SlideShare a Scribd company logo
1 of 31
_____________________________________________________________________________________________________
1
2.1. (a) Probability distribution function for Y
Outcome (number of heads) Y = 0 Y = 1 Y = 2
Probability 0.25 0.50 0.25
(b) Cumulative probability distribution function for Y
Outcome (number of
heads)
Y < 0 0  Y < 1 1  Y < 2 Y  2
Probability 0 0.25 0.75 1.0
(c) mY
= E(Y) = (0´0.25)+(1´0.50)+(2´0.25) =1.00
Using Key Concept 2.3: var(Y) = E(Y2
) -[E(Y)]2
,
and
E(Y2
) = (02
´0.25)+(12
´0.50)+(22
´0.25) =1.50
so that
var(Y) = E(Y2
)-[E(Y)]2
=1.50-(1.00)2
= 0.50.
_____________________________________________________________________________________________________
2
2.2. We know from Table 2.2 that Pr(Y = 0) = 0.22, Pr(Y =1) = 0.78, Pr(X = 0) = 0.30,
Pr(X =1) = 0.70. So
(a)
mY
= E(Y) = 0 ´ Pr(Y = 0) +1´ Pr(Y = 1)
= 0 ´ 0.22 +1´ 0.78 = 0.78,
mX
= E(X) = 0 ´ Pr(X = 0) +1´ Pr(X = 1)
= 0 ´ 0.30 +1´ 0.70 = 0.70.
(b)
s X
2
= E[(X - mX
)2
]
= (0- 0.70)2
´ Pr(X = 0) + (1- 0.70)2
´ Pr(X =1)
= (-0.70)2
´ 0.30 + 0.302
´ 0.70 = 0.21,
sY
2
= E[(Y - mY
)2
]
= (0- 0.78)2
´ Pr(Y = 0) + (1- 0.78)2
´ Pr(Y =1)
= (-0.78)2
´ 0.22 + 0.222
´ 0.78 = 0.1716.
(c)
s XY
= cov(X,Y) = E[(X - mX
)(Y - mY
)]
= (0 - 0.70)(0 - 0.78)Pr(X = 0,Y = 0) + (0 - 0.70)(1- 0.78)Pr(X = 0,Y = 1)
+ (1- 0.70)(0 - 0.78)Pr(X = 1,Y = 0) + (1- 0.70)(1- 0.78)Pr(X = 1,Y = 1)
= (-0.70) ´ (-0.78) ´ 0.15+ (-0.70) ´ 0.22 ´ 0.15 + 0.30 ´ (-0.78) ´ 0.07 + 0.30 ´ 0.22 ´ 0.63
= 0.084,
corr(X,Y) =
s XY
s X
sY
=
0.084
0.21´ 0.1716
= 0.4425.
_____________________________________________________________________________________________________
3
2.3. For the two new random variables W = 3+6X and V = 20-7Y, we have:
(a)
E(V ) = E(20- 7Y) = 20 -7E(Y) = 20 - 7 ´ 0.78 =14.54,
E(W) = E(3+ 6X) = 3+ 6E(X) = 3+ 6´ 0.70 = 7.2.
(b)
sW
2
= var(3+ 6X) = 62
s X
2
= 36 ´ 0.21= 7.56,
sV
2
= var(20 - 7Y) = (-7)2
´sY
2
= 49 ´ 0.1716 = 8.4084.
(c)
sWV
= cov(3+6X, 20-7Y) = 6(-7)cov(X,Y) = -42´0.084 = -3.52
corr(W, V ) =
sWV
sW
sV
=
-3.528
7.56´8.4084
= -0.4425.
_____________________________________________________________________________________________________
4
2.4. (a) E(X3
) = 03
´(1- p)+13
´ p = p
(b) E(Xk
) = 0k
´(1- p)+1k
´ p = p
(c) E(X) = 0.3
var(X) = E(X2
)-[E(X)]2
= 0.3-0.09 = 0.21
Thus, s = 0.21 = 0.46.
To compute the skewness, use the formula from exercise 2.21:
E(X - m)3
= E(X3
)- 3[E(X2
)][E(X)]+ 2[E(X)]3
= 0.3- 3´ 0.32
+ 2´ 0.33
= 0.084
Alternatively, E(X - m)3
= [(1-0.3)3
´0.3]+[(0-0.3)3
´0.7]= 0.084
Thus, skewness = E(X - m)3
/s3
= .084/0.463
= 0.87.
To compute the kurtosis, use the formula from exercise 2.21:
E(X - m)4
= E(X4
)- 4[E(X)][E(X3
)]+ 6[E(X)]2
[E(X2
)]- 3[E(X)]4
= 0.3- 4´ 0.32
+ 6´ 0.33
- 3´ 0.34
= 0.0777
Alternatively, E(X - m)4
= [(1-0.3)4
´0.3]+[(0-0.3)4
´0.7]= 0.0777
Thus, kurtosis is E(X - m)4
/s 4
= .0777/0.464
=1.76
_____________________________________________________________________________________________________
5
2.5. Let X denote temperature in F and Y denote temperature in C. Recall that Y = 0
when X = 32 and Y =100 when X = 212.
This implies Y = (100/180)´(X -32) or Y = -17.78+(5/9)´ X.
Using Key Concept 2.3, X = 70o
F implies that mY
= -17.78+(5/9)´70 = 21.11°C,
and X = 7o
F implies sY
= (5/9)´7 = 3.89°C.
_____________________________________________________________________________________________________
6
2.6.The table shows that Pr(X = 0,Y = 0) = 0.026, Pr(X = 0,Y =1) = 0.576,
Pr(X =1,Y = 0) = 0.009, Pr(X =1,Y =1) = 0.389, Pr(X = 0) = 0.602,
Pr(X =1) = 0.398, Pr(Y = 0) = 0.035, Pr(Y =1) = 0.965.
(a)
E(Y) = mY
= 0´ Pr(Y = 0)+1´ Pr(Y =1)
= 0´ 0.035+1´ 0.965 = 0.965.
(b)
Unemployment Rate =
#(unemployed)
#(labor force)
= Pr(Y = 0) =1- Pr(Y =1) =1- E(Y) =1- 0.965 = 0.035.
(c) Calculate the conditional probabilities first:
Pr(Y = 0|X = 0) =
Pr(X = 0,Y = 0)
Pr(X = 0)
=
0.026
0.602
= 0.043,
Pr(Y =1|X = 0) =
Pr(X = 0,Y =1)
Pr(X = 0)
=
0.576
0.602
= 0.957,
Pr(Y = 0|X = 1) =
Pr(X =1,Y = 0)
Pr(X =1)
=
0.009
0.398
= 0.023,
Pr(Y =1|X = 1) =
Pr(X =1,Y =1)
Pr(X =1)
=
0.389
0.398
= 0.978.
The conditional expectations are
E(Y|X = 1) = 0 ´ Pr(Y = 0|X = 1) +1´ Pr(Y = 1|X = 1)
= 0 ´ 0.023+1´ 0.978 = 0.978,
E(Y|X = 0) = 0 ´ Pr(Y = 0|X = 0) +1´ Pr(Y = 1|X = 0)
= 0 ´ 0.043+1´ 0.957 = 0.957.
_____________________________________________________________________________________________________
7
(d) Use the solution to part (b),
Unemployment rate for college graduates = 1 – E(Y|X=1) = 1−0.978 = 0.023.
Unemployment rate for non-college graduates = 1 – E(Y|X=0) = 1−0.957 = 0.043
(e) The probability that a randomly selected worker who is reported being
unemployed is a college graduate is
Pr(X =1|Y = 0) =
Pr(X =1,Y = 0)
Pr(Y = 0)
=
0.009
0.035
= 0.257.
The probability that this worker is a non-college graduate is
Pr(X = 0|Y = 0) =1- Pr(X = 1|Y = 0) =1-0.257 = 0.743.
(f) Educational achievement and employment status are not independent because
they do not satisfy that, for all values of x and y,
Pr(X = x|Y = y) = Pr(X = x).
For example, from part (e) Pr(X = 0|Y = 0) = 0.743, while from the table
Pr(X = 0) = 0.602.
_____________________________________________________________________________________________________
8
2.7. Using obvious notation, C = M + F; thus mC
= mM
+ mF
and
sC
2
= s M
2
+sF
2
+ 2cov(M, F). This implies
(a) mC
= 40+ 45= $85,000per year.
(b) corr(M, F) = cov( M, F )
s MsF
, so that cov(M, F) =s M
sF
corr(M, F). Thus
cov(M, F) =12´18´0.80 =172.80, where the units are squared thousands of
dollars per year.
(c) sC
2
= s M
2
+sF
2
+ 2cov(M, F), so that sC
2
=122
+182
+ 2´172.80 = 813.60, and
sC
= 813.60 = 28.524 thousand dollars per year.
(d) First you need to look up the current Euro/dollar exchange rate in the Wall Street
Journal, the Federal Reserve web page, or other financial data outlet. Suppose that
this exchange rate is e (say e = 0.85 Euros per Dollar or 1/e = 1.18 Dollars per
Euro); each 1 Eollar is therefore with e Euros. The mean is therefore e×C (in
units of thousands of euros per year), and the standard deviation is e×C (in units
of thousands of euros per year). The correlation is unit-free, and is unchanged.
_____________________________________________________________________________________________________
9
2.8. mY
= E(Y) =1, sY
2
= var(Y) = 4. With Z = 1
2
(Y -1),
mZ
= E
1
2
(Y -1)
æ
è
ç
ö
ø
÷ =
1
2
(mY
-1) =
1
2
(1-1) = 0,
sZ
2
= var
1
2
(Y -1)
æ
è
ç
ö
ø
÷ =
1
4
sY
2
=
1
4
´ 4 = 1.
_____________________________________________________________________________________________________
10
2.9.
Value of Y Probability
Distribution
of X
14 22 30 40 65
Value of X 1 0.02 0.05 0.10 0.03 0.01 0.21
5 0.17 0.15 0.05 0.02 0.01 0.40
8 0.02 0.03 0.15 0.10 0.09 0.39
Probability distribution
of Y
0.21 0.23 0.30 0.15 0.11 1.00
(a) The probability distribution is given in the table above.
E(Y) = 14 ´ 0.21+ 22 ´ 0.23+ 30 ´ 0.30 + 40 ´ 0.15+ 65´ 0.11= 30.15
E(Y2
) = 142
´ 0.21+ 222
´ 0.23+ 302
´ 0.30 + 402
´ 0.15+ 652
´ 0.11= 1127.23
var(Y) = E(Y2
) -[E(Y)]2
= 218.21
sY
= 14.77
(b) The conditional probability of Y|X = 8 is given in the table below
Value of Y
14 22 30 40 65
