含意関係認識(RTE)
含意関係認識 (Recognizing TextualEntailment, RTE)
一方の文が他方の文の意味を含むか否かを予測するタスク
[Dagan et al., 2013]
T : A lady is cutting up some fish finely
H : Some fish is being cut into small pieces by a woman
→ 前提文 T は仮説文 H を含意する
3 / 26
4.
論理推論によって深い意味関係を捉える
論理式による意味表現 [Bos+, 2015;Mineshima+, 2015]
• 文法関係(受動態-能動態など)
• 否定・数量詞などの論理・機能表現
• 等位接続(and, or)
T: No woman is cutting fish
¬∃x1∃x2∃e1.(woman (x1) ∧ fish (x2) ∧ cut (e1)
∧ (subj (e1)=x1) ∧ (obj (e1)=x2))
H: Fish is being cut by a woman
∃x3∃x4∃e2.(woman (x3) ∧ fish (x4) ∧ cut (e2)
∧ (subj (e2)=x3) ∧ (obj (e2)=x4))
→ 文 T は文 H の意味と矛盾する
4 / 26
5.
単語間アブダクションによって語彙関係を捉える
単語間アブダクション [Martínez-Goméz+, 2017]
語彙知識を用いて述語間の語彙関係をチェックし、公理を生成
T:Some men are sawing logs
∃x1∃x2∃e1.(man (x1) ∧ log (x2) ∧ saw (e1)
∧ (subj (e1)=x1) ∧ (obj (e1)=x2))
H: Some men are cutting wood
∃x1∃x2∃e1.(man (x1) ∧ wood (x2) ∧ cut (e1))
∧ (subj (e1)=x1) ∧ (obj (e1)=x2))
公理 1: ∀e1.saw (e1) → cut (e1)
公理 2: ∀x2.log (x2) → wood (x2)
→ 文 T は文 H の意味を含意する
5 / 26
6.
問題設定:フレーズの言い換えを含む RTE を解く
T:A lady is cutting up some fish finely
H : Some fish is being cut into small pieces by a woman
• 論理式による意味表現:
受動態-能動態などの文法関係を捉える
• 単語間アブダクション:
lady-woman などの単語間の語彙関係を捉える
• 既存手法の問題点:
x cut up y finely と x cut y into small pieces という
フレーズ間の言い換えを捉えられない
課題
非連続なフレーズも含めて、フレーズの言い換えを
論理推論でどのように扱うか?
6 / 26
7.
先行研究におけるフレーズの言い換えの扱い
T: The basketis being missed by the player
H: The player is dunking the basketball into the net
→ 文 T は文 H の意味と矛盾する
• 言い換え DB (PPDB [Ganitkevitch+, 2013]) の利用
• 前提文と仮説文中のフレーズを同じ表現に統一 [Bjerva+, 2014]
→ 連続していないフレーズの言い換えが特定できない
• フレーズの公理として推論に適用 [Beltagy+, 2014]
→DB に存在しない言い換えが特定できない
• 構文構造からフレーズの対応関係を特定 [Arase and Tsujii, 2017]
→ 反義と同義が区別できない
7 / 26
特定されたフレーズアライメントの例 (1)
名詞句
T: Ablond woman is sitting on the roof of a yellow vehicle
and two people are inside
H: A woman with blond hair is sitting on the roof of a yellow vehicle
and two people are inside
前置詞句
T: A child, who is small, is outdoors climbing steps outdoors
in an area full of grass
H: A small child is outdoors climbing steps in a grassy area
19 / 26
20.
特定されたフレーズアライメントの例 (2)
動詞句(非連続フレーズ)
T: Theperson is setting fire to the cameras
H: Some cameras are being burned by a person with a blow torch
反意句
T: A woman is putting make-up on
H: The woman is removing make-up
20 / 26
21.
フレーズ間アブダクションの成功例
gold: no
T: Aman is putting vegetables into a pot
H: Nobody is pouring ingredients into a pot
T1 → H1 の矛盾関係の証明から、フレーズ間アブダクションにより、
∀e1(put(e1) ∧ vegetables(obj(e1)) → pour(e1) ∧ ingredients(obj(e1)))
というフレーズの公理を生成
21 / 26
22.
