Harout CharoianMini Project Harout Charoian
Mini Project Harout Charoian
Β 

Recently uploaded

Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Dr.Costas Sachpazis
Β 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSCAESB
Β 
Gurgaon ✑️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✑️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✑️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✑️9711147426✨Call In girls Gurgaon Sector 51 escort servicejennyeacort
Β 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...srsj9000
Β 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escortsranjana rawat
Β 
Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girlsssuser7cb4ff
Β 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024Mark Billinghurst
Β 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...VICTOR MAESTRE RAMIREZ
Β 
πŸ”9953056974πŸ”!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
πŸ”9953056974πŸ”!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...πŸ”9953056974πŸ”!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
πŸ”9953056974πŸ”!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...9953056974 Low Rate Call Girls In Saket, Delhi NCR
Β 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVRajaP95
Β 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineeringmalavadedarshan25
Β 
chaitra-1.pptx fake news detection using machine learning
chaitra-1.pptx  fake news detection using machine learningchaitra-1.pptx  fake news detection using machine learning
chaitra-1.pptx fake news detection using machine learningmisbanausheenparvam
Β 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...Soham Mondal
Β 
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...ZTE
Β 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidNikhilNagaraju
Β 
Introduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptxIntroduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptxvipinkmenon1
Β 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130Suhani Kapoor
Β 
Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxbritheesh05
Β 
Current Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLCurrent Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLDeelipZope
Β 

Recently uploaded (20)

Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Β 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentation
Β 
Gurgaon ✑️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✑️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✑️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✑️9711147426✨Call In girls Gurgaon Sector 51 escort service
Β 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Β 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
Β 
Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girls
Β 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024
Β 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...
Β 
πŸ”9953056974πŸ”!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
πŸ”9953056974πŸ”!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...πŸ”9953056974πŸ”!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
πŸ”9953056974πŸ”!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
Β 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
Β 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineering
Β 
chaitra-1.pptx fake news detection using machine learning
chaitra-1.pptx  fake news detection using machine learningchaitra-1.pptx  fake news detection using machine learning
chaitra-1.pptx fake news detection using machine learning
Β 
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
Β 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
Β 
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
Β 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfid
Β 
Introduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptxIntroduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptx
Β 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
Β 
Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptx
Β 
Current Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLCurrent Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCL
Β 

Masters project atmoshperic turbulence

  • 1. NEW YORK CITY COLLEGE, MECHANICAL ENGINEERING Atmospheric Turbulence For Master’s Project with Dr. Goushcha Johnaton McAdam Spring 2017