0.02/0.39 0.03/0.39 0.15/0.39 0.10/0.39 0.09/0.39
E(Y|X = 8) =14´ (0.02/0.39)+ 22´ (0.03/0.39)+ 30´ (0.15/0.39)
+ 40´ (0.10/0.39)+ 65´ (0.09/0.39) = 39.21
E(Y2
|X = 8) =142
´ (0.02/0.39)+ 222
´ (0.03/0.39)+ 302
´ (0.15/0.39)
+ 402
´ (0.10/0.39)+ 652
´ (0.09/0.39) =1778.7
var(Y) =1778.7 - 39.212
= 241.65
sY|X=8
=15.54
(c)
cov(X,Y) = E(XY)- E(X)E(Y) =171.7 -5.33´30.15 =11.0
corr(X,Y) = cov(X,Y)/(s X
sY
) =11.0 / (2.60´14.77) = 0.286
_____________________________________________________________________________________________________
11
2.10. Using the fact that if Y ∼ N mY
, sY
2
æ
è
ç
ö
ø
÷ then
Y - mY
sY
~ N(0,1) and Appendix Table 1,
we have
(a) Pr(Y £ 3) = Pr
Y -1
2
£
3-1
2
æ
è
ç
ö
ø
÷ = F(1) = 0.8413.
(b)
Pr(Y > 0) =1- Pr(Y £ 0)
=1- Pr
Y - 3
3
£
0- 3
3
æ
è
ç
ö
ø
÷ =1- F(-1) = F(1) = 0.8413.
(c)
Pr(40 £ Y £ 52) = Pr
40 -50
5
£
Y -50
5
£
52 -50
5
æ
è
ç
ö
ø
÷
= F(0.4)- F(-2) = F(0.4) -[1- F(2)]
= 0.6554 -1+ 0.9772 = 0.6326.
(d)
Pr(6 £ Y £ 8) = Pr
6 -5
2
£
Y -5
2
£
8-5
2
æ
è
ç
ö
ø
÷
= F(2.1213) - F(0.7071)
= 0.9831- 0.7602 = 0.2229.
_____________________________________________________________________________________________________
12
2.11. (a) 0.90
(b) 0.05
(c) 0.05
(d) When Y ~ c10
2
, then Y/10 ~ F10,¥
.
(e) Y = Z2
, where Z ~ N(0,1), thus Pr(Y £1) = Pr(-1£ Z £1) = 0.32.
_____________________________________________________________________________________________________
13
2.12. (a) 0.05
(b) 0.950
(c) 0.953
(d) The tdf distribution and N(0, 1) are approximately the same when df is large.
(e) 0.10
(f) 0.01
_____________________________________________________________________________________________________
14
2.13. (a) E(Y2
) = Var(Y)+ mY
2
=1+0 =1; E(W2
) = Var(W)+ mW
2
=100+0 =100.
(b) Y and W are symmetric around 0, thus skewness is equal to 0; because their mean
is zero, this means that the third moment is zero.
(c) The kurtosis of the normal is 3, so 3=
E(Y - mY
)4
sY
4
; solving yields E(Y4
) = 3; a
similar calculation yields the results for W.
(d) First, condition on X = 0, so that S =W:
E(S|X = 0) = 0; E(S2
|X = 0) =100, E(S3
|X = 0) = 0, E(S4
|X = 0) = 3´1002
.
Similarly,
E(S|X =1) = 0; E(S2
|X =1) =1, E(S3
|X =1) = 0, E(S4
|X =1) = 3.
From the large of iterated expectations
E(S) = E(S|X = 0)´ Pr(X = 0)+ E(S|X =1)´ Pr(X =1) = 0
E(S2
) = E(S2
|X = 0)´ Pr(X = 0)+ E(S2
|X =1)´ Pr(X =1) =100´0.01+1´0.99 =1.99
E(S3
) = E(S3
|X = 0)´ Pr(X = 0)+ E(S3
|X =1)´ Pr(X =1) = 0
E(S4
) = E(S4
|X = 0)´ Pr(X = 0)+ E(S4
|X =1)´ Pr(X =1)
= 3´1002
´ 0.01+ 3´1´ 0.99 = 302.97
(e) mS
= E(S) = 0, thus E(S - mS
)3
= E(S3
) = 0from part (d). Thus skewness = 0.
Similarly, sS
2
= E(S - mS
)2
= E(S2
) =1.99, and E(S - mS
)4
= E(S4
) = 302.97.
Thus,kurtosis = 302.97 / (1.992
) = 76.5
_____________________________________________________________________________________________________
15
2.14. The central limit theorem suggests that when the sample size (n) is large, the
distribution of the sample average (Y ) is approximately N mY
,sY
2
æ
è
ç
ö
ø
÷ with sY
2
=
sY
2
n
.
Given mY
=100, sY
2
= 43.0,
(a) n =100, sY
2
=
sY
2
n
= 43
100
= 0.43, and
Pr(Y £101) = Pr
Y -100
0.43
£
101-100
0.43
æ
è
ç
ö
ø
÷ » F(1.525) = 0.9364.
(b) n =165, sY
2
=
sY
2
n
= 43
165
= 0.2606, and
Pr(Y > 98) =1- Pr(Y £ 98) =1- Pr
Y -100
0.2606
£
98-100
0.2606
æ
è
ç
ö
ø
÷
»1- F(-3.9178) = F(3.9178) =1.000 (rounded to four decimal places).
(c) n = 64, sY
2
=
sY
2
64
= 43
64
= 0.6719, and
Pr(101£ Y £103) = Pr
101-100
0.6719
£
Y -100
0.6719
£
103-100
0.6719
æ
è
ç
ö
ø
÷
» F(3.6599)- F(1.2200) = 0.9999 - 0.8888 = 0.1111.
_____________________________________________________________________________________________________
16
2.15. (a)
Pr(9.6 £ Y £10.4) = Pr
9.6 -10
4/n
£
Y -10
4/n
£
10.4 -10
4/n
æ
è
ç
ö
ø
÷
= Pr
9.6 -10
4/n
£ Z £
10.4 -10
4/n
æ
è
ç
ö
ø
÷
where Z ~ N(0, 1). Thus,
(i) n = 20; Pr
9.6 -10
4/n
£ Z £
10.4 -10
4/n
æ
è
ç
ö
ø
÷ = Pr(-0.89 £ Z £ 0.89) = 0.63
(ii) n = 100; Pr
9.6 -10
4/n
£ Z £
10.4 -10
4/n
æ
è
ç
ö
ø
÷ = Pr(-2.00 £ Z £ 2.00) = 0.954
(iii)n = 1000; Pr
9.6 -10
4/n
£ Z £
10.4 -10
4/n
æ
è
ç
ö
ø
÷ = Pr(-6.32 £ Z £ 6.32) =1.000
(b)
Pr(10 - c £ Y £10 + c) = Pr
-c
4/n
£
Y -10
4/n
£
c
4/n
æ
è
ç
ö
ø
÷
= Pr
-c
4/n
£ Z £
c
4/n
æ
è
ç
ö
ø
÷ .
As n get large
c
4 / n
gets large, and the probability converges to 1.
(c) This follows from (b) and the definition of convergence in probability given in
Key Concept 2.6.
_____________________________________________________________________________________________________
17
2.16. There are several ways to do this. Here is one way. Generate n draws of Y, Y1, Y2, …
Yn. Let Xi = 1 if Yi < 3.6, otherwise set Xi = 0. Notice that Xi is a Bernoulli random
variables with X = Pr(X = 1) = Pr(Y < 3.6). Compute X. Because X converges in
probability to X = Pr(X = 1) = Pr(Y < 3.6), X will be an accurate approximation if n
is large.
_____________________________________________________________________________________________________
18
2.17. Y = 0.4 and sY
2
= 0.4´0.6 = 0.24
(a) (i) P(Y  0.43) = Pr
Y - 0.4
0.24/n
³
0.43- 0.4
0.24/n
æ
è
ç
ö
ø
÷ = Pr
Y - 0.4
0.24/n
³ 0.6124
æ
è
ç
ö
ø
÷ = 0.27
(ii) P(Y  0.37) = Pr
Y - 0.4
0.24/n
£
0.37 - 0.4
0.24/n
æ
è
ç
ö
ø
÷ = Pr
Y - 0.4
0.24/n
£ -1.22
æ
è
ç
ö
ø
÷ = 0.11
b) We know Pr(−1.96  Z  1.96) = 0.95, thus we want n to satisfy
0.41= 0.41-0.4
0.24/n
> -1.96 and 0.39-0.4
0.24/n
< -1.96. Solving these inequalities yields n 
9220.
_____________________________________________________________________________________________________
19
2.18. Pr(Y = $0) = 0.95, Pr(Y = $20000) = 0.05.
(a) The mean of Y is
mY
= 0´ Pr(Y = $0)+ 20,000´ Pr(Y = $20000) = $1000.
The variance of Y is
sY
2
= E
2
Y - mY
æ
è
ç
ö
ø
÷
é
ë
ê
ê
ù
û
ú
ú
= (0 -1000)2
´ Pr Y = 0
( )+ (20000 -1000)2
´ Pr(Y = 20000)
= (-1000)2
´ 0.95+190002
´ 0.05 = 1.9´107
,
so the standard deviation of Y is sY
= (1.9´107
)
1
2
= $4359.
(b) (i) E(Y) = mY
= $1000, sY
2
=
sY
2
n
= 1.9´107
100
=1.9´105
.
(ii) Using the central limit theorem,
Pr(Y > 2000) = 1- Pr(Y £ 2000)
= 1- Pr
Y -1000
1.9´105
£
2,000 -1,000
1.9 ´105
æ
è
ç
ö
ø
÷
»1- F(2.2942) =1- 0.9891= 0.0109.
_____________________________________________________________________________________________________
20
2.19. (a)
Pr(Y = yj
) =
i=1
l
åPr(X = xi
,Y = yj
)
=
i=1
l
åPr(Y=yj
|X=xi
)Pr(X=xi
)
(b)
E(Y) =
j=1
k
å yj
Pr(Y = yj
) =
j=1
k
å yj
i=1
l
åPr(Y = yj
|X = xi
)Pr(X = xi
)
=
i=1
l
å j=1
k
å yj
Pr(Y = yj
|X = xi
)
æ
è
ç
ç
ç
ç
ö
ø
÷
÷
÷
÷
Pr(X=xi )
=
i=1
l
å E(Y|X=xi )Pr(X=xi ).
(c) When X and Y are independent,
Pr(X = xi
,Y = yj
) = Pr(X = xi
)Pr(Y = yj
),
so
s XY
= E[(X - mX
)(Y - mY
)]
=
i=1
l
å
j=1
k
å(xi
-mX
)(yj
-mY
)Pr(X=xi
,Y=yj
)
=
i=1
l
å
j=1
k
å(xi
-mX
)(yj
-mY
)Pr(X=xi
)Pr(Y=yj
)
= (xi
- mX
)Pr(X = xi
)
i=1
l
å
æ
è
ç
ö
ø
÷ (yj
- mY
)Pr(Y = yj
j=1
k
å
æ
è
ç
ö
ø
÷
= E(X - mX
)E(Y - mY
) = 0 ´ 0 = 0,
cor(X,Y) =
s XY
s X
sY
=
0
s X
sY
= 0.
_____________________________________________________________________________________________________
21
2.20. (a) Pr(Y = yi
) = Pr(Y = yi
|X = xj
, Z = zh
)Pr(
h=1
m
å X = xj
, Z = zh
)
j=1
l
å
(b)
E(Y) = yi
Pr(Y = yi
)Pr(Y = yi
)
i=1
k
å
= yi
i=1
k
å Pr(Y = yi
|X = xj
, Z = zh
)Pr(
h=1
m
å X = xj
, Z = zh
