Assumptions: 
Check yo self, before 
you wreck yo self. 
Erin Shellman @erinshellman 
Seattle Software Craftsmanship 
August 28, 2014 
!
Assumptions: 
Making an ass out of you 
and me. 
Erin Shellman @erinshellman 
Seattle Software Craftsmanship 
August 28, 2014 
!
I’m Erin, and I’m a 
data scientist.
How much should 
this cost?
What about these?
…and when? 
What about these?
Price optimization
Price optimization 
1. Git yer 
Big Data!
Price optimization 
1. Git yer 
Big Data! 
2. Forecast 
demand
Price optimization 
1. Git yer 
Big Data! 
2. Forecast 
demand 
3. Optimize 
price
Price optimization 
4. Profit!!!!! 
1. 
Big Data! 
2. 
demand 
3. 
price
Price optimization 
1. Git yer 
Big Data! 
2. Forecast 
demand 
3. Optimize 
price 
max 
X 
yi = !0 + !1xi + ✏i revenue
The key is a 
good forecast.
Do the easiest thing 
•Subset the data and focus on one category of 
product. 
• e.g. Alpine ski bindings. 
• Prototype & validate in R. 
Units Soldi = α + β1(pricei) + εi
Do the easiest thing 
•Subset the data and focus on one category of 
product. 
• e.g. Alpine ski bindings. 
• Prototype & validate in R. 
Units Soldi = α + β1(pricei) + εi 
Residual
Assumptions of SLR 
•We assume that residuals: 
1.Normal, with mean zero. 
2.Are not autocorrelated. 
3.Are unrelated to the predictors.
Checking assumptions is 
hard 
•…and boring! 
•For statistical methods, assumption 
testing traditionally relies on 
visually inspecting plots (and lets 
be real, most people don’t even 
do that).
40 60 80 100 120 
0 500 1000 1500 2000 2500 
Fitted values 
Residuals 
Residuals vs Fitted 
117914 
156 
-3 -2 -1 0 1 2 3 
0 2 4 6 8 
Theoretical Quantiles 
Standardized residuals 
Normal Q-Q 
194 
171 
156 
40 60 80 100 120 
0.0 0.5 1.0 1.5 2.0 2.5 
Fitted values 
Standardized residuals 
Scale-Location 
117914 
156 
0.00 0.01 0.02 0.03 0.04 
0 2 4 6 8 
Leverage 
Standardized residuals 
Cook's distance 
1 
0.5 
Residuals vs Leverage 
119741 
109
OF all the practices you can 
leverage to assist your 
craftsmanship, you will get 
the most benefit from testing. 
! 
Stephen Vance
test_that assumption! 
context("Check assumptions of SLR") 
! 
test_that("The residuals are normally distributed", { 
! 
expect_that(shapiro.test(model_object$residuals)$p.value, is_more_than(0.05)) 
! 
}) 
! 
test_that("There is no autocorrelation", { 
! 
expect_that(lmtest::bgtest(model_object)$p.value, is_more_than(0.05)) 
! 
}) 
! 
test_that("The residuals are unrelated to the predictor", { 
! 
expect_that(cor(model_object$residuals, data$covariates), equals(0)) 
! 
}) 
!
Tests pass! 
> test_file("./tests/test_slr.R") 
Check assumptions of SLR : [1] "units_sold ~ price" 
... 
!
Psych. 
> test_file("./tests/test_slr.R") 
Check assumptions of SLR : [1] "units_sold ~ price" 
1.. 
!! 
1. Failure(@test_slr.R#12): The residuals are normally distributed 
------------------------ 
shapiro.test(model_object$residuals)$p.value not more than 0.05. Difference: 0.05 
!
Linear? Eh. 
