SlideShare a Scribd company logo
1 of 12
Download to read offline
International Journal of Modern Engineering Research (IJMER)
                 www.ijmer.com         Vol.2, Issue.6, Nov-Dec. 2012 pp-4244-4255       ISSN: 2249-6645

             Contribution of Axial Deformation in the Analysis of Rigidly
                                Fixed Portal Frames
Okonkwo V. O.1, Aginam C. H.2, and Chidolue C. A.3
123
      Department of Civil Engineering Nnamdi Azikiwe University, Awka Anambra State-Nigeria


ABSTRACT: In this work the stiffness equations for
evaluating the internal stress of rigidly fixed portal frames
by the displacement method were generated. But obtaining
the equations for the internal stresses required non-scalar
or parametric inversion of the structure stiffness matrix. To
circumvent this problem, the flexibility method was used
taking advantage of the symmetrical nature of the portal
frame and the method of virtual work. These were used to
obtain the internal stresses on rigidly fixed portal frames
for different cases of external loads when axial deformation
is considered. A dimensionless constant s was used to
capture the effect of axial deformation in the equations.
When it is set to zero, the effect of axial deformation is
ignored and the equations become the same as what can be
obtained in any structural engineering textbook. These
equations were used to investigate the contribution of axial
deformation to the calculated internal stresses and how
they vary with the ratio of the flexural rigidity of the beam
and columns and the height to length ratio of the loaded
portal frames.
                                                                 Figure 1: A simple portal frame showing its dimensions and
Keywords: Axial deformation, flexural rigidity, flexibility
                                                                 the 6 degrees of freedom
method, Portal frames, stiffness matrix,
                                                                 The analysis of portal frames by the stiffness method
                   I. INTRODUCTION                               requires the determination of the structure’s degrees of
          Structural frames are primarily responsible for
                                                                 freedom and the development of the structure’s stiffness
strength and rigidity of buildings. For simpler single storey
                                                                 matrix. For the structure shown in Figure 1a, the degrees of
structures like warehouses, garages etc portal frames are
                                                                 freedom are as shown in Figure 1b. I1 and A1 are
usually adequate. It is estimated that about 50% of the hot-     respectively the second moment of inertia and cross-
rolled constructional steel used in the UK is fabricated into    sectional area of the columns while I2 and A2 are the second
single-storey buildings (Graham and Alan, 2007). This            moment of inertia and cross-sectional area of the beam
shows the increasing importance of this fundamental
                                                                 respectively. The stiffness coefficients for the various
structural assemblage. The analysis of portal frames are
                                                                 degrees of freedom considering shear deformation can be
usually done with predetermined equations obtained from          obtained from equations developed in Ghali et al (1985)
structural engineering textbooks or design manuals. The
                                                                 and Okonkwo (2012) and are presented below
equations in these texts were derived with an underlying
assumption that deformation of structures due to axial           The structure’s stiffness matrix can be written as:
forces is negligible giving rise to the need to undertake this
study. The twenty first century has seen an astronomical use             π‘˜11     π‘˜12   π‘˜13   π‘˜14   π‘˜15    π‘˜16
of computers in the analysis of structures (Samuelsson and               π‘˜21     π‘˜22   π‘˜23   π‘˜24   π‘˜25    π‘˜26
Zienkiewi, 2006) but this has not completely eliminated the              π‘˜       π‘˜32   π‘˜33   π‘˜34   π‘˜35    π‘˜36
use of manual calculations form simple structures and for            𝐾 = 31                                   .         (1)
                                                                         π‘˜41     π‘˜42   π‘˜43   π‘˜44   π‘˜45    π‘˜46
easy cross-checking of computer output (Hibbeler, 2006).                 π‘˜51     π‘˜52   π‘˜53   π‘˜54   π‘˜55    π‘˜56
Hence the need for the development of equations that                     π‘˜61     π‘˜62   π‘˜63   π‘˜64   π‘˜65    π‘˜66
capture the contribution of axial deformation in portal
frames for different loading conditions.                         Where kij is the force in coordinate (degree of freedom) i
                                                                 when there is a unit displacement in coordinate (degree of
        II. DEVELOPMENT OF THE MODEL                             freedom) j. They are as follows:
                                                                          𝐸𝐴1
                                                                  π‘˜11 =   β„Ž

                                                                  π‘˜12 = 0

                                                  www.ijmer.com                                                    4244 | Page
International Journal of Modern Engineering Research (IJMER)
                          www.ijmer.com         Vol.2, Issue.6, Nov-Dec. 2012 pp-4244-4255       ISSN: 2249-6645
        6𝐸𝐼2                                                                           𝑑1
π‘˜13 =      𝑙2
                                                                                       𝑑2
                12𝐸𝐼1                                                                  𝑑3
π‘˜14 = βˆ’          β„Ž3
                                                                            {𝐷} =              .      .           .       .       .   (5)
                                                                                       𝑑4
                                                                                       𝑑5
π‘˜15 = 0
                                                                                       𝑑6
        6𝐸𝐼2
π‘˜16 =      𝑙2                                                               Where di is the displacement in coordinate i.
          12𝐸𝐼1           𝐸𝐴2                                                          𝐹1
π‘˜22 =      β„Ž3
                      +       𝑙
                                                                                       𝐹2
          6𝐸𝐼1                                                                         𝐹3
π‘˜23 =                                                                       {𝐹} =             .      .    .           .       .       .     (6)
          β„Ž2                                                                           𝐹4
                                                                                       𝐹5
π‘˜24 = 0
                                                                                       𝐹6
                𝐸𝐴2
π‘˜25 = βˆ’          𝑙
                                      .       .   (2)                       Where Fi is the external load with a direction coinciding
                                                                            with the coordinate i (McGuire et al, 2000).
π‘˜26 = 0
                                                                            By making {D} the subject of the formula in equation (3)
          4𝐸𝐼2           4𝐸𝐼1
π‘˜33 =                +
            𝑙             β„Ž                                                              βˆ’1
                                                                                𝐷 = 𝐾         {𝐹 βˆ’ πΉπ‘œ }       .       .   .               . (7)
                6𝐸𝐼2
π‘˜34 = βˆ’          𝑙2                                                         Once {D} is obtained the internal stresses in the frame can
                                                                            be easily obtained by writing the structure’s compatibility
π‘˜35 = 0                                                                     equations given as
          2𝐸𝐼2
π‘˜36 =       𝑙
                                                                                𝑀 = 𝑀 π‘Ÿ + 𝑀1 𝑑1 + 𝑀2 𝑑2 + 𝑀3 𝑑3 .                 .          (8)

          12𝐸𝐼2           𝐸𝐴1                                               Where M is the internal stress (bending moment) at any
π‘˜44 =                 +
            𝑙3             β„Ž                                                point on the frame, Mr is the internal stress at the point
                                                                            under consideration in the restrained structure while Mi is
π‘˜45 = 0                                                                     the internal stress at the point when there is a unit
                6𝐸𝐼2                                                        displacement in coordinate i.
π‘˜46 = βˆ’                                                                     To solve equation (8) there is need to obtain {D}. {D} can
                 𝑙2
                                                                            be obtained from the inversion of [K] in equation (7).
          12𝐸𝐼1           𝐸𝐴2
π‘˜55 =                 +                                                     Finding the inverse of K parametrically (i.e. without
           β„Ž3                 𝑙
                                                                            substituting the numerical values of E, h, l etc) is a difficult
From Maxwell’s Reciprocal theorem and Betti’s Law k ij =                    task. This problem is circumvented by using the flexibility
kji ( Leet and Uang, 2002).                                                 method to solve the same problem, taking advantage of the
                                                                            symmetrical nature of the structure and the principle of
When there are external loads on the structure on the                       virtual work.
structure there is need to calculate the forces in the
restrained structure Fo as a result of the external load.                         III. APPLICATION OF THE FLEXIBILITY
                                                                                                  MODEL
The structure’s equilibrium equations are then written as                   The basic system or primary structure for the structure in
                                                                            Figure 1a is given in Figure 2. The removed redundant
{𝐹} = {πΉπ‘œ } + 𝐾 {𝐷} . . .                               .       (3)         force is depicted with X1.
                π‘˜10
                π‘˜20
                π‘˜30
{πΉπ‘œ } =                    .      .       .             .   .   (4)
                π‘˜40
                π‘˜50
                π‘˜60

Where kio is the force due to external load in coordinate i
when the other degrees of freedom are restrained.

                                                                            Figure 2: The Basic System showing the removed
                                                                            redundant forces




                                                                www.ijmer.com                                                             4245 | Page
International Journal of Modern Engineering Research (IJMER)
                       www.ijmer.com         Vol.2, Issue.6, Nov-Dec. 2012 pp-4244-4255       ISSN: 2249-6645
The flexibility matrix of the structure can be determined                                                           1                         12𝐸𝐼1 𝐼2 𝐴1
                                                                                                                           =                                            .            . .                     (15a)
                                                                                                                    𝑑 11          𝐼1 𝐴1 𝑙 3 +6𝐼2 𝐴1 𝑙 2 β„Ž +24𝐼1 𝐼2 β„Ž
using the principle of virtual work.
By applying the unit load theorem the deflection in beams
or frames can be determined for the combined action of the
internal stresses, bending moment and axial forces with                                                                     𝑑 33                          3𝐸𝐼1 𝐴2 (𝑙𝐼1 +2β„ŽπΌ2 )
          𝑀 𝑀                𝑁 𝑁                                                                                                  2
                                                                                                                     𝑑 22 𝑑 33 βˆ’π‘‘ 23
                                                                                                                                          = 2𝐴         3       2 2       4                           .           (15b)
 𝐷=               𝑑𝑠 +                    𝑑𝑠 .            .                               .          (9)                                            2 β„Ž 𝑙𝐼1 +3𝐼1 𝑙 +𝐴2 β„Ž 𝐼2 +6β„Žπ‘™πΌ1 𝐼2
          𝐸𝐼                 𝐸𝐴
                                                                                                                            𝑑 32                            βˆ’3𝐸𝐼1 𝐼2 𝐺𝐴2 β„Ž 2
Where 𝑀 and 𝑁 are the virtual internal stresses while M                                                                           2
                                                                                                                     𝑑 22 𝑑 33 βˆ’π‘‘ 23
                                                                                                                                          = 2𝐴         3       2 2       4                                       (15c)
                                                                                                                                                    2 β„Ž 𝑙𝐼1 +3𝐼1 𝑙 +𝐴2 β„Ž 𝐼2 +6β„Žπ‘™πΌ1 𝐼2
and N are the real/actual internal stresses.
                                                                                                                           𝑑 22                       𝐸𝐼1 𝐼2 2𝐴2 β„Ž 3 +3𝐼1 𝑙
E is the modulus of elasticity of the structural material                                                                        2       =         3 𝑙𝐼 +3𝐼 2 𝑙 2 +𝐴 β„Ž 4 𝐼 +6β„Žπ‘™πΌ 𝐼                   .           (15d)
                                                                                                                    𝑑 22 𝑑 33 βˆ’π‘‘ 23           2𝐴2 β„Ž 1       1       2     2     1 2


A is the cross-sectional area of the element (McGuire et al,                                                    Equation (12) is evaluated to get the redundant forces and
2000; Nash, 1998)                                                                                               these are substituted into the structures force equilibrium
                                                                                                                (superposition) equations to obtain the internal stresses at
If dij is the deformation in the direction of i due to a unit                                                   any point.
load at j then by evaluating equation (9) the following are
obtained:                                                                                                           𝑀 = 𝑀 π‘œ + 𝑀1 𝑋1 + 𝑀2 𝑋2 + 𝑀3 𝑋3 .                                                    .           (16)
         𝐼1 𝐺𝐴1 𝑙 3 +6𝐼2 𝐴1 𝑙 2 β„Ž +12𝐼1 𝐼2 β„Ž                                                                    Where M is the required stress at a point, Mo is the stress at
𝑑11 =                                                          .      .                            (10a)
                      12𝐸𝐼1 𝐼2 𝐴1                                                                               that point for the reduced structure, Mi is stress at that point
                                                                                                                when the only the redundant force Xi =1 acts on the reduced
𝑑12 = 0 .                                     .               . .                             .   (10b)         structure.
                                                                                                                For the loaded portal frame of Figure 3, the deformations of
𝑑13 = 0 .                                 .               . .                 .               .   (10c)
                                                                                                                the reduced structure due to external loads are
         2𝐴2 β„Ž 3 +3𝐼1 𝑙
𝑑22 =      3𝐸𝐼1 𝐴2
                                  .               .                       .                       (10d)             𝑑10 = 0 .                               .                .                               .              .
                                                                                                                .          (17a)
         βˆ’β„Ž 2
𝑑23 =     𝐸𝐼1
                  .                                   .                       .                    (10e)                           𝑀 β„Ž 2 𝑙2
                                                                                                                    𝑑20 =                       .                   .                .                           .          .
                                                                                                                                   8𝐸𝐼1
         𝑙𝐼1 +2β„Ž 𝐼2                                                                                             .                         (17b)
𝑑33 =                   .             .                        .                      .            (10f)
           𝐸𝐼1 𝐼2
                                                                                                                                  βˆ’π‘€ 𝑙 2 (𝑙𝐼1 +6β„ŽπΌ2 )
From Maxwell’s Reciprocal theorem and Betti’s Law dij =                                                             𝑑30 =                                       .                .                           (17c)
                                                                                                                                       24𝐸𝐼1 𝐼2
dji.
                                                                                                                By substituting the values of equations (17a) – (17c) into
The structure’s compatibility equations can be written thus                                                     equations (12)

  𝑑11     𝑑11         𝑑11         𝑋1   𝑑10                                                                          𝑋1 = 0 .                        .           .       .            .                       (18a)
  𝑑21     𝑑21         𝑑21         𝑋2 + 𝑑20 = 0 .                                                   (11a)
  𝑑31     𝑑31         𝑑31         𝑋3   𝑑30                                                                                                          βˆ’π΄2 𝐼1 π‘€β„Ž 2 𝑙 3
                                                                                                                    𝑋2 = 4                        2
                                                                                                                                   2𝐴2 β„Ž 3 𝑙𝐼1 +3𝐼1 𝑙 2 +𝐴2 β„Ž 4 𝐼2 +6β„Žπ‘™πΌ1 𝐼2
                                                                                                                                                                                                 .           (18b)
i.e.    𝑓𝐹 + 𝑑 π‘œ = 0 .                                .                           .               (11b)                                                2
                                                                                                                                  𝑀 𝑙 2 2𝐴2 β„Ž 3 𝑙𝐼1 +3𝐼1 𝑙 2 +3𝐴2 β„Ž 4 𝐼2 +18β„Žπ‘™πΌ1 𝐼2
                                                                                                                    𝑋3 =                             2
                                                                                                                                   24 2𝐴2 β„Ž 3 𝑙𝐼1 +3𝐼1 𝑙 2 +𝐴2 β„Ž 4 𝐼2 +6β„Žπ‘™πΌ1 𝐼2
                                                                                                                                                                                             .               (18c)
Where F is the vector of redundant forces X1, X2, X3 and do
is the vector deformation d10, d20, d30 due to external load
                                                                                                                Evaluating equation (16) for different points on the
on the basic system (Jenkins, 1990).
                                                                                                                structure using the force factors obtained in equations (18a)
𝐹 = 𝑓 βˆ’1 (βˆ’π‘‘ π‘œ ) .                            .           .                   .                   (12)          – (18c)
                                                                                                                                               2𝑀𝑙 3 𝐼1 β„Ž 3 𝐴2 βˆ’3𝑙𝐼1
                                                                                                                    𝑀 𝐴 = 12                         2
                                                                                                                                      2𝐴2 β„Ž 3 𝑙𝐼1 +3𝐼1 𝑙 2 +𝐴2 β„Ž 4 𝐼2 +6β„Žπ‘™πΌ1 𝐼2
                                                                                                                                                                                         . .                         (19)
          𝐴𝑑𝑗 𝑓
𝑓 βˆ’1 =    𝑑𝑒𝑑 𝑓
                              .                                                       .           (13)

                                                                                                                                              βˆ’2𝑀𝑙 3 𝐼1 2β„Ž 3 𝐴2 +3𝑙𝐼1
(Stroud, 1995)                                                                                                      𝑀 𝐡 = 24                         2                                   . .                     (20)
                                                                                                                                      2𝐴2 β„Ž 3 𝑙𝐼1 +3𝐼1 𝑙 2 +𝐴2 β„Ž 4 𝐼2 +6β„Žπ‘™πΌ1 𝐼2
            1
           𝑑 11
                            0                                  0
                            𝑑 33                              βˆ’π‘‘ 32
𝑓 βˆ’1 = 0                           2
                      𝑑 22 𝑑 33 βˆ’π‘‘ 23                              2
                                                      𝑑 22 𝑑 33 βˆ’π‘‘ 23         .                    (14)                                       βˆ’2𝑀 𝑙 3 𝐼1 2β„Ž 3 𝐴2 +3𝑙𝐼1
                                                                                                                    𝑀𝐢 =                            2                                    .                       (21)
                          βˆ’π‘‘ 23                              𝑑 22                                                                 24 2𝐴2 β„Ž 3 𝑙𝐼1 +3𝐼1 𝑙 2 +𝐴2 β„Ž 4 𝐼2 +6β„Žπ‘™πΌ1 𝐼2
           0                       2                               2
                      𝑑 22 𝑑 33 βˆ’π‘‘ 23                 𝑑 22 𝑑 33 βˆ’π‘‘ 23
                                                                                                                                              βˆ’π‘€ 𝑙 3 𝐼1 8𝐼2 β„Ž 3 +𝑠2 𝑙 3 𝐼1
                                                                                                                    𝑀𝐢 =
From equations 10a – 10f                                                                                                          12 4β„Ž 3 𝐼2 2𝑙𝐼1 +β„Ž 𝐼2 +𝑠2 𝑙 3 𝐼1 𝑙𝐼1 +2β„Ž 𝐼2

                                                                                                    www.ijmer.com                                                                                                4246 | Page
International Journal of Modern Engineering Research (IJMER)
                              www.ijmer.com         Vol.2, Issue.6, Nov-Dec. 2012 pp-4244-4255       ISSN: 2249-6645
                              2𝑀𝑙 3 𝐼1 β„Ž 3 𝐴2 βˆ’3𝑙𝐼1                                                                                         βˆ’π‘€ β„Ž 3
    𝑀𝐷 =                       2                                                         . .                   (22)             𝑑30 =                            .        .           . .                             .                         (30c)
             12 2𝐴2 β„Ž 3 𝑙𝐼1 +3𝐼1 𝑙 2 +𝐴2 β„Ž 4 𝐼2 +6β„Žπ‘™πΌ1 𝐼2                                                                                   6𝐸𝐼1

                                                                                                                            By substituting the values of equations (30a) – (30c) into
                                                                                                                            equations (12)
For the loaded portal frame of Figure 4, the deformations of
the reduced structure due to external loads are                                                                                                           𝑀 β„Ž 3 𝑙𝐼2 𝐴1
                                                                                                                                𝑋1 =       𝐼1 𝐴1 𝑙 3 +6𝐼2 𝐴1 𝑙 2 β„Ž +24β„Ž 𝐼1 𝐼2
                                                                                                                                                                                                .         .                       .             (31a)
             βˆ’π‘€π‘™ 𝑙 3 𝐼1 𝐴1 +8β„Ž 𝑙 2 𝐼2 𝐴1 +64β„Ž 𝐼1 𝐼2
    𝑑10 =                                                                        .                         (23a)                                   βˆ’π‘€β„Ž 4 𝐴2 3𝑙𝐼1 +2β„Ž 𝐼2
                                  128 𝐸𝐼1 𝐼2 𝐴1                                                                                 𝑋2 = 8            3 𝑙𝐼 +3𝐼 2 𝑙 2 +𝐴 β„Ž 4 𝐼 +6β„Žπ‘™πΌ 𝐼
                                                                                                                                             2𝐴2 β„Ž 1
                                                                                                                                                                                                                                      .        (31b)
                                                                                                                                                          1        2     2     1 2
              𝑀 β„Ž 2 𝑙2
    𝑑20 =    16𝐸𝐼1
                              .                        .                     .                            (23b)                                           π‘€β„Ž 3 𝐼2 βˆ’β„Ž 3 𝐴2 +12𝑙𝐼1
                                                                                                                                𝑋3 = 24                       2
                                                                                                                                               2𝐴2 β„Ž 3 𝑙𝐼1 +3𝐼1 𝑙 2 +𝐴2 β„Ž 4 𝐼2 +6β„Žπ‘™πΌ1 𝐼2
                                                                                                                                                                                                                          .               .     (31c)
             βˆ’π‘€ 𝑙 2 (𝑙𝐼1 +6β„ŽπΌ2 )
    𝑑30 =                                          .                            .                         (23c)             Evaluating equation (16) for different points on the
                  48𝐸𝐼1 𝐼2
                                                                                                                            structure using the force factors obtained in equations (31a)
By substituting the values of equations (23a) – (23c) into                                                                  – (31c)
equations (12)
                                                                                                                                𝑀𝐴 =
           3𝑀𝑙 𝑙 3 𝐼1 𝐴1 +8β„Ž 𝑙 2 𝐼2 𝐴1 +64β„ŽπΌ1 𝐼2                                                                                  𝑀 β„Ž 2 𝐼1 𝐴1 𝑙 3 +5𝐴1 𝑙 2 β„Ž 𝐼2 +24β„ŽπΈπΌ1 𝐼2
    𝑋1 =                                                                    .           .                (24a)              βˆ’                                                                        +
            32 𝐼1 𝐴1 𝑙 3 +6𝐼2 𝐴1 𝑙 2 β„Ž +24β„Ž 𝐼1 𝐼2                                                                                    2 𝐼1 𝐴1 𝑙 3 +6𝐼2 𝐴1 𝑙 2 β„Ž +24β„Ž 𝐼1 𝐼2
                                                                                                                                 𝑀 β„Ž 3 9β„Ž 2 𝑙𝐼1 𝐴2 +5𝐴2 β„Ž 3 𝐼2 +12𝑙𝐼1 𝐼2
                                  βˆ’2𝑀 β„Ž 2 𝑙 3 𝐴2 𝐼1                                                                                           2                                                       . .                     .           .    (32)
    𝑋2 = 16                                                                                         .     (24b)             24 2𝐴2 β„Ž 3 𝑙𝐼1 +3𝐼1 𝑙 2 +𝐴2 β„Ž 4 𝐼2 +6β„Žπ‘™πΌ1 𝐼2
                               2
                2𝐴2 β„Ž 3 𝑙𝐼1 +3𝐼1 𝑙 2 +𝐴2 β„Ž 4 𝐼2 +6β„Žπ‘™πΌ1 𝐼2

