SlideShare a Scribd company logo
1 of 42
Workshop on Numerical Methods for Optimal Control and Inverse Problems
Garching, 02/04/2014
Uncertainty Analysis for Dynamical
Systems using Radial Basis Functions
Fabian Froehlich, Jan Hasenauer, Fabian Theis
Institute for Computational Biology, Helmholtz Center Munich
Fabian Froehlich Uncertainty Analysis for Dynamical Systems using Radial Basis Functions
Problem Statement
2
Likelihood Function:
y(tk; ✓)
Dataset:
Solution to 	

the dynamical system:
D = {yj(tk), jk}
ny,nt
j,k=1
In General:
L(✓) =
ntY
j=1
ny
Y
k=1
1
jk
p
2⇡
exp
(¯yj(tk) y(tk; ✓))
2
2 2
jk
!
Fabian Froehlich Uncertainty Analysis for Dynamical Systems using Radial Basis Functions
Problem Statement
2
Likelihood Function:
y(tk; ✓)
Dataset:
Solution to 	

the dynamical system:
D = {yj(tk), jk}
ny,nt
j,k=1
Profile Likelihood:
PL✓i (c) = max
✓
L(✓) s.t. : ✓i = c
In General:
L(✓) =
ntY
j=1
ny
Y
k=1
1
jk
p
2⇡
exp
(¯yj(tk) y(tk; ✓))
2
2 2
jk
!
Fabian Froehlich Uncertainty Analysis for Dynamical Systems using Radial Basis Functions
Problem Statement
2
Likelihood Function:
y(tk; ✓)
Dataset:
Solution to 	

the dynamical system:
D = {yj(tk), jk}
ny,nt
j,k=1
ML(✓i) = p(✓i|D) =
Z
p(✓|D)d✓j6=i
Marginal Likelihood:
Profile Likelihood:
PL✓i (c) = max
✓
L(✓) s.t. : ✓i = c
In General:
L(✓) =
ntY
j=1
ny
Y
k=1
1
jk
p
2⇡
exp
(¯yj(tk) y(tk; ✓))
2
2 2
jk
!
Fabian Froehlich Uncertainty Analysis for Dynamical Systems using Radial Basis Functions
Problem Statement
2
Likelihood Function:
y(tk; ✓)
Dataset:
Solution to 	

the dynamical system:
D = {yj(tk), jk}
ny,nt
j,k=1
ML(✓i) = p(✓i|D) =
Z
p(✓|D)d✓j6=i
Marginal Likelihood:
Profile Likelihood:
PL✓i (c) = max
✓
L(✓) s.t. : ✓i = c
In General:
• no closed form expression
L(✓) =
ntY
j=1
ny
Y
k=1
1
jk
p
2⇡
exp
(¯yj(tk) y(tk; ✓))
2
2 2
jk
!
Fabian Froehlich Uncertainty Analysis for Dynamical Systems using Radial Basis Functions
Problem Statement
2
Likelihood Function:
y(tk; ✓)
Dataset:
Solution to 	

the dynamical system:
D = {yj(tk), jk}
ny,nt
j,k=1
ML(✓i) = p(✓i|D) =
Z
p(✓|D)d✓j6=i
Marginal Likelihood:
Profile Likelihood:
PL✓i (c) = max
✓
L(✓) s.t. : ✓i = c
In General:
• no closed form expression
• numerically evaluable (expensive)
L(✓) =
ntY
j=1
ny
Y
k=1
1
jk
p
2⇡
exp
(¯yj(tk) y(tk; ✓))
2
2 2
jk
!
Fabian Froehlich Uncertainty Analysis for Dynamical Systems using Radial Basis Functions
Problem Statement
2
Likelihood Function:
y(tk; ✓)
Dataset:
Solution to 	

the dynamical system:
D = {yj(tk), jk}
ny,nt
j,k=1
ML(✓i) = p(✓i|D) =
Z
p(✓|D)d✓j6=i
Marginal Likelihood:
Profile Likelihood:
PL✓i (c) = max
✓
L(✓) s.t. : ✓i = c
In General:
• no closed form expression
• numerically evaluable (expensive)
L(✓) =
ntY
j=1
ny
Y
k=1
1
jk
p
2⇡
exp
(¯yj(tk) y(tk; ✓))
2
2 2
jk
!
Fabian Froehlich Uncertainty Analysis for Dynamical Systems using Radial Basis Functions
Problem Statement
2
Likelihood Function:
y(tk; ✓)
Dataset:
Solution to 	

the dynamical system:
D = {yj(tk), jk}
ny,nt
j,k=1
ML(✓i) = p(✓i|D) =
Z
p(✓|D)d✓j6=i
Marginal Likelihood:
Profile Likelihood:
PL✓i (c) = max
✓
L(✓) s.t. : ✓i = c
In General:
• no closed form expression
• numerically evaluable (expensive)
How can we compute
marginals?
L(✓) =
ntY
j=1
ny
Y
k=1
1
jk
p
2⇡
exp
(¯yj(tk) y(tk; ✓))
2
2 2
jk
!
Fabian Froehlich Uncertainty Analysis for Dynamical Systems using Radial Basis Functions 3
Kernel Based Approximation
Fabian Froehlich Uncertainty Analysis for Dynamical Systems using Radial Basis Functions 3
Kernel Based Approximation
Kernel Density
Estimation
L(✓) t
1
NX
k=1
(✓, ⇠(k)
)
nonnegative
Fabian Froehlich Uncertainty Analysis for Dynamical Systems using Radial Basis Functions 3
Kernel Based Approximation
Kernel Density
Estimation
L(✓) t
1
NX
k=1
(✓, ⇠(k)
)
nonnegative
Moving Least Squares
Approximation
L(✓) t
1
NX
k=1
L(⇠(k)
) (✓, ⇠(k)
)
nonnegative
Fabian Froehlich Uncertainty Analysis for Dynamical Systems using Radial Basis Functions 3
Kernel Based Approximation
Kernel Density
Estimation
L(✓) t
1
NX
k=1
(✓, ⇠(k)
)
nonnegative
Moving Least Squares
Approximation
L(✓) t
1
NX
k=1
L(⇠(k)
) (✓, ⇠(k)
)
nonnegative
Radial Basis Function
Approximation
L(✓) t
1
NX
k=1
wk(L(⇠(k)
)) (✓, ⇠(k)
)
real-valued
Fabian Froehlich Uncertainty Analysis for Dynamical Systems using Radial Basis Functions 3
Kernel Based Approximation
Radial Basis Function
(✓, ⇠(k)
) = ✏(k✓kM,⇠(k) )
k✓kM,⇠ =
q
(✓ ⇠)T M 1(✓ ⇠),
Kernel Density
Estimation
L(✓) t
1
NX
k=1
(✓, ⇠(k)
)
nonnegative
Moving Least Squares
Approximation
L(✓) t
1
NX
k=1
L(⇠(k)
) (✓, ⇠(k)
)
nonnegative
Radial Basis Function
Approximation
L(✓) t
1
NX
k=1
wk(L(⇠(k)
)) (✓, ⇠(k)
)
real-valued
Fabian Froehlich Uncertainty Analysis for Dynamical Systems using Radial Basis Functions 3
Kernel Based Approximation
Radial Basis Function
(✓, ⇠(k)
) = ✏(k✓kM,⇠(k) )
k✓kM,⇠ =
q
(✓ ⇠)T M 1(✓ ⇠),
−0.4 −0.2 0 0.2 0.4
0
0.2
0.4
0.6
0.8
1
⇠
1
✏
✏(r) = exp( ✏2
r2
)
Gaussian Radial Basis
Allows analytic computation
of marginals
Kernel Density
Estimation
L(✓) t
1
NX
k=1
(✓, ⇠(k)
)
nonnegative
Moving Least Squares
Approximation
L(✓) t
1
NX
k=1
L(⇠(k)
) (✓, ⇠(k)
)
nonnegative
Radial Basis Function
Approximation
L(✓) t
1
NX
k=1
wk(L(⇠(k)
)) (✓, ⇠(k)
)
real-valued
θ
Fabian Froehlich Uncertainty Analysis for Dynamical Systems using Radial Basis Functions 3
Kernel Based Approximation
Radial Basis Function
(✓, ⇠(k)
) = ✏(k✓kM,⇠(k) )
k✓kM,⇠ =
q
(✓ ⇠)T M 1(✓ ⇠),
−0.4 −0.2 0 0.2 0.4
0
0.2
0.4
0.6
0.8
1
⇠
1
✏
✏(r) = exp( ✏2
r2
)
Gaussian Radial Basis
Allows analytic computation
of marginals
Translates Integration Problem
into Approximation Problem!
Kernel Density
Estimation
L(✓) t
1
NX
k=1
(✓, ⇠(k)
)
nonnegative
Moving Least Squares
Approximation
L(✓) t
1
NX
k=1
L(⇠(k)
) (✓, ⇠(k)
)
nonnegative
Radial Basis Function
Approximation
L(✓) t
1
NX
k=1
wk(L(⇠(k)
)) (✓, ⇠(k)
)
real-valued
θ
Fabian Froehlich Uncertainty Analysis for Dynamical Systems using Radial Basis Functions 4
Regularity Restriction on Centers
Kernel Density
Estimation
L(✓) t
1
NX
k=1
(✓, ⇠(k)
)
Moving Least Squares
Approximation
L(✓) t
1
NX
k=1
L(⇠(k)
) (✓, ⇠(k)
)
Radial Basis Function
Approximation
L(✓) t
1
NX
k=1
wk(L(⇠(k)
)) (✓, ⇠(k)
)
Fabian Froehlich Uncertainty Analysis for Dynamical Systems using Radial Basis Functions 4
Regularity Restriction on Centers
Kernel Density
Estimation
L(✓) t
1
NX
k=1
(✓, ⇠(k)
)
−1 0 1 2 3
−5
0
5
log(θ1)
log(θ2)
samples of L(𝜃)
θ1
θ2
Moving Least Squares
Approximation
L(✓) t
1
NX
k=1
L(⇠(k)
) (✓, ⇠(k)
)
Radial Basis Function
Approximation
L(✓) t
1
NX
k=1
wk(L(⇠(k)
)) (✓, ⇠(k)
)
Fabian Froehlich Uncertainty Analysis for Dynamical Systems using Radial Basis Functions 4
Regularity Restriction on Centers
Kernel Density
Estimation
L(✓) t
1
NX
k=1
(✓, ⇠(k)
)
−1 0 1 2 3
−5
0
5
log(θ1)
log(θ2)
samples of L(𝜃)
θ1
θ2
Moving Least Squares
Approximation
L(✓) t
1
NX
k=1
L(⇠(k)
) (✓, ⇠(k)
)
−1 0 1 2 3
−5
0
5
log(θ1)
log(θ2)
θ1
strong regularity
θ2
Radial Basis Function
Approximation
L(✓) t
1
NX
k=1
wk(L(⇠(k)
)) (✓, ⇠(k)
)
Fabian Froehlich Uncertainty Analysis for Dynamical Systems using Radial Basis Functions 4
Regularity Restriction on Centers
Kernel Density
Estimation
L(✓) t
1
NX
k=1
(✓, ⇠(k)
)
−1 0 1 2 3
−5
0
5
log(θ1)
log(θ2)
samples of L(𝜃)
θ1
θ2
Moving Least Squares
Approximation
L(✓) t
1
NX
k=1
L(⇠(k)
) (✓, ⇠(k)
)
−1 0 1 2 3
−5
0
5
log(θ1)
log(θ2)
θ1
strong regularity
θ2
Radial Basis Function
Approximation
L(✓) t
1
NX
k=1
wk(L(⇠(k)
)) (✓, ⇠(k)
)
−1 0 1 2 3
−5
0
5
log(θ1)
log(θ2)
weak regularity
θ1
θ2
Fabian Froehlich Uncertainty Analysis for Dynamical Systems using Radial Basis Functions 4
Regularity Restriction on Centers
Kernel Density
Estimation
L(✓) t
1
NX
k=1
(✓, ⇠(k)
)
−1 0 1 2 3
−5
0
5
log(θ1)
log(θ2)
samples of L(𝜃)
θ1
θ2
Moving Least Squares
Approximation
L(✓) t
1
NX
k=1
L(⇠(k)
) (✓, ⇠(k)
)
−1 0 1 2 3
−5
0
5
log(θ1)
log(θ2)
θ1
strong regularity
θ2
Radial Basis Function
Approximation
L(✓) t
1
NX
k=1
wk(L(⇠(k)
)) (✓, ⇠(k)
)
−1 0 1 2 3
−5
0
5
log(θ1)
log(θ2)
weak regularity
θ1
θ2
How to generate the
centers?
Fabian Froehlich Uncertainty Analysis for Dynamical Systems using Radial Basis Functions 5
00.20.4 −1 0 1 2 3
0
0.5
1
1.5
k1
−5
0
5
k2
0
0.5
1
1.5
2
prob. density
prob.density
θ1
θ2
−1 0 1 2 3
−5
0
5
log(θ1)
log(θ2)
−1 0 1 2 3
−5
0
5
log(θ1)
log(θ2)
−1 0 1 2 3
−5
0
5
log(θ1)
log(θ2)
Example 1: Analytical Model
L =
4
5
N(µ(1)
, ⌃(1)
) +
1
5
N(µ(2)
, ⌃(2)
)
⌃(1)
=