)
j=1
l
å
= yi
Pr(Y = yi
|X = xj
, Z = zh
)
i=1
k
å
é
ë
ê
ù
û
úPr(
h=1
m
å X = xj
, Z = zh
)
j=1
l
å
= E(Y|X = xj
, Z = zh
)Pr(
h=1
m
å X = xj
, Z = zh
)
j=1
l
å
where the first line in the definition of the mean, the second uses (a), the third is a
rearrangement, and the final line uses the definition of the conditional
expectation.
_____________________________________________________________________________________________________
22
2. 21.
(a)
E(X - m)3
= E[(X - m)2
(X - m)] = E[X3
- 2X 2
m + Xm2
- X 2
m + 2Xm2
- m3
]
= E(X3
)- 3E(X 2
)m + 3E(X)m2
- m3
= E(X3
)- 3E(X 2
)E(X)+ 3E(X)[E(X)]2
-[E(X)]3
= E(X3
)- 3E(X 2
)E(X) + 2E(X)3
(b)
E(X - m)4
= E[(X3
- 3X 2
m + 3Xm2
- m3
)(X - m)]
= E[X 4
- 3X3
m + 3X 2
m2
- Xm3
- X3
m + 3X 2
m2
- 3Xm3
+ m4
]
= E(X 4
)- 4E(X 3
)E(X) + 6E(X 2
)E(X)2
- 4E(X)E(X)3
+ E(X )4
= E(X 4
)- 4[E(X)][E(X3
)]+ 6[E(X)]2
[E(X 2
)]- 3[E(X)]4
_____________________________________________________________________________________________________
23
2. 22. The mean and variance of R are given by
m = w´ 0.08+ (1- w) ´ 0.05
s 2
= w2
´ 0.072
+ (1- w)2
´ 0.042 + 2´ w´ (1- w)´[0.07 ´ 0.04 ´ 0.25]
where 0.07 ´0.04´0.25 = Cov(Rs
, Rb
) follows from the definition of the correlation
between Rs and Rb.
(a) m = 0.065;s = 0.044
(b) m = 0.0725;s = 0.056
(c) w = 1 maximizes m;s = 0.07 for this value of w.
(d) The derivative of 2
with respect to w is
ds 2
dw
= 2w´.072
- 2(1- w)´ 0.042
+ (2- 4w)´[0.07 ´ 0.04 ´ 0.25]
= 0.0102w- 0.0018
Solving for w yields w=18/102 = 0.18.(Notice that the second derivative is
positive, so that this is the global minimum.) With w = 0.18,sR
= .038.
_____________________________________________________________________________________________________
24
2. 23. X and Z are two independently distributed standard normal random variables, so
mX
= mZ
= 0,s X
2
= sZ
2
=1,s XZ
= 0.
(a) Because of the independence between X and Z, Pr(Z = z|X = x) = Pr(Z = z),
and E(Z|X) = E(Z) = 0. Thus
E(Y|X) = E(X2
+ Z|X) = E(X2
|X)+ E(Z|X) = X2
+0 = X2
.
(b) E(X2
) =s X
2
+ mX
2
=1, and mY
= E(X2
+ Z) = E(X2
)+ mZ
=1+0 =1.
(c) E(XY) = E(X3
+ ZX) = E(X3
)+ E(ZX). Using the fact that the odd moments of a
standard normal random variable are all zero, we have E(X3
) = 0. Using the
independence between X and Z, we have E(ZX) = mZ
mX
= 0. Thus
E(XY) = E(X3
)+ E(ZX) = 0.
(d)
cov(XY) = E[(X - mX
)(Y - mY
)] = E[(X - 0)(Y -1)]
= E(XY - X) = E(XY) - E(X)
= 0 - 0 = 0.
corr(X,Y) =
s XY
s X
sY
=
0
s X
sY
= 0.
_____________________________________________________________________________________________________
25
2.24. (a) E(Yi
2
) = s 2
+ m2
= s 2
and the result follows directly.
(b) (Yi/) is distributed i.i.d. N(0,1), W = (Yi
/s)2
i=1
n
å , and the result follows from the
definition of a cn
2
random variable.
(c) E(W) = E
Yi
2
s 2
i=1
n
å = E
Yi
2
s 2
i=1
n
å = n.
(d) Write
V =
Y1
åi=2
n
Yi
2
n-1
=
Y1
/s
åi=2
n
(Y /s )2
n-1
which follows from dividing the numerator and denominator by . Y1/ ~ N(0,1),
(Yi
/s )2
i=2
n
å ~ cn-1
2
, and Y1/ and (Yi
/s )2
i=2
n
å are independent. The result then
follows from the definition of the t distribution.
_____________________________________________________________________________________________________
26
2.25. (a)
(b)
(c)
(d)
(a + bxi
+ cyi
)2
i=1
n
å = (a2
+ b2
xi
2
+ c2
yi
2
+ 2abxi
+ 2acyi
+ 2bcxi
yi
)
i=1
n
å
= na2
+ b2
xi
2
i=1
n
å + c2
yi
2
i=1
n
å + 2ab xi
i=1
n
å + 2ac yi
i=1
n
å + 2bc xi
yi
i=1
n
å
_____________________________________________________________________________________________________
27
2.26. (a) corr(Yi,Yj) =
cov(Yi
,Yj
)
sYi
sYj
=
cov(Yi
,Yj
)
sY
sY
=
cov(Yi
,Yj
)
sY
2
= r, where the first equality
uses the definition of correlation, the second uses the fact that Yi and Yj have the same
variance (and standard deviation), the third equality uses the definition of standard
deviation, and the fourth uses the correlation given in the problem. Solving for
cov(Yi, Yj) from the last equality gives the desired result.
(b) Y =
1
2
Y1
+
1
2
Y2
, so that E(Y ) =
1
2
E(Y)1
+
1
2
E(Y2
) = mY
var(Y ) =
1
4
var(Y1
) +
1
4
var(Y2
)+
2
4
cov(Y1
,Y2
) =
sY
2
2
+
rsY
2
2
(c) Y =
1
n
Yi
i=1
n
å , so that E(Y ) =
1
n
E(Yi
)
i=1
n
å =
1
n
mY
i=1
n
å = mY
var(Y ) = var
1
n
Yi
i=1
n
å
æ
è
ç
ö
ø
÷
=
1
n2
var(Yi
)
i=1
n
å +
2
n2
cov(Yi
,Yj
)
j=i+1
n
å
i=1
n-1
å
=
1
n2
sY
2
i=1
n
å +
2
n2
rsY
2
j=i+1
n
å
i=1
n-1
å
=
sY
2
n
+
n(n -1)
n2
rsY
2
=
sY
2
n
+ 1-
1
n
æ
è
ç
ö
ø
÷ rsY
2
where the fourth line uses for any
variable a.
(d) When n is large
sY
2
n
» 0 and
1
n
» 0, and the result follows from (c).
_____________________________________________________________________________________________________
28
2.27
(a) E(u) = E[E(u|X) ] = E[E(Y−Ŷ )|X] = E[ E(Y|X) – E(Y|X) ] = 0.
(b) E(uX) = E[E(uX|X) ] = E[XE(u)|X] = E[ X×0] = 0
(c) Using the hint: v = (Y -Ŷ ) – h(X) = u − h(X) , so that E(v2
) = E[u2
] + E[h(X)2
] –
2×E[u×h(X)]. Using an argument like that in (b), E[u×h(X)] = 0. Thus, E(v2
) =
E(u2
) + E[h(X)2
], and the result follows by recognizing that E[h(X)2
] ≥ 0 because
h(x)2
≥ 0 for any value of x.
_____________________________________________________________________________________________________
29
2.28
(a) Pr(M = 3) = Pr(M=3,A=0) + Pr(M=3,A=1)
= Pr(M=3|A=0)Pr(A=0) + Pr(M=3|A=1)Pr(A=1)
= 0.05×0.5 + 0.01×0.5=0.03
(b)
Pr(A = 0 | M = 3) = Pr(M = 3| A = 0)´
Pr(A = 0)
P(M = 3)
= 0.05´
0.5
0.03
= 0.83
(c)
Pr(M = 3) = Pr(M=3,A=0) + Pr(M=3,A=1)
= Pr(M=3|A=0)Pr(A=0) + Pr(M=3|A=1)Pr(A=1)
= 0.05×0.25 + 0.01×0.75=0.02
Pr(A = 0 | M = 3) = Pr(M = 3| A = 0)´
Pr(A = 0)
P(M = 3)
= 0.05´
0.25
0.02
= 0.63
_____________________________________________________________________________________________________
30
Empirical Exercise 2.1
Calculations for this exercise are carried out in Age_HourlyEarnings_EE2_1.xlsx.
a.
Age Probability (Age)
25 0.0848899
26 0.092230557
27 0.085471343
28 0.093393436
29 0.103495862
30 0.104731445
31 0.103931986
32 0.108074706
33 0.108801517
34 0.114979284
b.
Age E(AHE|Age)
25 17.59075075
26 18.96690372
27 19.70493315
28 20.23580196
29 21.17135268
30 21.78487058
31 22.59510473
32 23.69199959
33 23.34869462
34 24.10809159
_____________________________________________________________________________________________________
31
c. Scatter plot of E(AHE|Age)
(d) E(AHE) = $21.51
(e) – (g) Some moments:
E(AHE) = 21.51 (Dollars)
E(AHE2
) = 627.53 (Dollars squared)
E(Age) = 29.84 (Years)
E(Age2
) = 898.40 (Years squared)
E(AHE×Age) = 646.01 (Dollars × Years)
var(AHE) = E(AHE2
) – [E(AHE)]2
= 164.82 (Dollars squared)
Std.Dev (AHE) = 164.82 = 12.84 (Dollars)
var(Age) = E(Age2
) – [E(Age)]2
= 7.79 (Years squared)
Std.Dev(Age) = 7.79 = 2.79 (Years)
cov(AHE,Age) = E(AHE×Age) – [E(AHE)×E(Age)] = 4.06 (Dollars × Years)
cor(AHE,Age) = cov(AHE,Age)/[ Std.Dev (AHE)× Std.Dev(Age)] = 0.11
(h) The covariance and correlation are positive: when Age is higher than its average
value, AHE tends to be higher than its average value, and similarly if Age is lower than its
average value. In this sense Age and AHE are positively related, which is also evident in
the plot.
15
16
17
18
19
20
21
22
23
24
25
24 25 26 27 28 29 30 31 32 33 34 35
AHE
Age