•We assumed the 
2500 
functional form was 
2000 
linear, but there are 
1500 
several common forms 
1000 
that might better fit the 
500 
data. 0 
100 200 300 400 500 
Price ($) 
Units Sold
Price ($) 
Units Sold 
Price ($) 
Units Sold 
Price ($) 
Units Sold 
Price ($) 
Units Sold 
Linear Log-log 
Linear-log Log-linear
Price ($) 
Units Sold 
Price ($) 
Units Sold 
Price ($) 
Units Sold 
Price ($) 
Units Sold 
Linear response to change in price. Much more sensitive to change in price. 
More gradual response to changes in price Sensitive initially, then gradual
# Automagically explore SLR with common functional forms 
candidate_models = list(linear = 'units_sold ~ price', 
loglog = 'log(units_sold + 1) ~ log(price + 1)', 
linearlog = 'units_sold ~ log(price + 1)', 
loglinear = 'log(units_sold + 1) ~ price') 
! 
run = function(candidate_models, input_data) { 
forecasts = list() 
test_input = data.frame(price = 0:1000) 
! 
# Forecast 
for (model in candidate_models) { 
test_environment = new.env() 
! 
# Generate the forecast 
forecasts[[model]] = generate_forecast(model, input_data) 
! 
# Save off current value of things for testing 
assign("model", forecasts[[model]], envir = test_environment) 
assign("errors", forecasts[[model]]$residuals, envir = test_environment) 
assign("covariate", input_data$price, envir = test_environment) 
assign("label", model, envir = test_environment) 
! 
save(test_environment, file = 'env_to_test.Rda') 
! 
# Run assumption tests 
test_file("./tests/test_slr.R") 
! 
#### OPTIMIZE PRICE!!! #### 
opt_results = optimizer(forecasts[[model]], test_input) 
! 
# Multiply the predicted demand by the price for expected revenue 
opt_results$expected_revenue = test_data$price * opt_results$predicted_units_sold 
! 
pdf(paste(model, “.pdf”, sep = ‘’)) 
plot_price(opt_results) 
! 
} 
! 
return(forecasts) 
! 
}
rut roh… 
> run(candidate_models, slr_data) 
Check assumptions of SLR : [1] "units_sold ~ price" 
1.. 
!! 
1. Failure(@test_slr.R#12): The residuals are normally distributed --------------------------------- 
shapiro.test(linear$residuals)$p.value not more than 0.05. Difference: 0.05 
! 
Check assumptions of SLR : [1] "log(units_sold + 1) ~ log(price + 1)" 
1.2 
!! 
1. Failure(@test_slr.R#12): The residuals are normally distributed --------------------------------- 
shapiro.test(linear$residuals)$p.value not more than 0.05. Difference: 0.05 
! 
2. Failure(@test_slr.R#24): The residuals are unrelated to the predictor --------------------------- 
cor(test_environment$errors, test_environment$covariate) not equal to 0 
Mean absolute difference: 0.05545615 
! 
Check assumptions of SLR : [1] "units_sold ~ log(price + 1)" 
1.2 
!! 
1. Failure(@test_slr.R#12): The residuals are normally distributed --------------------------------- 
shapiro.test(linear$residuals)$p.value not more than 0.05. Difference: 0.05 
! 
2. Failure(@test_slr.R#24): The residuals are unrelated to the predictor --------------------------- 
cor(test_environment$errors, test_environment$covariate) not equal to 0 
Mean absolute difference: 0.04201906 
! 
Check assumptions of SLR : [1] "log(units_sold + 1) ~ price" 
1.. 
!! 