0.1 0.25
0.25 1
, ⌃(2)
=

0.01 0.01
0.01 0.5
µ(1)
=

1
1
, µ(2)
=

0.5
1.5
Fabian Froehlich Uncertainty Analysis for Dynamical Systems using Radial Basis Functions 5
00.20.4 −1 0 1 2 3
0
0.5
1
1.5
k1
−5
0
5
k2
0
0.5
1
1.5
2
prob. density
prob.density
θ1
θ2
• nonlinear correlation
−1 0 1 2 3
−5
0
5
log(θ1)
log(θ2)
−1 0 1 2 3
−5
0
5
log(θ1)
log(θ2)
−1 0 1 2 3
−5
0
5
log(θ1)
log(θ2)
Example 1: Analytical Model
L =
4
5
N(µ(1)
, ⌃(1)
) +
1
5
N(µ(2)
, ⌃(2)
)
⌃(1)
=

0.1 0.25
0.25 1
, ⌃(2)
=

0.01 0.01
0.01 0.5
µ(1)
=

1
1
, µ(2)
=

0.5
1.5
Fabian Froehlich Uncertainty Analysis for Dynamical Systems using Radial Basis Functions 5
00.20.4 −1 0 1 2 3
0
0.5
1
1.5
k1
−5
0
5
k2
0
0.5
1
1.5
2
prob. density
prob.density
θ1
θ2
• nonlinear correlation
• bimodal
−1 0 1 2 3
−5
0
5
log(θ1)
log(θ2)
−1 0 1 2 3
−5
0
5
log(θ1)
log(θ2)
−1 0 1 2 3
−5
0
5
log(θ1)
log(θ2)
Example 1: Analytical Model
L =
4
5
N(µ(1)
, ⌃(1)
) +
1
5
N(µ(2)
, ⌃(2)
)
⌃(1)
=

0.1 0.25
0.25 1
, ⌃(2)
=

0.01 0.01
0.01 0.5
µ(1)
=

1
1
, µ(2)
=

0.5
1.5
Fabian Froehlich Uncertainty Analysis for Dynamical Systems using Radial Basis Functions 5
00.20.4 −1 0 1 2 3
0
0.5
1
1.5
k1
−5
0
5
k2
0
0.5
1
1.5
2
prob. density
prob.density
θ1
θ2
• nonlinear correlation
• bimodal
• exact error analysis
possible
−1 0 1 2 3
−5
0
5
log(θ1)
log(θ2)
−1 0 1 2 3
−5
0
5
log(θ1)
log(θ2)
−1 0 1 2 3
−5
0
5
log(θ1)
log(θ2)
Example 1: Analytical Model
L =
4
5
N(µ(1)
, ⌃(1)
) +
1
5
N(µ(2)
, ⌃(2)
)
⌃(1)
=