             𝑀 β„Ž 3 𝑙 2 𝐴2 3β„Ž 𝐼2 +2𝑙𝐼1 +3𝑀𝑙 3 𝐼1 𝑙𝐼1 +6β„Ž 𝐼2
    𝑋3 =                       2                                                            .             (24c)                 𝑀𝐡 =
             48 2𝐴2 β„Ž 3 𝑙𝐼1 +3𝐼1 𝑙 2 +𝐴2 β„Ž 4 𝐼2 +6β„Žπ‘™πΌ1 𝐼2
                                                                                                                                         𝑀 β„Ž 3 𝑙 2 𝐼2 𝐴1                                                 π‘€β„Ž 3 𝐼2 βˆ’β„Ž 3 𝐴2 +12𝑙𝐼1
                                                                                                                                      3 +6𝐼 𝐴 𝑙 2 β„Ž +24β„Ž 𝐼 𝐼                          + 24               3 𝑙𝐼 +3𝐼 2 𝑙 2 +𝐴 β„Ž 4 𝐼 +6β„Žπ‘™πΌ 𝐼                  .
                 𝑠2                                                                                                         2 𝐼1 𝐴1 𝑙       2 1           1 2                                       2𝐴2 β„Ž 1      1        2     2     1 2
Let 𝛽 =               .                .               .           .                .                   . (25)              .      .          (33)
                 𝑠1

Evaluating equation (16) for different points on the                                                                            𝑀𝐢 =
structure using the force factors obtained in equations (24a)                                                                                    𝑀 β„Ž 3 𝑙 2 𝐼2 𝐴1                                                      π‘€β„Ž 3 𝐼2 βˆ’β„Ž 3 𝐴2 +12𝑙𝐼1
                                                                                                                            βˆ’2                                                             + 24
– (24c)                                                                                                                             𝐼1 𝐴1 𝑙 3 +6𝐼2 𝐴1 𝑙 2 β„Ž +24β„ŽπΌ1 𝐼2                                                 2
                                                                                                                                                                                                       2𝐴2 β„Ž 3 𝑙𝐼1 +3𝐼1 𝑙 2 +𝐴2 β„Ž 4 𝐼2 +6β„Žπ‘™πΌ1 𝐼2
                                                                                                                            .          .         .           .           (34)
    𝑀𝐴 =
    𝑀 𝑙 2 β„Ž 3 𝐴2 3β„Ž 𝐼2 +8𝑙𝐼1 +3𝑙𝐼1 𝑙𝐼1 +6β„ŽπΌ2                                                    𝑀 𝑙 4 𝐴1 5𝑙𝐼1 +24β„Ž 𝐼2           𝑀𝐷 =
                  2                                                        βˆ’ 64                                                                𝑀 β„Ž 3 𝑙 2 𝐼2 𝐴1                                        π‘€β„Ž 3 9β„Ž 2 𝑙𝐼1 𝐴2 +5𝐴2 β„Ž 3 𝐼2 +12𝑙𝐼1 𝐼2
48 2𝐴2 β„Ž 3 𝑙𝐼1 +3𝐼1 𝑙 2 +𝐴2 β„Ž 4 𝐼2 +6β„Žπ‘™πΌ1 𝐼2                                            𝐼1 𝐴1 𝑙 3 +6𝐼2 𝐴1 𝑙 2 β„Ž +24β„ŽπΌ1 𝐼2
                                                                                                                            βˆ’2              3 +6𝐼 𝐴 𝑙 2 β„Ž +24β„ŽπΌ 𝐼                          + 24                       2
.         . .         .            (26)                                                                                             𝐼1 𝐴1 𝑙       2 1          1 2                                     2𝐴2 β„Ž 3 𝑙𝐼1 +3𝐼1 𝑙 2 +𝐴2 β„Ž 4 𝐼2 +6β„Žπ‘™πΌ1 𝐼2
                                                                                                                            .          .         .           .           (35)
    𝑀𝐡 =
                 𝑀 𝑙 4 𝐴1 5𝑙𝐼1 +24β„Ž 𝐼2                                                                                      For the loaded portal frame of Figure 6, the deformations of
βˆ’ 64         𝐼1 𝐴1 𝑙 3 +6𝐼2 𝐴1 𝑙 2 β„Ž +24β„Ž 𝐼1 𝐼2
                                                +
                                                                                                                            the reduced structure due to external loads are
    𝑀 𝑙 2 β„Ž 3 𝐴2 3β„Ž 𝐼2 +2𝑙𝐼1 +3𝑙𝐼1 𝑙𝐼1 +6β„ŽπΌ2
                  2                                                              . .                .      (27)
48 2𝐴2 β„Ž 3 𝑙𝐼1 +3𝐼1 𝑙 2 +𝐴2 β„Ž 4 𝐼2 +6β„Žπ‘™πΌ1 𝐼2                                                                                                    π‘ƒπ‘Ž 2 𝑙
                                                                                                                                𝑑10 = βˆ’                              .                      .                             .                   (36a)
                                                                                                                                               2𝐸𝐼1
    𝑀𝐢 =
      3𝑀 𝑙 2 𝑙 3 𝐼1 𝐴1 +8β„Ž 𝑙 2 𝐼2 𝐴1 +64β„ŽπΌ1 𝐼2                                                                                  𝑑20 = 0 .                                     .             .                     .                           (36b)
βˆ’                                                                      +
      64 𝐼1 𝐴1 𝑙 3 +6𝐼2 𝐴1 𝑙 2 β„Ž +24β„Ž 𝐼1 𝐼2
𝑀 𝑙 2 β„Ž 3 𝐴2 3β„Ž 𝐼2 +2𝑙𝐼1 +3𝑙𝐼1 𝑙𝐼1 +6β„ŽπΌ2                                                                                        𝑑30 = 0              .           .                                            .                               (36c)
                     2
48 2𝐴2 β„Ž 3 𝑙𝐼1 +3𝐼1 𝑙 2 +𝐴2 β„Ž 4 𝐼2 +6β„Žπ‘™πΌ1 𝐼2
                                                                           . .                  .       (28)
                                                                                                                            By substituting the values of equations (36a) – (36c) into
                                                                                                                            equations (12)
    𝑀𝐷 =                                                                                                                                                 6π‘ƒπ‘Ž 2 𝑙𝐼2 𝐴1
      3𝑀 𝑙 2 𝑙 3 𝐼1 𝐴1 +8β„Ž 𝑙 2 𝐼2 𝐴1 +64β„ŽπΌ1 𝐼2
                                                                                                                                𝑋1 =       𝐴1 𝐼1 𝑙 3 +6𝐴1 β„Ž 𝑙 2 𝐼2 +24β„Ž 𝐼1 𝐼2
                                                                                                                                                                                                .         .                   .                (37a)
βˆ’     64 𝐼1 𝐴1 𝑙 3 +6𝐼2 𝐴1 𝑙 2 β„Ž +24β„Ž 𝐼1 𝐼2
                                                                       +
𝑀 𝑙 2 β„Ž 3 𝐴2 3β„Ž 𝐼2 +8𝑙𝐼1 +3𝑙𝐼1 𝑙𝐼1 +6β„ŽπΌ2                                                                                        𝑋2 = 0                   .                        .             .                     .                       (37b)
                     2
48 2𝐴2 β„Ž 3 𝑙𝐼1 +3𝐼1 𝑙 2 +𝐴2 β„Ž 4 𝐼2 +6β„Žπ‘™πΌ1 𝐼2
                                                                           . .              .           (29)
                                                                                                                                𝑋3 = 0 .                     . .                       .              .                   .                   (37c)
For the loaded portal frame of Figure 5, the deformations of
the reduced structure due to external loads are                                                                             Evaluating equation (16) for different points on the
                                                                                                                            structure using the force factors obtained in equations (37a)
                  𝑀𝑙 β„Ž 3
    𝑑10 = βˆ’                        .           .               .                                .              (30a)        – (37c)
                12𝐸𝐼1

              π‘€β„Ž4
    𝑑20 =                 .                .               .           .                                   (30b)
             8𝐸𝐼1

                                                                                                                www.ijmer.com                                                                                                                   4247 | Page
International Journal of Modern Engineering Research (IJMER)
                                 www.ijmer.com         Vol.2, Issue.6, Nov-Dec. 2012 pp-4244-4255       ISSN: 2249-6645
                                                  3π‘Žπ‘™ 2 𝐼2 𝐴1                                                           For the loaded portal frame of Figure 8, the deformations of
    𝑀 𝐴 = βˆ’π‘ƒπ‘Ž 1 βˆ’                     𝐴1 𝐼1 𝑙 3 +6𝐴1 β„Ž 𝑙 2 𝐼2 +24β„Ž 𝐼1 𝐼2
                                                                                          .                 (38)
                                                                                                                        the reduced structure due to external loads are
                            3π‘ƒπ‘Ž 2 𝑙 2 𝐼2 𝐴1                                                                                                      π‘Ž 2 𝐼1 𝐴1 3𝑙 βˆ’2π‘Ž +6β„Ž 𝐼2 π‘Žπ‘™ 𝐴1 +2𝐼1
    𝑀𝐡 =         𝐴1 𝐼1 𝑙 3 +6𝐴 β„Ž 𝑙 2 𝐼 +24β„Ž 𝐼 𝐼                                   .                   .     (39)            𝑑10 = βˆ’π‘ƒ                                                                     .             (48a)
                              1         2    1 2                                                                                                               12𝐸𝐼1 𝐼2 𝐴1

                                                                                                                                      π‘ƒπ‘Žβ„Ž 2
                                                                                                                            𝑑20 =     2𝐸𝐼1
                                                                                                                                                   .                 .           .                                     (48b)
                                 3π‘ƒπ‘Ž 2 𝑙 2 𝐼2 𝐴1
    𝑀𝐢 = βˆ’          𝐴1 𝐼1 𝑙 3 +6𝐴1 β„Ž 𝑙 2 𝐼2 +24β„ŽπΌ1 𝐼2
                                                                  .                               .         (40)                           π‘ƒπ‘Ž π‘ŽπΌ1 +2β„Ž 𝐼2
                                                                                                                            𝑑30 = βˆ’                                      .   .           .                            (48c)
                                                                                                                                                 2𝐸𝐼1 𝐼2
                                             3π‘Žπ‘™ 2 𝐼2 𝐴1
    𝑀 𝐷 = π‘ƒπ‘Ž 1 βˆ’                                                                  .               .         (41)
                                  𝐴1 𝐼1 𝑙 3 +6𝐴1 β„Ž 𝑙 2 𝐼2 +24β„Ž 𝐼1 𝐼2                                                    By substituting the values of equations (48a) – (48c) into
                                                                                                                        equations (12)

                                                                                                                                    𝑃 π‘Ž 2 𝐼1 𝐴1 3π‘™βˆ’2π‘Ž +6β„ŽπΌ2 π‘Žπ‘™ 𝐴1 +2𝐼1
For the loaded portal frame of Figure 7, the deformations of                                                                𝑋1 =                                                             .                         (49a)
                                                                                                                                           𝐼1 𝐴1 𝑙 3 +6𝐼2 𝐴1 𝑙 2 β„Ž +24β„Ž 𝐼1 𝐼2
the reduced structure due to external loads are
                                                                                                                                                  βˆ’3π‘ƒπ‘Ž β„Ž 2 𝐼1 𝐴2 π‘™βˆ’π‘Ž
                    π‘ƒπ‘Ž 2 𝑙                                                                                                  𝑋2 = 2                   2
                                                                                                                                      2𝐴2 β„Ž 3 𝑙𝐼1 +3𝐼1 𝑙 2 +𝐴2 β„Ž 4 𝐼2 +6β„Žπ‘™πΌ1 𝐼2
                                                                                                                                                                                                                      (49b)
    𝑑10 = βˆ’ 4𝐸𝐼                   .                 .                         .                       (42a)
                        1
                                                                                                                                    π‘ƒπ‘Ž β„Ž 3 𝐴2 2π‘ŽπΌ1 +β„Ž 𝐼2 +3𝑙𝐼1 π‘ŽπΌ1 +2β„Ž 𝐼2
                 π‘ƒπ‘Ž 2 3β„Ž βˆ’π‘Ž                                                                                                 𝑋3 =                     2
                                                                                                                                    2 2𝐴2 β„Ž 3 𝑙𝐼1 +3𝐼1 𝑙 2 +𝐴2 β„Ž 4 𝐼2 +6β„Žπ‘™πΌ1 𝐼2
                                                                                                                                                                                                                      (49c)
    𝑑20 =                                          .                  .                               (42b)
                    6𝐸𝐼1

                     π‘ƒπ‘Ž 2
    𝑑30 = βˆ’ 2𝐸𝐼                   .           .         .             .                               (42c)
                        1
                                                                                                                        Evaluating equation (16) for different points on the
By substituting the values of equations (42a) – (42c) into                                                              structure using the force factors obtained in equations (49a)
equations (12)                                                                                                          – (49c)

                          3π‘ƒπ‘Ž 2 𝑙𝐼2 𝐴1                                                                                                                 𝑃𝑙 π‘Ž 2 𝐼1 𝐴1 3π‘™βˆ’2π‘Ž +6β„Ž 𝐼2 π‘Žπ‘™ 𝐴1 +2𝐼1
    𝑋1 =                                                    .     .                   .                   (43a)             𝑀 𝐴 = βˆ’π‘ƒπ‘Ž +                                                                          +
               𝐼1 𝐴1 𝑙 3 +6𝐼2 𝐴1 𝑙 2 β„Ž +24β„Ž 𝐼1 𝐼2                                                                                                    2 𝐼1 𝐴1 𝑙 3 +6𝐼2 𝐴1 𝑙 2 β„Ž +24β„Ž 𝐼1 𝐼2
                                                                                                                            π‘ƒπ‘Ž 𝐴2 β„Ž 3 βˆ’π‘ŽπΌ1 +β„Ž 𝐼2 +3𝑙𝐼1 +3𝑙𝐼1 π‘ŽπΌ1 +2β„Ž 𝐼2
                                                                                                                                               2                                         . .                         (50)
                 βˆ’π‘ƒπ‘Ž 2 𝐴2 𝑙𝐼1 3β„Žβˆ’π‘Ž +β„Ž 𝐼2 3β„Ž βˆ’2π‘Ž                                                                               2 2𝐴2 β„Ž 3 𝑙𝐼1 +3𝐼1 𝑙 2 +𝐴2 β„Ž 4 𝐼2 +6β„Žπ‘™πΌ1 𝐼2
    𝑋2 = 2                      2                                                             .           (43b)
                 2𝐴2 β„Ž 3 𝑙𝐼1 +3𝐼1 𝑙 2 +𝐴2 β„Ž 4 𝐼2 +6β„Žπ‘™πΌ1 𝐼2
                                                                                                                                                       𝑃 π‘Ž 2 𝐼1 𝐴1 3π‘™βˆ’2π‘Ž +6β„Ž 𝐼2 π‘Žπ‘™ 𝐴1 +2𝐼1
                  βˆ’π‘ƒπ‘Ž 2 𝐼2 βˆ’β„Ž 3 𝐴2 +π‘Žβ„Ž 2 𝐴2 +3𝑙𝐼1                                                                           𝑀 𝐡 = βˆ’π‘ƒπ‘Ž +                                                                          +
                                                                                                                                                2(𝐼1 𝐴1 𝑙 3 +6𝐼2 𝐴1 𝑙 2 β„Ž +24β„Ž 𝐼1 𝐼2 )
    𝑋3 =                        2                                         .                               (43c)
               2 2𝐴2 β„Ž 3 𝑙𝐼1 +3𝐼1 𝑙 2 +𝐴2 β„Ž 4 𝐼2 +6β„Žπ‘™πΌ1 𝐼2                                                              π‘ƒπ‘Ž β„Ž 3 𝐴2 2π‘ŽπΌ1 +β„ŽπΌ2 +3𝑙𝐼1 π‘ŽπΌ1 +2β„Ž 𝐼2
                                                                                                                                         2                                . . .                                      (51)
                                                                                                                        2 2𝐴2 β„Ž 3 𝑙𝐼1 +3𝐼1 𝑙 2 +𝐴2 β„Ž 4 𝐼2 +6β„Žπ‘™πΌ1 𝐼2