1. Failure(@test_slr.R#12): The residuals are normally distributed --------------------------------- 
shapiro.test(linear$residuals)$p.value not more than 0.05. Difference: 0.05
20000 
15000 
10000 
5000 
0 
Linear Log-log 
0 250 500 750 1000 
Price ($) 
Expected Revenue 
15000 
10000 
5000 
0 
0 250 500 750 1000 
Price ($) 
Expected Revenue 
Linear-log Log-linear 
6000 
4000 
2000 
0 
0 250 500 750 1000 
Price ($) 
Expected Revenue 
60000 
40000 
20000 
0 
0 250 500 750 1000 
Price ($) 
Expected Revenue
20000 
15000 
10000 
5000 
Optimal Price = $322 
0 
Linear Log-log 
0 250 500 750 1000 
Price ($) 
Expected Revenue 
15000 
10000 
5000 
0 
0 250 500 750 1000 
Price ($) 
Expected Revenue 
Linear-log Log-linear 
6000 
4000 
2000 
0 
0 250 500 750 1000 
Price ($) 
Expected Revenue 
60000 
40000 
20000 
0 
0 250 500 750 1000 
Price ($) 
Expected Revenue 
Optimal Price > $1000 
Optimal Price = $∞ 
Optimal Price = $779
Mean = 185 
40 
30 
20 
10 
0 
100 200 300 400 
Price ($) 
Counts
In conclusion, these 
forecasts suck. 
We are just 
getting 
warmed up!
Beginner-Intermediate Intermediate-Advanced Advanced-Expert 
2000 
1500 
1000 
500 
0 
0 100 200 300 400 5000 100 200 300 400 5000 100 200 300 400 500 
Price ($) 
Units Sold
2011-06-01 2011-10-01 2012-02-01 2012-06-01 2012-10-01 2013-02-01 2013-06-01 2013-10-01 2014-02-01 
Date 
Units Sold
2011-06-01 2011-10-01 2012-02-01 2012-06-01 2012-10-01 2013-02-01 2013-06-01 2013-10-01 2014-02-01 
Date 
Units Sold 
TIME?!
Try something a little 
smarter 
Units Soldi = α + β1(pricei) + β2(abilityi) + β3(monthi) + εi
Beginner-Intermediate Intermediate-Advanced Advanced-Expert 
15000 
10000 
5000 
0 
15000 
10000 
5000 
0 
15000 
10000 
5000 
0 
15000 
10000 
5000 
0 
15000 
10000 
5000 
0 
15000 
10000 
5000 
0 
15000 
10000 
5000 
0 
15000 
10000 
5000 
0 
15000 
10000 
5000 
0 
15000 
10000 
5000 
0 
15000 
10000 
5000 
0 
15000 
10000 
5000 
0 
1 2 3 4 5 6 7 8 9 10 11 12 
0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000 
Price ($) 
Expected Revenue
Yeah, but who cares? 
•Do we need to throw everything out 
just because some assumptions are 
invalidated? 
•What is our goal? 
•Is it still better than what we did 
previously?
Wrap it up. 
1. Do the easiest thing first, and do it well. 
It’s how you’re going to learn the domain, 
and it’s your benchmark for improvement. 
2. Test your assumptions, and invest time in 
building the tools needed to do that 
effectively. 
3. Be cool, stay in school.
Thanks bros!! 
Nathan Decker, Brian Pratt & the Evo crew  
Jason Gowans & Bryan Mayer  
Elissa “Downtown” Brown, forecasting genius  
John Foreman, MailChimp  
#nordstromdatalab 
Click-bait! 
1. Data Carpentry: http://mimno.infosci.cornell.edu/b/articles/carpentry/ 
2. Getting started with testthat. http://journal.r-project.org/archive/2011-1/ 
RJournal_2011-1_Wickham.pdf 
3. Clean Code: http://www.amazon.com/Clean-Code-Handbook-Software- 
Craftsmanship/dp/0132350882/ 
4. Quality Code: http://www.amazon.com/Quality-Code-Software-Principles- 
Practices/dp/0321832981 
5. Revenue Management: http://www.amazon.com/Practice-Management- 
International-Operations-Research/dp/0387243763/ 
6. Pricing and Revenue Optimization: http://www.amazon.com/Pricing-Revenue- 
Optimization-Robert-Phillips-ebook/dp/B005JTDOVE/ 
7. Original G, Rob Hyndman: https://www.otexts.org/fpp and http:// 
robjhyndman.com/hyndsight/

Assumptions: Check yo'self before you wreck yourself

  • 1.