0.1 0.25
0.25 1
, ⌃(2)
=

0.01 0.01
0.01 0.5
µ(1)
=

1
1
, µ(2)
=

0.5
1.5
Fabian Froehlich Uncertainty Analysis for Dynamical Systems using Radial Basis Functions 6
Generation of Centers (Samples)
Kernel Density
Estimation
L(✓) t
1
NX
k=1
(✓, ⇠(k)
)
−1 0 1 2 3
−5
0
5
log(θ1)
log(θ2)
Generate Markov Chain that
samples by Metropolis-
Hastings Algorithm
(requires at least 1-5
evaluations of L(𝜃) per
sample)
θ2
θ1θ2
Fabian Froehlich Uncertainty Analysis for Dynamical Systems using Radial Basis Functions 6
Generation of Centers (Samples)
Kernel Density
Estimation
L(✓) t
1
NX
k=1
(✓, ⇠(k)
)
−1 0 1 2 3
−5
0
5
log(θ1)
log(θ2)
Generate Markov Chain that
samples by Metropolis-
Hastings Algorithm
(requires at least 1-5
evaluations of L(𝜃) per
sample)
θ2
θ1θ2
Fabian Froehlich Uncertainty Analysis for Dynamical Systems using Radial Basis Functions 7
Moving Least Squares
Approximation
L(✓) t
1
NX
k=1
L(⇠(k)
) (✓, ⇠(k)
)
−1 0 1 2 3
−5
0
5
log(θ1)
log(θ2)
Generation of Centers (Lattice)
⌅ = {⇠|⇠ = Mz, z 2 Zn
L(⇠) > }
θ2
θ1
• Different choices of lattice
bases are possible
depending on
dimensionality of
problem.
• It is possible to show
optimality properties of
certain root lattices for
interpolation using radial
basis functions.
Fabian Froehlich Uncertainty Analysis for Dynamical Systems using Radial Basis Functions 7
Moving Least Squares
Approximation
L(✓) t
1
NX
k=1
L(⇠(k)
) (✓, ⇠(k)
)
−1 0 1 2 3
−5
0
5
log(θ1)
log(θ2)
Generation of Centers (Lattice)
⌅ = {⇠|⇠ = Mz, z 2 Zn
L(⇠) > }
θ2
θ1
• Different choices of lattice
bases are possible
depending on
dimensionality of
problem.
• It is possible to show
optimality properties of
certain root lattices for
interpolation using radial
basis functions.
Fabian Froehlich Uncertainty Analysis for Dynamical Systems using Radial Basis Functions 8
Radial Basis Function
Approximation
L(✓) t
1
NX
k=1
wk(L(⇠(k)
)) (✓, ⇠(k)
)
Generation of Centers (Particles)
0 0.5 1 1.5 2
0
0.02
0.04
0.06
0.08
0.1
r
V
1
(r)
r
V(r)
−1 0 1 2 3
−5
0
5
log(θ1)
log(θ2)
Reboux et. al. 2012, Journal of Computational Physics
θ2
θ1
Repulsion Attraction
E =
X
p
X
q
D2
pqV
✓
k⇠q
⇠p
k
Dpq
◆
Dpq = min(Dp, Dq)
Dp = min
k⇠q ⇠pkr⇤Dp
˜D(⇠q
)
˜D(⇠) =
D0
p
1 + krL(⇠)k
minimize:
requires initialisation
Fabian Froehlich Uncertainty Analysis for Dynamical Systems using Radial Basis Functions 8
Radial Basis Function
Approximation
L(✓) t
1
NX
k=1
wk(L(⇠(k)
)) (✓, ⇠(k)
)
Generation of Centers (Particles)
0 0.5 1 1.5 2
0
0.02
0.04
0.06
0.08
0.1
r
V
1
(r)
r
V(r)
−1 0 1 2 3
−5
0
5
log(θ1)
log(θ2)
Reboux et. al. 2012, Journal of Computational Physics
θ2
θ1
Repulsion Attraction
E =
X
p
X
q
D2
pqV
✓
k⇠q
⇠p
k
Dpq
◆
Dpq = min(Dp, Dq)
Dp = min
k⇠q ⇠pkr⇤Dp
˜D(⇠q
)
˜D(⇠) =
D0
p
1 + krL(⇠)k
minimize:
requires initialisation
Fabian Froehlich Uncertainty Analysis for Dynamical Systems using Radial Basis Functions
Error Analysis (Example 1)
9
Fabian Froehlich Uncertainty Analysis for Dynamical Systems using Radial Basis Functions
Error Analysis (Example 1)
9
function evaluations
L∞-errorinmarginals
10
1
10
2
10
3
10
4
10
5
10
−2
10
−1
10
0
10
1
KDE on samples
MLS on lattice
RBF on lattice
MLS on samples
RBF on samples
Kernel Density Estimation on samples
Radial Basis Function on lattice
Moving Least Squares on lattice
−1 0 1 2 3
−5
0
5
log(θ1)
log(θ2)
Fabian Froehlich Uncertainty Analysis for Dynamical Systems using Radial Basis Functions
10
1
10
2
10
3
10
4
10
−3
10
−2
10
−1
10
0
10
1
Function Evaluations
L∞-errorinmarginals
KDE on samples
RBF on particles with high-res. init.
RBF on particles with mid-res. init.
RBF on particles with low-res. init.
RBF on lattice
−1 0 1 2 3
−5
0
5
log(θ1)
log(θ2)
function evaluations
L∞-errorinmarginals
Kernel Density Estimation on samples
Radial Basis Function on lattice
Moving Least Squares on lattice
Radial Basis Function on samples (low res. init.)
Radial Basis Function on samples (mid res. init)
Radial Basis Function on samples (high res. init)
Error Analysis (Example 1)
9
function evaluations
L∞-errorinmarginals
10
1
10
2
10
3
10
4
10
5
10
−2
10
−1
10
0
10
1
KDE on samples
MLS on lattice
RBF on lattice
MLS on samples
RBF on samples
Kernel Density Estimation on samples
Radial Basis Function on lattice
Moving Least Squares on lattice
−1 0 1 2 3
−5
0
5
log(θ1)
log(θ2)
Fabian Froehlich Uncertainty Analysis for Dynamical Systems using Radial Basis Functions
10
1
10
2
10
3
10
4
10
−3
10
−2
10
−1
10
0
10
1
Function Evaluations
L∞-errorinmarginals
KDE on samples
RBF on particles with high-res. init.
RBF on particles with mid-res. init.
RBF on particles with low-res. init.
RBF on lattice
−1 0 1 2 3
−5
0
5
log(θ1)
log(θ2)
function evaluations
L∞-errorinmarginals
Kernel Density Estimation on samples
Radial Basis Function on lattice
Moving Least Squares on lattice
Radial Basis Function on samples (low res. init.)
Radial Basis Function on samples (mid res. init)
Radial Basis Function on samples (high res. init)
Error Analysis (Example 1)
9
function evaluations
L∞-errorinmarginals
10
1
10
2
10
3
10
4
10
5
10
−2
10
−1
10
0
10
1
KDE on samples
MLS on lattice
RBF on lattice
MLS on samples
RBF on samples
Kernel Density Estimation on samples
Radial Basis Function on lattice
Moving Least Squares on lattice
−1 0 1 2 3
−5
0
5
log(θ1)
log(θ2)
Significantly less points required to
reach the same approximation quality!
Fabian Froehlich Uncertainty Analysis for Dynamical Systems using Radial Basis Functions 10
A B
𝜃
𝜃2
1
0 1 2 3 4 5
0
0.5
1
1.5
Time
Concentration
A
B
time
concentration
−1 0 1 2 3
−5
0
5
log(θ1)
log(θ2)
Example 2: Conversion Reaction
˙A = ✓1A + ✓2B A(0) = 1
˙B = +✓1A ✓2B B(0) = 0
D = {A(tk), k}5
k=1
Fabian Froehlich Uncertainty Analysis for Dynamical Systems using Radial Basis Functions 11
Error in Marginals
RBF KDE
L 0.029 0.17
l 0.014 1.3411
N
−1 0 1 2 3
−5
0
5
log(θ1)
log(θ2)
KDE Marginal 437 pts.
RBF Marginal 437 pts.
−2 0 2
0
0.1
0.2
0.3
0.4
log(k )−1
−2
0
2
00.51
log(k)+1
0
1
2
0.5
prob. density
prob.density
KDE Marginal 10 pts.6
Error Analysis (Example 2)
Fabian Froehlich Uncertainty Analysis for Dynamical Systems using Radial Basis Functions 11
Error in Marginals
RBF KDE
L 0.029 0.17
l 0.014 1.3411
N
−1 0 1 2 3
−5
0
5
log(θ1)
log(θ2)
KDE Marginal 437 pts.
RBF Marginal 437 pts.
−2 0 2
0
0.1
0.2
0.3
0.4
log(k )−1
−2
0
2
00.51
log(k)+1
0
1
2
0.5
prob. density
prob.density
KDE Marginal 10 pts.6
Error Analysis (Example 2)
5-10 fold higher accuracy
with same number of
function evaluations
Fabian Froehlich Uncertainty Analysis for Dynamical Systems using Radial Basis Functions 12
off on
on
off
kr
mRNA (r)
r
protein (p)
p
kp
DNA (D)
Kazeroonian et. al. 2013, Proceedings of the 10th Workshop on Computational Systems Biology
−1 0 1 2 3
−5
0
5
log(θ1)
log(θ2)
Example 2: Stochastic Gene Expression
• Chemical Master Equation
(Chapman-Kolmogorov Equation)
with 2562 dimensional state space
and 4 dimensional parameter
space
• 1 function evaluation takes from
several seconds up to minutes
Fabian Froehlich Uncertainty Analysis for Dynamical Systems using Radial Basis Functions 12
off on
on
off
kr
mRNA (r)
r
protein (p)
p
kp
DNA (D)
Kazeroonian et. al. 2013, Proceedings of the 10th Workshop on Computational Systems Biology
−1 0 1 2 3
−5
0
5
log(θ1)
log(θ2)
Example 2: Stochastic Gene Expression
• Chemical Master Equation
(Chapman-Kolmogorov Equation)
with 2562 dimensional state space
and 4 dimensional parameter
space
• 1 function evaluation takes from
several seconds up to minutes
Fabian Froehlich Uncertainty Analysis for Dynamical Systems using Radial Basis Functions 13
−1 0 1 2 3
−5
0
5
log(θ1)
log(θ2)
Error Analysis (Example 3)
0 1 2 3 4 5
0
5
10
15
20
25
30
time t
Proteinmoleculenumber
time
proteinmoleculenumber
1.2 1.4 1.6 1.8 2
0
5
10
15
20
25
30
35
40
log(km)
probabilitydensityML(𝜃)
log(km)
−3.4 −3.2 −3 −2.8 −2.6
0
2
4
6
8
10
12
14
log(τof f)
probabilitydensity
log(𝞃off)
ML(𝜃)
1 1.2 1.4 1.6 1.8
0
10
20
30
40
50
60
log(kp)
probabilitydensity
log(kp)
ML(𝜃)
−3.4 −3.2 −3 −2.8 −2.6
0
5
10
15
20
25
30
log(τon)
probabilitydensity
KDE on 104
pts.
KDE on 6369 pts.
MLS on 6369 pts.
ML(𝜃)
log(𝞃on)
Fabian Froehlich Uncertainty Analysis for Dynamical Systems using Radial Basis Functions
• Significant improvement for low dimensional problems,
comparable performance for high dimensional problems.
• Approximated density can be also be used to compute
profiles with high efficiency
14
Conclusions/Outlook
Fabian Froehlich Uncertainty Analysis for Dynamical Systems using Radial Basis Functions 15
Institute for Computational Biology
Helmholtz Zentrum München
Atefeh Kazeroonian
Sabrina Hock
Jan Hasenauer
Frank Filbir
Fabian Theis
M12 Mathematische Modellierung
biologischer Systeme
Technische Universität München
Jan Hasenauer
Frank Filbir
Fabian Theis
M15 Applied Numerical Analysis
Technische Universität München
Frank Filbir
Acknowledgements
Thank you for your attention!