                                                                                                                            𝑀𝐢 =
Evaluating equation (16) for different points on the                                                                           𝑃𝑙 π‘Ž 2 𝐼1 𝐴1 3π‘™βˆ’2π‘Ž +6β„Ž 𝐼2 π‘Žπ‘™ 𝐴1 +2𝐼1
structure using the force factors obtained in equations (43a)                                                           βˆ’      2 𝐼1 𝐴1 𝑙 3 +6𝐼2 𝐴1 𝑙 2 β„Ž +24β„Ž 𝐼1 𝐼2
                                                                                                                                                                                     +
– (43c)                                                                                                                 π‘ƒπ‘Ž β„Ž 3 𝐴2 2π‘ŽπΌ1 +β„ŽπΌ2 +3𝑙𝐼1 π‘ŽπΌ1 +2β„Ž 𝐼2
                                                                                                                                           2                                     . .         .                   .      (52)
                                                                                                                        2 2𝐴2 β„Ž 3 𝑙𝐼1 +3𝐼1 𝑙 2 +𝐴2 β„Ž 4 𝐼2 +6β„Žπ‘™πΌ1 𝐼2
    𝑀𝐴 =
                                 3π‘ƒπ‘Ž 2 𝑙 2 𝐼2 𝐴1                                                                            𝑀𝐷 =
βˆ’π‘ƒπ‘Ž +                                                             +
           2 𝐼1 𝐴1 𝑙 3 +6𝐼2 𝐴1 𝑙 2 β„Ž +24β„Ž 𝐼1 𝐼2                                                                                𝑃𝑙 π‘Ž 2 𝐼1 𝐴1 3π‘™βˆ’2π‘Ž +6β„Ž 𝐼2 π‘Žπ‘™ 𝐴1 +2𝐼1
π‘ƒπ‘Ž 2 𝐴2 𝐼1 𝑙 3β„Ž 2 βˆ’π‘Žβ„Ž +𝐼2 2𝐴2 β„Ž 3 βˆ’π‘Žπ΄2 β„Ž 2 +3𝐼1 𝑙                                                                       βˆ’                                                            +
                        2                                                         .               . (44)                          2 𝐼1 𝐴1 𝑙 3 +6𝐼2 𝐴1 𝑙 2 β„Ž +24β„Ž 𝐼1 𝐼2
       2 2𝐴2 β„Ž 3 𝑙𝐼1 +3𝐼1 𝑙 2 +𝐴2 β„Ž 4 𝐼2 +6β„Žπ‘™πΌ1 𝐼2                                                                          π‘ƒπ‘Ž 𝐴2 β„Ž 3 βˆ’π‘ŽπΌ1 +β„Ž 𝐼2 +3𝑙𝐼1 +3𝑙𝐼1 π‘ŽπΌ1 +2β„Ž 𝐼2
                                                                                                                                                2
                                                                                                                              2 2𝐴2 β„Ž 3 𝑙𝐼1 +3𝐼1 𝑙 2 +𝐴2 β„Ž 4 𝐼2 +6β„Žπ‘™πΌ1 𝐼2
                                                                                                                                                                                                 .           .         (53)
    𝑀𝐡 =
                3π‘ƒπ‘Ž 2 𝑙 2 𝐼2 𝐴1                                 π‘ƒπ‘Ž 2 𝐼2 βˆ’β„Ž 3 𝐴2 +π‘Žβ„Ž 2 𝐴2 +3𝑙𝐼1
2 𝐼1 𝐴1 𝑙 3 +6𝐼2 𝐴1 𝑙 2 β„Ž +24β„Ž 𝐼1 𝐼2
                                                   +2                      2
                                                            2𝐴2 β„Ž 3 𝑙𝐼1 +3𝐼1 𝑙 2 +𝐴2 β„Ž 4 𝐼2 +6β„Žπ‘™πΌ1 𝐼2
                                                                                                                    .
.          .       (45)                                                                                                                     IV. DISCUSSION OF RESULTS
                                                                                                                        The internal stress on the loaded frames is summarized in
    𝑀𝐢 =
                 3π‘ƒπ‘Ž 2 𝑙 2 𝐼2 𝐴1                                   π‘ƒπ‘Ž 2 𝐼2 βˆ’β„Ž 3 𝐴2 +π‘Žβ„Ž 2 𝐴2 +3𝑙𝐼1
                                                                                                                        table 1. The effect of axial deformation is captured by the
βˆ’2     𝐼1 𝐴1 𝑙 3 +6𝐼 𝐴 𝑙 2 β„Ž +24β„ŽπΌ 𝐼                    +2                     2
                                                                2𝐴2 β„Ž 3 𝑙𝐼1 +3𝐼1 𝑙 2 +𝐴2 β„Ž 4 𝐼2 +6β„Žπ‘™πΌ1 𝐼2
                                                                                                                        dimensionless constant s taken as the ratio of the end
                    2 1           1 2
.      .                     .        (46)                                                                              translational stiffness to the shear stiffness of a member.
                                                                                                                                   12𝐸𝐼1          β„Ž         12𝐼
    𝑀𝐷 =                                                                                                                    𝑠1 =     β„Ž3
                                                                                                                                            βˆ™    𝐸𝐴1
                                                                                                                                                        = β„Ž 2 𝐴1 .                   .               .                  (54)
                                                                                                                                                                  1
                    3π‘ƒπ‘Ž 2 𝑙 2 𝐼2 𝐴1
βˆ’                                                       +
   2 𝐼1 𝐴1 𝑙 3 +6𝐼2 𝐴1 𝑙 2 β„Ž +24β„ŽπΌ1 𝐼2                                                                                             12𝐸𝐼2          𝑙         12𝐼2
π‘ƒπ‘Ž 2 𝐴2 𝐼1 𝑙 3β„Ž 2 βˆ’π‘Žβ„Ž +𝐼2 2𝐴2 β„Ž 3 βˆ’π‘Žπ΄2 β„Ž 2 +3𝐼1 𝑙                                                                           𝑠2 =      𝑙3
                                                                                                                                             βˆ™   𝐸𝐴2
                                                                                                                                                        =   𝑙 2 𝐴2
                                                                                                                                                                         .                           .                  (55)
                        2
       2 2𝐴2 β„Ž 3 𝑙𝐼1 +3𝐼1 𝑙 2 +𝐴2 β„Ž 4 𝐼2 +6β„Žπ‘™πΌ1 𝐼2
                                                                                  .               .        (47)
                                                                                                                        When the axial deformation in the columns is ignored
                                                                                                                        𝑠1 = 0 and likewise when axial deformation in the beam is
                                                                                                            www.ijmer.com                                                                                               4248 | Page
International Journal of Modern Engineering Research (IJMER)
                         www.ijmer.com         Vol.2, Issue.6, Nov-Dec. 2012 pp-4244-4255       ISSN: 2249-6645
ignored 𝑠2 = 0 . If axial deformation is ignored in the                             (about 40% drop in calculated bending moment value)
whole structure, 𝑠1 = 𝑠2 = 0.                                                       while at β„Ž 𝐿 > 0, βˆ†π‘€ 𝐴 dropped in magnitude exponentially
The internal stress equations enable an easy investigation                          to values below 1.
into the contribution of axial deformation to the internal
stresses of statically loaded frames for different kinds of                                           V. CONCLUSION
external loads.                                                                     The flexibility method was used to simplify the analysis
For frame 1 (figure 3), the moment at A, MA is given by                             and a summary of the results are presented in table 1. The
equation (19). The contribution of axial deformation in the                         equations in table 1 would enable an easy evaluation of the
column βˆ†π‘€ 𝐴 is given by                                                             internal stresses in loaded rigidly fixed portal frames
                                                                                    considering the effect of axial deformation.
βˆ†π‘€ 𝐴 = 𝑀 𝐴(π‘“π‘Ÿπ‘œπ‘š             π‘’π‘žπ‘’π‘Žπ‘‘π‘–π‘œπ‘› 19)   βˆ’ 𝑀 𝐴(π‘“π‘Ÿπ‘œπ‘š    π‘’π‘žπ‘’π‘Žπ‘‘π‘–π‘œπ‘› 19 π‘€β„Žπ‘’π‘› 𝑠2 =0)    From a detailed analysis of frame 1 (Figure 3), it was
                                                                                    observed that the contribution of axial deformation is
             𝑀 𝑙 3 𝐼1              4β„Ž 3 𝐼2 +𝑠2 𝑙 3 𝐼1               1               generally very small and can be neglected for reasonable
     =                    3 𝐼 2𝑙𝐼 +β„Ž 𝐼 +𝑠 𝑙 3 𝐼 𝑙𝐼 +2β„Ž 𝐼    βˆ’                   .
              12        4β„Ž 2     1     1     2      1 1 2       2𝑙𝐼1 +β„Ž 𝐼2          values of 𝐼1 𝐼2 . However, its contribution skyrockets at
.        .                                                   (56)                   very low values of β„Ž 𝑙 i.e. as β„Ž 𝑙 => 0. This depicts the
                                                                                    case of an encased single span beam and a complete
Equation (56) gives the contribution of axial deformation to
                                                                                    departure from portal frames under study. This analysis can
MA as a function of h, l, I1, I2 and s
                                                                                    be extended to the other loaded frames (Figures 4 – 8) using
By considering the case of a portal frame of length l = 5m,
                                                                                    the equations in Table 1. These would enable the
h = 4m. Equation 56 was evaluated to show how the
                                                                                    determination of safe conditions for ignoring axial
contribution of axial deformation varied with 𝐼1 𝐼2 . The
                                                                                    deformation under different kinds of loading.
result is shown in Table 2. When plotted on a uniform scale
(Figure 9) the relationship between βˆ†π‘€ 𝐡 and 𝐼1 𝐼2 is seen                                              REFERENCES
to be linear. This was further justified by a linear regression
analysis of the results in Table 2 which was fitted into the                        [1]  Ghali A, Neville A. M. (1996) Structural Analysis: A
                   𝐼                                                                     Unified Classical and Matrix Approach (3rd Edition)
model βˆ†π‘€ 𝐴 = 𝑃1 𝐼1 + 𝑃2 to obtain 𝑃1 = βˆ’0.004815 and                                     Chapman & Hall London
                              2
  𝑃2 = 0.0001109 and the fitness parameters sum square of                           [2] Graham R, Alan P.(2007). Single Storey Buildings:
errors (SSE), coefficient of multiple determination (R2 ) and                            Steel Designer’s Manual Sixth Edition, Blackwell
the root mean squared error (RMSE) gave 1.099 x 10 -7,                                   Science Ltd, United Kingdom
0.999952 and 0.0001105 respectively. From Table 2 when                              [3] Hibbeler, R. C.(2006). Structural Analysis. Sixth
 𝐼1 𝐼2 = 0 , βˆ†π‘€ 𝐴 β‰… 0 and when 𝐼1 𝐼2 = 10; βˆ†π‘€ 𝐴 =                                        Edition, Pearson Prentice Hall, New Jersey
βˆ’0.0479 which represent only a 5% reduction in the                                  [4] Leet, K. M., Uang, C.,(2002). Fundamental of
calculated bending moment.                                                               Structural Analysis. McGraw-Hill ,New York
In like manner by evaluating the axial contribution in the
beam, βˆ†π‘€ 𝐡 for varying 𝐼1 𝐼2 of the portal frame, Table 3
                                                                                    [5] McGuire, W., Gallagher R. H., Ziemian, R.
was produced. This was plotted on a uniform scale in                                     D.(2000). Matrix Structural Analysis,Second
Figure 10. From Figure 10 it would be observed that there                                Edition, John Wiley & Sons, Inc. New York
is also a linear relationship between βˆ†π‘€ 𝐡 and 𝐼1 𝐼2 . When                         [6] Nash, W.,(1998). Schaum’s Outline of Theory and
                                       𝐼                                                 Problems of Strength of Materials. Fourth Edition,
fitted into the model βˆ†π‘€ 𝐡 = 𝑃3 𝐼1 + 𝑃4 it gave 𝑃3 =
                                                     2                                   McGraw-Hill Companies, New York
βˆ’0.006502 and 𝑃4 = βˆ’0.0003969 for the fitness                                       [7] Okonkwo V. O (2012). Computer-aided Analysis of
parameters sum square of errors (SSE), coefficient of                                    Multi-storey Steel Frames. M. Eng. Thesis,
multiple determination (R2 ) and the root mean squared                                   Nnamdi Azikiwe University, Awka, Nigeria.
error (RMSE) of 6.51 x 10-7, 0.9999 and 0.000269
                                                                                    [8] Reynolds, C. E.,and Steedman J. C. (2001).
respectively.                                                                            Reinforced Concrete Designer’s Handbook, 10th
By pegging 𝐼1 𝐼2 to a constant value of 0.296 and the                                    Edition) E&FN Spon, Taylor & Francis Group,
variation of βˆ†π‘€ 𝐴 with respect to β„Ž 𝐿 investigated, Table 4                              London
was generated. A detailed plot of Table 4 was presented in
Figure 11. From Table 4 when β„Ž 𝐿 = 0; βˆ†π‘€ 𝐴 = βˆ’3.125
                                                                                    [9] Samuelsson A., and Zienkiewicz O. C.(2006),
                                                                                         Review: History of the Stiffness Method.
(about 30% drop in calculated bending moment value)
                                                                                         International Journal for Numerical Methods in
while at β„Ž 𝐿 > 0, βˆ†π‘€ 𝐴 dropped in magnitude exponentially
                                                                                         Engineering. Vol. 67: 149 – 157
to values below 1. In like manner, when the variation of
βˆ†π‘€ 𝐡 with respect to β„Ž 𝐿 was investigated, Table 5 was                              [10] Stroud K. A.,(1995). Engineering Mathematics.
generated. A detailed plot of Table 5 was presented in                                   Fourth Edition, Macmillan Press Ltd, London.
Figure 12. From Table 5 when β„Ž 𝐿 = 0; βˆ†π‘€ 𝐴 = βˆ’4.1667




                                                                        www.ijmer.com                                               4249 | Page
International Journal of Modern Engineering Research (IJMER)
               www.ijmer.com         Vol.2, Issue.6, Nov-Dec. 2012 pp-4244-4255       ISSN: 2249-6645




Table 1: Internal stresses for a loaded rigid frame




S/No      LOADED FRAME                                                                  REMARKS




                                                      www.ijmer.com                                     4250 | Page
International Journal of Modern Engineering Research (IJMER)
                      www.ijmer.com         Vol.2, Issue.6, Nov-Dec. 2012 pp-4244-4255       ISSN: 2249-6645
                                   𝑀 𝑙 3 𝐼1 4β„Ž 3 𝐼2 βˆ’π‘ 2 𝑙 3 𝐼1
 𝑀 𝐴 = 𝑀 𝐷 = 12 4β„Ž 3 𝐼                           3
                               2 2𝑙𝐼1 +β„Ž 𝐼2 +𝑠2 𝑙 𝐼1 𝑙𝐼1 +2β„Ž 𝐼2


                                βˆ’π‘€π‘™ 3 𝐼1 8𝐼2 β„Ž 3 +𝑠2 𝑙 3 𝐼1
 𝑀 𝐡 = 𝑀 𝐢 = 12 4β„Ž 3 𝐼                           3
                               2 2𝑙𝐼1 +β„Ž 𝐼2 +𝑠2 𝑙 𝐼1 𝑙𝐼1 +2β„ŽπΌ2


                𝑀𝑙                                                                   𝑀 β„Ž 2 𝑙 3 𝐼1 𝐼2
𝑉𝐴 = 𝑉 𝐷 =      2
                                              𝐻 𝐴 = 𝐻 𝐷 = 4β„Ž 3 𝐼                           3
                                                                         2 2𝑙𝐼1 +β„Ž 𝐼2 +𝑠2 𝑙 𝐼1 𝑙𝐼1 +2β„ŽπΌ2


See equations (19) – (22)




        𝑀𝑙 2 4β„Ž 3 𝐼2 3β„Ž 𝐼2 +8𝑙𝐼1 +𝑙 3 𝐼1 𝑠1 𝑙𝐼1 +6𝑠2 β„Ž 𝐼2                            𝑀 𝑙 4 5β„Ž 𝐼1 +24β„Ž 𝐼2
 𝑀𝐴 =                                                                     βˆ’
            48 4β„Ž 3 𝐼2 2𝑙𝐼1 +β„Ž 𝐼2 +𝑠2 𝑙 3 𝑙𝐼1 +2β„ŽπΌ2                            64 𝑙 2 𝐼1 +6β„Ž 𝑙 2 𝐼2 +2𝑠1 β„Ž 3 𝐼2

                  𝑀𝑙 4 5β„ŽπΌ1 +24β„ŽπΌ2                          𝑀 𝑙 2 4β„Ž 3 𝐼2 3β„Ž 𝐼2 +2𝑙𝐼1 +𝑠2 𝑙 3 𝐼1 𝑙𝐼1 +6β„Ž 𝐼2
 𝑀 𝐡 = βˆ’ 64     𝑙 2 𝐼1 +6β„Ž 𝑙 2 𝐼2 +2𝑠1 β„Ž 3 𝐼2
                                                      +     48 4β„Ž 3 𝐼2 2π‘™β„Ž 𝐼1 +β„Ž 𝐼2 +𝑠2 𝑙 3 𝐼1 𝑙𝐼1 +2β„ŽπΌ2

            𝑀𝑙 3𝐼1 𝑙 3 +24𝐼2 𝑙 2 β„Ž +16𝑠1 β„Ž 3 𝐼2                  𝑀 𝑙 2 4β„Ž 3 𝐼2 3β„Ž 𝐼2 +2𝑙𝐼1 +𝑠2 𝑙 3 𝐼1 𝑙𝐼1 +6β„ŽπΌ2
 𝑀𝐢 = βˆ’                                                     +
             64 𝐼1 𝑙 3 +6𝐼2 𝑙 2 β„Ž+2𝑠1 β„Ž 3 𝐼2                     48 4β„Ž 3 𝐼2 2π‘™β„Ž 𝐼1 +β„Ž 𝐼2 +𝑠2 𝑙 3 𝐼1 𝑙𝐼1 +2β„Ž 𝐼2

         𝑀𝑙 2 4β„Ž 3 𝐼2 3β„Ž 𝐼2 +8𝑙𝐼1 +𝑙 3 𝐼1 𝑠1 𝑙𝐼1 +6𝑠2 β„Ž 𝐼2                      𝑀𝑙 3𝐼1 𝑙 3 +24𝐼2 𝑙 2 β„Ž +16𝑠1 β„Ž 3 𝐼2
 𝑀𝐷 =        48 4β„Ž 3 𝐼2 2𝑙𝐼1 +β„Ž 𝐼2 +𝑠2 𝑙 3 𝑙𝐼1 +2β„ŽπΌ2
                                                                           βˆ’     64 𝐼1 𝑙 3 +6𝐼2 𝑙 2 β„Ž +2𝑠1 β„Ž 3 𝐼2

        𝑀𝑙 3𝑙 3 𝐼1 +24β„Žπ‘™ 2 𝐼2 +16𝑠1 β„Ž 3 𝐼2                                      𝑀𝑙
𝑉𝐷 =                                                                   𝑉𝐴 =          βˆ’ 𝑉𝐷
         32 𝑙 3 𝐼1 +6β„Ž 𝑙 2 𝐼2 +2𝑠1 β„Ž 3 𝐼2                                       2

                                        𝑀 β„Ž 2 𝑙 3 𝐼1 𝐼2
𝐻 𝐴 = 𝐻 𝐷 = 2 4β„Ž 3 𝐼                          3
                            2 2𝑙𝐼1 +β„Ž 𝐼2 +𝑠2 𝑙 𝑙𝐼1 +2β„ŽπΌ2


See equations (26) – (29)




            π‘€β„Ž 2 𝐼1 𝑙 3 +5β„Ž 𝑙 2 𝐼2 +2𝑠2 β„Ž 3 𝐼2                      𝑀 β„Ž 3 𝐼2 9β„Ž 2 𝑙𝐼1 +5β„Ž 3 𝐼2 +𝑠2 𝑙 3 𝐼1
 𝑀𝐴 = βˆ’      2 𝐼1 𝑙 3 +6β„Žπ‘™ 2 𝐼2 +2𝑠1 β„Ž 3 𝐼2
                                                          + 6 4β„Ž 3 𝐼                    3
                                                                      2 2𝑙𝐼1 +β„Ž 𝐼2 +𝑠2 𝑙 𝐼1 𝑙𝐼1 +2β„Ž 𝐼2


                     π‘€β„Ž 3 𝑙 2 𝐼2                               𝑀 β„Ž 3 𝐼2 βˆ’4β„Ž 3 𝐼2 +𝑠2 𝑙 3 𝐼1
 𝑀𝐡 = 2    𝐼1 𝑙 3 +6β„Ž 𝑙 2 𝐼2 +2𝑠1 β„Ž 3 𝐼2
                                               + 6 4β„Ž 3 𝐼                         3
                                                              2 2𝑙𝐼1 +β„Ž 𝐼2 +𝑠2 𝑙 𝐼1 𝑙𝐼1 +2β„Ž 𝐼2


                         𝑀 β„Ž 3 𝑙 2 𝐼2                               𝑀 β„Ž 3 𝐼2 βˆ’4β„Ž 3 𝐼2 +𝑠2 𝑙 3 𝐼1
 𝑀𝐢 = βˆ’2      𝐼1 𝑙 3 +6β„Žπ‘™ 2 𝐼2 +2𝑠1 β„Ž 3 𝐼2
                                                    + 6 4β„Ž 3 𝐼                       3
                                                                  2 2𝑙 𝐼1 +β„Ž 𝐼2 +𝑠2 𝑙 𝐼1 𝑙𝐼1 +2β„ŽπΌ2


                         π‘€β„Ž 3 𝑙 2 𝐼2                            𝑀 β„Ž 3 𝐼2 9β„Ž 2 𝑙𝐼1 +5β„Ž 3 𝐼2 +𝑠2 𝑙 3 𝐼1
 𝑀𝐷 = βˆ’                                             +
           2 𝐼1 𝑙 3 +6β„Ž 𝑙 2 𝐼2 +2𝑠1 β„Ž 3 𝐼2                6 4β„Ž 3 𝐼2 2𝑙𝐼1 +β„Ž 𝐼2 +𝑠2 𝑙 3 𝐼1 𝑙𝐼1 +2β„Ž 𝐼2

                            𝑀 β„Ž 3 𝑙𝐼2
𝑉𝐴 = 𝑉 𝐡 =      𝐼1 𝑙 3 +6𝐼2 𝑙 2 β„Ž +2𝑠1 𝐼2 β„Ž 3

                                                                                      www.ijmer.com                   4251 | Page
International Journal of Modern Engineering Research (IJMER)
                    www.ijmer.com         Vol.2, Issue.6, Nov-Dec. 2012 pp-4244-4255       ISSN: 2249-6645
                    𝑀 β„Ž 4 𝐼2 3𝑙𝐼1 +2β„ŽπΌ2
𝐻𝐷 =                                                                 𝐻 𝐴 = π‘€β„Ž βˆ’ 𝐻 𝐷
       2 4β„Ž 3 𝐼2 2𝑙𝐼1 +β„Ž 𝐼2 +𝑠2 𝑙 3 𝐼1 𝑙𝐼1 +2β„Ž 𝐼2


See equations (32) – (35)




                                    3π‘Ž 𝑙 2 𝐼2                                         3π‘ƒπ‘Ž 2 𝑙 2 𝐼2
 𝑀 𝐴 = βˆ’π‘ƒπ‘Ž 1 βˆ’           𝐼1 𝑙 3 +6β„Ž 𝑙 2 𝐼2 +2𝑠1 β„Ž 3 𝐼2
                                                                       𝑀𝐡 =    𝐼1 𝑙 3 +6β„Ž 𝑙 2 𝐼2 +2𝑠1 β„Ž 3 𝐼2
                                                                                                                  HD
                      3π‘ƒπ‘Ž 2 𝑙 2 𝐼2 𝐴1                                                                  3π‘Žπ‘™ 2 𝐼2
 𝑀𝐢 = βˆ’    𝐴1 𝐼1 𝑙 3 +6𝐴1 β„Ž 𝑙 2 𝐼2 +24β„ŽπΌ1 𝐼2
                                                                      𝑀 𝐷 = π‘ƒπ‘Ž 1 βˆ’           𝐼1 𝑙 3 +6β„Žπ‘™ 2 𝐼2 +2𝑠1 β„Ž 3 𝐼2

                      6π‘ƒπ‘Ž 2 𝑙𝐼2
𝑉𝐴 = 𝑉 𝐡 =      3 𝐼 +6𝑙 2 β„Ž 𝐼 +2𝑠 β„Ž 3 𝐼
               𝑙 1
                                                           𝐻𝐴 = 𝐻𝐡 = 𝑃
                             2   1     2


See equations (38) – (41)




                                3π‘ƒπ‘Ž 2 𝑙 2 𝐼2                 π‘ƒπ‘Ž 2 4𝐼1 𝐼2 β„Žπ‘™ 3β„Ž βˆ’π‘Ž +𝐼2 8β„Ž 3 𝐼2 βˆ’4π‘Žβ„Ž 3 𝐼2 +𝑠2 𝑙 3 𝐼1
 𝑀 𝐴 = βˆ’π‘ƒπ‘Ž + 2         𝐼1 𝑙 3 +6β„Ž 𝑙 2 𝐼2 +2𝑠1 β„Ž 3 𝐼2
                                                         +        2 4β„Ž 3 𝐼2 2𝑙𝐼1 +β„Ž 𝐼2 +𝑠2 𝑙 3 𝐼1 𝑙𝐼1 +2β„ŽπΌ2


                 3π‘ƒπ‘Ž 2 𝑙 2 𝐼2                       π‘ƒπ‘Ž 2 𝐼2 βˆ’4β„Ž 3 𝐼2 +4π‘Žβ„Ž 2 𝐼2 +𝑠2 𝑙 3 𝐼1
 𝑀𝐡 = 2                                   + 2 4β„Ž 3 𝐼
          𝐼1 𝑙 3 +6β„Ž 𝑙 2 𝐼2 +2𝑠1 β„Ž 3 𝐼2                                   3
                                                        2 2𝑙𝐼1 +β„Ž 𝐼2 +𝑠2 𝑙 𝐼1 𝑙𝐼1 +2β„Ž 𝐼2


                    3π‘ƒπ‘Ž 2 𝑙 2 𝐼2                         π‘ƒπ‘Ž 2 𝐼2 βˆ’4β„Ž 3 𝐼2 +4π‘Žβ„Ž 2 𝐼2 +𝑠2 𝑙 3 𝐼1
 𝑀𝐢 = βˆ’2     𝐼1 𝑙 3 +6β„Žπ‘™ 2 𝐼2 +2𝑠1 β„Ž 3 𝐼2
                                                + 2 4β„Ž 3 𝐼                      3
                                                             2 2𝑙 𝐼1 +β„Ž 𝐼2 +𝑠2 𝑙 𝐼1 𝑙𝐼1 +2β„ŽπΌ2


                     3π‘ƒπ‘Ž 2 𝑙 2 𝐼2                   π‘ƒπ‘Ž 2 4𝐼1 𝐼2 β„Žπ‘™ 3β„Ž βˆ’π‘Ž +𝐼2 8β„Ž 3 𝐼2 βˆ’4π‘Žβ„Ž 3 𝐼2 +𝑠2 𝑙 3 𝐼1
 𝑀𝐷 = βˆ’                                         +
          2 𝐼1 𝑙 3 +6β„Ž 𝑙 2 𝐼2 +2𝑠1 β„Ž 3 𝐼2                2 4β„Ž 3 𝐼2 2𝑙𝐼1 +β„Ž 𝐼2 +𝑠2 𝑙 3 𝐼1 𝑙𝐼1 +2β„Ž 𝐼2

                        3π‘ƒπ‘Ž 2 𝑙𝐼2
𝑉𝐴 = 𝑉 𝐡 =
               𝑙 3 𝐼1 +6𝑙 2 β„Ž 𝐼2 +2𝑠1 β„Ž 3 𝐼2

       2π‘ƒπ‘Ž 2 𝐼2 𝑙𝐼1 3β„Ž βˆ’π‘Ž +β„ŽπΌ2 3β„Ž βˆ’2π‘Ž
𝐻𝐷 =    4β„Ž 3 𝐼2 2𝑙𝐼1 +𝑠2 𝑙 3 𝐼1 𝑙𝐼1 +2β„ŽπΌ2
                                                              𝐻𝐴 = 𝑃 βˆ’ 𝐻 𝐷