  • 2. 1 Contents 1. Abstract.................................................................................................................................................2 A. Problem Statement............................................................................................................................2 B. Objective...........................................................................................................................................2 2. Introduction...........................................................................................................................................2 C. Atmospheric Turbulence...................................................................................................................2 D. Governing Equations ........................................................................................................................3 3. Geometry...............................................................................................................................................4 A. Setup .................................................................................................................................................4 B. Materials .......................................................................................................................................6 4. Procedure ..............................................................................................................................................6 5. Results...................................................................................................................................................7 6. Discussion.............................................................................................................................................8 7. Conclusion ............................................................................................................................................9 8. Acknowledgements...............................................................................................................................9 9. References...........................................................................................................................................10 10. Appendix.........................................................................................................................................10
  • 3. 2 1. Abstract A. Problem Statement This experiment will measure the turbulence boundary layer that is created from the turbulent geometries inside a wind tunnel. The velocity profile, Turbulence intensity and Kinetic energy dissipation will also be studied to improve upon the experiment. B. Objective The purpose of this research paper is to generate a working experiment model of atmospheric turbulence in a wind tunnel to study its effects. The methodology that will be used to tackle this problem will include the use of three main components, turbulent fins, step barriers and the turbulence grid. The goal is to create the boundary layer as seen below and to validate the results; the data computed will be compared to those found in literature. 2. Introduction C. Atmospheric Turbulence In many engineering and physics research the study of the turbulent spectrum and its influence of the atmospheric are important for many applications such as wind turbine, air craft design and even weather phenomenon. The term Atmospheric turbulence is used to describe the dynamic irregular motion of winds that varies in velocities and directions, this occurrence causes the water vapor, smoke and as well as the energies to become distributed horizontally and vertically in 3D. The boundary layers created at the lowest part of the atmospheric are created from the effects of earth surface roughness, temperature and other turbulent movements. Scientist has always wanted to replicate this phenomenon to study its effect on aerodynamic bodies such as rockets because it has been argue that the upper atmosphere wind conditions is a contributing factor to rocket crashes or to simply harvest this natural energy with the use of wind turbines. Figure 1: Atmospheric Turbulent Boundary Layer illustration