More Related Content

What's hot

Modeling the Dynamics of SGD by Stochastic Differential Equation
Modeling the Dynamics of SGD by Stochastic Differential EquationModeling the Dynamics of SGD by Stochastic Differential Equation
Modeling the Dynamics of SGD by Stochastic Differential EquationMark Chang
 
Visualizing, Modeling and Forecasting of Functional Time Series
Visualizing, Modeling and Forecasting of Functional Time SeriesVisualizing, Modeling and Forecasting of Functional Time Series
Visualizing, Modeling and Forecasting of Functional Time Serieshanshang
 
Probabilistic Control of Switched Linear Systems with Chance Constraints
Probabilistic Control of Switched Linear Systems with Chance ConstraintsProbabilistic Control of Switched Linear Systems with Chance Constraints
Probabilistic Control of Switched Linear Systems with Chance ConstraintsLeo Asselborn
 
Admissions in India 2015
Admissions in India 2015Admissions in India 2015
Admissions in India 2015Edhole.com
 
Conditional neural processes
Conditional neural processesConditional neural processes
Conditional neural processesKazuki Fujikawa
 
Modeling the Dynamics of SGD by Stochastic Differential Equation
Modeling the Dynamics of SGD by Stochastic Differential EquationModeling the Dynamics of SGD by Stochastic Differential Equation
Modeling the Dynamics of SGD by Stochastic Differential EquationMark Chang
 
QMC Error SAMSI Tutorial Aug 2017
QMC Error SAMSI Tutorial Aug 2017QMC Error SAMSI Tutorial Aug 2017
QMC Error SAMSI Tutorial Aug 2017Fred J. Hickernell
 
19. algorithms and-complexity
19. algorithms and-complexity19. algorithms and-complexity
19. algorithms and-complexityashishtinku
 

What's hot (19)

Modeling the Dynamics of SGD by Stochastic Differential Equation
Modeling the Dynamics of SGD by Stochastic Differential EquationModeling the Dynamics of SGD by Stochastic Differential Equation
Modeling the Dynamics of SGD by Stochastic Differential Equation
 
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
 
QMC: Operator Splitting Workshop, Projective Splitting with Forward Steps and...
QMC: Operator Splitting Workshop, Projective Splitting with Forward Steps and...QMC: Operator Splitting Workshop, Projective Splitting with Forward Steps and...
QMC: Operator Splitting Workshop, Projective Splitting with Forward Steps and...
 
CLIM Fall 2017 Course: Statistics for Climate Research, Geostats for Large Da...
CLIM Fall 2017 Course: Statistics for Climate Research, Geostats for Large Da...CLIM Fall 2017 Course: Statistics for Climate Research, Geostats for Large Da...
CLIM Fall 2017 Course: Statistics for Climate Research, Geostats for Large Da...
 
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
 
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
 
Visualizing, Modeling and Forecasting of Functional Time Series
Visualizing, Modeling and Forecasting of Functional Time SeriesVisualizing, Modeling and Forecasting of Functional Time Series
Visualizing, Modeling and Forecasting of Functional Time Series
 
CLIM Fall 2017 Course: Statistics for Climate Research, Detection & Attributi...
CLIM Fall 2017 Course: Statistics for Climate Research, Detection & Attributi...CLIM Fall 2017 Course: Statistics for Climate Research, Detection & Attributi...
CLIM Fall 2017 Course: Statistics for Climate Research, Detection & Attributi...
 
Probabilistic Control of Switched Linear Systems with Chance Constraints
Probabilistic Control of Switched Linear Systems with Chance ConstraintsProbabilistic Control of Switched Linear Systems with Chance Constraints
Probabilistic Control of Switched Linear Systems with Chance Constraints
 
Manual solucoes ex_extras
Manual solucoes ex_extrasManual solucoes ex_extras
Manual solucoes ex_extras
 
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
 
CLIM Fall 2017 Course: Statistics for Climate Research, Nonstationary Covaria...
CLIM Fall 2017 Course: Statistics for Climate Research, Nonstationary Covaria...CLIM Fall 2017 Course: Statistics for Climate Research, Nonstationary Covaria...
CLIM Fall 2017 Course: Statistics for Climate Research, Nonstationary Covaria...
 
Admissions in India 2015
Admissions in India 2015Admissions in India 2015
Admissions in India 2015
 
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
 
Conditional neural processes
Conditional neural processesConditional neural processes
Conditional neural processes
 
Modeling the Dynamics of SGD by Stochastic Differential Equation
Modeling the Dynamics of SGD by Stochastic Differential EquationModeling the Dynamics of SGD by Stochastic Differential Equation
Modeling the Dynamics of SGD by Stochastic Differential Equation
 
QMC Error SAMSI Tutorial Aug 2017
QMC Error SAMSI Tutorial Aug 2017QMC Error SAMSI Tutorial Aug 2017
QMC Error SAMSI Tutorial Aug 2017
 
19. algorithms and-complexity
19. algorithms and-complexity19. algorithms and-complexity
19. algorithms and-complexity
 
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
 

Similar to Presentation OCIP2014

Introducing Zap Q-Learning
Introducing Zap Q-Learning   Introducing Zap Q-Learning
Introducing Zap Q-Learning Sean Meyn
 
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...Chiheb Ben Hammouda
 
block-mdp-masters-defense.pdf
block-mdp-masters-defense.pdfblock-mdp-masters-defense.pdf
block-mdp-masters-defense.pdfJunghyun Lee
 
【DL輪読会】Unbiased Gradient Estimation for Marginal Log-likelihood
【DL輪読会】Unbiased Gradient Estimation for Marginal Log-likelihood【DL輪読会】Unbiased Gradient Estimation for Marginal Log-likelihood
【DL輪読会】Unbiased Gradient Estimation for Marginal Log-likelihoodDeep Learning JP
 
Maneuvering target track prediction model
Maneuvering target track prediction modelManeuvering target track prediction model
Maneuvering target track prediction modelIJCI JOURNAL
 
MCQMC 2020 talk: Importance Sampling for a Robust and Efficient Multilevel Mo...
MCQMC 2020 talk: Importance Sampling for a Robust and Efficient Multilevel Mo...MCQMC 2020 talk: Importance Sampling for a Robust and Efficient Multilevel Mo...
MCQMC 2020 talk: Importance Sampling for a Robust and Efficient Multilevel Mo...Chiheb Ben Hammouda
 
Slides: A glance at information-geometric signal processing
Slides: A glance at information-geometric signal processingSlides: A glance at information-geometric signal processing
Slides: A glance at information-geometric signal processingFrank Nielsen
 
Tail Probabilities for Randomized Program Runtimes via Martingales for Higher...
Tail Probabilities for Randomized Program Runtimes via Martingales for Higher...Tail Probabilities for Randomized Program Runtimes via Martingales for Higher...
Tail Probabilities for Randomized Program Runtimes via Martingales for Higher...Satoshi Kura
 
H2O World - Generalized Low Rank Models - Madeleine Udell
H2O World - Generalized Low Rank Models - Madeleine UdellH2O World - Generalized Low Rank Models - Madeleine Udell
H2O World - Generalized Low Rank Models - Madeleine UdellSri Ambati
 
Harmonic Analysis and Deep Learning
Harmonic Analysis and Deep LearningHarmonic Analysis and Deep Learning
Harmonic Analysis and Deep LearningSungbin Lim
 
Runtime Analysis of Population-based Evolutionary Algorithms
Runtime Analysis of Population-based Evolutionary AlgorithmsRuntime Analysis of Population-based Evolutionary Algorithms
Runtime Analysis of Population-based Evolutionary AlgorithmsPK Lehre
 
Runtime Analysis of Population-based Evolutionary Algorithms
Runtime Analysis of Population-based Evolutionary AlgorithmsRuntime Analysis of Population-based Evolutionary Algorithms
Runtime Analysis of Population-based Evolutionary AlgorithmsPer Kristian Lehre
 
Machine Learning for Trading
Machine Learning for TradingMachine Learning for Trading
Machine Learning for TradingLarry Guo
 

Similar to Presentation OCIP2014 (20)

A Note on TopicRNN
A Note on TopicRNNA Note on TopicRNN
A Note on TopicRNN
 
Ch07 4
Ch07 4Ch07 4
Ch07 4
 
Introducing Zap Q-Learning
Introducing Zap Q-Learning   Introducing Zap Q-Learning
Introducing Zap Q-Learning
 
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...
 