See equations (44) – (47)




                                                                              www.ijmer.com                                 4252 | Page
International Journal of Modern Engineering Research (IJMER)
                       www.ijmer.com         Vol.2, Issue.6, Nov-Dec. 2012 pp-4244-4255       ISSN: 2249-6645
                       𝑃𝑙 π‘Ž 2 𝐼1 3π‘™βˆ’2π‘Ž +β„ŽπΌ2 6π‘Žπ‘™ +𝑠1 β„Ž 2               π‘ƒπ‘Ž 4β„Ž 3 𝐼2 βˆ’π‘ŽπΌ1 +β„ŽπΌ2 +3𝑙𝐼1 +𝑠2 𝑙 3 𝐼1 π‘ŽπΌ1 +2β„ŽπΌ2
 𝑀 𝐴 = βˆ’π‘ƒπ‘Ž +               2 𝐼1 𝑙 3 +6β„Ž 𝑙 2 𝐼2 +2𝑠1 β„Ž 3 𝐼2
                                                                 +        2 4β„Ž 3 𝐼2 2𝑙𝐼1 +β„ŽπΌ2 +𝑠2 𝑙 3 𝐼1 𝑙𝐼1 +2β„ŽπΌ2

                       𝑃𝑙 π‘Ž 2 𝐼1 3π‘™βˆ’2π‘Ž +β„Ž 𝐼2 6π‘Žπ‘™ +𝑠1 β„Ž 2              π‘ƒπ‘Ž 4β„Ž 3 𝐼2 2π‘ŽπΌ1 +β„Ž 𝐼2 +𝑠2 𝑙 3 𝐼1 π‘ŽπΌ1 +2β„Ž 𝐼2
 𝑀 𝐡 = βˆ’π‘ƒπ‘Ž +                2 𝐼1 𝑙 3 +6β„Ž 𝑙 2 𝐼2 +2𝑠1 β„Ž 3 𝐼2
                                                                  +    2 4β„Ž 3 𝐼2 2𝑙𝐼1 +β„Ž 𝐼2 +𝑠2 𝑙 3 𝐼1 𝑙𝐼1 +2β„Ž 𝐼2

               𝑃𝑙 π‘Ž 2 𝐼1 3π‘™βˆ’2π‘Ž +β„Ž 𝐼2 6π‘Žπ‘™ +𝑠1 β„Ž 2              π‘ƒπ‘Ž 4β„Ž 3 𝐼2 2π‘ŽπΌ1 +β„Ž 𝐼2 +𝑠2 𝑙 3 𝐼1 π‘ŽπΌ1 +2β„Ž 𝐼2
 𝑀𝐢 = βˆ’                                                   +
                  2 𝐼1 𝑙 3 +6β„Žπ‘™ 2 𝐼2 +2𝑠1 β„Ž 3 𝐼2               2 4β„Ž 3 𝐼2 2𝑙𝐼1 +β„Ž 𝐼2 +𝑠2 𝑙 3 𝐼1 𝑙𝐼1 +2β„Ž 𝐼2

               𝑃𝑙 π‘Ž 2 𝐼1 3π‘™βˆ’2π‘Ž +β„Ž 𝐼2 6π‘Žπ‘™ +𝑠1 β„Ž 2              π‘ƒπ‘Ž 4β„Ž 3 𝐼2 βˆ’π‘ŽπΌ1 +β„Ž 𝐼2 +3𝑙𝐼1 +𝑠2 𝑙 3 𝐼1 π‘ŽπΌ1 +2β„ŽπΌ2
 𝑀𝐷 = βˆ’            2 𝐼1 𝑙 3 +6β„Ž 𝑙 2 𝐼2 +2𝑠1 β„Ž 3 𝐼2
                                                          +       2 4β„Ž 3 𝐼2 2𝑙𝐼1 +β„Ž 𝐼2 +𝑠2 𝑙 3 𝐼1 𝑙𝐼1 +2β„Ž 𝐼2

       𝑃 π‘Ž 2 𝐼1 3π‘™βˆ’2π‘Ž +6π‘Žβ„Žπ‘™πΌ2 +𝑠1 β„Ž 3 𝐼2
𝑉𝐷 =                                                          𝑉𝐴 = 𝑃 βˆ’ 𝑉 𝐷
                𝑙 3 𝐼1 +6β„Žπ‘™ 2 𝐼2 +2𝑠1 β„Ž 3 𝐼2

                               6π‘ƒπ‘Ž β„Ž 2 𝐼1 𝐼2 π‘™βˆ’π‘Ž
𝐻𝐴 = 𝐻𝐡 =
                   4β„Ž 3 𝐼2 2𝑙𝐼1 +β„Ž 𝐼2 +𝑠2 𝑙 3 𝐼1 𝑙𝐼1 +2β„Ž 𝐼2


See equations (50) – (53)

                                                                                                                    π‘°πŸ
Table 2: Axial deformation contribution βˆ†π‘΄ 𝑨 for different values of                                                         π‘°πŸ

w =1kN/m L = 5m H = 0.4m h = 4m

    π‘°πŸ
           π‘°πŸ             0                           1                         2                       3                         4         5

    βˆ†π‘΄ 𝑨                  0                           -0.0045                   -0.0095                 -0.0144                   -0.0192   -0.0241

    π‘°πŸ
           π‘°πŸ             6                           7                         8                       9                         10

    βˆ†π‘΄ 𝑨                  -0.0289                     -0.0337                   -0.0384                 -0.0432                   -0.0479

                                                                                                                    π‘°πŸ
Table 3: Axial deformation contribution βˆ†π‘΄ 𝑩 for different values of                                                         π‘°πŸ

w =1kN/m L = 5m H = 0.4m h = 4m

    π‘°πŸ
           π‘°πŸ             0                           1                         2                       3                         4         5

    βˆ†π‘΄ 𝑩                  0                           -0.0066                   -0.0135                 -0.0201                   -0.0267   -0.0332

    π‘°πŸ
           π‘°πŸ             6                           7                         8                       9                         10

    βˆ†π‘΄ 𝑩                  -0.0396                     -0.0460                   -0.0524                 -0.0587                   -0.0651

Table 4: Axial deformation contribution βˆ†π‘΄ 𝑨 for different values of                                                𝒉
                                                                                                                         𝒍
                                    𝐼1
w =1kN/m L = 5m                          𝐼2 = 0.296

       𝒉                  0                           0.1                       0.2                     0.3                       0.4       0.5
           𝒍

    βˆ†π‘΄ 𝑨                  -3.1250                     -0.5409                   -0.0823                 -0.0239                   -0.0096   -0.0047

       𝒉                  0.6                         0.7                       0.8                     0.9                       1.0
           𝒍

    βˆ†π‘΄ 𝑨                  -0.0026                     -0.0015                   -0.0010                 -0.0006                   -0.0004

Table 5: Axial deformation contribution βˆ†π‘΄ 𝑩 for different values of                                                𝒉
                                                                                                                         𝒍
                                                                             www.ijmer.com                                                            4253 | Page
International Journal of Modern Engineering Research (IJMER)
        www.ijmer.com         Vol.2, Issue.6, Nov-Dec. 2012 pp-4244-4255       ISSN: 2249-6645
                                               𝐼1
                       w =1kN/m L = 5m              𝐼2 = 0.296

𝒉         0              0.1             0.2                 0.3             0.4       0.5
    𝒍

βˆ†π‘΄ 𝑨      -4.1667        -0.7668         -0.1208             -0.0359         -0.0146   -0.0072

𝒉         0.6            0.7             0.8                 0.9             1.0
    𝒍

βˆ†π‘΄ 𝑨      -0.0040        -0.0024         -0.0015             -0.0010         -0.0007




                                                                       π‘°πŸ
                               Figure 9: A graph of βˆ†π‘΄ 𝑨 against            π‘°πŸ




                                                                       π‘°πŸ
                               Figure 10: A graph of βˆ†π‘΄ 𝑩 against           π‘°πŸ




                                       www.ijmer.com                                             4254 | Page
International Journal of Modern Engineering Research (IJMER)
www.ijmer.com         Vol.2, Issue.6, Nov-Dec. 2012 pp-4244-4255       ISSN: 2249-6645




                      Figure 11: A graph of βˆ†π‘΄ 𝑨 against 𝒉 𝑳




                      Figure 12: A graph of βˆ†π‘΄ 𝑩 against 𝒉 𝑳




                               www.ijmer.com                                             4255 | Page

More Related Content

What's hot

Determination of Optimal Product Mix for Profit Maximization using Linear Pro...
Determination of Optimal Product Mix for Profit Maximization using Linear Pro...Determination of Optimal Product Mix for Profit Maximization using Linear Pro...
Determination of Optimal Product Mix for Profit Maximization using Linear Pro...IJERA Editor
Β 
07 a70102 finite element methods in civil engineering
07 a70102 finite element methods in civil engineering07 a70102 finite element methods in civil engineering
07 a70102 finite element methods in civil engineeringimaduddin91
Β 
In insight into QAC2(1) : Dynkin diagrams and properties of roots
In insight into QAC2(1) : Dynkin diagrams and properties of rootsIn insight into QAC2(1) : Dynkin diagrams and properties of roots
In insight into QAC2(1) : Dynkin diagrams and properties of rootsIRJET Journal
Β 
FEA 2 marks unit 1 to 5
FEA 2 marks unit 1 to 5FEA 2 marks unit 1 to 5
FEA 2 marks unit 1 to 5gokulfea
Β 
Me6603 sd by easy engineering.net
Me6603 sd by easy engineering.netMe6603 sd by easy engineering.net
Me6603 sd by easy engineering.netZackVizeman1
Β 
S. Duplij, "Membership deformation of commutativity and obscure n-ary algebra...
S. Duplij, "Membership deformation of commutativity and obscure n-ary algebra...S. Duplij, "Membership deformation of commutativity and obscure n-ary algebra...
S. Duplij, "Membership deformation of commutativity and obscure n-ary algebra...Steven Duplij (Stepan Douplii)
Β 
FEA Quiz - worksheets
FEA Quiz - worksheetsFEA Quiz - worksheets
FEA Quiz - worksheetsgokulfea
Β 
Finite Element Analysis - UNIT-2
Finite Element Analysis - UNIT-2Finite Element Analysis - UNIT-2
Finite Element Analysis - UNIT-2propaul
Β 
Introduction to finite element method(fem)
Introduction to finite element method(fem)Introduction to finite element method(fem)
Introduction to finite element method(fem)Sreekanth G
Β 
Finite Element Analysis of Truss Structures
Finite Element Analysis of Truss StructuresFinite Element Analysis of Truss Structures
Finite Element Analysis of Truss StructuresMahdi Damghani
Β 
Finite Element Analysis - UNIT-3
Finite Element Analysis - UNIT-3Finite Element Analysis - UNIT-3
Finite Element Analysis - UNIT-3propaul
Β 
Ob2422972301
Ob2422972301Ob2422972301
Ob2422972301IJERA Editor
Β 

What's hot (18)

ED7201 FEMMD_notes
ED7201 FEMMD_notesED7201 FEMMD_notes
ED7201 FEMMD_notes
Β 
Determination of Optimal Product Mix for Profit Maximization using Linear Pro...
Determination of Optimal Product Mix for Profit Maximization using Linear Pro...Determination of Optimal Product Mix for Profit Maximization using Linear Pro...
Determination of Optimal Product Mix for Profit Maximization using Linear Pro...
Β 
07 a70102 finite element methods in civil engineering
07 a70102 finite element methods in civil engineering07 a70102 finite element methods in civil engineering
07 a70102 finite element methods in civil engineering
Β 
In insight into QAC2(1) : Dynkin diagrams and properties of roots
In insight into QAC2(1) : Dynkin diagrams and properties of rootsIn insight into QAC2(1) : Dynkin diagrams and properties of roots
In insight into QAC2(1) : Dynkin diagrams and properties of roots
Β 
Higher order elements
Higher order elementsHigher order elements
Higher order elements
Β 
FEA 2 marks unit 1 to 5
FEA 2 marks unit 1 to 5FEA 2 marks unit 1 to 5
FEA 2 marks unit 1 to 5
Β 
1 d analysis
1 d analysis1 d analysis
1 d analysis
Β 
Me6603 sd by easy engineering.net
Me6603 sd by easy engineering.netMe6603 sd by easy engineering.net
Me6603 sd by easy engineering.net
Β 
S. Duplij, "Membership deformation of commutativity and obscure n-ary algebra...
S. Duplij, "Membership deformation of commutativity and obscure n-ary algebra...S. Duplij, "Membership deformation of commutativity and obscure n-ary algebra...
S. Duplij, "Membership deformation of commutativity and obscure n-ary algebra...
Β 
FEM
FEMFEM
FEM
Β 
FEA Quiz - worksheets
FEA Quiz - worksheetsFEA Quiz - worksheets
FEA Quiz - worksheets
Β 
Fem 1
Fem 1Fem 1
Fem 1
Β 
Finite Element Analysis - UNIT-2
Finite Element Analysis - UNIT-2Finite Element Analysis - UNIT-2
Finite Element Analysis - UNIT-2
Β 
Introduction to finite element method(fem)
Introduction to finite element method(fem)Introduction to finite element method(fem)
Introduction to finite element method(fem)
Β 
Yang mills theory
Yang mills theoryYang mills theory
Yang mills theory
Β 
Finite Element Analysis of Truss Structures
Finite Element Analysis of Truss StructuresFinite Element Analysis of Truss Structures
Finite Element Analysis of Truss Structures
Β 
Finite Element Analysis - UNIT-3
Finite Element Analysis - UNIT-3Finite Element Analysis - UNIT-3
Finite Element Analysis - UNIT-3
Β 
Ob2422972301
Ob2422972301Ob2422972301
Ob2422972301
Β 

Viewers also liked

Structural analysis lab
Structural analysis labStructural analysis lab
Structural analysis labRakesh Verma
Β 
Effect of Molybdenum Disulphide on Physical Properties of Neodymium-Iron-Boro...
Effect of Molybdenum Disulphide on Physical Properties of Neodymium-Iron-Boro...Effect of Molybdenum Disulphide on Physical Properties of Neodymium-Iron-Boro...
Effect of Molybdenum Disulphide on Physical Properties of Neodymium-Iron-Boro...IJMER
Β 
Spectrophotometric Determination of Cardiovascular Drugs
Spectrophotometric Determination of Cardiovascular DrugsSpectrophotometric Determination of Cardiovascular Drugs
Spectrophotometric Determination of Cardiovascular DrugsIJMER
Β 
My adventure with WebSockets
My adventure with WebSocketsMy adventure with WebSockets
My adventure with WebSocketsMichiel De Mey
Β 
Report Card Night
Report Card NightReport Card Night
Report Card Nightjoycefeuerborn
Β 
Vision of Daniel 8 - Part 2
Vision of Daniel 8 - Part 2Vision of Daniel 8 - Part 2
Vision of Daniel 8 - Part 2Robert Taylor
Β 
Modeling, Simulation And Implementation Of Adaptive Optical System For Laser ...
Modeling, Simulation And Implementation Of Adaptive Optical System For Laser ...Modeling, Simulation And Implementation Of Adaptive Optical System For Laser ...
Modeling, Simulation And Implementation Of Adaptive Optical System For Laser ...IJMER
Β 
High Speed Fault Injection Tool (FITO) Implemented With VHDL on FPGA For Test...
High Speed Fault Injection Tool (FITO) Implemented With VHDL on FPGA For Test...High Speed Fault Injection Tool (FITO) Implemented With VHDL on FPGA For Test...
High Speed Fault Injection Tool (FITO) Implemented With VHDL on FPGA For Test...IJMER
Β 
Modelling the Effect of Industrial Effluents on Water Quality: β€œA Case Study ...
Modelling the Effect of Industrial Effluents on Water Quality: β€œA Case Study ...Modelling the Effect of Industrial Effluents on Water Quality: β€œA Case Study ...
Modelling the Effect of Industrial Effluents on Water Quality: β€œA Case Study ...IJMER
Β 
An Efficient System for Traffic Control in Networks Using Virtual Routing Top...
An Efficient System for Traffic Control in Networks Using Virtual Routing Top...An Efficient System for Traffic Control in Networks Using Virtual Routing Top...
An Efficient System for Traffic Control in Networks Using Virtual Routing Top...IJMER
Β 
Sat words week 1
Sat words week 1 Sat words week 1
Sat words week 1 joycefeuerborn
Β 
Range Query on Big Data Based on Map Reduce
Range Query on Big Data Based on Map ReduceRange Query on Big Data Based on Map Reduce
Range Query on Big Data Based on Map ReduceIJMER
Β 
Establishing Relations among Various Measures by Using Well Known Inequalities
Establishing Relations among Various Measures by Using Well  Known Inequalities Establishing Relations among Various Measures by Using Well  Known Inequalities
Establishing Relations among Various Measures by Using Well Known Inequalities IJMER
Β 
Cloud in the sky of Business Intelligence
Cloud in the sky of Business IntelligenceCloud in the sky of Business Intelligence
Cloud in the sky of Business IntelligenceIJMER
Β 
How to improve cash flow
How to improve cash flowHow to improve cash flow
How to improve cash flowdenise2228
Β 
Internet leads
Internet leadsInternet leads
Internet leadsdenise2228
Β 
The Minimum Cost Forwarding Using MAC Protocol for Wireless Sensor Networks
The Minimum Cost Forwarding Using MAC Protocol for Wireless Sensor NetworksThe Minimum Cost Forwarding Using MAC Protocol for Wireless Sensor Networks
The Minimum Cost Forwarding Using MAC Protocol for Wireless Sensor NetworksIJMER
Β 
Exploring the Potentials of blacksmithing for Rural Industrialization in Bau...
Exploring the Potentials of blacksmithing for Rural  Industrialization in Bau...Exploring the Potentials of blacksmithing for Rural  Industrialization in Bau...
Exploring the Potentials of blacksmithing for Rural Industrialization in Bau...IJMER
Β 
Tips to Become Genius | SEEMAS ACADEMY
Tips to Become  Genius | SEEMAS ACADEMYTips to Become  Genius | SEEMAS ACADEMY
Tips to Become Genius | SEEMAS ACADEMYSEEMAS ACADEMY
Β 

Viewers also liked (20)

5 plastic analysis
5 plastic analysis5 plastic analysis
5 plastic analysis
Β 
Structural analysis lab
Structural analysis labStructural analysis lab
Structural analysis lab
Β 
Effect of Molybdenum Disulphide on Physical Properties of Neodymium-Iron-Boro...
Effect of Molybdenum Disulphide on Physical Properties of Neodymium-Iron-Boro...Effect of Molybdenum Disulphide on Physical Properties of Neodymium-Iron-Boro...
Effect of Molybdenum Disulphide on Physical Properties of Neodymium-Iron-Boro...
Β 
Spectrophotometric Determination of Cardiovascular Drugs
Spectrophotometric Determination of Cardiovascular DrugsSpectrophotometric Determination of Cardiovascular Drugs
Spectrophotometric Determination of Cardiovascular Drugs
Β 
My adventure with WebSockets
My adventure with WebSocketsMy adventure with WebSockets
My adventure with WebSockets
Β 
Report Card Night
Report Card NightReport Card Night
Report Card Night
Β 
Vision of Daniel 8 - Part 2
Vision of Daniel 8 - Part 2Vision of Daniel 8 - Part 2
Vision of Daniel 8 - Part 2
Β 
Modeling, Simulation And Implementation Of Adaptive Optical System For Laser ...
Modeling, Simulation And Implementation Of Adaptive Optical System For Laser ...Modeling, Simulation And Implementation Of Adaptive Optical System For Laser ...
Modeling, Simulation And Implementation Of Adaptive Optical System For Laser ...
Β 
High Speed Fault Injection Tool (FITO) Implemented With VHDL on FPGA For Test...
High Speed Fault Injection Tool (FITO) Implemented With VHDL on FPGA For Test...High Speed Fault Injection Tool (FITO) Implemented With VHDL on FPGA For Test...
High Speed Fault Injection Tool (FITO) Implemented With VHDL on FPGA For Test...
Β 
Modelling the Effect of Industrial Effluents on Water Quality: β€œA Case Study ...
Modelling the Effect of Industrial Effluents on Water Quality: β€œA Case Study ...Modelling the Effect of Industrial Effluents on Water Quality: β€œA Case Study ...
Modelling the Effect of Industrial Effluents on Water Quality: β€œA Case Study ...
Β 
An Efficient System for Traffic Control in Networks Using Virtual Routing Top...
An Efficient System for Traffic Control in Networks Using Virtual Routing Top...An Efficient System for Traffic Control in Networks Using Virtual Routing Top...
An Efficient System for Traffic Control in Networks Using Virtual Routing Top...
Β 
Sat words week 1
Sat words week 1 Sat words week 1
Sat words week 1
Β 
Range Query on Big Data Based on Map Reduce
Range Query on Big Data Based on Map ReduceRange Query on Big Data Based on Map Reduce
Range Query on Big Data Based on Map Reduce
Β 
Establishing Relations among Various Measures by Using Well Known Inequalities
Establishing Relations among Various Measures by Using Well  Known Inequalities Establishing Relations among Various Measures by Using Well  Known Inequalities
Establishing Relations among Various Measures by Using Well Known Inequalities
Β 
Cloud in the sky of Business Intelligence
Cloud in the sky of Business IntelligenceCloud in the sky of Business Intelligence
Cloud in the sky of Business Intelligence
Β 
How to improve cash flow
How to improve cash flowHow to improve cash flow
How to improve cash flow
Β 
Internet leads
Internet leadsInternet leads
Internet leads
Β 
The Minimum Cost Forwarding Using MAC Protocol for Wireless Sensor Networks
The Minimum Cost Forwarding Using MAC Protocol for Wireless Sensor NetworksThe Minimum Cost Forwarding Using MAC Protocol for Wireless Sensor Networks
The Minimum Cost Forwarding Using MAC Protocol for Wireless Sensor Networks
Β 
Exploring the Potentials of blacksmithing for Rural Industrialization in Bau...
Exploring the Potentials of blacksmithing for Rural  Industrialization in Bau...Exploring the Potentials of blacksmithing for Rural  Industrialization in Bau...
Exploring the Potentials of blacksmithing for Rural Industrialization in Bau...
Β 
Tips to Become Genius | SEEMAS ACADEMY
Tips to Become  Genius | SEEMAS ACADEMYTips to Become  Genius | SEEMAS ACADEMY
Tips to Become Genius | SEEMAS ACADEMY
Β 