  • 4. 3 D. Governing Equations Continuity 1. πœ•π‘ˆπ‘– πœ•π‘₯ 𝑖 = 0 Momentum 2. 𝜌 ( πœ•π‘ˆπ‘– πœ•π‘‘ + πœ•(π‘ˆπ‘– π‘ˆ 𝑗) πœ•π‘₯ 𝑗 ) = βˆ’ πœ•π‘ƒ 𝑖 πœ•π‘₯ 𝑖 + πœ‡ ( πœ•2 π‘ˆπ‘– πœ•π‘₯ 𝑗 2) + πœŒπ‘”π‘– Reynolds-averaged Naiver–Stokes equations Let: π‘ˆπ‘– β€²Μ…Μ…Μ…Μ… = 0 π‘ˆπ‘– β€²β€²Μ…Μ…Μ…Μ… β‰  0 = π‘ˆπ‘– β€² 2Μ…Μ…Μ…Μ…Μ… π‘ˆπ‘–=π‘ˆΜ…π‘– + π‘ˆπ‘– β€² π‘ˆΜ…π‘– Μ… = π‘ˆΜ…π‘– Plug in appropriates values πœ•(π‘ˆΜ…π‘– + π‘ˆπ‘– β€² ) πœ•π‘₯𝑖 = 0 𝜌 ( πœ•(π‘ˆΜ…π‘– + π‘ˆπ‘– β€² ) πœ•π‘‘ + πœ•(π‘ˆΜ…π‘– + π‘ˆπ‘– β€² )(π‘ˆΜ…π‘— + π‘ˆπ‘— β€² ) πœ•π‘₯𝑗 ) = βˆ’ πœ•(𝑃̅𝑖 + 𝑃𝑖 β€² ) πœ•π‘₯𝑖 + πœ‡ ( πœ•2(π‘ˆΜ…π‘– + π‘ˆπ‘– β€² ) πœ•π‘₯𝑗 2 ) + πœŒπ‘”π‘– Take the Average of both equations πœ•(π‘ˆΜ…π‘– + π‘ˆπ‘– β€²Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…) πœ•π‘₯𝑖 = 0 3. πœ•(π‘ˆΜ…π‘–) πœ•π‘₯ 𝑖 = 0 𝜌 ( πœ•(π‘ˆΜ…π‘– + π‘ˆπ‘– β€²) πœ•π‘‘ + πœ•(π‘ˆΜ…π‘– + π‘ˆπ‘– β€²)(π‘ˆΜ…π‘— + π‘ˆπ‘— β€²) πœ•π‘₯𝑗 Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ… ) = βˆ’ πœ•(𝑃̅𝑖 + 𝑃𝑖 β€²Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…) πœ•π‘₯𝑖 + πœ‡ ( πœ•2 (π‘ˆΜ…π‘– + π‘ˆπ‘– β€²Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…) πœ•π‘₯𝑗 2 ) + πœŒπ‘”π‘– 4. 𝜌 ( πœ•(π‘ˆΜ… 𝑖) πœ•π‘‘ + πœ•(π‘ˆΜ… 𝑖 π‘ˆΜ… 𝑗) πœ•π‘₯ 𝑗 ) = βˆ’ πœ•(𝑃̅ 𝑖) πœ•π‘₯ 𝑖 + πœ‡ ( πœ•2(π‘ˆΜ… 𝑖) πœ•π‘₯ 𝑗 2 ) βˆ’ 𝜌 πœ•(π‘ˆπ‘– β€² π‘ˆπ‘— β€²Μ…Μ…Μ…Μ…Μ…Μ…Μ…) πœ•π‘₯ 𝑗 + πœŒπ‘”π‘– Κ βˆ’ πœ– π‘€π‘œπ‘‘π‘’π‘™ 5. 𝐷 π‘˜ 𝐷𝑑 = πœ• πœ•π‘₯ 𝑖 ( πœ‡ 𝑒𝑓𝑓 𝜎 π‘˜ πœ• π‘˜ πœ•π‘₯ 𝑖 ) + [πœ‡ 𝑇 ( πœ•(π‘ˆΜ…π‘–) πœ•π‘₯ 𝑗 + πœ•(π‘ˆΜ… 𝑗) πœ•π‘₯ 𝑖 ) βˆ’ 2 3 𝜌 π›Ώπ‘–π‘—π‘˜] πœ•(π‘ˆΜ… 𝑗) πœ•π‘₯ 𝑖 βˆ’ 𝐢 𝐷 πœŒπœ…3/2 𝑙 π‘š 6. 𝐷ϡ 𝐷𝑑 = πœ• πœ•π‘₯ 𝑖 ( πœ‡ 𝑒𝑓𝑓 𝜎ϡ πœ•Ο΅ πœ•π‘₯ 𝑖 ) + 𝐢1 [πœ‡ 𝑇 ( πœ•(π‘ˆΜ…π‘–) πœ•π‘₯ 𝑗 + πœ•(π‘ˆΜ… 𝑗) πœ•π‘₯ 𝑖 ) βˆ’ 2 3 𝜌 π›Ώπ‘–π‘—π‘˜] πœ•(π‘ˆΜ… 𝑗) πœ•π‘₯ 𝑖 βˆ’ 𝐢2 𝜌ϡ2 πœ…
  • 5. 4 Turbulence Log Wall Law 𝑒 = 𝑒 π‘Ÿ π‘˜ ln 𝑦 π‘¦π‘œ 3. Geometry A. Setup The basic turbulence geometry to simulate atmospheric turbulence includes the use of an elliptical vortex generation, roughness element and a barrier wall. For this experiment the geometries were replaced, for example the turbulence grid and barrier steps were taken instead of the roughness element and barrier wall. The elliptical vortex generators were implemented from the Counihan design with is use in various wind tunnel experiments as seen in figure 5; they were design to be this way to reduce the effects of wakes which may skew with the data. Figure 2: Initial Geometry Representation
  • 6. 5 Figure 3: Modify Geometry Representation Figure 4: Final Geometry Representation
  • 7. 6 B. Materials Initial Setup Features Materials Dimension Quantity Turbulent Fins Plywood Minor Radius 6in, Major Radius 24in 3 Trip Wire Plywood 1 in x 0.5in x 48in 1 Surface Roughness Plywood 2in x 2in x 0.5 in 4in x 4in x 2in 12 Modify Setup Features Materials Dimension Quantity Turbulent Fins Cardboard Minor Radius 6in, Major Radius 24in 4 Surface Roughness Plywood 2in x 2in x 0.5 in 4in x 4in x 2in 12 Trip Wire Plywood 1 in x 0.5in x 48in 1 Rectangular Cut outs Cardboard 6in x 3in 3 Final Setup Features Materials Dimension Quantity Turbulent Fins Cardboard Minor Radius 14in, Major Radius 32in 4 Surface Roughness Plywood 1in x 1in x 48in 8 4. Procedure 1. Remove any devices that may be inside of the wind tunnel, and then mount the probe to begin the calibration process. After this is complete remove the probe from the wind tunnel. 2. Place the turbulence grid into the wind tunnel to create the distortion in the wind velocity downstream. 3. Calculate the minor and major radii from various research papers and sketch those dimensions on to the working material, then cut the quarter ellipses from the material and place in the wind tunnel with equal distance distances apart. 4. Create the surface roughness according to the specify dimensions and place them in the wind tunnel with its required distance downstream. 5. Check the experiment, to make sure everything is secured and there are no loose objects. 6. Cautiously start the wind tunnel, while maintaining a finger over the stop button in the event of loose objects during the experiment. 7. If the initial test was successful, carefully install the test probe. 8. Record the data of the wind velocity at various heights of the input velocity. 9. Repeat until steps 3-9 until the desired velocity profile is achieved.