Indefinite Integrals 11
Indefinite Integrals 11Indefinite Integrals 11
Indefinite Integrals 11
 
block-mdp-masters-defense.pdf
block-mdp-masters-defense.pdfblock-mdp-masters-defense.pdf
block-mdp-masters-defense.pdf
 
【DL輪読会】Unbiased Gradient Estimation for Marginal Log-likelihood
【DL輪読会】Unbiased Gradient Estimation for Marginal Log-likelihood【DL輪読会】Unbiased Gradient Estimation for Marginal Log-likelihood
【DL輪読会】Unbiased Gradient Estimation for Marginal Log-likelihood
 
Maneuvering target track prediction model
Maneuvering target track prediction modelManeuvering target track prediction model
Maneuvering target track prediction model
 
CDT 22 slides.pdf
CDT 22 slides.pdfCDT 22 slides.pdf
CDT 22 slides.pdf
 
MCQMC 2020 talk: Importance Sampling for a Robust and Efficient Multilevel Mo...
MCQMC 2020 talk: Importance Sampling for a Robust and Efficient Multilevel Mo...MCQMC 2020 talk: Importance Sampling for a Robust and Efficient Multilevel Mo...
MCQMC 2020 talk: Importance Sampling for a Robust and Efficient Multilevel Mo...
 
Ch07 9
Ch07 9Ch07 9
Ch07 9
 
Slides: A glance at information-geometric signal processing
Slides: A glance at information-geometric signal processingSlides: A glance at information-geometric signal processing
Slides: A glance at information-geometric signal processing
 
Tail Probabilities for Randomized Program Runtimes via Martingales for Higher...
Tail Probabilities for Randomized Program Runtimes via Martingales for Higher...Tail Probabilities for Randomized Program Runtimes via Martingales for Higher...
Tail Probabilities for Randomized Program Runtimes via Martingales for Higher...
 
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
 
H2O World - Generalized Low Rank Models - Madeleine Udell
H2O World - Generalized Low Rank Models - Madeleine UdellH2O World - Generalized Low Rank Models - Madeleine Udell
H2O World - Generalized Low Rank Models - Madeleine Udell
 
Harmonic Analysis and Deep Learning
Harmonic Analysis and Deep LearningHarmonic Analysis and Deep Learning
Harmonic Analysis and Deep Learning
 
Signal Processing Assignment Help
Signal Processing Assignment HelpSignal Processing Assignment Help
Signal Processing Assignment Help
 
Runtime Analysis of Population-based Evolutionary Algorithms
Runtime Analysis of Population-based Evolutionary AlgorithmsRuntime Analysis of Population-based Evolutionary Algorithms
Runtime Analysis of Population-based Evolutionary Algorithms
 
Runtime Analysis of Population-based Evolutionary Algorithms
Runtime Analysis of Population-based Evolutionary AlgorithmsRuntime Analysis of Population-based Evolutionary Algorithms
Runtime Analysis of Population-based Evolutionary Algorithms
 
Machine Learning for Trading
Machine Learning for TradingMachine Learning for Trading
Machine Learning for Trading
 

Recently uploaded

Grafana in space: Monitoring Japan's SLIM moon lander in real time
Grafana in space: Monitoring Japan's SLIM moon lander  in real timeGrafana in space: Monitoring Japan's SLIM moon lander  in real time
Grafana in space: Monitoring Japan's SLIM moon lander in real timeSatoshi NAKAHIRA
 
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.aasikanpl
 
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxAnalytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxSwapnil Therkar
 
Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Patrick Diehl
 
Speech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxSpeech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxpriyankatabhane
 
Twin's paradox experiment is a meassurement of the extra dimensions.pptx
Twin's paradox experiment is a meassurement of the extra dimensions.pptxTwin's paradox experiment is a meassurement of the extra dimensions.pptx
Twin's paradox experiment is a meassurement of the extra dimensions.pptxEran Akiva Sinbar
 
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSpermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSarthak Sekhar Mondal
 
Heredity: Inheritance and Variation of Traits
Heredity: Inheritance and Variation of TraitsHeredity: Inheritance and Variation of Traits
Heredity: Inheritance and Variation of TraitsCharlene Llagas
 
Scheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docxScheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docxyaramohamed343013
 
Evidences of Evolution General Biology 2
Evidences of Evolution General Biology 2Evidences of Evolution General Biology 2
Evidences of Evolution General Biology 2John Carlo Rollon
 
insect anatomy and insect body wall and their physiology
insect anatomy and insect body wall and their  physiologyinsect anatomy and insect body wall and their  physiology
insect anatomy and insect body wall and their physiologyDrAnita Sharma
 
Call Us ≽ 9953322196 ≼ Call Girls In Lajpat Nagar (Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Lajpat Nagar (Delhi) |Call Us ≽ 9953322196 ≼ Call Girls In Lajpat Nagar (Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Lajpat Nagar (Delhi) |aasikanpl
 
Neurodevelopmental disorders according to the dsm 5 tr
Neurodevelopmental disorders according to the dsm 5 trNeurodevelopmental disorders according to the dsm 5 tr
Neurodevelopmental disorders according to the dsm 5 trssuser06f238
 
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptxRESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptxFarihaAbdulRasheed
 
‏‏VIRUS - 123455555555555555555555555555555555555555
‏‏VIRUS -  123455555555555555555555555555555555555555‏‏VIRUS -  123455555555555555555555555555555555555555
‏‏VIRUS - 123455555555555555555555555555555555555555kikilily0909
 
Artificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PArtificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PPRINCE C P
 
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |aasikanpl
 
Vision and reflection on Mining Software Repositories research in 2024
Vision and reflection on Mining Software Repositories research in 2024Vision and reflection on Mining Software Repositories research in 2024
Vision and reflection on Mining Software Repositories research in 2024AyushiRastogi48
 
Solution chemistry, Moral and Normal solutions
Solution chemistry, Moral and Normal solutionsSolution chemistry, Moral and Normal solutions
Solution chemistry, Moral and Normal solutionsHajira Mahmood
 

Recently uploaded (20)

Grafana in space: Monitoring Japan's SLIM moon lander in real time
Grafana in space: Monitoring Japan's SLIM moon lander  in real timeGrafana in space: Monitoring Japan's SLIM moon lander  in real time
Grafana in space: Monitoring Japan's SLIM moon lander in real time
 
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
 
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxAnalytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
 
Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?
 
Speech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxSpeech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptx
 
Twin's paradox experiment is a meassurement of the extra dimensions.pptx
Twin's paradox experiment is a meassurement of the extra dimensions.pptxTwin's paradox experiment is a meassurement of the extra dimensions.pptx
Twin's paradox experiment is a meassurement of the extra dimensions.pptx
 
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSpermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
 
Heredity: Inheritance and Variation of Traits
Heredity: Inheritance and Variation of TraitsHeredity: Inheritance and Variation of Traits
Heredity: Inheritance and Variation of Traits
 
Scheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docxScheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docx
 
Evidences of Evolution General Biology 2
Evidences of Evolution General Biology 2Evidences of Evolution General Biology 2
Evidences of Evolution General Biology 2
 
insect anatomy and insect body wall and their physiology
insect anatomy and insect body wall and their  physiologyinsect anatomy and insect body wall and their  physiology
insect anatomy and insect body wall and their physiology
 
Call Us ≽ 9953322196 ≼ Call Girls In Lajpat Nagar (Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Lajpat Nagar (Delhi) |Call Us ≽ 9953322196 ≼ Call Girls In Lajpat Nagar (Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Lajpat Nagar (Delhi) |
 
Neurodevelopmental disorders according to the dsm 5 tr
Neurodevelopmental disorders according to the dsm 5 trNeurodevelopmental disorders according to the dsm 5 tr
Neurodevelopmental disorders according to the dsm 5 tr
 
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptxRESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
 
‏‏VIRUS - 123455555555555555555555555555555555555555
‏‏VIRUS -  123455555555555555555555555555555555555555‏‏VIRUS -  123455555555555555555555555555555555555555
‏‏VIRUS - 123455555555555555555555555555555555555555
 
Artificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PArtificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C P
 
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
 
Vision and reflection on Mining Software Repositories research in 2024
Vision and reflection on Mining Software Repositories research in 2024Vision and reflection on Mining Software Repositories research in 2024
Vision and reflection on Mining Software Repositories research in 2024
 
Solution chemistry, Moral and Normal solutions
Solution chemistry, Moral and Normal solutionsSolution chemistry, Moral and Normal solutions
Solution chemistry, Moral and Normal solutions
 