Similar to Axial Deformation's Role in Rigidly Fixed Portal Frame Analysis

Algorithm for the Dynamic Analysis of Plane Rectangular Rigid Frame Subjected...
Algorithm for the Dynamic Analysis of Plane Rectangular Rigid Frame Subjected...Algorithm for the Dynamic Analysis of Plane Rectangular Rigid Frame Subjected...
Algorithm for the Dynamic Analysis of Plane Rectangular Rigid Frame Subjected...Oyeniyi Samuel
Β 
Characteristic orthogonal polynimial application to galerkin indirect variati...
Characteristic orthogonal polynimial application to galerkin indirect variati...Characteristic orthogonal polynimial application to galerkin indirect variati...
Characteristic orthogonal polynimial application to galerkin indirect variati...eSAT Publishing House
Β 
Galerkin’s indirect variational method in elastic stability analysis of all e...
Galerkin’s indirect variational method in elastic stability analysis of all e...Galerkin’s indirect variational method in elastic stability analysis of all e...
Galerkin’s indirect variational method in elastic stability analysis of all e...eSAT Publishing House
Β 
Bayesian Generalization Error and Real Log Canonical Threshold in Non-negativ...
Bayesian Generalization Error and Real Log Canonical Threshold in Non-negativ...Bayesian Generalization Error and Real Log Canonical Threshold in Non-negativ...
Bayesian Generalization Error and Real Log Canonical Threshold in Non-negativ...Naoki Hayashi
Β 
Static and Dynamic Reanalysis of Tapered Beam
Static and Dynamic Reanalysis of Tapered BeamStatic and Dynamic Reanalysis of Tapered Beam
Static and Dynamic Reanalysis of Tapered BeamIJERA Editor
Β 
IRJET- Seismic Performance of Geometric Vertical Irregular Flat Slab Multisto...
IRJET- Seismic Performance of Geometric Vertical Irregular Flat Slab Multisto...IRJET- Seismic Performance of Geometric Vertical Irregular Flat Slab Multisto...
IRJET- Seismic Performance of Geometric Vertical Irregular Flat Slab Multisto...IRJET Journal
Β 
Definite Integral and Properties of Definite Integral
Definite Integral and Properties of Definite IntegralDefinite Integral and Properties of Definite Integral
Definite Integral and Properties of Definite IntegralShaifulIslam56
Β 
IRJET- Flexural Analysis of Thick Beams using Trigonometric Shear Deformation...
IRJET- Flexural Analysis of Thick Beams using Trigonometric Shear Deformation...IRJET- Flexural Analysis of Thick Beams using Trigonometric Shear Deformation...
IRJET- Flexural Analysis of Thick Beams using Trigonometric Shear Deformation...IRJET Journal
Β 
Curve Fitting - Linear Algebra
Curve Fitting - Linear AlgebraCurve Fitting - Linear Algebra
Curve Fitting - Linear AlgebraGowtham Cr
Β 
Hybrid method for automating generation of reticulated structures (lattice st...
Hybrid method for automating generation of reticulated structures (lattice st...Hybrid method for automating generation of reticulated structures (lattice st...
Hybrid method for automating generation of reticulated structures (lattice st...IJECEIAES
Β 
IRJET- Development of Fragility Curves for Multi-Storey RC Structures
IRJET- Development of Fragility Curves for Multi-Storey RC StructuresIRJET- Development of Fragility Curves for Multi-Storey RC Structures
IRJET- Development of Fragility Curves for Multi-Storey RC StructuresIRJET Journal
Β 
Analysis of Cross-ply Laminate composite under UD load based on CLPT by Ansys...
Analysis of Cross-ply Laminate composite under UD load based on CLPT by Ansys...Analysis of Cross-ply Laminate composite under UD load based on CLPT by Ansys...
Analysis of Cross-ply Laminate composite under UD load based on CLPT by Ansys...IJERA Editor
Β 
Effect of P-Delta Due To Different Eccentricities in Tall Structures
Effect of P-Delta Due To Different Eccentricities in Tall StructuresEffect of P-Delta Due To Different Eccentricities in Tall Structures
Effect of P-Delta Due To Different Eccentricities in Tall StructuresIJERA Editor
Β 
Comparative Study of an Educational Building by Linear Static Analysis and Re...
Comparative Study of an Educational Building by Linear Static Analysis and Re...Comparative Study of an Educational Building by Linear Static Analysis and Re...
Comparative Study of an Educational Building by Linear Static Analysis and Re...IRJET Journal
Β 
Analysis and Design of Mid-Rise Building_2023.docx
Analysis and Design of Mid-Rise Building_2023.docxAnalysis and Design of Mid-Rise Building_2023.docx
Analysis and Design of Mid-Rise Building_2023.docxadnan885140
Β 
Beams on Elastic Foundation using Winkler Model.docx
Beams on Elastic Foundation using Winkler Model.docxBeams on Elastic Foundation using Winkler Model.docx
Beams on Elastic Foundation using Winkler Model.docxAdnan Lazem
Β 
PROJECT EVERYTHNG
PROJECT EVERYTHNGPROJECT EVERYTHNG
PROJECT EVERYTHNGFalade John
Β 
A MATLAB Computational Investigation of the Jordan Canonical Form of a Class ...
A MATLAB Computational Investigation of the Jordan Canonical Form of a Class ...A MATLAB Computational Investigation of the Jordan Canonical Form of a Class ...
A MATLAB Computational Investigation of the Jordan Canonical Form of a Class ...IRJET Journal
Β 

Similar to Axial Deformation's Role in Rigidly Fixed Portal Frame Analysis (20)

Algorithm for the Dynamic Analysis of Plane Rectangular Rigid Frame Subjected...
Algorithm for the Dynamic Analysis of Plane Rectangular Rigid Frame Subjected...Algorithm for the Dynamic Analysis of Plane Rectangular Rigid Frame Subjected...
Algorithm for the Dynamic Analysis of Plane Rectangular Rigid Frame Subjected...
Β 
Characteristic orthogonal polynimial application to galerkin indirect variati...
Characteristic orthogonal polynimial application to galerkin indirect variati...Characteristic orthogonal polynimial application to galerkin indirect variati...
Characteristic orthogonal polynimial application to galerkin indirect variati...
Β 
Galerkin’s indirect variational method in elastic stability analysis of all e...
Galerkin’s indirect variational method in elastic stability analysis of all e...Galerkin’s indirect variational method in elastic stability analysis of all e...
Galerkin’s indirect variational method in elastic stability analysis of all e...
Β 
Bayesian Generalization Error and Real Log Canonical Threshold in Non-negativ...
Bayesian Generalization Error and Real Log Canonical Threshold in Non-negativ...Bayesian Generalization Error and Real Log Canonical Threshold in Non-negativ...
Bayesian Generalization Error and Real Log Canonical Threshold in Non-negativ...
Β 
Static and Dynamic Reanalysis of Tapered Beam
Static and Dynamic Reanalysis of Tapered BeamStatic and Dynamic Reanalysis of Tapered Beam
Static and Dynamic Reanalysis of Tapered Beam
Β 
IRJET- Seismic Performance of Geometric Vertical Irregular Flat Slab Multisto...
IRJET- Seismic Performance of Geometric Vertical Irregular Flat Slab Multisto...IRJET- Seismic Performance of Geometric Vertical Irregular Flat Slab Multisto...
IRJET- Seismic Performance of Geometric Vertical Irregular Flat Slab Multisto...
Β 
Definite Integral and Properties of Definite Integral
Definite Integral and Properties of Definite IntegralDefinite Integral and Properties of Definite Integral
Definite Integral and Properties of Definite Integral
Β 
IRJET- Flexural Analysis of Thick Beams using Trigonometric Shear Deformation...
IRJET- Flexural Analysis of Thick Beams using Trigonometric Shear Deformation...IRJET- Flexural Analysis of Thick Beams using Trigonometric Shear Deformation...
IRJET- Flexural Analysis of Thick Beams using Trigonometric Shear Deformation...
Β 
Curve Fitting - Linear Algebra
Curve Fitting - Linear AlgebraCurve Fitting - Linear Algebra
Curve Fitting - Linear Algebra
Β 
Hybrid method for automating generation of reticulated structures (lattice st...
Hybrid method for automating generation of reticulated structures (lattice st...Hybrid method for automating generation of reticulated structures (lattice st...
Hybrid method for automating generation of reticulated structures (lattice st...
Β 
IRJET- Development of Fragility Curves for Multi-Storey RC Structures
IRJET- Development of Fragility Curves for Multi-Storey RC StructuresIRJET- Development of Fragility Curves for Multi-Storey RC Structures
IRJET- Development of Fragility Curves for Multi-Storey RC Structures
Β 
Analysis of Cross-ply Laminate composite under UD load based on CLPT by Ansys...
Analysis of Cross-ply Laminate composite under UD load based on CLPT by Ansys...Analysis of Cross-ply Laminate composite under UD load based on CLPT by Ansys...
Analysis of Cross-ply Laminate composite under UD load based on CLPT by Ansys...
Β 
Isvc08
Isvc08Isvc08
Isvc08
Β 
Effect of P-Delta Due To Different Eccentricities in Tall Structures
Effect of P-Delta Due To Different Eccentricities in Tall StructuresEffect of P-Delta Due To Different Eccentricities in Tall Structures
Effect of P-Delta Due To Different Eccentricities in Tall Structures
Β 
Comparative Study of an Educational Building by Linear Static Analysis and Re...
Comparative Study of an Educational Building by Linear Static Analysis and Re...Comparative Study of an Educational Building by Linear Static Analysis and Re...
Comparative Study of an Educational Building by Linear Static Analysis and Re...
Β 
Analysis and Design of Mid-Rise Building_2023.docx
Analysis and Design of Mid-Rise Building_2023.docxAnalysis and Design of Mid-Rise Building_2023.docx
Analysis and Design of Mid-Rise Building_2023.docx
Β 
Beams on Elastic Foundation using Winkler Model.docx
Beams on Elastic Foundation using Winkler Model.docxBeams on Elastic Foundation using Winkler Model.docx
Beams on Elastic Foundation using Winkler Model.docx
Β 
FEA Report
FEA ReportFEA Report
FEA Report
Β 
PROJECT EVERYTHNG
PROJECT EVERYTHNGPROJECT EVERYTHNG
PROJECT EVERYTHNG
Β 
A MATLAB Computational Investigation of the Jordan Canonical Form of a Class ...
A MATLAB Computational Investigation of the Jordan Canonical Form of a Class ...A MATLAB Computational Investigation of the Jordan Canonical Form of a Class ...
A MATLAB Computational Investigation of the Jordan Canonical Form of a Class ...
Β 

More from IJMER

A Study on Translucent Concrete Product and Its Properties by Using Optical F...
A Study on Translucent Concrete Product and Its Properties by Using Optical F...A Study on Translucent Concrete Product and Its Properties by Using Optical F...
A Study on Translucent Concrete Product and Its Properties by Using Optical F...IJMER
Β 
Developing Cost Effective Automation for Cotton Seed Delinting
Developing Cost Effective Automation for Cotton Seed DelintingDeveloping Cost Effective Automation for Cotton Seed Delinting
Developing Cost Effective Automation for Cotton Seed DelintingIJMER
Β 
Study & Testing Of Bio-Composite Material Based On Munja Fibre
Study & Testing Of Bio-Composite Material Based On Munja FibreStudy & Testing Of Bio-Composite Material Based On Munja Fibre
Study & Testing Of Bio-Composite Material Based On Munja FibreIJMER
Β 
Hybrid Engine (Stirling Engine + IC Engine + Electric Motor)
Hybrid Engine (Stirling Engine + IC Engine + Electric Motor)Hybrid Engine (Stirling Engine + IC Engine + Electric Motor)
Hybrid Engine (Stirling Engine + IC Engine + Electric Motor)IJMER
Β 
Fabrication & Characterization of Bio Composite Materials Based On Sunnhemp F...
Fabrication & Characterization of Bio Composite Materials Based On Sunnhemp F...Fabrication & Characterization of Bio Composite Materials Based On Sunnhemp F...
Fabrication & Characterization of Bio Composite Materials Based On Sunnhemp F...IJMER
Β 
Geochemistry and Genesis of Kammatturu Iron Ores of Devagiri Formation, Sandu...
Geochemistry and Genesis of Kammatturu Iron Ores of Devagiri Formation, Sandu...Geochemistry and Genesis of Kammatturu Iron Ores of Devagiri Formation, Sandu...
Geochemistry and Genesis of Kammatturu Iron Ores of Devagiri Formation, Sandu...IJMER
Β 
Experimental Investigation on Characteristic Study of the Carbon Steel C45 in...
Experimental Investigation on Characteristic Study of the Carbon Steel C45 in...Experimental Investigation on Characteristic Study of the Carbon Steel C45 in...
Experimental Investigation on Characteristic Study of the Carbon Steel C45 in...IJMER
Β 
Non linear analysis of Robot Gun Support Structure using Equivalent Dynamic A...
Non linear analysis of Robot Gun Support Structure using Equivalent Dynamic A...Non linear analysis of Robot Gun Support Structure using Equivalent Dynamic A...
Non linear analysis of Robot Gun Support Structure using Equivalent Dynamic A...IJMER
Β 
Static Analysis of Go-Kart Chassis by Analytical and Solid Works Simulation
Static Analysis of Go-Kart Chassis by Analytical and Solid Works SimulationStatic Analysis of Go-Kart Chassis by Analytical and Solid Works Simulation
Static Analysis of Go-Kart Chassis by Analytical and Solid Works SimulationIJMER
Β 
High Speed Effortless Bicycle
High Speed Effortless BicycleHigh Speed Effortless Bicycle
High Speed Effortless BicycleIJMER
Β 
Integration of Struts & Spring & Hibernate for Enterprise Applications
Integration of Struts & Spring & Hibernate for Enterprise ApplicationsIntegration of Struts & Spring & Hibernate for Enterprise Applications
Integration of Struts & Spring & Hibernate for Enterprise ApplicationsIJMER
Β 
Microcontroller Based Automatic Sprinkler Irrigation System
Microcontroller Based Automatic Sprinkler Irrigation SystemMicrocontroller Based Automatic Sprinkler Irrigation System
Microcontroller Based Automatic Sprinkler Irrigation SystemIJMER
Β 
On some locally closed sets and spaces in Ideal Topological Spaces
On some locally closed sets and spaces in Ideal Topological SpacesOn some locally closed sets and spaces in Ideal Topological Spaces
On some locally closed sets and spaces in Ideal Topological SpacesIJMER
Β 
Intrusion Detection and Forensics based on decision tree and Association rule...
Intrusion Detection and Forensics based on decision tree and Association rule...Intrusion Detection and Forensics based on decision tree and Association rule...
Intrusion Detection and Forensics based on decision tree and Association rule...IJMER
Β 
Natural Language Ambiguity and its Effect on Machine Learning
Natural Language Ambiguity and its Effect on Machine LearningNatural Language Ambiguity and its Effect on Machine Learning
Natural Language Ambiguity and its Effect on Machine LearningIJMER
Β 
Evolvea Frameworkfor SelectingPrime Software DevelopmentProcess
Evolvea Frameworkfor SelectingPrime Software DevelopmentProcessEvolvea Frameworkfor SelectingPrime Software DevelopmentProcess
Evolvea Frameworkfor SelectingPrime Software DevelopmentProcessIJMER
Β 
Material Parameter and Effect of Thermal Load on Functionally Graded Cylinders
Material Parameter and Effect of Thermal Load on Functionally Graded CylindersMaterial Parameter and Effect of Thermal Load on Functionally Graded Cylinders
Material Parameter and Effect of Thermal Load on Functionally Graded CylindersIJMER
Β 
Studies On Energy Conservation And Audit
Studies On Energy Conservation And AuditStudies On Energy Conservation And Audit
Studies On Energy Conservation And AuditIJMER
Β 
An Implementation of I2C Slave Interface using Verilog HDL
An Implementation of I2C Slave Interface using Verilog HDLAn Implementation of I2C Slave Interface using Verilog HDL
An Implementation of I2C Slave Interface using Verilog HDLIJMER
Β 
Discrete Model of Two Predators competing for One Prey
Discrete Model of Two Predators competing for One PreyDiscrete Model of Two Predators competing for One Prey
Discrete Model of Two Predators competing for One PreyIJMER
Β 

More from IJMER (20)

A Study on Translucent Concrete Product and Its Properties by Using Optical F...
A Study on Translucent Concrete Product and Its Properties by Using Optical F...A Study on Translucent Concrete Product and Its Properties by Using Optical F...
A Study on Translucent Concrete Product and Its Properties by Using Optical F...
Β 
Developing Cost Effective Automation for Cotton Seed Delinting
Developing Cost Effective Automation for Cotton Seed DelintingDeveloping Cost Effective Automation for Cotton Seed Delinting
Developing Cost Effective Automation for Cotton Seed Delinting
Β 
Study & Testing Of Bio-Composite Material Based On Munja Fibre
Study & Testing Of Bio-Composite Material Based On Munja FibreStudy & Testing Of Bio-Composite Material Based On Munja Fibre
Study & Testing Of Bio-Composite Material Based On Munja Fibre
Β 
Hybrid Engine (Stirling Engine + IC Engine + Electric Motor)
Hybrid Engine (Stirling Engine + IC Engine + Electric Motor)Hybrid Engine (Stirling Engine + IC Engine + Electric Motor)
Hybrid Engine (Stirling Engine + IC Engine + Electric Motor)
Β 
Fabrication & Characterization of Bio Composite Materials Based On Sunnhemp F...
Fabrication & Characterization of Bio Composite Materials Based On Sunnhemp F...Fabrication & Characterization of Bio Composite Materials Based On Sunnhemp F...
Fabrication & Characterization of Bio Composite Materials Based On Sunnhemp F...
Β 
Geochemistry and Genesis of Kammatturu Iron Ores of Devagiri Formation, Sandu...
Geochemistry and Genesis of Kammatturu Iron Ores of Devagiri Formation, Sandu...Geochemistry and Genesis of Kammatturu Iron Ores of Devagiri Formation, Sandu...
Geochemistry and Genesis of Kammatturu Iron Ores of Devagiri Formation, Sandu...
Β 
Experimental Investigation on Characteristic Study of the Carbon Steel C45 in...
Experimental Investigation on Characteristic Study of the Carbon Steel C45 in...Experimental Investigation on Characteristic Study of the Carbon Steel C45 in...
Experimental Investigation on Characteristic Study of the Carbon Steel C45 in...
Β 
Non linear analysis of Robot Gun Support Structure using Equivalent Dynamic A...
Non linear analysis of Robot Gun Support Structure using Equivalent Dynamic A...Non linear analysis of Robot Gun Support Structure using Equivalent Dynamic A...
Non linear analysis of Robot Gun Support Structure using Equivalent Dynamic A...
Β 
Static Analysis of Go-Kart Chassis by Analytical and Solid Works Simulation
Static Analysis of Go-Kart Chassis by Analytical and Solid Works SimulationStatic Analysis of Go-Kart Chassis by Analytical and Solid Works Simulation
Static Analysis of Go-Kart Chassis by Analytical and Solid Works Simulation
Β 
High Speed Effortless Bicycle
High Speed Effortless BicycleHigh Speed Effortless Bicycle
High Speed Effortless Bicycle
Β 
Integration of Struts & Spring & Hibernate for Enterprise Applications
Integration of Struts & Spring & Hibernate for Enterprise ApplicationsIntegration of Struts & Spring & Hibernate for Enterprise Applications
Integration of Struts & Spring & Hibernate for Enterprise Applications
Β 
Microcontroller Based Automatic Sprinkler Irrigation System
Microcontroller Based Automatic Sprinkler Irrigation SystemMicrocontroller Based Automatic Sprinkler Irrigation System
Microcontroller Based Automatic Sprinkler Irrigation System
Β 
On some locally closed sets and spaces in Ideal Topological Spaces
On some locally closed sets and spaces in Ideal Topological SpacesOn some locally closed sets and spaces in Ideal Topological Spaces
On some locally closed sets and spaces in Ideal Topological Spaces
Β 
Intrusion Detection and Forensics based on decision tree and Association rule...
Intrusion Detection and Forensics based on decision tree and Association rule...Intrusion Detection and Forensics based on decision tree and Association rule...
Intrusion Detection and Forensics based on decision tree and Association rule...
Β 
Natural Language Ambiguity and its Effect on Machine Learning
Natural Language Ambiguity and its Effect on Machine LearningNatural Language Ambiguity and its Effect on Machine Learning
Natural Language Ambiguity and its Effect on Machine Learning
Β 
Evolvea Frameworkfor SelectingPrime Software DevelopmentProcess
Evolvea Frameworkfor SelectingPrime Software DevelopmentProcessEvolvea Frameworkfor SelectingPrime Software DevelopmentProcess
Evolvea Frameworkfor SelectingPrime Software DevelopmentProcess
Β 
Material Parameter and Effect of Thermal Load on Functionally Graded Cylinders
Material Parameter and Effect of Thermal Load on Functionally Graded CylindersMaterial Parameter and Effect of Thermal Load on Functionally Graded Cylinders
Material Parameter and Effect of Thermal Load on Functionally Graded Cylinders
Β 
Studies On Energy Conservation And Audit
Studies On Energy Conservation And AuditStudies On Energy Conservation And Audit
Studies On Energy Conservation And Audit
Β 
An Implementation of I2C Slave Interface using Verilog HDL
An Implementation of I2C Slave Interface using Verilog HDLAn Implementation of I2C Slave Interface using Verilog HDL
An Implementation of I2C Slave Interface using Verilog HDL
Β 
Discrete Model of Two Predators competing for One Prey
Discrete Model of Two Predators competing for One PreyDiscrete Model of Two Predators competing for One Prey
Discrete Model of Two Predators competing for One Prey
Β 