More Related Content

Similar to Chapitre02_Solutions.pdf

Chapter 1 solutions
Chapter 1 solutionsChapter 1 solutions
Chapter 1 solutionsLK Education
 
Statistics Assignment 1 HET551 – Design and Developm.docx
Statistics Assignment 1 HET551 – Design and Developm.docxStatistics Assignment 1 HET551 – Design and Developm.docx
Statistics Assignment 1 HET551 – Design and Developm.docxrafaelaj1
 
Introduction to Econometrics Update Global 3rd Edition Stock Solutions Manual
Introduction to Econometrics Update Global 3rd Edition Stock Solutions ManualIntroduction to Econometrics Update Global 3rd Edition Stock Solutions Manual
Introduction to Econometrics Update Global 3rd Edition Stock Solutions Manualnajovon
 
Lecture 6: Stochastic Hydrology (Estimation Problem-Kriging-, Conditional Sim...
Lecture 6: Stochastic Hydrology (Estimation Problem-Kriging-, Conditional Sim...Lecture 6: Stochastic Hydrology (Estimation Problem-Kriging-, Conditional Sim...
Lecture 6: Stochastic Hydrology (Estimation Problem-Kriging-, Conditional Sim...Amro Elfeki
 
ISI MSQE Entrance Question Paper (2013)
ISI MSQE Entrance Question Paper (2013)ISI MSQE Entrance Question Paper (2013)
ISI MSQE Entrance Question Paper (2013)CrackDSE
 
Lesson 12 centroid of an area
Lesson 12 centroid of an areaLesson 12 centroid of an area
Lesson 12 centroid of an areaLawrence De Vera
 
A novel steganographic method for jpeg images
A novel steganographic method for jpeg imagesA novel steganographic method for jpeg images
A novel steganographic method for jpeg imagesAjit Kumar Pradhan
 
Solution Manual : Chapter - 01 Functions
Solution Manual : Chapter - 01 FunctionsSolution Manual : Chapter - 01 Functions
Solution Manual : Chapter - 01 FunctionsHareem Aslam
 
adv-2015-16-solution-09
adv-2015-16-solution-09adv-2015-16-solution-09
adv-2015-16-solution-09志远 姚
 
ISI MSQE Entrance Question Paper (2008)
ISI MSQE Entrance Question Paper (2008)ISI MSQE Entrance Question Paper (2008)
ISI MSQE Entrance Question Paper (2008)CrackDSE
 
Spanos lecture+3-6334-estimation
Spanos lecture+3-6334-estimationSpanos lecture+3-6334-estimation
Spanos lecture+3-6334-estimationjemille6
 

Similar to Chapitre02_Solutions.pdf (20)

Chapitre03_Solutions.pdf
Chapitre03_Solutions.pdfChapitre03_Solutions.pdf
Chapitre03_Solutions.pdf
 
Chapter 1 solutions
Chapter 1 solutionsChapter 1 solutions
Chapter 1 solutions
 
Me 530 assignment 2
Me 530 assignment 2Me 530 assignment 2
Me 530 assignment 2
 
Maths digital text
Maths digital textMaths digital text
Maths digital text
 
Statistics Assignment 1 HET551 – Design and Developm.docx
Statistics Assignment 1 HET551 – Design and Developm.docxStatistics Assignment 1 HET551 – Design and Developm.docx
Statistics Assignment 1 HET551 – Design and Developm.docx
 
Introduction to Econometrics Update Global 3rd Edition Stock Solutions Manual
Introduction to Econometrics Update Global 3rd Edition Stock Solutions ManualIntroduction to Econometrics Update Global 3rd Edition Stock Solutions Manual
Introduction to Econometrics Update Global 3rd Edition Stock Solutions Manual
 
Lecture 6: Stochastic Hydrology (Estimation Problem-Kriging-, Conditional Sim...
Lecture 6: Stochastic Hydrology (Estimation Problem-Kriging-, Conditional Sim...Lecture 6: Stochastic Hydrology (Estimation Problem-Kriging-, Conditional Sim...
Lecture 6: Stochastic Hydrology (Estimation Problem-Kriging-, Conditional Sim...
 