Volatile Oils Pharmacognosy And Phytochemistry -I
Volatile Oils Pharmacognosy And Phytochemistry -IVolatile Oils Pharmacognosy And Phytochemistry -I
Volatile Oils Pharmacognosy And Phytochemistry -I
 

Presentation OCIP2014

  • 1. Workshop on Numerical Methods for Optimal Control and Inverse Problems Garching, 02/04/2014 Uncertainty Analysis for Dynamical Systems using Radial Basis Functions Fabian Froehlich, Jan Hasenauer, Fabian Theis Institute for Computational Biology, Helmholtz Center Munich
  • 2. Fabian Froehlich Uncertainty Analysis for Dynamical Systems using Radial Basis Functions Problem Statement 2 Likelihood Function: y(tk; ✓) Dataset: Solution to the dynamical system: D = {yj(tk), jk} ny,nt j,k=1 In General: L(✓) = ntY j=1 ny Y k=1 1 jk p 2⇡ exp (¯yj(tk) y(tk; ✓)) 2 2 2 jk !
  • 3. Fabian Froehlich Uncertainty Analysis for Dynamical Systems using Radial Basis Functions Problem Statement 2 Likelihood Function: y(tk; ✓) Dataset: Solution to the dynamical system: D = {yj(tk), jk} ny,nt j,k=1 Profile Likelihood: PL✓i (c) = max ✓ L(✓) s.t. : ✓i = c In General: L(✓) = ntY j=1 ny Y k=1 1 jk p 2⇡ exp (¯yj(tk) y(tk; ✓)) 2 2 2 jk !
  • 4. Fabian Froehlich Uncertainty Analysis for Dynamical Systems using Radial Basis Functions Problem Statement 2 Likelihood Function: y(tk; ✓) Dataset: Solution to the dynamical system: D = {yj(tk), jk} ny,nt j,k=1 ML(✓i) = p(✓i|D) = Z p(✓|D)d✓j6=i Marginal Likelihood: Profile Likelihood: PL✓i (c) = max ✓ L(✓) s.t. : ✓i = c In General: L(✓) = ntY j=1 ny Y k=1 1 jk p 2⇡ exp (¯yj(tk) y(tk; ✓)) 2 2 2 jk !
  • 5. Fabian Froehlich Uncertainty Analysis for Dynamical Systems using Radial Basis Functions Problem Statement 2 Likelihood Function: y(tk; ✓) Dataset: Solution to the dynamical system: D = {yj(tk), jk} ny,nt j,k=1 ML(✓i) = p(✓i|D) = Z p(✓|D)d✓j6=i Marginal Likelihood: Profile Likelihood: PL✓i (c) = max ✓ L(✓) s.t. : ✓i = c In General: • no closed form expression L(✓) = ntY j=1 ny Y k=1 1 jk p 2⇡ exp (¯yj(tk) y(tk; ✓)) 2 2 2 jk !
  • 6. Fabian Froehlich Uncertainty Analysis for Dynamical Systems using Radial Basis Functions Problem Statement 2 Likelihood Function: y(tk; ✓) Dataset: Solution to the dynamical system: D = {yj(tk), jk} ny,nt j,k=1 ML(✓i) = p(✓i|D) = Z p(✓|D)d✓j6=i Marginal Likelihood: Profile Likelihood: PL✓i (c) = max ✓ L(✓) s.t. : ✓i = c In General: • no closed form expression • numerically evaluable (expensive) L(✓) = ntY j=1 ny Y k=1 1 jk p 2⇡ exp (¯yj(tk) y(tk; ✓)) 2 2 2 jk !
  • 7. Fabian Froehlich Uncertainty Analysis for Dynamical Systems using Radial Basis Functions Problem Statement 2 Likelihood Function: y(tk; ✓) Dataset: Solution to the dynamical system: D = {yj(tk), jk} ny,nt j,k=1 ML(✓i) = p(✓i|D) = Z p(✓|D)d✓j6=i Marginal Likelihood: Profile Likelihood: PL✓i (c) = max ✓ L(✓) s.t. : ✓i = c In General: • no closed form expression • numerically evaluable (expensive) L(✓) = ntY j=1 ny Y k=1 1 jk p 2⇡ exp (¯yj(tk) y(tk; ✓)) 2 2 2 jk !
  • 8. Fabian Froehlich Uncertainty Analysis for Dynamical Systems using Radial Basis Functions Problem Statement 2 Likelihood Function: y(tk; ✓) Dataset: Solution to the dynamical system: D = {yj(tk), jk} ny,nt j,k=1 ML(✓i) = p(✓i|D) = Z p(✓|D)d✓j6=i Marginal Likelihood: Profile Likelihood: PL✓i (c) = max ✓ L(✓) s.t. : ✓i = c In General: • no closed form expression • numerically evaluable (expensive) How can we compute marginals? L(✓) = ntY j=1 ny Y k=1 1 jk p 2⇡ exp (¯yj(tk) y(tk; ✓)) 2 2 2 jk !
  • 9. Fabian Froehlich Uncertainty Analysis for Dynamical Systems using Radial Basis Functions 3 Kernel Based Approximation
  • 10. Fabian Froehlich Uncertainty Analysis for Dynamical Systems using Radial Basis Functions 3 Kernel Based Approximation Kernel Density Estimation L(✓) t 1 NX k=1 (✓, ⇠(k) ) nonnegative
  • 11. Fabian Froehlich Uncertainty Analysis for Dynamical Systems using Radial Basis Functions 3 Kernel Based Approximation Kernel Density Estimation L(✓) t 1 NX k=1 (✓, ⇠(k) ) nonnegative Moving Least Squares Approximation L(✓) t 1 NX k=1 L(⇠(k) ) (✓, ⇠(k) ) nonnegative
  • 12. Fabian Froehlich Uncertainty Analysis for Dynamical Systems using Radial Basis Functions 3 Kernel Based Approximation Kernel Density Estimation L(✓) t 1 NX k=1 (✓, ⇠(k) ) nonnegative Moving Least Squares Approximation L(✓) t 1 NX k=1 L(⇠(k) ) (✓, ⇠(k) ) nonnegative Radial Basis Function Approximation L(✓) t 1 NX k=1 wk(L(⇠(k) )) (✓, ⇠(k) ) real-valued
  • 13. Fabian Froehlich Uncertainty Analysis for Dynamical Systems using Radial Basis Functions 3 Kernel Based Approximation Radial Basis Function (✓, ⇠(k) ) = ✏(k✓kM,⇠(k) ) k✓kM,⇠ = q (✓ ⇠)T M 1(✓ ⇠), Kernel Density Estimation L(✓) t 1 NX k=1 (✓, ⇠(k) ) nonnegative Moving Least Squares Approximation L(✓) t 1 NX k=1 L(⇠(k) ) (✓, ⇠(k) ) nonnegative Radial Basis Function Approximation L(✓) t 1 NX k=1 wk(L(⇠(k) )) (✓, ⇠(k) ) real-valued
  • 14. Fabian Froehlich Uncertainty Analysis for Dynamical Systems using Radial Basis Functions 3 Kernel Based Approximation Radial Basis Function (✓, ⇠(k) ) = ✏(k✓kM,⇠(k) ) k✓kM,⇠ = q (✓ ⇠)T M 1(✓ ⇠), −0.4 −0.2 0 0.2 0.4 0 0.2 0.4 0.6 0.8 1 ⇠ 1 ✏ ✏(r) = exp( ✏2 r2 ) Gaussian Radial Basis Allows analytic computation of marginals Kernel Density Estimation L(✓) t 1 NX k=1 (✓, ⇠(k) ) nonnegative Moving Least Squares Approximation L(✓) t 1 NX k=1 L(⇠(k) ) (✓, ⇠(k) ) nonnegative Radial Basis Function Approximation L(✓) t 1 NX k=1 wk(L(⇠(k) )) (✓, ⇠(k) ) real-valued θ
  • 15. Fabian Froehlich Uncertainty Analysis for Dynamical Systems using Radial Basis Functions 3 Kernel Based Approximation Radial Basis Function (✓, ⇠(k) ) = ✏(k✓kM,⇠(k) ) k✓kM,⇠ = q (✓ ⇠)T M 1(✓ ⇠), −0.4 −0.2 0 0.2 0.4 0 0.2 0.4 0.6 0.8 1 ⇠ 1 ✏ ✏(r) = exp( ✏2 r2 ) Gaussian Radial Basis Allows analytic computation of marginals Translates Integration Problem into Approximation Problem! Kernel Density Estimation L(✓) t 1 NX k=1 (✓, ⇠(k) ) nonnegative Moving Least Squares Approximation L(✓) t 1 NX k=1 L(⇠(k) ) (✓, ⇠(k) ) nonnegative Radial Basis Function Approximation L(✓) t 1 NX k=1 wk(L(⇠(k) )) (✓, ⇠(k) ) real-valued θ
  • 16. Fabian Froehlich Uncertainty Analysis for Dynamical Systems using Radial Basis Functions 4 Regularity Restriction on Centers Kernel Density Estimation L(✓) t 1 NX k=1 (✓, ⇠(k) ) Moving Least Squares Approximation L(✓) t 1 NX k=1 L(⇠(k) ) (✓, ⇠(k) ) Radial Basis Function Approximation L(✓) t 1 NX k=1 wk(L(⇠(k) )) (✓, ⇠(k) )