Axial Deformation's Role in Rigidly Fixed Portal Frame Analysis

  • 1. International Journal of Modern Engineering Research (IJMER) www.ijmer.com Vol.2, Issue.6, Nov-Dec. 2012 pp-4244-4255 ISSN: 2249-6645 Contribution of Axial Deformation in the Analysis of Rigidly Fixed Portal Frames Okonkwo V. O.1, Aginam C. H.2, and Chidolue C. A.3 123 Department of Civil Engineering Nnamdi Azikiwe University, Awka Anambra State-Nigeria ABSTRACT: In this work the stiffness equations for evaluating the internal stress of rigidly fixed portal frames by the displacement method were generated. But obtaining the equations for the internal stresses required non-scalar or parametric inversion of the structure stiffness matrix. To circumvent this problem, the flexibility method was used taking advantage of the symmetrical nature of the portal frame and the method of virtual work. These were used to obtain the internal stresses on rigidly fixed portal frames for different cases of external loads when axial deformation is considered. A dimensionless constant s was used to capture the effect of axial deformation in the equations. When it is set to zero, the effect of axial deformation is ignored and the equations become the same as what can be obtained in any structural engineering textbook. These equations were used to investigate the contribution of axial deformation to the calculated internal stresses and how they vary with the ratio of the flexural rigidity of the beam and columns and the height to length ratio of the loaded portal frames. Figure 1: A simple portal frame showing its dimensions and Keywords: Axial deformation, flexural rigidity, flexibility the 6 degrees of freedom method, Portal frames, stiffness matrix, The analysis of portal frames by the stiffness method I. INTRODUCTION requires the determination of the structure’s degrees of Structural frames are primarily responsible for freedom and the development of the structure’s stiffness strength and rigidity of buildings. For simpler single storey matrix. For the structure shown in Figure 1a, the degrees of structures like warehouses, garages etc portal frames are freedom are as shown in Figure 1b. I1 and A1 are usually adequate. It is estimated that about 50% of the hot- respectively the second moment of inertia and cross- rolled constructional steel used in the UK is fabricated into sectional area of the columns while I2 and A2 are the second single-storey buildings (Graham and Alan, 2007). This moment of inertia and cross-sectional area of the beam shows the increasing importance of this fundamental respectively. The stiffness coefficients for the various structural assemblage. The analysis of portal frames are degrees of freedom considering shear deformation can be usually done with predetermined equations obtained from obtained from equations developed in Ghali et al (1985) structural engineering textbooks or design manuals. The and Okonkwo (2012) and are presented below equations in these texts were derived with an underlying assumption that deformation of structures due to axial The structure’s stiffness matrix can be written as: forces is negligible giving rise to the need to undertake this study. The twenty first century has seen an astronomical use π‘˜11 π‘˜12 π‘˜13 π‘˜14 π‘˜15 π‘˜16 of computers in the analysis of structures (Samuelsson and π‘˜21 π‘˜22 π‘˜23 π‘˜24 π‘˜25 π‘˜26 Zienkiewi, 2006) but this has not completely eliminated the π‘˜ π‘˜32 π‘˜33 π‘˜34 π‘˜35 π‘˜36 use of manual calculations form simple structures and for 𝐾 = 31 . (1) π‘˜41 π‘˜42 π‘˜43 π‘˜44 π‘˜45 π‘˜46 easy cross-checking of computer output (Hibbeler, 2006). π‘˜51 π‘˜52 π‘˜53 π‘˜54 π‘˜55 π‘˜56 Hence the need for the development of equations that π‘˜61 π‘˜62 π‘˜63 π‘˜64 π‘˜65 π‘˜66 capture the contribution of axial deformation in portal frames for different loading conditions. Where kij is the force in coordinate (degree of freedom) i when there is a unit displacement in coordinate (degree of II. DEVELOPMENT OF THE MODEL freedom) j. They are as follows: 𝐸𝐴1 π‘˜11 = β„Ž π‘˜12 = 0 www.ijmer.com 4244 | Page
  • 2. International Journal of Modern Engineering Research (IJMER) www.ijmer.com Vol.2, Issue.6, Nov-Dec. 2012 pp-4244-4255 ISSN: 2249-6645 6𝐸𝐼2 𝑑1 π‘˜13 = 𝑙2 𝑑2 12𝐸𝐼1 𝑑3 π‘˜14 = βˆ’ β„Ž3 {𝐷} = . . . . . (5) 𝑑4 𝑑5 π‘˜15 = 0 𝑑6 6𝐸𝐼2 π‘˜16 = 𝑙2 Where di is the displacement in coordinate i. 12𝐸𝐼1 𝐸𝐴2 𝐹1 π‘˜22 = β„Ž3 + 𝑙 𝐹2 6𝐸𝐼1 𝐹3 π‘˜23 = {𝐹} = . . . . . . (6) β„Ž2 𝐹4 𝐹5 π‘˜24 = 0 𝐹6 𝐸𝐴2 π‘˜25 = βˆ’ 𝑙 . . (2) Where Fi is the external load with a direction coinciding with the coordinate i (McGuire et al, 2000). π‘˜26 = 0 By making {D} the subject of the formula in equation (3) 4𝐸𝐼2 4𝐸𝐼1 π‘˜33 = + 𝑙 β„Ž βˆ’1 𝐷 = 𝐾 {𝐹 βˆ’ πΉπ‘œ } . . . . (7) 6𝐸𝐼2 π‘˜34 = βˆ’ 𝑙2 Once {D} is obtained the internal stresses in the frame can be easily obtained by writing the structure’s compatibility π‘˜35 = 0 equations given as 2𝐸𝐼2 π‘˜36 = 𝑙 𝑀 = 𝑀 π‘Ÿ + 𝑀1 𝑑1 + 𝑀2 𝑑2 + 𝑀3 𝑑3 . . (8) 12𝐸𝐼2 𝐸𝐴1 Where M is the internal stress (bending moment) at any π‘˜44 = + 𝑙3 β„Ž point on the frame, Mr is the internal stress at the point under consideration in the restrained structure while Mi is π‘˜45 = 0 the internal stress at the point when there is a unit 6𝐸𝐼2 displacement in coordinate i. π‘˜46 = βˆ’ To solve equation (8) there is need to obtain {D}. {D} can 𝑙2 be obtained from the inversion of [K] in equation (7). 12𝐸𝐼1 𝐸𝐴2 π‘˜55 = + Finding the inverse of K parametrically (i.e. without β„Ž3 𝑙 substituting the numerical values of E, h, l etc) is a difficult From Maxwell’s Reciprocal theorem and Betti’s Law k ij = task. This problem is circumvented by using the flexibility kji ( Leet and Uang, 2002). method to solve the same problem, taking advantage of the symmetrical nature of the structure and the principle of When there are external loads on the structure on the virtual work. structure there is need to calculate the forces in the restrained structure Fo as a result of the external load. III. APPLICATION OF THE FLEXIBILITY MODEL The structure’s equilibrium equations are then written as The basic system or primary structure for the structure in Figure 1a is given in Figure 2. The removed redundant {𝐹} = {πΉπ‘œ } + 𝐾 {𝐷} . . . . (3) force is depicted with X1. π‘˜10 π‘˜20 π‘˜30 {πΉπ‘œ } = . . . . . (4) π‘˜40 π‘˜50 π‘˜60 Where kio is the force due to external load in coordinate i when the other degrees of freedom are restrained. Figure 2: The Basic System showing the removed redundant forces www.ijmer.com 4245 | Page
  • 3. International Journal of Modern Engineering Research (IJMER) www.ijmer.com Vol.2, Issue.6, Nov-Dec. 2012 pp-4244-4255 ISSN: 2249-6645 The flexibility matrix of the structure can be determined 1 12𝐸𝐼1 𝐼2 𝐴1 = . . . (15a) 𝑑 11 𝐼1 𝐴1 𝑙 3 +6𝐼2 𝐴1 𝑙 2 β„Ž +24𝐼1 𝐼2 β„Ž using the principle of virtual work. By applying the unit load theorem the deflection in beams or frames can be determined for the combined action of the internal stresses, bending moment and axial forces with 𝑑 33 3𝐸𝐼1 𝐴2 (𝑙𝐼1 +2β„ŽπΌ2 ) 𝑀 𝑀 𝑁 𝑁 2 𝑑 22 𝑑 33 βˆ’π‘‘ 23 = 2𝐴 3 2 2 4 . (15b) 𝐷= 𝑑𝑠 + 𝑑𝑠 . . . (9) 2 β„Ž 𝑙𝐼1 +3𝐼1 𝑙 +𝐴2 β„Ž 𝐼2 +6β„Žπ‘™πΌ1 𝐼2 𝐸𝐼 𝐸𝐴 𝑑 32 βˆ’3𝐸𝐼1 𝐼2 𝐺𝐴2 β„Ž 2 Where 𝑀 and 𝑁 are the virtual internal stresses while M 2 𝑑 22 𝑑 33 βˆ’π‘‘ 23 = 2𝐴 3 2 2 4 (15c) 2 β„Ž 𝑙𝐼1 +3𝐼1 𝑙 +𝐴2 β„Ž 𝐼2 +6β„Žπ‘™πΌ1 𝐼2 and N are the real/actual internal stresses. 𝑑 22 𝐸𝐼1 𝐼2 2𝐴2 β„Ž 3 +3𝐼1 𝑙 E is the modulus of elasticity of the structural material 2 = 3 𝑙𝐼 +3𝐼 2 𝑙 2 +𝐴 β„Ž 4 𝐼 +6β„Žπ‘™πΌ 𝐼 . (15d) 𝑑 22 𝑑 33 βˆ’π‘‘ 23 2𝐴2 β„Ž 1 1 2 2 1 2 A is the cross-sectional area of the element (McGuire et al, Equation (12) is evaluated to get the redundant forces and 2000; Nash, 1998) these are substituted into the structures force equilibrium (superposition) equations to obtain the internal stresses at If dij is the deformation in the direction of i due to a unit any point. load at j then by evaluating equation (9) the following are obtained: 𝑀 = 𝑀 π‘œ + 𝑀1 𝑋1 + 𝑀2 𝑋2 + 𝑀3 𝑋3 . . (16) 𝐼1 𝐺𝐴1 𝑙 3 +6𝐼2 𝐴1 𝑙 2 β„Ž +12𝐼1 𝐼2 β„Ž Where M is the required stress at a point, Mo is the stress at 𝑑11 = . . (10a) 12𝐸𝐼1 𝐼2 𝐴1 that point for the reduced structure, Mi is stress at that point when the only the redundant force Xi =1 acts on the reduced 𝑑12 = 0 . . . . . (10b) structure. For the loaded portal frame of Figure 3, the deformations of 𝑑13 = 0 . . . . . . (10c) the reduced structure due to external loads are 2𝐴2 β„Ž 3 +3𝐼1 𝑙 𝑑22 = 3𝐸𝐼1 𝐴2 . . . (10d) 𝑑10 = 0 . . . . . . (17a) βˆ’β„Ž 2 𝑑23 = 𝐸𝐼1 . . . (10e) 𝑀 β„Ž 2 𝑙2 𝑑20 = . . . . . 8𝐸𝐼1 𝑙𝐼1 +2β„Ž 𝐼2 . (17b) 𝑑33 = . . . . (10f) 𝐸𝐼1 𝐼2 βˆ’π‘€ 𝑙 2 (𝑙𝐼1 +6β„ŽπΌ2 ) From Maxwell’s Reciprocal theorem and Betti’s Law dij = 𝑑30 = . . (17c) 24𝐸𝐼1 𝐼2 dji. By substituting the values of equations (17a) – (17c) into The structure’s compatibility equations can be written thus equations (12) 𝑑11 𝑑11 𝑑11 𝑋1 𝑑10 𝑋1 = 0 . . . . . (18a) 𝑑21 𝑑21 𝑑21 𝑋2 + 𝑑20 = 0 . (11a) 𝑑31 𝑑31 𝑑31 𝑋3 𝑑30 βˆ’π΄2 𝐼1 π‘€β„Ž 2 𝑙 3 𝑋2 = 4 2 2𝐴2 β„Ž 3 𝑙𝐼1 +3𝐼1 𝑙 2 +𝐴2 β„Ž 4 𝐼2 +6β„Žπ‘™πΌ1 𝐼2 . (18b) i.e. 𝑓𝐹 + 𝑑 π‘œ = 0 . . . (11b) 2 𝑀 𝑙 2 2𝐴2 β„Ž 3 𝑙𝐼1 +3𝐼1 𝑙 2 +3𝐴2 β„Ž 4 𝐼2 +18β„Žπ‘™πΌ1 𝐼2 𝑋3 = 2 24 2𝐴2 β„Ž 3 𝑙𝐼1 +3𝐼1 𝑙 2 +𝐴2 β„Ž 4 𝐼2 +6β„Žπ‘™πΌ1 𝐼2 . (18c) Where F is the vector of redundant forces X1, X2, X3 and do is the vector deformation d10, d20, d30 due to external load Evaluating equation (16) for different points on the on the basic system (Jenkins, 1990). structure using the force factors obtained in equations (18a) 𝐹 = 𝑓 βˆ’1 (βˆ’π‘‘ π‘œ ) . . . . (12) – (18c) 2𝑀𝑙 3 𝐼1 β„Ž 3 𝐴2 βˆ’3𝑙𝐼1 𝑀 𝐴 = 12 2 2𝐴2 β„Ž 3 𝑙𝐼1 +3𝐼1 𝑙 2 +𝐴2 β„Ž 4 𝐼2 +6β„Žπ‘™πΌ1 𝐼2 . . (19) 𝐴𝑑𝑗 𝑓 𝑓 βˆ’1 = 𝑑𝑒𝑑 𝑓 . . (13) βˆ’2𝑀𝑙 3 𝐼1 2β„Ž 3 𝐴2 +3𝑙𝐼1 (Stroud, 1995) 𝑀 𝐡 = 24 2 . . (20) 2𝐴2 β„Ž 3 𝑙𝐼1 +3𝐼1 𝑙 2 +𝐴2 β„Ž 4 𝐼2 +6β„Žπ‘™πΌ1 𝐼2 1 𝑑 11 0 0 𝑑 33 βˆ’π‘‘ 32 𝑓 βˆ’1 = 0 2 𝑑 22 𝑑 33 βˆ’π‘‘ 23 2 𝑑 22 𝑑 33 βˆ’π‘‘ 23 . (14) βˆ’2𝑀 𝑙 3 𝐼1 2β„Ž 3 𝐴2 +3𝑙𝐼1 𝑀𝐢 = 2 . (21) βˆ’π‘‘ 23 𝑑 22 24 2𝐴2 β„Ž 3 𝑙𝐼1 +3𝐼1 𝑙 2 +𝐴2 β„Ž 4 𝐼2 +6β„Žπ‘™πΌ1 𝐼2 0 2 2 𝑑 22 𝑑 33 βˆ’π‘‘ 23 𝑑 22 𝑑 33 βˆ’π‘‘ 23 βˆ’π‘€ 𝑙 3 𝐼1 8𝐼2 β„Ž 3 +𝑠2 𝑙 3 𝐼1 𝑀𝐢 = From equations 10a – 10f 12 4β„Ž 3 𝐼2 2𝑙𝐼1 +β„Ž 𝐼2 +𝑠2 𝑙 3 𝐼1 𝑙𝐼1 +2β„Ž 𝐼2 www.ijmer.com 4246 | Page