    Assumptions: Check yoself, before you wreck yo self. Erin Shellman @erinshellman Seattle Software Craftsmanship August 28, 2014 !
  • 2.
    Assumptions: Making anass out of you and me. Erin Shellman @erinshellman Seattle Software Craftsmanship August 28, 2014 !
  • 3.
    I’m Erin, andI’m a data scientist.
  • 4.
    How much should this cost?
  • 5.
  • 6.
    …and when? Whatabout these?
  • 7.
  • 8.
    Price optimization 1.Git yer Big Data!
  • 9.
    Price optimization 1.Git yer Big Data! 2. Forecast demand
  • 10.
    Price optimization 1.Git yer Big Data! 2. Forecast demand 3. Optimize price
  • 11.
    Price optimization 4.Profit!!!!! 1. Big Data! 2. demand 3. price
  • 12.
    Price optimization 1.Git yer Big Data! 2. Forecast demand 3. Optimize price max X yi = !0 + !1xi + ✏i revenue
  • 13.
    The key isa good forecast.
  • 15.
    Do the easiestthing •Subset the data and focus on one category of product. • e.g. Alpine ski bindings. • Prototype & validate in R. Units Soldi = α + β1(pricei) + εi
  • 16.
    Do the easiestthing •Subset the data and focus on one category of product. • e.g. Alpine ski bindings. • Prototype & validate in R. Units Soldi = α + β1(pricei) + εi Residual
  • 17.
    Assumptions of SLR •We assume that residuals: 1.Normal, with mean zero. 2.Are not autocorrelated. 3.Are unrelated to the predictors.
  • 18.
    Checking assumptions is hard •…and boring! •For statistical methods, assumption testing traditionally relies on visually inspecting plots (and lets be real, most people don’t even do that).
  • 19.
    40 60 80100 120 0 500 1000 1500 2000 2500 Fitted values Residuals Residuals vs Fitted 117914 156 -3 -2 -1 0 1 2 3 0 2 4 6 8 Theoretical Quantiles Standardized residuals Normal Q-Q 194 171 156 40 60 80 100 120 0.0 0.5 1.0 1.5 2.0 2.5 Fitted values Standardized residuals Scale-Location 117914 156 0.00 0.01 0.02 0.03 0.04 0 2 4 6 8 Leverage Standardized residuals Cook's distance 1 0.5 Residuals vs Leverage 119741 109
  • 20.
    OF all thepractices you can leverage to assist your craftsmanship, you will get the most benefit from testing. ! Stephen Vance
  • 21.
    test_that assumption! context("Checkassumptions of SLR") ! test_that("The residuals are normally distributed", { ! expect_that(shapiro.test(model_object$residuals)$p.value, is_more_than(0.05)) ! }) ! test_that("There is no autocorrelation", { ! expect_that(lmtest::bgtest(model_object)$p.value, is_more_than(0.05)) ! }) ! test_that("The residuals are unrelated to the predictor", { ! expect_that(cor(model_object$residuals, data$covariates), equals(0)) ! }) !
  • 22.
    Tests pass! >test_file("./tests/test_slr.R") Check assumptions of SLR : [1] "units_sold ~ price" ... !
  • 23.
    Psych. > test_file("./tests/test_slr.R") Check assumptions of SLR : [1] "units_sold ~ price" 1.. !! 1. Failure(@test_slr.R#12): The residuals are normally distributed ------------------------ shapiro.test(model_object$residuals)$p.value not more than 0.05. Difference: 0.05 !
  • 24.
    Linear? Eh. •Weassumed the 2500 functional form was 2000 linear, but there are 1500 several common forms 1000 that might better fit the 500 data. 0 100 200 300 400 500 Price ($) Units Sold
  • 25.
    Price ($) UnitsSold Price ($) Units Sold Price ($) Units Sold Price ($) Units Sold Linear Log-log Linear-log Log-linear
  • 26.