  • 17. Fabian Froehlich Uncertainty Analysis for Dynamical Systems using Radial Basis Functions 4 Regularity Restriction on Centers Kernel Density Estimation L(✓) t 1 NX k=1 (✓, ⇠(k) ) −1 0 1 2 3 −5 0 5 log(θ1) log(θ2) samples of L(𝜃) θ1 θ2 Moving Least Squares Approximation L(✓) t 1 NX k=1 L(⇠(k) ) (✓, ⇠(k) ) Radial Basis Function Approximation L(✓) t 1 NX k=1 wk(L(⇠(k) )) (✓, ⇠(k) )
  • 18. Fabian Froehlich Uncertainty Analysis for Dynamical Systems using Radial Basis Functions 4 Regularity Restriction on Centers Kernel Density Estimation L(✓) t 1 NX k=1 (✓, ⇠(k) ) −1 0 1 2 3 −5 0 5 log(θ1) log(θ2) samples of L(𝜃) θ1 θ2 Moving Least Squares Approximation L(✓) t 1 NX k=1 L(⇠(k) ) (✓, ⇠(k) ) −1 0 1 2 3 −5 0 5 log(θ1) log(θ2) θ1 strong regularity θ2 Radial Basis Function Approximation L(✓) t 1 NX k=1 wk(L(⇠(k) )) (✓, ⇠(k) )
  • 19. Fabian Froehlich Uncertainty Analysis for Dynamical Systems using Radial Basis Functions 4 Regularity Restriction on Centers Kernel Density Estimation L(✓) t 1 NX k=1 (✓, ⇠(k) ) −1 0 1 2 3 −5 0 5 log(θ1) log(θ2) samples of L(𝜃) θ1 θ2 Moving Least Squares Approximation L(✓) t 1 NX k=1 L(⇠(k) ) (✓, ⇠(k) ) −1 0 1 2 3 −5 0 5 log(θ1) log(θ2) θ1 strong regularity θ2 Radial Basis Function Approximation L(✓) t 1 NX k=1 wk(L(⇠(k) )) (✓, ⇠(k) ) −1 0 1 2 3 −5 0 5 log(θ1) log(θ2) weak regularity θ1 θ2
  • 20. Fabian Froehlich Uncertainty Analysis for Dynamical Systems using Radial Basis Functions 4 Regularity Restriction on Centers Kernel Density Estimation L(✓) t 1 NX k=1 (✓, ⇠(k) ) −1 0 1 2 3 −5 0 5 log(θ1) log(θ2) samples of L(𝜃) θ1 θ2 Moving Least Squares Approximation L(✓) t 1 NX k=1 L(⇠(k) ) (✓, ⇠(k) ) −1 0 1 2 3 −5 0 5 log(θ1) log(θ2) θ1 strong regularity θ2 Radial Basis Function Approximation L(✓) t 1 NX k=1 wk(L(⇠(k) )) (✓, ⇠(k) ) −1 0 1 2 3 −5 0 5 log(θ1) log(θ2) weak regularity θ1 θ2 How to generate the centers?
  • 21. Fabian Froehlich Uncertainty Analysis for Dynamical Systems using Radial Basis Functions 5 00.20.4 −1 0 1 2 3 0 0.5 1 1.5 k1 −5 0 5 k2 0 0.5 1 1.5 2 prob. density prob.density θ1 θ2 −1 0 1 2 3 −5 0 5 log(θ1) log(θ2) −1 0 1 2 3 −5 0 5 log(θ1) log(θ2) −1 0 1 2 3 −5 0 5 log(θ1) log(θ2) Example 1: Analytical Model L = 4 5 N(µ(1) , ⌃(1) ) + 1 5 N(µ(2) , ⌃(2) ) ⌃(1) =  0.1 0.25 0.25 1 , ⌃(2) =  0.01 0.01 0.01 0.5 µ(1) =  1 1 , µ(2) =  0.5 1.5
  • 22. Fabian Froehlich Uncertainty Analysis for Dynamical Systems using Radial Basis Functions 5 00.20.4 −1 0 1 2 3 0 0.5 1 1.5 k1 −5 0 5 k2 0 0.5 1 1.5 2 prob. density prob.density θ1 θ2 • nonlinear correlation −1 0 1 2 3 −5 0 5 log(θ1) log(θ2) −1 0 1 2 3 −5 0 5 log(θ1) log(θ2) −1 0 1 2 3 −5 0 5 log(θ1) log(θ2) Example 1: Analytical Model L = 4 5 N(µ(1) , ⌃(1) ) + 1 5 N(µ(2) , ⌃(2) ) ⌃(1) =  0.1 0.25 0.25 1 , ⌃(2) =  0.01 0.01 0.01 0.5 µ(1) =  1 1 , µ(2) =  0.5 1.5
  • 23. Fabian Froehlich Uncertainty Analysis for Dynamical Systems using Radial Basis Functions 5 00.20.4 −1 0 1 2 3 0 0.5 1 1.5 k1 −5 0 5 k2 0 0.5 1 1.5 2 prob. density prob.density θ1 θ2 • nonlinear correlation • bimodal −1 0 1 2 3 −5 0 5 log(θ1) log(θ2) −1 0 1 2 3 −5 0 5 log(θ1) log(θ2) −1 0 1 2 3 −5 0 5 log(θ1) log(θ2) Example 1: Analytical Model L = 4 5 N(µ(1) , ⌃(1) ) + 1 5 N(µ(2) , ⌃(2) ) ⌃(1) =  0.1 0.25 0.25 1 , ⌃(2) =  0.01 0.01 0.01 0.5 µ(1) =  1 1 , µ(2) =  0.5 1.5
  • 24. Fabian Froehlich Uncertainty Analysis for Dynamical Systems using Radial Basis Functions 5 00.20.4 −1 0 1 2 3 0 0.5 1 1.5 k1 −5 0 5 k2 0 0.5 1 1.5 2 prob. density prob.density θ1 θ2 • nonlinear correlation • bimodal • exact error analysis possible −1 0 1 2 3 −5 0 5 log(θ1) log(θ2) −1 0 1 2 3 −5 0 5 log(θ1) log(θ2) −1 0 1 2 3 −5 0 5 log(θ1) log(θ2) Example 1: Analytical Model L = 4 5 N(µ(1) , ⌃(1) ) + 1 5 N(µ(2) , ⌃(2) ) ⌃(1) =  0.1 0.25 0.25 1 , ⌃(2) =  0.01 0.01 0.01 0.5 µ(1) =  1 1 , µ(2) =  0.5 1.5
  • 25. Fabian Froehlich Uncertainty Analysis for Dynamical Systems using Radial Basis Functions 6 Generation of Centers (Samples) Kernel Density Estimation L(✓) t 1 NX k=1 (✓, ⇠(k) ) −1 0 1 2 3 −5 0 5 log(θ1) log(θ2) Generate Markov Chain that samples by Metropolis- Hastings Algorithm (requires at least 1-5 evaluations of L(𝜃) per sample) θ2 θ1θ2
  • 26. Fabian Froehlich Uncertainty Analysis for Dynamical Systems using Radial Basis Functions 6 Generation of Centers (Samples) Kernel Density Estimation L(✓) t 1 NX k=1 (✓, ⇠(k) ) −1 0 1 2 3 −5 0 5 log(θ1) log(θ2) Generate Markov Chain that samples by Metropolis- Hastings Algorithm (requires at least 1-5 evaluations of L(𝜃) per sample) θ2 θ1θ2
  • 27. Fabian Froehlich Uncertainty Analysis for Dynamical Systems using Radial Basis Functions 7 Moving Least Squares Approximation L(✓) t 1 NX k=1 L(⇠(k) ) (✓, ⇠(k) ) −1 0 1 2 3 −5 0 5 log(θ1) log(θ2) Generation of Centers (Lattice) ⌅ = {⇠|⇠ = Mz, z 2 Zn L(⇠) > } θ2 θ1 • Different choices of lattice bases are possible depending on dimensionality of problem. • It is possible to show optimality properties of certain root lattices for interpolation using radial basis functions.
  • 28. Fabian Froehlich Uncertainty Analysis for Dynamical Systems using Radial Basis Functions 7 Moving Least Squares Approximation L(✓) t 1 NX k=1 L(⇠(k) ) (✓, ⇠(k) ) −1 0 1 2 3 −5 0 5 log(θ1) log(θ2) Generation of Centers (Lattice) ⌅ = {⇠|⇠ = Mz, z 2 Zn L(⇠) > } θ2 θ1 • Different choices of lattice bases are possible depending on dimensionality of problem. • It is possible to show optimality properties of certain root lattices for interpolation using radial basis functions.
  • 29. Fabian Froehlich Uncertainty Analysis for Dynamical Systems using Radial Basis Functions 8 Radial Basis Function Approximation L(✓) t 1 NX k=1 wk(L(⇠(k) )) (✓, ⇠(k) ) Generation of Centers (Particles) 0 0.5 1 1.5 2 0 0.02 0.04 0.06 0.08 0.1 r V 1 (r) r V(r) −1 0 1 2 3 −5 0 5 log(θ1) log(θ2) Reboux et. al. 2012, Journal of Computational Physics θ2 θ1 Repulsion Attraction E = X p X q D2 pqV ✓ k⇠q ⇠p k Dpq ◆ Dpq = min(Dp, Dq) Dp = min k⇠q ⇠pkr⇤Dp ˜D(⇠q ) ˜D(⇠) = D0 p 1 + krL(⇠)k minimize: requires initialisation
  • 30. Fabian Froehlich Uncertainty Analysis for Dynamical Systems using Radial Basis Functions 8 Radial Basis Function Approximation L(✓) t 1 NX k=1 wk(L(⇠(k) )) (✓, ⇠(k) ) Generation of Centers (Particles) 0 0.5 1 1.5 2 0 0.02 0.04 0.06 0.08 0.1 r V 1 (r) r V(r) −1 0 1 2 3 −5 0 5 log(θ1) log(θ2) Reboux et. al. 2012, Journal of Computational Physics θ2 θ1 Repulsion Attraction E = X p X q D2 pqV ✓ k⇠q ⇠p k Dpq ◆ Dpq = min(Dp, Dq) Dp = min k⇠q ⇠pkr⇤Dp ˜D(⇠q ) ˜D(⇠) = D0 p 1 + krL(⇠)k minimize: requires initialisation