  • 4. International Journal of Modern Engineering Research (IJMER) www.ijmer.com Vol.2, Issue.6, Nov-Dec. 2012 pp-4244-4255 ISSN: 2249-6645 2𝑀𝑙 3 𝐼1 β„Ž 3 𝐴2 βˆ’3𝑙𝐼1 βˆ’π‘€ β„Ž 3 𝑀𝐷 = 2 . . (22) 𝑑30 = . . . . . (30c) 12 2𝐴2 β„Ž 3 𝑙𝐼1 +3𝐼1 𝑙 2 +𝐴2 β„Ž 4 𝐼2 +6β„Žπ‘™πΌ1 𝐼2 6𝐸𝐼1 By substituting the values of equations (30a) – (30c) into equations (12) For the loaded portal frame of Figure 4, the deformations of the reduced structure due to external loads are 𝑀 β„Ž 3 𝑙𝐼2 𝐴1 𝑋1 = 𝐼1 𝐴1 𝑙 3 +6𝐼2 𝐴1 𝑙 2 β„Ž +24β„Ž 𝐼1 𝐼2 . . . (31a) βˆ’π‘€π‘™ 𝑙 3 𝐼1 𝐴1 +8β„Ž 𝑙 2 𝐼2 𝐴1 +64β„Ž 𝐼1 𝐼2 𝑑10 = . (23a) βˆ’π‘€β„Ž 4 𝐴2 3𝑙𝐼1 +2β„Ž 𝐼2 128 𝐸𝐼1 𝐼2 𝐴1 𝑋2 = 8 3 𝑙𝐼 +3𝐼 2 𝑙 2 +𝐴 β„Ž 4 𝐼 +6β„Žπ‘™πΌ 𝐼 2𝐴2 β„Ž 1 . (31b) 1 2 2 1 2 𝑀 β„Ž 2 𝑙2 𝑑20 = 16𝐸𝐼1 . . . (23b) π‘€β„Ž 3 𝐼2 βˆ’β„Ž 3 𝐴2 +12𝑙𝐼1 𝑋3 = 24 2 2𝐴2 β„Ž 3 𝑙𝐼1 +3𝐼1 𝑙 2 +𝐴2 β„Ž 4 𝐼2 +6β„Žπ‘™πΌ1 𝐼2 . . (31c) βˆ’π‘€ 𝑙 2 (𝑙𝐼1 +6β„ŽπΌ2 ) 𝑑30 = . . (23c) Evaluating equation (16) for different points on the 48𝐸𝐼1 𝐼2 structure using the force factors obtained in equations (31a) By substituting the values of equations (23a) – (23c) into – (31c) equations (12) 𝑀𝐴 = 3𝑀𝑙 𝑙 3 𝐼1 𝐴1 +8β„Ž 𝑙 2 𝐼2 𝐴1 +64β„ŽπΌ1 𝐼2 𝑀 β„Ž 2 𝐼1 𝐴1 𝑙 3 +5𝐴1 𝑙 2 β„Ž 𝐼2 +24β„ŽπΈπΌ1 𝐼2 𝑋1 = . . (24a) βˆ’ + 32 𝐼1 𝐴1 𝑙 3 +6𝐼2 𝐴1 𝑙 2 β„Ž +24β„Ž 𝐼1 𝐼2 2 𝐼1 𝐴1 𝑙 3 +6𝐼2 𝐴1 𝑙 2 β„Ž +24β„Ž 𝐼1 𝐼2 𝑀 β„Ž 3 9β„Ž 2 𝑙𝐼1 𝐴2 +5𝐴2 β„Ž 3 𝐼2 +12𝑙𝐼1 𝐼2 βˆ’2𝑀 β„Ž 2 𝑙 3 𝐴2 𝐼1 2 . . . . (32) 𝑋2 = 16 . (24b) 24 2𝐴2 β„Ž 3 𝑙𝐼1 +3𝐼1 𝑙 2 +𝐴2 β„Ž 4 𝐼2 +6β„Žπ‘™πΌ1 𝐼2 2 2𝐴2 β„Ž 3 𝑙𝐼1 +3𝐼1 𝑙 2 +𝐴2 β„Ž 4 𝐼2 +6β„Žπ‘™πΌ1 𝐼2 𝑀 β„Ž 3 𝑙 2 𝐴2 3β„Ž 𝐼2 +2𝑙𝐼1 +3𝑀𝑙 3 𝐼1 𝑙𝐼1 +6β„Ž 𝐼2 𝑋3 = 2 . (24c) 𝑀𝐡 = 48 2𝐴2 β„Ž 3 𝑙𝐼1 +3𝐼1 𝑙 2 +𝐴2 β„Ž 4 𝐼2 +6β„Žπ‘™πΌ1 𝐼2 𝑀 β„Ž 3 𝑙 2 𝐼2 𝐴1 π‘€β„Ž 3 𝐼2 βˆ’β„Ž 3 𝐴2 +12𝑙𝐼1 3 +6𝐼 𝐴 𝑙 2 β„Ž +24β„Ž 𝐼 𝐼 + 24 3 𝑙𝐼 +3𝐼 2 𝑙 2 +𝐴 β„Ž 4 𝐼 +6β„Žπ‘™πΌ 𝐼 . 𝑠2 2 𝐼1 𝐴1 𝑙 2 1 1 2 2𝐴2 β„Ž 1 1 2 2 1 2 Let 𝛽 = . . . . . . (25) . . (33) 𝑠1 Evaluating equation (16) for different points on the 𝑀𝐢 = structure using the force factors obtained in equations (24a) 𝑀 β„Ž 3 𝑙 2 𝐼2 𝐴1 π‘€β„Ž 3 𝐼2 βˆ’β„Ž 3 𝐴2 +12𝑙𝐼1 βˆ’2 + 24 – (24c) 𝐼1 𝐴1 𝑙 3 +6𝐼2 𝐴1 𝑙 2 β„Ž +24β„ŽπΌ1 𝐼2 2 2𝐴2 β„Ž 3 𝑙𝐼1 +3𝐼1 𝑙 2 +𝐴2 β„Ž 4 𝐼2 +6β„Žπ‘™πΌ1 𝐼2 . . . . (34) 𝑀𝐴 = 𝑀 𝑙 2 β„Ž 3 𝐴2 3β„Ž 𝐼2 +8𝑙𝐼1 +3𝑙𝐼1 𝑙𝐼1 +6β„ŽπΌ2 𝑀 𝑙 4 𝐴1 5𝑙𝐼1 +24β„Ž 𝐼2 𝑀𝐷 = 2 βˆ’ 64 𝑀 β„Ž 3 𝑙 2 𝐼2 𝐴1 π‘€β„Ž 3 9β„Ž 2 𝑙𝐼1 𝐴2 +5𝐴2 β„Ž 3 𝐼2 +12𝑙𝐼1 𝐼2 48 2𝐴2 β„Ž 3 𝑙𝐼1 +3𝐼1 𝑙 2 +𝐴2 β„Ž 4 𝐼2 +6β„Žπ‘™πΌ1 𝐼2 𝐼1 𝐴1 𝑙 3 +6𝐼2 𝐴1 𝑙 2 β„Ž +24β„ŽπΌ1 𝐼2 βˆ’2 3 +6𝐼 𝐴 𝑙 2 β„Ž +24β„ŽπΌ 𝐼 + 24 2 . . . . (26) 𝐼1 𝐴1 𝑙 2 1 1 2 2𝐴2 β„Ž 3 𝑙𝐼1 +3𝐼1 𝑙 2 +𝐴2 β„Ž 4 𝐼2 +6β„Žπ‘™πΌ1 𝐼2 . . . . (35) 𝑀𝐡 = 𝑀 𝑙 4 𝐴1 5𝑙𝐼1 +24β„Ž 𝐼2 For the loaded portal frame of Figure 6, the deformations of βˆ’ 64 𝐼1 𝐴1 𝑙 3 +6𝐼2 𝐴1 𝑙 2 β„Ž +24β„Ž 𝐼1 𝐼2 + the reduced structure due to external loads are 𝑀 𝑙 2 β„Ž 3 𝐴2 3β„Ž 𝐼2 +2𝑙𝐼1 +3𝑙𝐼1 𝑙𝐼1 +6β„ŽπΌ2 2 . . . (27) 48 2𝐴2 β„Ž 3 𝑙𝐼1 +3𝐼1 𝑙 2 +𝐴2 β„Ž 4 𝐼2 +6β„Žπ‘™πΌ1 𝐼2 π‘ƒπ‘Ž 2 𝑙 𝑑10 = βˆ’ . . . (36a) 2𝐸𝐼1 𝑀𝐢 = 3𝑀 𝑙 2 𝑙 3 𝐼1 𝐴1 +8β„Ž 𝑙 2 𝐼2 𝐴1 +64β„ŽπΌ1 𝐼2 𝑑20 = 0 . . . . (36b) βˆ’ + 64 𝐼1 𝐴1 𝑙 3 +6𝐼2 𝐴1 𝑙 2 β„Ž +24β„Ž 𝐼1 𝐼2 𝑀 𝑙 2 β„Ž 3 𝐴2 3β„Ž 𝐼2 +2𝑙𝐼1 +3𝑙𝐼1 𝑙𝐼1 +6β„ŽπΌ2 𝑑30 = 0 . . . (36c) 2 48 2𝐴2 β„Ž 3 𝑙𝐼1 +3𝐼1 𝑙 2 +𝐴2 β„Ž 4 𝐼2 +6β„Žπ‘™πΌ1 𝐼2 . . . (28) By substituting the values of equations (36a) – (36c) into equations (12) 𝑀𝐷 = 6π‘ƒπ‘Ž 2 𝑙𝐼2 𝐴1 3𝑀 𝑙 2 𝑙 3 𝐼1 𝐴1 +8β„Ž 𝑙 2 𝐼2 𝐴1 +64β„ŽπΌ1 𝐼2 𝑋1 = 𝐴1 𝐼1 𝑙 3 +6𝐴1 β„Ž 𝑙 2 𝐼2 +24β„Ž 𝐼1 𝐼2 . . . (37a) βˆ’ 64 𝐼1 𝐴1 𝑙 3 +6𝐼2 𝐴1 𝑙 2 β„Ž +24β„Ž 𝐼1 𝐼2 + 𝑀 𝑙 2 β„Ž 3 𝐴2 3β„Ž 𝐼2 +8𝑙𝐼1 +3𝑙𝐼1 𝑙𝐼1 +6β„ŽπΌ2 𝑋2 = 0 . . . . (37b) 2 48 2𝐴2 β„Ž 3 𝑙𝐼1 +3𝐼1 𝑙 2 +𝐴2 β„Ž 4 𝐼2 +6β„Žπ‘™πΌ1 𝐼2 . . . (29) 𝑋3 = 0 . . . . . . (37c) For the loaded portal frame of Figure 5, the deformations of the reduced structure due to external loads are Evaluating equation (16) for different points on the structure using the force factors obtained in equations (37a) 𝑀𝑙 β„Ž 3 𝑑10 = βˆ’ . . . . (30a) – (37c) 12𝐸𝐼1 π‘€β„Ž4 𝑑20 = . . . . (30b) 8𝐸𝐼1 www.ijmer.com 4247 | Page
  • 5. International Journal of Modern Engineering Research (IJMER) www.ijmer.com Vol.2, Issue.6, Nov-Dec. 2012 pp-4244-4255 ISSN: 2249-6645 3π‘Žπ‘™ 2 𝐼2 𝐴1 For the loaded portal frame of Figure 8, the deformations of 𝑀 𝐴 = βˆ’π‘ƒπ‘Ž 1 βˆ’ 𝐴1 𝐼1 𝑙 3 +6𝐴1 β„Ž 𝑙 2 𝐼2 +24β„Ž 𝐼1 𝐼2 . (38) the reduced structure due to external loads are 3π‘ƒπ‘Ž 2 𝑙 2 𝐼2 𝐴1 π‘Ž 2 𝐼1 𝐴1 3𝑙 βˆ’2π‘Ž +6β„Ž 𝐼2 π‘Žπ‘™ 𝐴1 +2𝐼1 𝑀𝐡 = 𝐴1 𝐼1 𝑙 3 +6𝐴 β„Ž 𝑙 2 𝐼 +24β„Ž 𝐼 𝐼 . . (39) 𝑑10 = βˆ’π‘ƒ . (48a) 1 2 1 2 12𝐸𝐼1 𝐼2 𝐴1 π‘ƒπ‘Žβ„Ž 2 𝑑20 = 2𝐸𝐼1 . . . (48b) 3π‘ƒπ‘Ž 2 𝑙 2 𝐼2 𝐴1 𝑀𝐢 = βˆ’ 𝐴1 𝐼1 𝑙 3 +6𝐴1 β„Ž 𝑙 2 𝐼2 +24β„ŽπΌ1 𝐼2 . . (40) π‘ƒπ‘Ž π‘ŽπΌ1 +2β„Ž 𝐼2 𝑑30 = βˆ’ . . . (48c) 2𝐸𝐼1 𝐼2 3π‘Žπ‘™ 2 𝐼2 𝐴1 𝑀 𝐷 = π‘ƒπ‘Ž 1 βˆ’ . . (41) 𝐴1 𝐼1 𝑙 3 +6𝐴1 β„Ž 𝑙 2 𝐼2 +24β„Ž 𝐼1 𝐼2 By substituting the values of equations (48a) – (48c) into equations (12) 𝑃 π‘Ž 2 𝐼1 𝐴1 3π‘™βˆ’2π‘Ž +6β„ŽπΌ2 π‘Žπ‘™ 𝐴1 +2𝐼1 For the loaded portal frame of Figure 7, the deformations of 𝑋1 = . (49a) 𝐼1 𝐴1 𝑙 3 +6𝐼2 𝐴1 𝑙 2 β„Ž +24β„Ž 𝐼1 𝐼2 the reduced structure due to external loads are βˆ’3π‘ƒπ‘Ž β„Ž 2 𝐼1 𝐴2 π‘™βˆ’π‘Ž π‘ƒπ‘Ž 2 𝑙 𝑋2 = 2 2 2𝐴2 β„Ž 3 𝑙𝐼1 +3𝐼1 𝑙 2 +𝐴2 β„Ž 4 𝐼2 +6β„Žπ‘™πΌ1 𝐼2 (49b) 𝑑10 = βˆ’ 4𝐸𝐼 . . . (42a) 1 π‘ƒπ‘Ž β„Ž 3 𝐴2 2π‘ŽπΌ1 +β„Ž 𝐼2 +3𝑙𝐼1 π‘ŽπΌ1 +2β„Ž 𝐼2 π‘ƒπ‘Ž 2 3β„Ž βˆ’π‘Ž 𝑋3 = 2 2 2𝐴2 β„Ž 3 𝑙𝐼1 +3𝐼1 𝑙 2 +𝐴2 β„Ž 4 𝐼2 +6β„Žπ‘™πΌ1 𝐼2 (49c) 𝑑20 = . . (42b) 6𝐸𝐼1 π‘ƒπ‘Ž 2 𝑑30 = βˆ’ 2𝐸𝐼 . . . . (42c) 1 Evaluating equation (16) for different points on the By substituting the values of equations (42a) – (42c) into structure using the force factors obtained in equations (49a) equations (12) – (49c) 3π‘ƒπ‘Ž 2 𝑙𝐼2 𝐴1 𝑃𝑙 π‘Ž 2 𝐼1 𝐴1 3π‘™βˆ’2π‘Ž +6β„Ž 𝐼2 π‘Žπ‘™ 𝐴1 +2𝐼1 𝑋1 = . . . (43a) 𝑀 𝐴 = βˆ’π‘ƒπ‘Ž + + 𝐼1 𝐴1 𝑙 3 +6𝐼2 𝐴1 𝑙 2 β„Ž +24β„Ž 𝐼1 𝐼2 2 𝐼1 𝐴1 𝑙 3 +6𝐼2 𝐴1 𝑙 2 β„Ž +24β„Ž 𝐼1 𝐼2 π‘ƒπ‘Ž 𝐴2 β„Ž 3 βˆ’π‘ŽπΌ1 +β„Ž 𝐼2 +3𝑙𝐼1 +3𝑙𝐼1 π‘ŽπΌ1 +2β„Ž 𝐼2 2 . . (50) βˆ’π‘ƒπ‘Ž 2 𝐴2 𝑙𝐼1 3β„Žβˆ’π‘Ž +β„Ž 𝐼2 3β„Ž βˆ’2π‘Ž 2 2𝐴2 β„Ž 3 𝑙𝐼1 +3𝐼1 𝑙 2 +𝐴2 β„Ž 4 𝐼2 +6β„Žπ‘™πΌ1 𝐼2 𝑋2 = 2 2 . (43b) 2𝐴2 β„Ž 3 𝑙𝐼1 +3𝐼1 𝑙 2 +𝐴2 β„Ž 4 𝐼2 +6β„Žπ‘™πΌ1 𝐼2 𝑃 π‘Ž 2 𝐼1 𝐴1 3π‘™βˆ’2π‘Ž +6β„Ž 𝐼2 π‘Žπ‘™ 𝐴1 +2𝐼1 βˆ’π‘ƒπ‘Ž 2 𝐼2 βˆ’β„Ž 3 𝐴2 +π‘Žβ„Ž 2 𝐴2 +3𝑙𝐼1 𝑀 𝐡 = βˆ’π‘ƒπ‘Ž + + 2(𝐼1 𝐴1 𝑙 3 +6𝐼2 𝐴1 𝑙 2 β„Ž +24β„Ž 𝐼1 𝐼2 ) 𝑋3 = 2 . (43c) 2 2𝐴2 β„Ž 3 𝑙𝐼1 +3𝐼1 𝑙 2 +𝐴2 β„Ž 4 𝐼2 +6β„Žπ‘™πΌ1 𝐼2 π‘ƒπ‘Ž β„Ž 3 𝐴2 2π‘ŽπΌ1 +β„ŽπΌ2 +3𝑙𝐼1 π‘ŽπΌ1 +2β„Ž 𝐼2 2 . . . (51) 2 2𝐴2 β„Ž 3 𝑙𝐼1 +3𝐼1 𝑙 2 +𝐴2 β„Ž 4 𝐼2 +6β„Žπ‘™πΌ1 𝐼2 𝑀𝐢 = Evaluating equation (16) for different points on the 𝑃𝑙 π‘Ž 2 𝐼1 𝐴1 3π‘™βˆ’2π‘Ž +6β„Ž 𝐼2 π‘Žπ‘™ 𝐴1 +2𝐼1 structure using the force factors obtained in equations (43a) βˆ’ 2 𝐼1 𝐴1 𝑙 3 +6𝐼2 𝐴1 𝑙 2 β„Ž +24β„Ž 𝐼1 𝐼2 + – (43c) π‘ƒπ‘Ž β„Ž 3 𝐴2 2π‘ŽπΌ1 +β„ŽπΌ2 +3𝑙𝐼1 π‘ŽπΌ1 +2β„Ž 𝐼2 2 . . . . (52) 2 2𝐴2 β„Ž 3 𝑙𝐼1 +3𝐼1 𝑙 2 +𝐴2 β„Ž 4 𝐼2 +6β„Žπ‘™πΌ1 𝐼2 𝑀𝐴 = 3π‘ƒπ‘Ž 2 𝑙 2 𝐼2 𝐴1 𝑀𝐷 = βˆ’π‘ƒπ‘Ž + + 2 𝐼1 𝐴1 𝑙 3 +6𝐼2 𝐴1 𝑙 2 β„Ž +24β„Ž 𝐼1 𝐼2 𝑃𝑙 π‘Ž 2 𝐼1 𝐴1 3π‘™βˆ’2π‘Ž +6β„Ž 𝐼2 π‘Žπ‘™ 𝐴1 +2𝐼1 π‘ƒπ‘Ž 2 𝐴2 𝐼1 𝑙 3β„Ž 2 βˆ’π‘Žβ„Ž +𝐼2 2𝐴2 β„Ž 3 βˆ’π‘Žπ΄2 β„Ž 2 +3𝐼1 𝑙 βˆ’ + 2 . . (44) 2 𝐼1 𝐴1 𝑙 3 +6𝐼2 𝐴1 𝑙 2 β„Ž +24β„Ž 𝐼1 𝐼2 2 2𝐴2 β„Ž 3 𝑙𝐼1 +3𝐼1 𝑙 2 +𝐴2 β„Ž 4 𝐼2 +6β„Žπ‘™πΌ1 𝐼2 π‘ƒπ‘Ž 𝐴2 β„Ž 3 βˆ’π‘ŽπΌ1 +β„Ž 𝐼2 +3𝑙𝐼1 +3𝑙𝐼1 π‘ŽπΌ1 +2β„Ž 𝐼2 2 2 2𝐴2 β„Ž 3 𝑙𝐼1 +3𝐼1 𝑙 2 +𝐴2 β„Ž 4 𝐼2 +6β„Žπ‘™πΌ1 𝐼2 . . (53) 𝑀𝐡 = 3π‘ƒπ‘Ž 2 𝑙 2 𝐼2 𝐴1 π‘ƒπ‘Ž 2 𝐼2 βˆ’β„Ž 3 𝐴2 +π‘Žβ„Ž 2 𝐴2 +3𝑙𝐼1 2 𝐼1 𝐴1 𝑙 3 +6𝐼2 𝐴1 𝑙 2 β„Ž +24β„Ž 𝐼1 𝐼2 +2 2 2𝐴2 β„Ž 3 𝑙𝐼1 +3𝐼1 𝑙 2 +𝐴2 β„Ž 4 𝐼2 +6β„Žπ‘™πΌ1 𝐼2 . . . (45) IV. DISCUSSION OF RESULTS The internal stress on the loaded frames is summarized in 𝑀𝐢 = 3π‘ƒπ‘Ž 2 𝑙 2 𝐼2 𝐴1 π‘ƒπ‘Ž 2 𝐼2 βˆ’β„Ž 3 𝐴2 +π‘Žβ„Ž 2 𝐴2 +3𝑙𝐼1 table 1. The effect of axial deformation is captured by the βˆ’2 𝐼1 𝐴1 𝑙 3 +6𝐼 𝐴 𝑙 2 β„Ž +24β„ŽπΌ 𝐼 +2 2 2𝐴2 β„Ž 3 𝑙𝐼1 +3𝐼1 𝑙 2 +𝐴2 β„Ž 4 𝐼2 +6β„Žπ‘™πΌ1 𝐼2 dimensionless constant s taken as the ratio of the end 2 1 1 2 . . . (46) translational stiffness to the shear stiffness of a member. 12𝐸𝐼1 β„Ž 12𝐼 𝑀𝐷 = 𝑠1 = β„Ž3 βˆ™ 𝐸𝐴1 = β„Ž 2 𝐴1 . . . (54) 1 3π‘ƒπ‘Ž 2 𝑙 2 𝐼2 𝐴1 βˆ’ + 2 𝐼1 𝐴1 𝑙 3 +6𝐼2 𝐴1 𝑙 2 β„Ž +24β„ŽπΌ1 𝐼2 12𝐸𝐼2 𝑙 12𝐼2 π‘ƒπ‘Ž 2 𝐴2 𝐼1 𝑙 3β„Ž 2 βˆ’π‘Žβ„Ž +𝐼2 2𝐴2 β„Ž 3 βˆ’π‘Žπ΄2 β„Ž 2 +3𝐼1 𝑙 𝑠2 = 𝑙3 βˆ™ 𝐸𝐴2 = 𝑙 2 𝐴2 . . (55) 2 2 2𝐴2 β„Ž 3 𝑙𝐼1 +3𝐼1 𝑙 2 +𝐴2 β„Ž 4 𝐼2 +6β„Žπ‘™πΌ1 𝐼2 . . (47) When the axial deformation in the columns is ignored 𝑠1 = 0 and likewise when axial deformation in the beam is www.ijmer.com 4248 | Page
  • 6. International Journal of Modern Engineering Research (IJMER) www.ijmer.com Vol.2, Issue.6, Nov-Dec. 2012 pp-4244-4255 ISSN: 2249-6645 ignored 𝑠2 = 0 . If axial deformation is ignored in the (about 40% drop in calculated bending moment value) whole structure, 𝑠1 = 𝑠2 = 0. while at β„Ž 𝐿 > 0, βˆ†π‘€ 𝐴 dropped in magnitude exponentially The internal stress equations enable an easy investigation to values below 1. into the contribution of axial deformation to the internal stresses of statically loaded frames for different kinds of V. CONCLUSION external loads. The flexibility method was used to simplify the analysis For frame 1 (figure 3), the moment at A, MA is given by and a summary of the results are presented in table 1. The equation (19). The contribution of axial deformation in the equations in table 1 would enable an easy evaluation of the column βˆ†π‘€ 𝐴 is given by internal stresses in loaded rigidly fixed portal frames considering the effect of axial deformation. βˆ†π‘€ 𝐴 = 𝑀 𝐴(π‘“π‘Ÿπ‘œπ‘š π‘’π‘žπ‘’π‘Žπ‘‘π‘–π‘œπ‘› 19) βˆ’ 𝑀 𝐴(π‘“π‘Ÿπ‘œπ‘š π‘’π‘žπ‘’π‘Žπ‘‘π‘–π‘œπ‘› 19 π‘€β„Žπ‘’π‘› 𝑠2 =0) From a detailed analysis of frame 1 (Figure 3), it was observed that the contribution of axial deformation is 𝑀 𝑙 3 𝐼1 4β„Ž 3 𝐼2 +𝑠2 𝑙 3 𝐼1 1 generally very small and can be neglected for reasonable = 3 𝐼 2𝑙𝐼 +β„Ž 𝐼 +𝑠 𝑙 3 𝐼 𝑙𝐼 +2β„Ž 𝐼 βˆ’ . 