Budynas sm ch20
Budynas sm ch20Budynas sm ch20
Budynas sm ch20
 
L6.slides.pdf
L6.slides.pdfL6.slides.pdf
L6.slides.pdf
 
L6.slides.pdf
L6.slides.pdfL6.slides.pdf
L6.slides.pdf
 
Appendex
AppendexAppendex
Appendex
 
ISI MSQE Entrance Question Paper (2013)
ISI MSQE Entrance Question Paper (2013)ISI MSQE Entrance Question Paper (2013)
ISI MSQE Entrance Question Paper (2013)
 
Acc 1025pptx
Acc 1025pptxAcc 1025pptx
Acc 1025pptx
 
Lesson 12 centroid of an area
Lesson 12 centroid of an areaLesson 12 centroid of an area
Lesson 12 centroid of an area
 
A novel steganographic method for jpeg images
A novel steganographic method for jpeg imagesA novel steganographic method for jpeg images
A novel steganographic method for jpeg images
 
Solution Manual : Chapter - 01 Functions
Solution Manual : Chapter - 01 FunctionsSolution Manual : Chapter - 01 Functions
Solution Manual : Chapter - 01 Functions
 
adv-2015-16-solution-09
adv-2015-16-solution-09adv-2015-16-solution-09
adv-2015-16-solution-09
 
Conformal mapping
Conformal mappingConformal mapping
Conformal mapping
 
ISI MSQE Entrance Question Paper (2008)
ISI MSQE Entrance Question Paper (2008)ISI MSQE Entrance Question Paper (2008)
ISI MSQE Entrance Question Paper (2008)
 
Spanos lecture+3-6334-estimation
Spanos lecture+3-6334-estimationSpanos lecture+3-6334-estimation
Spanos lecture+3-6334-estimation
 

More from Jean-Philippe Turcotte

More from Jean-Philippe Turcotte (6)

Chapter15.pdf
Chapter15.pdfChapter15.pdf
Chapter15.pdf
 
Chapitre10_Solutions.pdf
Chapitre10_Solutions.pdfChapitre10_Solutions.pdf
Chapitre10_Solutions.pdf
 
Chapitre08_Solutions.pdf
Chapitre08_Solutions.pdfChapitre08_Solutions.pdf
Chapitre08_Solutions.pdf
 
Chapitre07_Solutions.pdf
Chapitre07_Solutions.pdfChapitre07_Solutions.pdf
Chapitre07_Solutions.pdf
 
Chapitre06_Solutions.pdf
Chapitre06_Solutions.pdfChapitre06_Solutions.pdf
Chapitre06_Solutions.pdf
 
Chapitre05_Solutions.pdf
Chapitre05_Solutions.pdfChapitre05_Solutions.pdf
Chapitre05_Solutions.pdf
 

Recently uploaded

Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfciinovamais
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...Shubhangi Sonawane
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
Role Of Transgenic Animal In Target Validation-1.pptx
Role Of Transgenic Animal In Target Validation-1.pptxRole Of Transgenic Animal In Target Validation-1.pptx
Role Of Transgenic Animal In Target Validation-1.pptxNikitaBankoti2
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.MaryamAhmad92
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfagholdier
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfAyushMahapatra5
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxnegromaestrong
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibitjbellavia9
 
Food Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-II
Food Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-IIFood Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-II
Food Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-IIShubhangi Sonawane
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxheathfieldcps1
 
psychiatric nursing HISTORY COLLECTION .docx
psychiatric  nursing HISTORY  COLLECTION  .docxpsychiatric  nursing HISTORY  COLLECTION  .docx
psychiatric nursing HISTORY COLLECTION .docxPoojaSen20
 
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural ResourcesEnergy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural ResourcesShubhangi Sonawane
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104misteraugie
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxRamakrishna Reddy Bijjam
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxVishalSingh1417
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsMebane Rash
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxDenish Jangid
 

Recently uploaded (20)

Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
Role Of Transgenic Animal In Target Validation-1.pptx
Role Of Transgenic Animal In Target Validation-1.pptxRole Of Transgenic Animal In Target Validation-1.pptx
Role Of Transgenic Animal In Target Validation-1.pptx
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdf
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
 
Food Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-II
Food Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-IIFood Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-II
Food Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-II
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
psychiatric nursing HISTORY COLLECTION .docx
psychiatric  nursing HISTORY  COLLECTION  .docxpsychiatric  nursing HISTORY  COLLECTION  .docx
psychiatric nursing HISTORY COLLECTION .docx
 
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural ResourcesEnergy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 