  • 31. Fabian Froehlich Uncertainty Analysis for Dynamical Systems using Radial Basis Functions Error Analysis (Example 1) 9
  • 32. Fabian Froehlich Uncertainty Analysis for Dynamical Systems using Radial Basis Functions Error Analysis (Example 1) 9 function evaluations L∞-errorinmarginals 10 1 10 2 10 3 10 4 10 5 10 −2 10 −1 10 0 10 1 KDE on samples MLS on lattice RBF on lattice MLS on samples RBF on samples Kernel Density Estimation on samples Radial Basis Function on lattice Moving Least Squares on lattice −1 0 1 2 3 −5 0 5 log(θ1) log(θ2)
  • 33. Fabian Froehlich Uncertainty Analysis for Dynamical Systems using Radial Basis Functions 10 1 10 2 10 3 10 4 10 −3 10 −2 10 −1 10 0 10 1 Function Evaluations L∞-errorinmarginals KDE on samples RBF on particles with high-res. init. RBF on particles with mid-res. init. RBF on particles with low-res. init. RBF on lattice −1 0 1 2 3 −5 0 5 log(θ1) log(θ2) function evaluations L∞-errorinmarginals Kernel Density Estimation on samples Radial Basis Function on lattice Moving Least Squares on lattice Radial Basis Function on samples (low res. init.) Radial Basis Function on samples (mid res. init) Radial Basis Function on samples (high res. init) Error Analysis (Example 1) 9 function evaluations L∞-errorinmarginals 10 1 10 2 10 3 10 4 10 5 10 −2 10 −1 10 0 10 1 KDE on samples MLS on lattice RBF on lattice MLS on samples RBF on samples Kernel Density Estimation on samples Radial Basis Function on lattice Moving Least Squares on lattice −1 0 1 2 3 −5 0 5 log(θ1) log(θ2)
  • 34. Fabian Froehlich Uncertainty Analysis for Dynamical Systems using Radial Basis Functions 10 1 10 2 10 3 10 4 10 −3 10 −2 10 −1 10 0 10 1 Function Evaluations L∞-errorinmarginals KDE on samples RBF on particles with high-res. init. RBF on particles with mid-res. init. RBF on particles with low-res. init. RBF on lattice −1 0 1 2 3 −5 0 5 log(θ1) log(θ2) function evaluations L∞-errorinmarginals Kernel Density Estimation on samples Radial Basis Function on lattice Moving Least Squares on lattice Radial Basis Function on samples (low res. init.) Radial Basis Function on samples (mid res. init) Radial Basis Function on samples (high res. init) Error Analysis (Example 1) 9 function evaluations L∞-errorinmarginals 10 1 10 2 10 3 10 4 10 5 10 −2 10 −1 10 0 10 1 KDE on samples MLS on lattice RBF on lattice MLS on samples RBF on samples Kernel Density Estimation on samples Radial Basis Function on lattice Moving Least Squares on lattice −1 0 1 2 3 −5 0 5 log(θ1) log(θ2) Significantly less points required to reach the same approximation quality!
  • 35. Fabian Froehlich Uncertainty Analysis for Dynamical Systems using Radial Basis Functions 10 A B 𝜃 𝜃2 1 0 1 2 3 4 5 0 0.5 1 1.5 Time Concentration A B time concentration −1 0 1 2 3 −5 0 5 log(θ1) log(θ2) Example 2: Conversion Reaction ˙A = ✓1A + ✓2B A(0) = 1 ˙B = +✓1A ✓2B B(0) = 0 D = {A(tk), k}5 k=1
  • 36. Fabian Froehlich Uncertainty Analysis for Dynamical Systems using Radial Basis Functions 11 Error in Marginals RBF KDE L 0.029 0.17 l 0.014 1.3411 N −1 0 1 2 3 −5 0 5 log(θ1) log(θ2) KDE Marginal 437 pts. RBF Marginal 437 pts. −2 0 2 0 0.1 0.2 0.3 0.4 log(k )−1 −2 0 2 00.51 log(k)+1 0 1 2 0.5 prob. density prob.density KDE Marginal 10 pts.6 Error Analysis (Example 2)
  • 37. Fabian Froehlich Uncertainty Analysis for Dynamical Systems using Radial Basis Functions 11 Error in Marginals RBF KDE L 0.029 0.17 l 0.014 1.3411 N −1 0 1 2 3 −5 0 5 log(θ1) log(θ2) KDE Marginal 437 pts. RBF Marginal 437 pts. −2 0 2 0 0.1 0.2 0.3 0.4 log(k )−1 −2 0 2 00.51 log(k)+1 0 1 2 0.5 prob. density prob.density KDE Marginal 10 pts.6 Error Analysis (Example 2) 5-10 fold higher accuracy with same number of function evaluations
  • 38. Fabian Froehlich Uncertainty Analysis for Dynamical Systems using Radial Basis Functions 12 off on on off kr mRNA (r) r protein (p) p kp DNA (D) Kazeroonian et. al. 2013, Proceedings of the 10th Workshop on Computational Systems Biology −1 0 1 2 3 −5 0 5 log(θ1) log(θ2) Example 2: Stochastic Gene Expression • Chemical Master Equation (Chapman-Kolmogorov Equation) with 2562 dimensional state space and 4 dimensional parameter space • 1 function evaluation takes from several seconds up to minutes
  • 39. Fabian Froehlich Uncertainty Analysis for Dynamical Systems using Radial Basis Functions 12 off on on off kr mRNA (r) r protein (p) p kp DNA (D) Kazeroonian et. al. 2013, Proceedings of the 10th Workshop on Computational Systems Biology −1 0 1 2 3 −5 0 5 log(θ1) log(θ2) Example 2: Stochastic Gene Expression • Chemical Master Equation (Chapman-Kolmogorov Equation) with 2562 dimensional state space and 4 dimensional parameter space • 1 function evaluation takes from several seconds up to minutes
  • 40. Fabian Froehlich Uncertainty Analysis for Dynamical Systems using Radial Basis Functions 13 −1 0 1 2 3 −5 0 5 log(θ1) log(θ2) Error Analysis (Example 3) 0 1 2 3 4 5 0 5 10 15 20 25 30 time t Proteinmoleculenumber time proteinmoleculenumber 1.2 1.4 1.6 1.8 2 0 5 10 15 20 25 30 35 40 log(km) probabilitydensityML(𝜃) log(km) −3.4 −3.2 −3 −2.8 −2.6 0 2 4 6 8 10 12 14 log(τof f) probabilitydensity log(𝞃off) ML(𝜃) 1 1.2 1.4 1.6 1.8 0 10 20 30 40 50 60 log(kp) probabilitydensity log(kp) ML(𝜃) −3.4 −3.2 −3 −2.8 −2.6 0 5 10 15 20 25 30 log(τon) probabilitydensity KDE on 104 pts. KDE on 6369 pts. MLS on 6369 pts. ML(𝜃) log(𝞃on)
  • 41. Fabian Froehlich Uncertainty Analysis for Dynamical Systems using Radial Basis Functions • Significant improvement for low dimensional problems, comparable performance for high dimensional problems. • Approximated density can be also be used to compute profiles with high efficiency 14 Conclusions/Outlook
  • 42. Fabian Froehlich Uncertainty Analysis for Dynamical Systems using Radial Basis Functions 15 Institute for Computational Biology Helmholtz Zentrum München Atefeh Kazeroonian Sabrina Hock Jan Hasenauer Frank Filbir Fabian Theis M12 Mathematische Modellierung biologischer Systeme Technische Universität München Jan Hasenauer Frank Filbir Fabian Theis M15 Applied Numerical Analysis Technische Universität München Frank Filbir Acknowledgements Thank you for your attention!