フレーズ間アブダクションのエラーの例
Test-934 gold: yes
T:A young child is wearing boots made of green rubber
and playing in a puddle full of mud
H: A young child is wearing green boots
and playing in a puddle full of mud
boots made of green rubber と green boots 間の
フレーズの公理を生成したいが、同じフレーズの公理が生成される
文ペアが訓練データに存在しないため、生成できない
22 / 26
23.
フレーズ間アブダクションのエラーの例
Train-7121 gold: yes
T1:A child in a red outfit is jumping on a trampoline
H1: A little boy in red clothes is jumping in the air
T1 → H1 の証明から、フレーズ間アブダクションにより、
∀e1(jump(e1) → ∃x1(in(e1, x1) ∧ air(x1)))
というフレーズの公理が生成されるが、
この公理は T2 → H2 に対しても適用され、yes を予測してしまう
Test-96 gold: unknown
T2: A man is jumping into an empty pool
H2: There is no biker jumping in the air
→ 前後の文脈を考慮してフレーズ間公理を生成する必要がある
23 / 26
参考文献 I
Lasha Abzianidze.A tableau prover for natural logic and language. In Proceedings of the 2015
Conference on Empirical Methods in Natural Language Processing (EMNLP-2015), pages
2492–2502, Lisbon, Portugal, September 2015. Association for Computational Linguistics.
Yuki Arase and Jun’ichi Tsujii. Monolingual phrase alignment on parse forests. In Proc. of
EMNLP-2017, pages 1–11, 2017.
Daniel Bär, Chris Biemann, Iryna Gurevych, and Torsten Zesch. UKP: Computing semantic
textual similarity by combining multiple content similarity measures. In Proc. of
SemEval-2012, pages 435–440, 2012.
Islam Beltagy, Stephen Roller, Gemma Boleda, Katrin Erk, and Raymond J. Mooney. UTexas:
Natural language semantics using distributional semantics and probabilistic logic. In Proc. of
SemEval-2014, pages 796–801, 2014.
Islam Beltagy, Stephen Roller, Pengxiang Cheng, Katrin Erk, and Raymond J. Mooney.
Representing meaning with a combination of logical and distributional models.
Computational Linguistics, 42(4):763–808, 2016.
Johannes Bjerva, Johan Bos, Rob van der Goot, and Malvina Nissim. The Meaning Factory:
Formal semantics for recognizing textual entailment and determining semantic similarity. In
Proc. of SemEval-2014, pages 642–646, 2014.
Johan Bos. Open-domain semantic parsing with boxer. In Proceedings of NoDaLiDa2015, pages
301––304, 2015.
Ido Dagan, Dan Roth, Mark Sammons, and Fabio Massimo Zanzotto. Recognizing Textual
Entailment: Models and Applications. Morgan & Claypool Publishers, 2013.
25 / 26
26.
参考文献 II
Juri Ganitkevitch,Benjamin Van Durme, and Chris Callison-Burch. PPDB: The paraphrase
database. In Proc. of NAACL HLT-2013, pages 758–764, 2013.
Marco Marelli, Stefano Menini, Marco Baroni, Luisa Bentivogli, Raffaella Bernardi, and Roberto
Zamparelli. A SICK cure for the evaluation of compositional distributional semantic models.
In Proc. of LREC-2014, pages 216–223, 2014.
Pascual Martínez-Gómez, Koji Mineshima, Yusuke Miyao, and Daisuke Bekki. ccg2lambda: A
compositional semantics system. In Proc. of ACL-2016, pages 85–90, 2016.
Pascual Martínez-Gómez, Koji Mineshima, Yusuke Miyao, and Daisuke Bekki. On-demand
injection of lexical knowledge for recognising textual entailment. In Proc. of EACL-2017,
pages 710–720, 2017.
Koji Mineshima, Pascual Martínez-Gómez, Yusuke Miyao, and Daisuke Bekki. Higher-order
logical inference with compositional semantics. In Proc. of EMNLP-2015, pages 2055–2061,
2015.
Terence Parsons. Events in The Semantics of English: a Study in Subatomic Semantics. MIT
Press, Cambridge, USA, 1990.
Dag Prawitz. Natural Deduction – A Proof-Theoretical Study. Almqvist & Wiksell, Stockholm,
Sweden, 1965.
Wenpeng Yin and Hinrich Schütze. Task-specific attentive pooling of phrase alignments
contributes to sentence matching. In Proc. of EACL-2017, pages 699–709, 2017.
26 / 26