Chapitre02_Solutions.pdf

  • 1. _____________________________________________________________________________________________________ 1 2.1. (a) Probability distribution function for Y Outcome (number of heads) Y = 0 Y = 1 Y = 2 Probability 0.25 0.50 0.25 (b) Cumulative probability distribution function for Y Outcome (number of heads) Y < 0 0  Y < 1 1  Y < 2 Y  2 Probability 0 0.25 0.75 1.0 (c) mY = E(Y) = (0´0.25)+(1´0.50)+(2´0.25) =1.00 Using Key Concept 2.3: var(Y) = E(Y2 ) -[E(Y)]2 , and E(Y2 ) = (02 ´0.25)+(12 ´0.50)+(22 ´0.25) =1.50 so that var(Y) = E(Y2 )-[E(Y)]2 =1.50-(1.00)2 = 0.50.
  • 2. _____________________________________________________________________________________________________ 2 2.2. We know from Table 2.2 that Pr(Y = 0) = 0.22, Pr(Y =1) = 0.78, Pr(X = 0) = 0.30, Pr(X =1) = 0.70. So (a) mY = E(Y) = 0 ´ Pr(Y = 0) +1´ Pr(Y = 1) = 0 ´ 0.22 +1´ 0.78 = 0.78, mX = E(X) = 0 ´ Pr(X = 0) +1´ Pr(X = 1) = 0 ´ 0.30 +1´ 0.70 = 0.70. (b) s X 2 = E[(X - mX )2 ] = (0- 0.70)2 ´ Pr(X = 0) + (1- 0.70)2 ´ Pr(X =1) = (-0.70)2 ´ 0.30 + 0.302 ´ 0.70 = 0.21, sY 2 = E[(Y - mY )2 ] = (0- 0.78)2 ´ Pr(Y = 0) + (1- 0.78)2 ´ Pr(Y =1) = (-0.78)2 ´ 0.22 + 0.222 ´ 0.78 = 0.1716. (c) s XY = cov(X,Y) = E[(X - mX )(Y - mY )] = (0 - 0.70)(0 - 0.78)Pr(X = 0,Y = 0) + (0 - 0.70)(1- 0.78)Pr(X = 0,Y = 1) + (1- 0.70)(0 - 0.78)Pr(X = 1,Y = 0) + (1- 0.70)(1- 0.78)Pr(X = 1,Y = 1) = (-0.70) ´ (-0.78) ´ 0.15+ (-0.70) ´ 0.22 ´ 0.15 + 0.30 ´ (-0.78) ´ 0.07 + 0.30 ´ 0.22 ´ 0.63 = 0.084, corr(X,Y) = s XY s X sY = 0.084 0.21´ 0.1716 = 0.4425.
  • 3. _____________________________________________________________________________________________________ 3 2.3. For the two new random variables W = 3+6X and V = 20-7Y, we have: (a) E(V ) = E(20- 7Y) = 20 -7E(Y) = 20 - 7 ´ 0.78 =14.54, E(W) = E(3+ 6X) = 3+ 6E(X) = 3+ 6´ 0.70 = 7.2. (b) sW 2 = var(3+ 6X) = 62 s X 2 = 36 ´ 0.21= 7.56, sV 2 = var(20 - 7Y) = (-7)2 ´sY 2 = 49 ´ 0.1716 = 8.4084. (c) sWV = cov(3+6X, 20-7Y) = 6(-7)cov(X,Y) = -42´0.084 = -3.52 corr(W, V ) = sWV sW sV = -3.528 7.56´8.4084 = -0.4425.
  • 4. _____________________________________________________________________________________________________ 4 2.4. (a) E(X3 ) = 03 ´(1- p)+13 ´ p = p (b) E(Xk ) = 0k ´(1- p)+1k ´ p = p (c) E(X) = 0.3 var(X) = E(X2 )-[E(X)]2 = 0.3-0.09 = 0.21 Thus, s = 0.21 = 0.46. To compute the skewness, use the formula from exercise 2.21: E(X - m)3 = E(X3 )- 3[E(X2 )][E(X)]+ 2[E(X)]3 = 0.3- 3´ 0.32 + 2´ 0.33 = 0.084 Alternatively, E(X - m)3 = [(1-0.3)3 ´0.3]+[(0-0.3)3 ´0.7]= 0.084 Thus, skewness = E(X - m)3 /s3 = .084/0.463 = 0.87. To compute the kurtosis, use the formula from exercise 2.21: E(X - m)4 = E(X4 )- 4[E(X)][E(X3 )]+ 6[E(X)]2 [E(X2 )]- 3[E(X)]4 = 0.3- 4´ 0.32 + 6´ 0.33 - 3´ 0.34 = 0.0777 Alternatively, E(X - m)4 = [(1-0.3)4 ´0.3]+[(0-0.3)4 ´0.7]= 0.0777 Thus, kurtosis is E(X - m)4 /s 4 = .0777/0.464 =1.76
  • 5. _____________________________________________________________________________________________________ 5 2.5. Let X denote temperature in F and Y denote temperature in C. Recall that Y = 0 when X = 32 and Y =100 when X = 212. This implies Y = (100/180)´(X -32) or Y = -17.78+(5/9)´ X. Using Key Concept 2.3, X = 70o F implies that mY = -17.78+(5/9)´70 = 21.11°C, and X = 7o F implies sY = (5/9)´7 = 3.89°C.
  • 6. _____________________________________________________________________________________________________ 6 2.6.The table shows that Pr(X = 0,Y = 0) = 0.026, Pr(X = 0,Y =1) = 0.576, Pr(X =1,Y = 0) = 0.009, Pr(X =1,Y =1) = 0.389, Pr(X = 0) = 0.602, Pr(X =1) = 0.398, Pr(Y = 0) = 0.035, Pr(Y =1) = 0.965. (a) E(Y) = mY = 0´ Pr(Y = 0)+1´ Pr(Y =1) = 0´ 0.035+1´ 0.965 = 0.965. (b) Unemployment Rate = #(unemployed) #(labor force) = Pr(Y = 0) =1- Pr(Y =1) =1- E(Y) =1- 0.965 = 0.035. (c) Calculate the conditional probabilities first: Pr(Y = 0|X = 0) = Pr(X = 0,Y = 0) Pr(X = 0) = 0.026 0.602 = 0.043, Pr(Y =1|X = 0) = Pr(X = 0,Y =1) Pr(X = 0) = 0.576 0.602 = 0.957, Pr(Y = 0|X = 1) = Pr(X =1,Y = 0) Pr(X =1) = 0.009 0.398 = 0.023, Pr(Y =1|X = 1) = Pr(X =1,Y =1) Pr(X =1) = 0.389 0.398 = 0.978. The conditional expectations are E(Y|X = 1) = 0 ´ Pr(Y = 0|X = 1) +1´ Pr(Y = 1|X = 1) = 0 ´ 0.023+1´ 0.978 = 0.978, E(Y|X = 0) = 0 ´ Pr(Y = 0|X = 0) +1´ Pr(Y = 1|X = 0) = 0 ´ 0.043+1´ 0.957 = 0.957.
  • 7. _____________________________________________________________________________________________________ 7 (d) Use the solution to part (b), Unemployment rate for college graduates = 1 – E(Y|X=1) = 1−0.978 = 0.023. Unemployment rate for non-college graduates = 1 – E(Y|X=0) = 1−0.957 = 0.043 (e) The probability that a randomly selected worker who is reported being unemployed is a college graduate is Pr(X =1|Y = 0) = Pr(X =1,Y = 0) Pr(Y = 0) = 0.009 0.035 = 0.257. The probability that this worker is a non-college graduate is Pr(X = 0|Y = 0) =1- Pr(X = 1|Y = 0) =1-0.257 = 0.743. (f) Educational achievement and employment status are not independent because they do not satisfy that, for all values of x and y, Pr(X = x|Y = y) = Pr(X = x). For example, from part (e) Pr(X = 0|Y = 0) = 0.743, while from the table Pr(X = 0) = 0.602.
  • 8. _____________________________________________________________________________________________________ 8 2.7. Using obvious notation, C = M + F; thus mC = mM + mF and sC 2 = s M 2 +sF 2 + 2cov(M, F). This implies (a) mC = 40+ 45= $85,000per year. (b) corr(M, F) = cov( M, F ) s MsF , so that cov(M, F) =s M sF corr(M, F). Thus cov(M, F) =12´18´0.80 =172.80, where the units are squared thousands of dollars per year. (c) sC 2 = s M 2 +sF 2 + 2cov(M, F), so that sC 2 =122 +182 + 2´172.80 = 813.60, and sC = 813.60 = 28.524 thousand dollars per year. (d) First you need to look up the current Euro/dollar exchange rate in the Wall Street Journal, the Federal Reserve web page, or other financial data outlet. Suppose that this exchange rate is e (say e = 0.85 Euros per Dollar or 1/e = 1.18 Dollars per Euro); each 1 Eollar is therefore with e Euros. The mean is therefore e×C (in units of thousands of euros per year), and the standard deviation is e×C (in units of thousands of euros per year). The correlation is unit-free, and is unchanged.
  • 9. _____________________________________________________________________________________________________ 9 2.8. mY = E(Y) =1, sY 2 = var(Y) = 4. With Z = 1 2 (Y -1), mZ = E 1 2 (Y -1) æ è ç ö ø ÷ = 1 2 (mY -1) = 1 2 (1-1) = 0, sZ 2 = var 1 2 (Y -1) æ è ç ö ø ÷ = 1 4 sY 2 = 1 4 ´ 4 = 1.
  • 10. _____________________________________________________________________________________________________ 10 2.9. Value of Y Probability Distribution of X 14 22 30 40 65 Value of X 1 0.02 0.05 0.10 0.03 0.01 0.21 5 0.17 0.15 0.05 0.02 0.01 0.40 8 0.02 0.03 0.15 0.10 0.09 0.39 Probability distribution of Y 0.21 0.23 0.30 0.15 0.11 1.00 (a) The probability distribution is given in the table above. E(Y) = 14 ´ 0.21+ 22 ´ 0.23+ 30 ´ 0.30 + 40 ´ 0.15+ 65´ 0.11= 30.15 E(Y2 ) = 142 ´ 0.21+ 222 ´ 0.23+ 302 ´ 0.30 + 402 ´ 0.15+ 652 ´ 0.11= 1127.23 var(Y) = E(Y2 ) -[E(Y)]2 = 218.21 sY = 14.77 (b) The conditional probability of Y|X = 8 is given in the table below Value of Y 14 22 30 40 65 0.02/0.39 0.03/0.39 0.15/0.39 0.10/0.39 0.09/0.39 E(Y|X = 8) =14´ (0.02/0.39)+ 22´ (0.03/0.39)+ 30´ (0.15/0.39) + 40´ (0.10/0.39)+ 65´ (0.09/0.39) = 39.21 E(Y2 |X = 8) =142 ´ (0.02/0.39)+ 222 ´ (0.03/0.39)+ 302 ´ (0.15/0.39) + 402 ´ (0.10/0.39)+ 652 ´ (0.09/0.39) =1778.7 var(Y) =1778.7 - 39.212 = 241.65 sY|X=8 =15.54 (c) cov(X,Y) = E(XY)- E(X)E(Y) =171.7 -5.33´30.15 =11.0 corr(X,Y) = cov(X,Y)/(s X sY ) =11.0 / (2.60´14.77) = 0.286