  • 8. 7 5. Results Figure 5: Mean Velocity Profile Figure 6: Turbulence Kinetic Energy
  • 9. 8 Figure 7: Turbulence Intensity 6. Discussion The results obtain from the first experimental setup failed to achieve the desired atmospheric boundary layer due to its crude structure. The design was poorly structured from a number of reasons such as limited number fins, limited roughness element and lack of fin lengths in the downstream direction. To address this issue an extension of rectangular cut outs of cardboard were placed in the downstream direction to increase its length; however this created a new scope of concerns. One of them being the creation of wakes downstream, the wakes were created from the rectangular cutouts due to the nature of the geometry to create recirculation zones behind the turbulence fins. The final setup included four turbulence fins; the height was created to roughly be half of the vertical distance of the wind tunnel and its width to be two- thirds of its own height. The data measured from the final setup was desirable for the input wind velocity of 5 m/s and unfortunately due the nature of this experiment being incomplete, the data was not able to be plotted against the turbulence log wall at this time.
  • 10. 9 7. Conclusion In conclusion, the experimental study of atmospheric turbulence was a very tedious process; however the knowledge and experience acquired was very rewarding. I was able to apply my creativity and problem solving skills to solve a real world problem which I was able to learn fundamentally from the classroom. This is still a project in progress; therefore there is still room for improvement in the future. 8. Acknowledgements I would like to thank the various scientist and engineers who made their research available so that many young aspiring students may learn and implement our ideas to that field of research. I would also like to thank my Professor Dr. Goushcha for providing guidance for me when I needed it the most.
  • 11. 10 9. References [1] Adrián Roberto Wittwer, Guilherme Sausen Welter and Acir M. Loredo-Souza (2013). , Wind Tunnel Designs and Their Diverse Engineering Applications, Dr. Noor Ahmed (Ed.), Intech, DOI: 10.5772/54088. Available from: http://www..com/books/wind-tunnel-designs-and- their-diverse-engineering-applications/statistical-analysis-of-wind-tunnel-and-atmospheric- boundary-layer-turbulent-flows 10.Appendix Nomenclature π‘ˆΜ…π‘– βˆ’ π‘šπ‘’π‘Žπ‘› π‘£π‘’π‘™π‘œπ‘π‘–π‘‘π‘¦ (π‘š 𝑠⁄ ) π‘ˆπ‘– β€² βˆ’ 𝑓𝑙𝑒π‘₯π‘Žπ‘‘π‘–π‘›π‘” π‘£π‘’π‘™π‘œπ‘π‘–π‘‘π‘¦ (π‘š 𝑠⁄ ) 𝜌 βˆ’ 𝑑𝑒𝑛𝑠𝑖𝑑𝑦 (Kg/L) 𝑃𝑖 βˆ’ π‘π‘Ÿπ‘’π‘ π‘ π‘’π‘Ÿπ‘’ (π‘ƒπ‘Ž) πœ‡ βˆ’ π‘£π‘–π‘ π‘π‘œπ‘–π‘ π‘‘π‘¦ (π‘ƒπ‘Ž βˆ’ 𝑠) 𝑒 π‘Ÿ βˆ’ π‘Ÿπ‘’π‘“π‘’π‘Ÿπ‘’π‘›π‘π‘’ π‘£π‘’π‘™π‘œπ‘π‘–π‘‘π‘¦ (π‘š 𝑠⁄ ) 𝑧 π‘Ÿ βˆ’ π‘Ÿπ‘’π‘“π‘’π‘Ÿπ‘’π‘›π‘π‘’ β„Žπ‘’π‘–π‘”β„Žπ‘‘ (π‘š) 𝑧 βˆ’ β„Žπ‘’π‘–π‘”β„Žπ‘‘ (m) 𝛼 βˆ’ π‘π‘œπ‘€π‘’π‘Ÿ 𝑖𝑛𝑑𝑒π‘₯ πΆπœ€1 πΆπœ€2 πΆπœ‡ πœŽπ‘˜ πœŽπœ€ βˆ’ π‘˜ π‘’π‘π‘–π‘™π‘ π‘œπ‘› π‘π‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘π‘  𝑔𝑖 βˆ’ π‘”π‘Ÿπ‘Žπ‘£π‘–π‘‘π‘¦ (𝑁) Κ βˆ’ π‘‘π‘’π‘Ÿπ‘π‘’π‘™π‘’π‘›π‘‘ π‘˜π‘–π‘›π‘’π‘‘π‘–π‘ π‘’π‘›π‘’π‘Ÿπ‘”π‘¦ (π‘š2 /𝑠2 ) πœ– βˆ’ π‘‘π‘–π‘ π‘ π‘π‘Žπ‘‘π‘–π‘œπ‘› π‘Ÿπ‘Žπ‘‘π‘’ (π‘š2 /𝑠^3)
  • 12. 11 Matlab Code clear all close all clc load('Calibration.mat') load('Calibration2.mat') cd('2017Jan10-Velprofile') list_files1=ls; for j= 3:18 y=[35:36:600]; fid=fopen(list_files1(j, :)); C = textscan(fid, '%f %f', 'HeaderLines', 8); data=[C{1} C{2}]; fclose(fid); velocityi=polyval(p,data(:, 2)); TKE(j-2,:) = 0.5*(mean((velocityi - mean(velocityi)).^2)); Vm(j-2,:) = mean(velocityi); TKEP(j-2,:) = (mean(sqrt( (velocityi - Vm(j-2,:)).^2))./ Vm(j-2,:)); end cd('..') cd('2017Feb17-Velprofile') list_files3=ls; for i= 3:17 fid3=fopen(list_files3(i, :)); C3 = textscan(fid3, '%f %f', 'HeaderLines', 8); data3=[C3{1} C3{2}]; fclose(fid3); velocity3i=polyval(p2,data3(:, 2)); TKE3(i-2,:) = 0.5*(mean((velocity3i - mean(velocity3i)).^2)); Vm3(i-2,:) = mean(velocity3i); TKEP3(i-2,:) = (mean(sqrt( (velocity3i - Vm3(i-2,:)).^2))./ Vm3(i-2,:)); end cd('..') cd('2017Apr25-Velprofile') list_files4=ls; for i= 3:29 fid5=fopen(list_files4(i, :)); C3 = textscan(fid5, '%f %f', 'HeaderLines', 8); data4=[C3{1} C3{2}]; fclose(fid5); velocity5i=polyval(p2,data4(:, 2)); TKE5(i-2,:) = 0.5*(mean((velocity5i - mean(velocity5i)).^2)); Vm5(i-2,:) = mean(velocity5i); TKEP5(i-2,:) = (mean(sqrt( (velocity5i - Vm5(i-2,:)).^2))./ Vm5(i-2,:)); height(i-2) = str2num(list_files4(i, 25:27)); end
  • 13. 12 cd('..') % y4 = 600e-3/exp(3.5/5); y3=[0:300]; yo = 0.300; Uo =5; nu = 1.5e-05; K=0.41; % U = (Uo/K)* log(y3./y4)+ 5.1 ; % plot(Vm5, height, U, y3) y1=[40:40:600]; figure(1) hold on plot(TKE,y,'-o', TKE3,y1,'-*', TKE5, height,'k') xlabel('Turbulence Kinetic Energy, m^2/s^2') ylabel('Height, mm') title('Turbulence Kinetic Energy vs. Height') legend('Initial Setup','Modify Setup','Final Setup') %legend('Jan 10 Data','Jan 19 Data', 'Feb 2 Data','Feb 17 Data','April 21 Data') axis([0 0.3 0 600 ]) figure(2) hold on plot(Vm,y,'-o',Vm3,y1,'-*',Vm5 ,height,'k') xlabel('Velocity, m/s') ylabel('Height, mm') title('Mean Velocity') legend('Initial Setup','Modify Setup','Final Setup') axis([2 6 0 600 ]) figure(3) hold on plot(TKEP,y,'-o',TKEP3,y1,'-*', TKEP5, height,'k') xlabel('Percent Turbulence') ylabel('Height, mm') title('Percent Turbulence') %legend('Jan 10 Data','Jan 19 Data', 'Feb 2 Data','Feb 17 Data','April 21 Data') legend('Initial Setup','Modify Setup','Final Setup') axis([0 0.2 0 600 ])