12 4β„Ž 2 1 1 2 1 1 2 2𝑙𝐼1 +β„Ž 𝐼2 values of 𝐼1 𝐼2 . However, its contribution skyrockets at . . (56) very low values of β„Ž 𝑙 i.e. as β„Ž 𝑙 => 0. This depicts the case of an encased single span beam and a complete Equation (56) gives the contribution of axial deformation to departure from portal frames under study. This analysis can MA as a function of h, l, I1, I2 and s be extended to the other loaded frames (Figures 4 – 8) using By considering the case of a portal frame of length l = 5m, the equations in Table 1. These would enable the h = 4m. Equation 56 was evaluated to show how the determination of safe conditions for ignoring axial contribution of axial deformation varied with 𝐼1 𝐼2 . The deformation under different kinds of loading. result is shown in Table 2. When plotted on a uniform scale (Figure 9) the relationship between βˆ†π‘€ 𝐡 and 𝐼1 𝐼2 is seen REFERENCES to be linear. This was further justified by a linear regression analysis of the results in Table 2 which was fitted into the [1] Ghali A, Neville A. M. (1996) Structural Analysis: A 𝐼 Unified Classical and Matrix Approach (3rd Edition) model βˆ†π‘€ 𝐴 = 𝑃1 𝐼1 + 𝑃2 to obtain 𝑃1 = βˆ’0.004815 and Chapman & Hall London 2 𝑃2 = 0.0001109 and the fitness parameters sum square of [2] Graham R, Alan P.(2007). Single Storey Buildings: errors (SSE), coefficient of multiple determination (R2 ) and Steel Designer’s Manual Sixth Edition, Blackwell the root mean squared error (RMSE) gave 1.099 x 10 -7, Science Ltd, United Kingdom 0.999952 and 0.0001105 respectively. From Table 2 when [3] Hibbeler, R. C.(2006). Structural Analysis. Sixth 𝐼1 𝐼2 = 0 , βˆ†π‘€ 𝐴 β‰… 0 and when 𝐼1 𝐼2 = 10; βˆ†π‘€ 𝐴 = Edition, Pearson Prentice Hall, New Jersey βˆ’0.0479 which represent only a 5% reduction in the [4] Leet, K. M., Uang, C.,(2002). Fundamental of calculated bending moment. Structural Analysis. McGraw-Hill ,New York In like manner by evaluating the axial contribution in the beam, βˆ†π‘€ 𝐡 for varying 𝐼1 𝐼2 of the portal frame, Table 3 [5] McGuire, W., Gallagher R. H., Ziemian, R. was produced. This was plotted on a uniform scale in D.(2000). Matrix Structural Analysis,Second Figure 10. From Figure 10 it would be observed that there Edition, John Wiley & Sons, Inc. New York is also a linear relationship between βˆ†π‘€ 𝐡 and 𝐼1 𝐼2 . When [6] Nash, W.,(1998). Schaum’s Outline of Theory and 𝐼 Problems of Strength of Materials. Fourth Edition, fitted into the model βˆ†π‘€ 𝐡 = 𝑃3 𝐼1 + 𝑃4 it gave 𝑃3 = 2 McGraw-Hill Companies, New York βˆ’0.006502 and 𝑃4 = βˆ’0.0003969 for the fitness [7] Okonkwo V. O (2012). Computer-aided Analysis of parameters sum square of errors (SSE), coefficient of Multi-storey Steel Frames. M. Eng. Thesis, multiple determination (R2 ) and the root mean squared Nnamdi Azikiwe University, Awka, Nigeria. error (RMSE) of 6.51 x 10-7, 0.9999 and 0.000269 [8] Reynolds, C. E.,and Steedman J. C. (2001). respectively. Reinforced Concrete Designer’s Handbook, 10th By pegging 𝐼1 𝐼2 to a constant value of 0.296 and the Edition) E&FN Spon, Taylor & Francis Group, variation of βˆ†π‘€ 𝐴 with respect to β„Ž 𝐿 investigated, Table 4 London was generated. A detailed plot of Table 4 was presented in Figure 11. From Table 4 when β„Ž 𝐿 = 0; βˆ†π‘€ 𝐴 = βˆ’3.125 [9] Samuelsson A., and Zienkiewicz O. C.(2006), Review: History of the Stiffness Method. (about 30% drop in calculated bending moment value) International Journal for Numerical Methods in while at β„Ž 𝐿 > 0, βˆ†π‘€ 𝐴 dropped in magnitude exponentially Engineering. Vol. 67: 149 – 157 to values below 1. In like manner, when the variation of βˆ†π‘€ 𝐡 with respect to β„Ž 𝐿 was investigated, Table 5 was [10] Stroud K. A.,(1995). Engineering Mathematics. generated. A detailed plot of Table 5 was presented in Fourth Edition, Macmillan Press Ltd, London. Figure 12. From Table 5 when β„Ž 𝐿 = 0; βˆ†π‘€ 𝐴 = βˆ’4.1667 www.ijmer.com 4249 | Page
  • 7. International Journal of Modern Engineering Research (IJMER) www.ijmer.com Vol.2, Issue.6, Nov-Dec. 2012 pp-4244-4255 ISSN: 2249-6645 Table 1: Internal stresses for a loaded rigid frame S/No LOADED FRAME REMARKS www.ijmer.com 4250 | Page
  • 8. International Journal of Modern Engineering Research (IJMER) www.ijmer.com Vol.2, Issue.6, Nov-Dec. 2012 pp-4244-4255 ISSN: 2249-6645 𝑀 𝑙 3 𝐼1 4β„Ž 3 𝐼2 βˆ’π‘ 2 𝑙 3 𝐼1 𝑀 𝐴 = 𝑀 𝐷 = 12 4β„Ž 3 𝐼 3 2 2𝑙𝐼1 +β„Ž 𝐼2 +𝑠2 𝑙 𝐼1 𝑙𝐼1 +2β„Ž 𝐼2 βˆ’π‘€π‘™ 3 𝐼1 8𝐼2 β„Ž 3 +𝑠2 𝑙 3 𝐼1 𝑀 𝐡 = 𝑀 𝐢 = 12 4β„Ž 3 𝐼 3 2 2𝑙𝐼1 +β„Ž 𝐼2 +𝑠2 𝑙 𝐼1 𝑙𝐼1 +2β„ŽπΌ2 𝑀𝑙 𝑀 β„Ž 2 𝑙 3 𝐼1 𝐼2 𝑉𝐴 = 𝑉 𝐷 = 2 𝐻 𝐴 = 𝐻 𝐷 = 4β„Ž 3 𝐼 3 2 2𝑙𝐼1 +β„Ž 𝐼2 +𝑠2 𝑙 𝐼1 𝑙𝐼1 +2β„ŽπΌ2 See equations (19) – (22) 𝑀𝑙 2 4β„Ž 3 𝐼2 3β„Ž 𝐼2 +8𝑙𝐼1 +𝑙 3 𝐼1 𝑠1 𝑙𝐼1 +6𝑠2 β„Ž 𝐼2 𝑀 𝑙 4 5β„Ž 𝐼1 +24β„Ž 𝐼2 𝑀𝐴 = βˆ’ 48 4β„Ž 3 𝐼2 2𝑙𝐼1 +β„Ž 𝐼2 +𝑠2 𝑙 3 𝑙𝐼1 +2β„ŽπΌ2 64 𝑙 2 𝐼1 +6β„Ž 𝑙 2 𝐼2 +2𝑠1 β„Ž 3 𝐼2 𝑀𝑙 4 5β„ŽπΌ1 +24β„ŽπΌ2 𝑀 𝑙 2 4β„Ž 3 𝐼2 3β„Ž 𝐼2 +2𝑙𝐼1 +𝑠2 𝑙 3 𝐼1 𝑙𝐼1 +6β„Ž 𝐼2 𝑀 𝐡 = βˆ’ 64 𝑙 2 𝐼1 +6β„Ž 𝑙 2 𝐼2 +2𝑠1 β„Ž 3 𝐼2 + 48 4β„Ž 3 𝐼2 2π‘™β„Ž 𝐼1 +β„Ž 𝐼2 +𝑠2 𝑙 3 𝐼1 𝑙𝐼1 +2β„ŽπΌ2 𝑀𝑙 3𝐼1 𝑙 3 +24𝐼2 𝑙 2 β„Ž +16𝑠1 β„Ž 3 𝐼2 𝑀 𝑙 2 4β„Ž 3 𝐼2 3β„Ž 𝐼2 +2𝑙𝐼1 +𝑠2 𝑙 3 𝐼1 𝑙𝐼1 +6β„ŽπΌ2 𝑀𝐢 = βˆ’ + 64 𝐼1 𝑙 3 +6𝐼2 𝑙 2 β„Ž+2𝑠1 β„Ž 3 𝐼2 48 4β„Ž 3 𝐼2 2π‘™β„Ž 𝐼1 +β„Ž 𝐼2 +𝑠2 𝑙 3 𝐼1 𝑙𝐼1 +2β„Ž 𝐼2 𝑀𝑙 2 4β„Ž 3 𝐼2 3β„Ž 𝐼2 +8𝑙𝐼1 +𝑙 3 𝐼1 𝑠1 𝑙𝐼1 +6𝑠2 β„Ž 𝐼2 𝑀𝑙 3𝐼1 𝑙 3 +24𝐼2 𝑙 2 β„Ž +16𝑠1 β„Ž 3 𝐼2 𝑀𝐷 = 48 4β„Ž 3 𝐼2 2𝑙𝐼1 +β„Ž 𝐼2 +𝑠2 𝑙 3 𝑙𝐼1 +2β„ŽπΌ2 βˆ’ 64 𝐼1 𝑙 3 +6𝐼2 𝑙 2 β„Ž +2𝑠1 β„Ž 3 𝐼2 𝑀𝑙 3𝑙 3 𝐼1 +24β„Žπ‘™ 2 𝐼2 +16𝑠1 β„Ž 3 𝐼2 𝑀𝑙 𝑉𝐷 = 𝑉𝐴 = βˆ’ 𝑉𝐷 32 𝑙 3 𝐼1 +6β„Ž 𝑙 2 𝐼2 +2𝑠1 β„Ž 3 𝐼2 2 𝑀 β„Ž 2 𝑙 3 𝐼1 𝐼2 𝐻 𝐴 = 𝐻 𝐷 = 2 4β„Ž 3 𝐼 3 2 2𝑙𝐼1 +β„Ž 𝐼2 +𝑠2 𝑙 𝑙𝐼1 +2β„ŽπΌ2 See equations (26) – (29) π‘€β„Ž 2 𝐼1 𝑙 3 +5β„Ž 𝑙 2 𝐼2 +2𝑠2 β„Ž 3 𝐼2 𝑀 β„Ž 3 𝐼2 9β„Ž 2 𝑙𝐼1 +5β„Ž 3 𝐼2 +𝑠2 𝑙 3 𝐼1 𝑀𝐴 = βˆ’ 2 𝐼1 𝑙 3 +6β„Žπ‘™ 2 𝐼2 +2𝑠1 β„Ž 3 𝐼2 + 6 4β„Ž 3 𝐼 3 2 2𝑙𝐼1 +β„Ž 𝐼2 +𝑠2 𝑙 𝐼1 𝑙𝐼1 +2β„Ž 𝐼2 π‘€β„Ž 3 𝑙 2 𝐼2 𝑀 β„Ž 3 𝐼2 βˆ’4β„Ž 3 𝐼2 +𝑠2 𝑙 3 𝐼1 𝑀𝐡 = 2 𝐼1 𝑙 3 +6β„Ž 𝑙 2 𝐼2 +2𝑠1 β„Ž 3 𝐼2 + 6 4β„Ž 3 𝐼 3 2 2𝑙𝐼1 +β„Ž 𝐼2 +𝑠2 𝑙 𝐼1 𝑙𝐼1 +2β„Ž 𝐼2 𝑀 β„Ž 3 𝑙 2 𝐼2 𝑀 β„Ž 3 𝐼2 βˆ’4β„Ž 3 𝐼2 +𝑠2 𝑙 3 𝐼1 𝑀𝐢 = βˆ’2 𝐼1 𝑙 3 +6β„Žπ‘™ 2 𝐼2 +2𝑠1 β„Ž 3 𝐼2 + 6 4β„Ž 3 𝐼 3 2 2𝑙 𝐼1 +β„Ž 𝐼2 +𝑠2 𝑙 𝐼1 𝑙𝐼1 +2β„ŽπΌ2 π‘€β„Ž 3 𝑙 2 𝐼2 𝑀 β„Ž 3 𝐼2 9β„Ž 2 𝑙𝐼1 +5β„Ž 3 𝐼2 +𝑠2 𝑙 3 𝐼1 𝑀𝐷 = βˆ’ + 2 𝐼1 𝑙 3 +6β„Ž 𝑙 2 𝐼2 +2𝑠1 β„Ž 3 𝐼2 6 4β„Ž 3 𝐼2 2𝑙𝐼1 +β„Ž 𝐼2 +𝑠2 𝑙 3 𝐼1 𝑙𝐼1 +2β„Ž 𝐼2 𝑀 β„Ž 3 𝑙𝐼2 𝑉𝐴 = 𝑉 𝐡 = 𝐼1 𝑙 3 +6𝐼2 𝑙 2 β„Ž +2𝑠1 𝐼2 β„Ž 3 www.ijmer.com 4251 | Page
  • 9. International Journal of Modern Engineering Research (IJMER) www.ijmer.com Vol.2, Issue.6, Nov-Dec. 2012 pp-4244-4255 ISSN: 2249-6645 𝑀 β„Ž 4 𝐼2 3𝑙𝐼1 +2β„ŽπΌ2 𝐻𝐷 = 𝐻 𝐴 = π‘€β„Ž βˆ’ 𝐻 𝐷 2 4β„Ž 3 𝐼2 2𝑙𝐼1 +β„Ž 𝐼2 +𝑠2 𝑙 3 𝐼1 𝑙𝐼1 +2β„Ž 𝐼2 See equations (32) – (35) 3π‘Ž 𝑙 2 𝐼2 3π‘ƒπ‘Ž 2 𝑙 2 𝐼2 𝑀 𝐴 = βˆ’π‘ƒπ‘Ž 1 βˆ’ 𝐼1 𝑙 3 +6β„Ž 𝑙 2 𝐼2 +2𝑠1 β„Ž 3 𝐼2 𝑀𝐡 = 𝐼1 𝑙 3 +6β„Ž 𝑙 2 𝐼2 +2𝑠1 β„Ž 3 𝐼2 HD 3π‘ƒπ‘Ž 2 𝑙 2 𝐼2 𝐴1 3π‘Žπ‘™ 2 𝐼2 𝑀𝐢 = βˆ’ 𝐴1 𝐼1 𝑙 3 +6𝐴1 β„Ž 𝑙 2 𝐼2 +24β„ŽπΌ1 𝐼2 𝑀 𝐷 = π‘ƒπ‘Ž 1 βˆ’ 𝐼1 𝑙 3 +6β„Žπ‘™ 2 𝐼2 +2𝑠1 β„Ž 3 𝐼2 6π‘ƒπ‘Ž 2 𝑙𝐼2 𝑉𝐴 = 𝑉 𝐡 = 3 𝐼 +6𝑙 2 β„Ž 𝐼 +2𝑠 β„Ž 3 𝐼 𝑙 1 𝐻𝐴 = 𝐻𝐡 = 𝑃 2 1 2 See equations (38) – (41) 3π‘ƒπ‘Ž 2 𝑙 2 𝐼2 π‘ƒπ‘Ž 2 4𝐼1 𝐼2 β„Žπ‘™ 3β„Ž βˆ’π‘Ž +𝐼2 8β„Ž 3 𝐼2 βˆ’4π‘Žβ„Ž 3 𝐼2 +𝑠2 𝑙 3 𝐼1 𝑀 𝐴 = βˆ’π‘ƒπ‘Ž + 2 𝐼1 𝑙 3 +6β„Ž 𝑙 2 𝐼2 +2𝑠1 β„Ž 3 𝐼2 + 2 4β„Ž 3 𝐼2 2𝑙𝐼1 +β„Ž 𝐼2 +𝑠2 𝑙 3 𝐼1 𝑙𝐼1 +2β„ŽπΌ2 3π‘ƒπ‘Ž 2 𝑙 2 𝐼2 π‘ƒπ‘Ž 2 𝐼2 βˆ’4β„Ž 3 𝐼2 +4π‘Žβ„Ž 2 𝐼2 +𝑠2 𝑙 3 𝐼1 𝑀𝐡 = 2 + 2 4β„Ž 3 𝐼 𝐼1 𝑙 3 +6β„Ž 𝑙 2 𝐼2 +2𝑠1 β„Ž 3 𝐼2 3 2 2𝑙𝐼1 +β„Ž 𝐼2 +𝑠2 𝑙 𝐼1 𝑙𝐼1 +2β„Ž 𝐼2 3π‘ƒπ‘Ž 2 𝑙 2 𝐼2 π‘ƒπ‘Ž 2 𝐼2 βˆ’4β„Ž 3 𝐼2 +4π‘Žβ„Ž 2 𝐼2 +𝑠2 𝑙 3 𝐼1 𝑀𝐢 = βˆ’2 𝐼1 𝑙 3 +6β„Žπ‘™ 2 𝐼2 +2𝑠1 β„Ž 3 𝐼2 + 2 4β„Ž 3 𝐼 3 2 2𝑙 𝐼1 +β„Ž 𝐼2 +𝑠2 𝑙 𝐼1 𝑙𝐼1 +2β„ŽπΌ2 3π‘ƒπ‘Ž 2 𝑙 2 𝐼2 π‘ƒπ‘Ž 2 4𝐼1 𝐼2 β„Žπ‘™ 3β„Ž βˆ’π‘Ž +𝐼2 8β„Ž 3 𝐼2 βˆ’4π‘Žβ„Ž 3 𝐼2 +𝑠2 𝑙 3 𝐼1 𝑀𝐷 = βˆ’ + 2 𝐼1 𝑙 3 +6β„Ž 𝑙 2 𝐼2 +2𝑠1 β„Ž 3 𝐼2 2 4β„Ž 3 𝐼2 2𝑙𝐼1 +β„Ž 𝐼2 +𝑠2 𝑙 3 𝐼1 𝑙𝐼1 +2β„Ž 𝐼2 3π‘ƒπ‘Ž 2 𝑙𝐼2 𝑉𝐴 = 𝑉 𝐡 = 𝑙 3 𝐼1 +6𝑙 2 β„Ž 𝐼2 +2𝑠1 β„Ž 3 𝐼2 2π‘ƒπ‘Ž 2 𝐼2 𝑙𝐼1 3β„Ž βˆ’π‘Ž +β„ŽπΌ2 3β„Ž βˆ’2π‘Ž 𝐻𝐷 = 4β„Ž 3 𝐼2 2𝑙𝐼1 +𝑠2 𝑙 3 𝐼1 𝑙𝐼1 +2β„ŽπΌ2 𝐻𝐴 = 𝑃 βˆ’ 𝐻 𝐷 See equations (44) – (47) www.ijmer.com 4252 | Page
  • 10. International Journal of Modern Engineering Research (IJMER) www.ijmer.com Vol.2, Issue.6, Nov-Dec. 2012 pp-4244-4255 ISSN: 2249-6645 𝑃𝑙 π‘Ž 2 𝐼1 3π‘™βˆ’2π‘Ž +β„ŽπΌ2 6π‘Žπ‘™ +𝑠1 β„Ž 2 π‘ƒπ‘Ž 4β„Ž 3 𝐼2 βˆ’π‘ŽπΌ1 +β„ŽπΌ2 +3𝑙𝐼1 +𝑠2 𝑙 3 𝐼1 π‘ŽπΌ1 +2β„ŽπΌ2 𝑀 𝐴 = βˆ’π‘ƒπ‘Ž + 2 𝐼1 𝑙 3 +6β„Ž 𝑙 2 𝐼2 +2𝑠1 β„Ž 3 𝐼2 + 2 4β„Ž 3 𝐼2 2𝑙𝐼1 +β„ŽπΌ2 +𝑠2 𝑙 3 𝐼1 𝑙𝐼1 +2β„ŽπΌ2 𝑃𝑙 π‘Ž 2 𝐼1 3π‘™βˆ’2π‘Ž +β„Ž 𝐼2 6π‘Žπ‘™ +𝑠1 β„Ž 2 π‘ƒπ‘Ž 4β„Ž 3 𝐼2 2π‘ŽπΌ1 +β„Ž 𝐼2 +𝑠2 𝑙 3 𝐼1 π‘ŽπΌ1 +2β„Ž 𝐼2 𝑀 𝐡 = βˆ’π‘ƒπ‘Ž + 2 𝐼1 𝑙 3 +6β„Ž 𝑙 2 𝐼2 +2𝑠1 β„Ž 3 𝐼2 + 2 4β„Ž 3 𝐼2 2𝑙𝐼1 +β„Ž 𝐼2 +𝑠2 𝑙 3 𝐼1 𝑙𝐼1 +2β„Ž 𝐼2 𝑃𝑙 π‘Ž 2 𝐼1 3π‘™βˆ’2π‘Ž +β„Ž 𝐼2 6π‘Žπ‘™ +𝑠1 β„Ž 2 π‘ƒπ‘Ž 4β„Ž 3 𝐼2 2π‘ŽπΌ1 +β„Ž 𝐼2 +𝑠2 𝑙 3 𝐼1 π‘ŽπΌ1 +2β„Ž 𝐼2 𝑀𝐢 = βˆ’ + 2 𝐼1 𝑙 3 +6β„Žπ‘™ 2 𝐼2 +2𝑠1 β„Ž 3 𝐼2 2 4β„Ž 3 𝐼2 2𝑙𝐼1 +β„Ž 𝐼2 +𝑠2 𝑙 3 𝐼1 𝑙𝐼1 +2β„Ž 𝐼2 𝑃𝑙 π‘Ž 2 𝐼1 3π‘™βˆ’2π‘Ž +β„Ž 𝐼2 6π‘Žπ‘™ +𝑠1 β„Ž 2 π‘ƒπ‘Ž 4β„Ž 3 𝐼2 βˆ’π‘ŽπΌ1 +β„Ž 𝐼2 +3𝑙𝐼1 +𝑠2 𝑙 3 𝐼1 π‘ŽπΌ1 +2β„ŽπΌ2 𝑀𝐷 = βˆ’ 2 𝐼1 𝑙 3 +6β„Ž 𝑙 2 𝐼2 +2𝑠1 β„Ž 3 𝐼2 + 2 4β„Ž 3 𝐼2 2𝑙𝐼1 +β„Ž 𝐼2 +𝑠2 𝑙 3 𝐼1 𝑙𝐼1 +2β„Ž 𝐼2 𝑃 π‘Ž 2 𝐼1 3π‘™βˆ’2π‘Ž +6π‘Žβ„Žπ‘™πΌ2 +𝑠1 β„Ž 3 𝐼2 𝑉𝐷 = 𝑉𝐴 = 𝑃 βˆ’ 𝑉 𝐷 𝑙 3 𝐼1 +6β„Žπ‘™ 2 𝐼2 +2𝑠1 β„Ž 3 𝐼2 6π‘ƒπ‘Ž β„Ž 2 𝐼1 𝐼2 π‘™βˆ’π‘Ž 𝐻𝐴 = 𝐻𝐡 = 4β„Ž 3 𝐼2 2𝑙𝐼1 +β„Ž 𝐼2 +𝑠2 𝑙 3 𝐼1 𝑙𝐼1 +2β„Ž 𝐼2 See equations (50) – (53) π‘°πŸ Table 2: Axial deformation contribution βˆ†π‘΄ 𝑨 for different values of π‘°πŸ w =1kN/m L = 5m H = 0.4m h = 4m π‘°πŸ π‘°πŸ 0 1 2 3 4 5 βˆ†π‘΄ 𝑨 0 -0.0045 -0.0095 -0.0144 -0.0192 -0.0241 π‘°πŸ π‘°πŸ 6 7 8 9 10 βˆ†π‘΄ 𝑨 -0.0289 -0.0337 -0.0384 -0.0432 -0.0479 π‘°πŸ Table 3: Axial deformation contribution βˆ†π‘΄ 𝑩 for different values of π‘°πŸ w =1kN/m L = 5m H = 0.4m h = 4m π‘°πŸ π‘°πŸ 0 1 2 3 4 5 βˆ†π‘΄ 𝑩 0 -0.0066 -0.0135 -0.0201 -0.0267 -0.0332 π‘°πŸ π‘°πŸ 6 7 8 9 10 βˆ†π‘΄ 𝑩 -0.0396 -0.0460 -0.0524 -0.0587 -0.0651 Table 4: Axial deformation contribution βˆ†π‘΄ 𝑨 for different values of 𝒉 𝒍 𝐼1 w =1kN/m L = 5m 𝐼2 = 0.296 𝒉 0 0.1 0.2 0.3 0.4 0.5 𝒍 βˆ†π‘΄ 𝑨 -3.1250 -0.5409 -0.0823 -0.0239 -0.0096 -0.0047 𝒉 0.6 0.7 0.8 0.9 1.0 𝒍 βˆ†π‘΄ 𝑨 -0.0026 -0.0015 -0.0010 -0.0006 -0.0004 Table 5: Axial deformation contribution βˆ†π‘΄ 𝑩 for different values of 𝒉 𝒍 www.ijmer.com 4253 | Page
  • 11. International Journal of Modern Engineering Research (IJMER) www.ijmer.com Vol.2, Issue.6, Nov-Dec. 2012 pp-4244-4255 ISSN: 2249-6645 𝐼1 w =1kN/m L = 5m 𝐼2 = 0.296 𝒉 0 0.1 0.2 0.3 0.4 0.5 𝒍 βˆ†π‘΄ 𝑨 -4.1667 -0.7668 -0.1208 -0.0359 -0.0146 -0.0072 𝒉 0.6 0.7 0.8 0.9 1.0 𝒍 βˆ†π‘΄ 𝑨 -0.0040 -0.0024 -0.0015 -0.0010 -0.0007 π‘°πŸ Figure 9: A graph of βˆ†π‘΄ 𝑨 against π‘°πŸ π‘°πŸ Figure 10: A graph of βˆ†π‘΄ 𝑩 against π‘°πŸ www.ijmer.com 4254 | Page
  • 12. International Journal of Modern Engineering Research (IJMER) www.ijmer.com Vol.2, Issue.6, Nov-Dec. 2012 pp-4244-4255 ISSN: 2249-6645 Figure 11: A graph of βˆ†π‘΄ 𝑨 against 𝒉 𝑳 Figure 12: A graph of βˆ†π‘΄ 𝑩 against 𝒉 𝑳 www.ijmer.com 4255 | Page