  • 11. _____________________________________________________________________________________________________ 11 2.10. Using the fact that if Y ∼ N mY , sY 2 æ è ç ö ø ÷ then Y - mY sY ~ N(0,1) and Appendix Table 1, we have (a) Pr(Y £ 3) = Pr Y -1 2 £ 3-1 2 æ è ç ö ø ÷ = F(1) = 0.8413. (b) Pr(Y > 0) =1- Pr(Y £ 0) =1- Pr Y - 3 3 £ 0- 3 3 æ è ç ö ø ÷ =1- F(-1) = F(1) = 0.8413. (c) Pr(40 £ Y £ 52) = Pr 40 -50 5 £ Y -50 5 £ 52 -50 5 æ è ç ö ø ÷ = F(0.4)- F(-2) = F(0.4) -[1- F(2)] = 0.6554 -1+ 0.9772 = 0.6326. (d) Pr(6 £ Y £ 8) = Pr 6 -5 2 £ Y -5 2 £ 8-5 2 æ è ç ö ø ÷ = F(2.1213) - F(0.7071) = 0.9831- 0.7602 = 0.2229.
  • 12. _____________________________________________________________________________________________________ 12 2.11. (a) 0.90 (b) 0.05 (c) 0.05 (d) When Y ~ c10 2 , then Y/10 ~ F10,¥ . (e) Y = Z2 , where Z ~ N(0,1), thus Pr(Y £1) = Pr(-1£ Z £1) = 0.32.
  • 13. _____________________________________________________________________________________________________ 13 2.12. (a) 0.05 (b) 0.950 (c) 0.953 (d) The tdf distribution and N(0, 1) are approximately the same when df is large. (e) 0.10 (f) 0.01
  • 14. _____________________________________________________________________________________________________ 14 2.13. (a) E(Y2 ) = Var(Y)+ mY 2 =1+0 =1; E(W2 ) = Var(W)+ mW 2 =100+0 =100. (b) Y and W are symmetric around 0, thus skewness is equal to 0; because their mean is zero, this means that the third moment is zero. (c) The kurtosis of the normal is 3, so 3= E(Y - mY )4 sY 4 ; solving yields E(Y4 ) = 3; a similar calculation yields the results for W. (d) First, condition on X = 0, so that S =W: E(S|X = 0) = 0; E(S2 |X = 0) =100, E(S3 |X = 0) = 0, E(S4 |X = 0) = 3´1002 . Similarly, E(S|X =1) = 0; E(S2 |X =1) =1, E(S3 |X =1) = 0, E(S4 |X =1) = 3. From the large of iterated expectations E(S) = E(S|X = 0)´ Pr(X = 0)+ E(S|X =1)´ Pr(X =1) = 0 E(S2 ) = E(S2 |X = 0)´ Pr(X = 0)+ E(S2 |X =1)´ Pr(X =1) =100´0.01+1´0.99 =1.99 E(S3 ) = E(S3 |X = 0)´ Pr(X = 0)+ E(S3 |X =1)´ Pr(X =1) = 0 E(S4 ) = E(S4 |X = 0)´ Pr(X = 0)+ E(S4 |X =1)´ Pr(X =1) = 3´1002 ´ 0.01+ 3´1´ 0.99 = 302.97 (e) mS = E(S) = 0, thus E(S - mS )3 = E(S3 ) = 0from part (d). Thus skewness = 0. Similarly, sS 2 = E(S - mS )2 = E(S2 ) =1.99, and E(S - mS )4 = E(S4 ) = 302.97. Thus,kurtosis = 302.97 / (1.992 ) = 76.5
  • 15. _____________________________________________________________________________________________________ 15 2.14. The central limit theorem suggests that when the sample size (n) is large, the distribution of the sample average (Y ) is approximately N mY ,sY 2 æ è ç ö ø ÷ with sY 2 = sY 2 n . Given mY =100, sY 2 = 43.0, (a) n =100, sY 2 = sY 2 n = 43 100 = 0.43, and Pr(Y £101) = Pr Y -100 0.43 £ 101-100 0.43 æ è ç ö ø ÷ » F(1.525) = 0.9364. (b) n =165, sY 2 = sY 2 n = 43 165 = 0.2606, and Pr(Y > 98) =1- Pr(Y £ 98) =1- Pr Y -100 0.2606 £ 98-100 0.2606 æ è ç ö ø ÷ »1- F(-3.9178) = F(3.9178) =1.000 (rounded to four decimal places). (c) n = 64, sY 2 = sY 2 64 = 43 64 = 0.6719, and Pr(101£ Y £103) = Pr 101-100 0.6719 £ Y -100 0.6719 £ 103-100 0.6719 æ è ç ö ø ÷ » F(3.6599)- F(1.2200) = 0.9999 - 0.8888 = 0.1111.
  • 16. _____________________________________________________________________________________________________ 16 2.15. (a) Pr(9.6 £ Y £10.4) = Pr 9.6 -10 4/n £ Y -10 4/n £ 10.4 -10 4/n æ è ç ö ø ÷ = Pr 9.6 -10 4/n £ Z £ 10.4 -10 4/n æ è ç ö ø ÷ where Z ~ N(0, 1). Thus, (i) n = 20; Pr 9.6 -10 4/n £ Z £ 10.4 -10 4/n æ è ç ö ø ÷ = Pr(-0.89 £ Z £ 0.89) = 0.63 (ii) n = 100; Pr 9.6 -10 4/n £ Z £ 10.4 -10 4/n æ è ç ö ø ÷ = Pr(-2.00 £ Z £ 2.00) = 0.954 (iii)n = 1000; Pr 9.6 -10 4/n £ Z £ 10.4 -10 4/n æ è ç ö ø ÷ = Pr(-6.32 £ Z £ 6.32) =1.000 (b) Pr(10 - c £ Y £10 + c) = Pr -c 4/n £ Y -10 4/n £ c 4/n æ è ç ö ø ÷ = Pr -c 4/n £ Z £ c 4/n æ è ç ö ø ÷ . As n get large c 4 / n gets large, and the probability converges to 1. (c) This follows from (b) and the definition of convergence in probability given in Key Concept 2.6.
  • 17. _____________________________________________________________________________________________________ 17 2.16. There are several ways to do this. Here is one way. Generate n draws of Y, Y1, Y2, … Yn. Let Xi = 1 if Yi < 3.6, otherwise set Xi = 0. Notice that Xi is a Bernoulli random variables with X = Pr(X = 1) = Pr(Y < 3.6). Compute X. Because X converges in probability to X = Pr(X = 1) = Pr(Y < 3.6), X will be an accurate approximation if n is large.
  • 18. _____________________________________________________________________________________________________ 18 2.17. Y = 0.4 and sY 2 = 0.4´0.6 = 0.24 (a) (i) P(Y  0.43) = Pr Y - 0.4 0.24/n ³ 0.43- 0.4 0.24/n æ è ç ö ø ÷ = Pr Y - 0.4 0.24/n ³ 0.6124 æ è ç ö ø ÷ = 0.27 (ii) P(Y  0.37) = Pr Y - 0.4 0.24/n £ 0.37 - 0.4 0.24/n æ è ç ö ø ÷ = Pr Y - 0.4 0.24/n £ -1.22 æ è ç ö ø ÷ = 0.11 b) We know Pr(−1.96  Z  1.96) = 0.95, thus we want n to satisfy 0.41= 0.41-0.4 0.24/n > -1.96 and 0.39-0.4 0.24/n < -1.96. Solving these inequalities yields n  9220.
  • 19. _____________________________________________________________________________________________________ 19 2.18. Pr(Y = $0) = 0.95, Pr(Y = $20000) = 0.05. (a) The mean of Y is mY = 0´ Pr(Y = $0)+ 20,000´ Pr(Y = $20000) = $1000. The variance of Y is sY 2 = E 2 Y - mY æ è ç ö ø ÷ é ë ê ê ù û ú ú = (0 -1000)2 ´ Pr Y = 0 ( )+ (20000 -1000)2 ´ Pr(Y = 20000) = (-1000)2 ´ 0.95+190002 ´ 0.05 = 1.9´107 , so the standard deviation of Y is sY = (1.9´107 ) 1 2 = $4359. (b) (i) E(Y) = mY = $1000, sY 2 = sY 2 n = 1.9´107 100 =1.9´105 . (ii) Using the central limit theorem, Pr(Y > 2000) = 1- Pr(Y £ 2000) = 1- Pr Y -1000 1.9´105 £ 2,000 -1,000 1.9 ´105 æ è ç ö ø ÷ »1- F(2.2942) =1- 0.9891= 0.0109.
  • 20. _____________________________________________________________________________________________________ 20 2.19. (a) Pr(Y = yj ) = i=1 l åPr(X = xi ,Y = yj ) = i=1 l åPr(Y=yj |X=xi )Pr(X=xi ) (b) E(Y) = j=1 k å yj Pr(Y = yj ) = j=1 k å yj i=1 l åPr(Y = yj |X = xi )Pr(X = xi ) = i=1 l å j=1 k å yj Pr(Y = yj |X = xi ) æ è ç ç ç ç ö ø ÷ ÷ ÷ ÷ Pr(X=xi ) = i=1 l å E(Y|X=xi )Pr(X=xi ). (c) When X and Y are independent, Pr(X = xi ,Y = yj ) = Pr(X = xi )Pr(Y = yj ), so s XY = E[(X - mX )(Y - mY )] = i=1 l å j=1 k å(xi -mX )(yj -mY )Pr(X=xi ,Y=yj ) = i=1 l å j=1 k å(xi -mX )(yj -mY )Pr(X=xi )Pr(Y=yj ) = (xi - mX )Pr(X = xi ) i=1 l å æ è ç ö ø ÷ (yj - mY )Pr(Y = yj j=1 k å æ è ç ö ø ÷ = E(X - mX )E(Y - mY ) = 0 ´ 0 = 0, cor(X,Y) = s XY s X sY = 0 s X sY = 0.
  • 21. _____________________________________________________________________________________________________ 21 2.20. (a) Pr(Y = yi ) = Pr(Y = yi |X = xj , Z = zh )Pr( h=1 m å X = xj , Z = zh ) j=1 l å (b) E(Y) = yi Pr(Y = yi )Pr(Y = yi ) i=1 k å = yi i=1 k å Pr(Y = yi |X = xj , Z = zh )Pr( h=1 m å X = xj , Z = zh ) j=1 l å = yi Pr(Y = yi |X = xj , Z = zh ) i=1 k å é ë ê ù û úPr( h=1 m å X = xj , Z = zh ) j=1 l å = E(Y|X = xj , Z = zh )Pr( h=1 m å X = xj , Z = zh ) j=1 l å where the first line in the definition of the mean, the second uses (a), the third is a rearrangement, and the final line uses the definition of the conditional expectation.
  • 22. _____________________________________________________________________________________________________ 22 2. 21. (a) E(X - m)3 = E[(X - m)2 (X - m)] = E[X3 - 2X 2 m + Xm2 - X 2 m + 2Xm2 - m3 ] = E(X3 )- 3E(X 2 )m + 3E(X)m2 - m3 = E(X3 )- 3E(X 2 )E(X)+ 3E(X)[E(X)]2 -[E(X)]3 = E(X3 )- 3E(X 2 )E(X) + 2E(X)3 (b) E(X - m)4 = E[(X3 - 3X 2 m + 3Xm2 - m3 )(X - m)] = E[X 4 - 3X3 m + 3X 2 m2 - Xm3 - X3 m + 3X 2 m2 - 3Xm3 + m4 ] = E(X 4 )- 4E(X 3 )E(X) + 6E(X 2 )E(X)2 - 4E(X)E(X)3 + E(X )4 = E(X 4 )- 4[E(X)][E(X3 )]+ 6[E(X)]2 [E(X 2 )]- 3[E(X)]4
  • 23. _____________________________________________________________________________________________________ 23 2. 22. The mean and variance of R are given by m = w´ 0.08+ (1- w) ´ 0.05 s 2 = w2 ´ 0.072 + (1- w)2 ´ 0.042 + 2´ w´ (1- w)´[0.07 ´ 0.04 ´ 0.25] where 0.07 ´0.04´0.25 = Cov(Rs , Rb ) follows from the definition of the correlation between Rs and Rb. (a) m = 0.065;s = 0.044 (b) m = 0.0725;s = 0.056 (c) w = 1 maximizes m;s = 0.07 for this value of w. (d) The derivative of 2 with respect to w is ds 2 dw = 2w´.072 - 2(1- w)´ 0.042 + (2- 4w)´[0.07 ´ 0.04 ´ 0.25] = 0.0102w- 0.0018 Solving for w yields w=18/102 = 0.18.(Notice that the second derivative is positive, so that this is the global minimum.) With w = 0.18,sR = .038.
  • 24. _____________________________________________________________________________________________________ 24 2. 23. X and Z are two independently distributed standard normal random variables, so mX = mZ = 0,s X 2 = sZ 2 =1,s XZ = 0. (a) Because of the independence between X and Z, Pr(Z = z|X = x) = Pr(Z = z), and E(Z|X) = E(Z) = 0. Thus E(Y|X) = E(X2 + Z|X) = E(X2 |X)+ E(Z|X) = X2 +0 = X2 . (b) E(X2 ) =s X 2 + mX 2 =1, and mY = E(X2 + Z) = E(X2 )+ mZ =1+0 =1. (c) E(XY) = E(X3 + ZX) = E(X3 )+ E(ZX). Using the fact that the odd moments of a standard normal random variable are all zero, we have E(X3 ) = 0. Using the independence between X and Z, we have E(ZX) = mZ mX = 0. Thus E(XY) = E(X3 )+ E(ZX) = 0. (d) cov(XY) = E[(X - mX )(Y - mY )] = E[(X - 0)(Y -1)] = E(XY - X) = E(XY) - E(X) = 0 - 0 = 0. corr(X,Y) = s XY s X sY = 0 s X sY = 0.
  • 25. _____________________________________________________________________________________________________ 25 2.24. (a) E(Yi 2 ) = s 2 + m2 = s 2 and the result follows directly. (b) (Yi/) is distributed i.i.d. N(0,1), W = (Yi /s)2 i=1 n å , and the result follows from the definition of a cn 2 random variable. (c) E(W) = E Yi 2 s 2 i=1 n å = E Yi 2 s 2 i=1 n å = n. (d) Write V = Y1 åi=2 n Yi 2 n-1 = Y1 /s åi=2 n (Y /s )2 n-1 which follows from dividing the numerator and denominator by . Y1/ ~ N(0,1), (Yi /s )2 i=2 n å ~ cn-1 2 , and Y1/ and (Yi /s )2 i=2 n å are independent. The result then follows from the definition of the t distribution.
  • 26. _____________________________________________________________________________________________________ 26 2.25. (a) (b) (c) (d) (a + bxi + cyi )2 i=1 n å = (a2 + b2 xi 2 + c2 yi 2 + 2abxi + 2acyi + 2bcxi yi ) i=1 n å = na2 + b2 xi 2 i=1 n å + c2 yi 2 i=1 n å + 2ab xi i=1 n å + 2ac yi i=1 n å + 2bc xi yi i=1 n å
  • 27. _____________________________________________________________________________________________________ 27 2.26. (a) corr(Yi,Yj) = cov(Yi ,Yj ) sYi sYj = cov(Yi ,Yj ) sY sY = cov(Yi ,Yj ) sY 2 = r, where the first equality uses the definition of correlation, the second uses the fact that Yi and Yj have the same variance (and standard deviation), the third equality uses the definition of standard deviation, and the fourth uses the correlation given in the problem. Solving for cov(Yi, Yj) from the last equality gives the desired result. (b) Y = 1 2 Y1 + 1 2 Y2 , so that E(Y ) = 1 2 E(Y)1 + 1 2 E(Y2 ) = mY var(Y ) = 1 4 var(Y1 ) + 1 4 var(Y2 )+ 2 4 cov(Y1 ,Y2 ) = sY 2 2 + rsY 2 2 (c) Y = 1 n Yi i=1 n å , so that E(Y ) = 1 n E(Yi ) i=1 n å = 1 n mY i=1 n å = mY var(Y ) = var 1 n Yi i=1 n å æ è ç ö ø ÷ = 1 n2 var(Yi ) i=1 n å + 2 n2 cov(Yi ,Yj ) j=i+1 n å i=1 n-1 å = 1 n2 sY 2 i=1 n å + 2 n2 rsY 2 j=i+1 n å i=1 n-1 å = sY 2 n + n(n -1) n2 rsY 2 = sY 2 n + 1- 1 n æ è ç ö ø ÷ rsY 2 where the fourth line uses for any variable a. (d) When n is large sY 2 n » 0 and 1 n » 0, and the result follows from (c).
  • 28. _____________________________________________________________________________________________________ 28 2.27 (a) E(u) = E[E(u|X) ] = E[E(Y−Ŷ )|X] = E[ E(Y|X) – E(Y|X) ] = 0. (b) E(uX) = E[E(uX|X) ] = E[XE(u)|X] = E[ X×0] = 0 (c) Using the hint: v = (Y -Ŷ ) – h(X) = u − h(X) , so that E(v2 ) = E[u2 ] + E[h(X)2 ] – 2×E[u×h(X)]. Using an argument like that in (b), E[u×h(X)] = 0. Thus, E(v2 ) = E(u2 ) + E[h(X)2 ], and the result follows by recognizing that E[h(X)2 ] ≥ 0 because h(x)2 ≥ 0 for any value of x.
  • 29. _____________________________________________________________________________________________________ 29 2.28 (a) Pr(M = 3) = Pr(M=3,A=0) + Pr(M=3,A=1) = Pr(M=3|A=0)Pr(A=0) + Pr(M=3|A=1)Pr(A=1) = 0.05×0.5 + 0.01×0.5=0.03 (b) Pr(A = 0 | M = 3) = Pr(M = 3| A = 0)´ Pr(A = 0) P(M = 3) = 0.05´ 0.5 0.03 = 0.83 (c) Pr(M = 3) = Pr(M=3,A=0) + Pr(M=3,A=1) = Pr(M=3|A=0)Pr(A=0) + Pr(M=3|A=1)Pr(A=1) = 0.05×0.25 + 0.01×0.75=0.02 Pr(A = 0 | M = 3) = Pr(M = 3| A = 0)´ Pr(A = 0) P(M = 3) = 0.05´ 0.25 0.02 = 0.63
  • 30. _____________________________________________________________________________________________________ 30 Empirical Exercise 2.1 Calculations for this exercise are carried out in Age_HourlyEarnings_EE2_1.xlsx. a. Age Probability (Age) 25 0.0848899 26 0.092230557 27 0.085471343 28 0.093393436 29 0.103495862 30 0.104731445 31 0.103931986 32 0.108074706 33 0.108801517 34 0.114979284 b. Age E(AHE|Age) 25 17.59075075 26 18.96690372 27 19.70493315 28 20.23580196 29 21.17135268 30 21.78487058 31 22.59510473 32 23.69199959 33 23.34869462 34 24.10809159
  • 31. _____________________________________________________________________________________________________ 31 c. Scatter plot of E(AHE|Age) (d) E(AHE) = $21.51 (e) – (g) Some moments: E(AHE) = 21.51 (Dollars) E(AHE2 ) = 627.53 (Dollars squared) E(Age) = 29.84 (Years) E(Age2 ) = 898.40 (Years squared) E(AHE×Age) = 646.01 (Dollars × Years) var(AHE) = E(AHE2 ) – [E(AHE)]2 = 164.82 (Dollars squared) Std.Dev (AHE) = 164.82 = 12.84 (Dollars) var(Age) = E(Age2 ) – [E(Age)]2 = 7.79 (Years squared) Std.Dev(Age) = 7.79 = 2.79 (Years) cov(AHE,Age) = E(AHE×Age) – [E(AHE)×E(Age)] = 4.06 (Dollars × Years) cor(AHE,Age) = cov(AHE,Age)/[ Std.Dev (AHE)× Std.Dev(Age)] = 0.11 (h) The covariance and correlation are positive: when Age is higher than its average value, AHE tends to be higher than its average value, and similarly if Age is lower than its average value. In this sense Age and AHE are positively related, which is also evident in the plot. 15 16 17 18 19 20 21 22 23 24 25 24 25 26 27 28 29 30 31 32 33 34 35 AHE Age