    Price ($) UnitsSold Price ($) Units Sold Price ($) Units Sold Price ($) Units Sold Linear response to change in price. Much more sensitive to change in price. More gradual response to changes in price Sensitive initially, then gradual
  • 30.
    # Automagically exploreSLR with common functional forms candidate_models = list(linear = 'units_sold ~ price', loglog = 'log(units_sold + 1) ~ log(price + 1)', linearlog = 'units_sold ~ log(price + 1)', loglinear = 'log(units_sold + 1) ~ price') ! run = function(candidate_models, input_data) { forecasts = list() test_input = data.frame(price = 0:1000) ! # Forecast for (model in candidate_models) { test_environment = new.env() ! # Generate the forecast forecasts[[model]] = generate_forecast(model, input_data) ! # Save off current value of things for testing assign("model", forecasts[[model]], envir = test_environment) assign("errors", forecasts[[model]]$residuals, envir = test_environment) assign("covariate", input_data$price, envir = test_environment) assign("label", model, envir = test_environment) ! save(test_environment, file = 'env_to_test.Rda') ! # Run assumption tests test_file("./tests/test_slr.R") ! #### OPTIMIZE PRICE!!! #### opt_results = optimizer(forecasts[[model]], test_input) ! # Multiply the predicted demand by the price for expected revenue opt_results$expected_revenue = test_data$price * opt_results$predicted_units_sold ! pdf(paste(model, “.pdf”, sep = ‘’)) plot_price(opt_results) ! } ! return(forecasts) ! }
  • 31.
    rut roh… >run(candidate_models, slr_data) Check assumptions of SLR : [1] "units_sold ~ price" 1.. !! 1. Failure(@test_slr.R#12): The residuals are normally distributed --------------------------------- shapiro.test(linear$residuals)$p.value not more than 0.05. Difference: 0.05 ! Check assumptions of SLR : [1] "log(units_sold + 1) ~ log(price + 1)" 1.2 !! 1. Failure(@test_slr.R#12): The residuals are normally distributed --------------------------------- shapiro.test(linear$residuals)$p.value not more than 0.05. Difference: 0.05 ! 2. Failure(@test_slr.R#24): The residuals are unrelated to the predictor --------------------------- cor(test_environment$errors, test_environment$covariate) not equal to 0 Mean absolute difference: 0.05545615 ! Check assumptions of SLR : [1] "units_sold ~ log(price + 1)" 1.2 !! 1. Failure(@test_slr.R#12): The residuals are normally distributed --------------------------------- shapiro.test(linear$residuals)$p.value not more than 0.05. Difference: 0.05 ! 2. Failure(@test_slr.R#24): The residuals are unrelated to the predictor --------------------------- cor(test_environment$errors, test_environment$covariate) not equal to 0 Mean absolute difference: 0.04201906 ! Check assumptions of SLR : [1] "log(units_sold + 1) ~ price" 1.. !! 1. Failure(@test_slr.R#12): The residuals are normally distributed --------------------------------- shapiro.test(linear$residuals)$p.value not more than 0.05. Difference: 0.05
  • 32.
    20000 15000 10000 5000 0 Linear Log-log 0 250 500 750 1000 Price ($) Expected Revenue 15000 10000 5000 0 0 250 500 750 1000 Price ($) Expected Revenue Linear-log Log-linear 6000 4000 2000 0 0 250 500 750 1000 Price ($) Expected Revenue 60000 40000 20000 0 0 250 500 750 1000 Price ($) Expected Revenue
  • 33.
    20000 15000 10000 5000 Optimal Price = $322 0 Linear Log-log 0 250 500 750 1000 Price ($) Expected Revenue 15000 10000 5000 0 0 250 500 750 1000 Price ($) Expected Revenue Linear-log Log-linear 6000 4000 2000 0 0 250 500 750 1000 Price ($) Expected Revenue 60000 40000 20000 0 0 250 500 750 1000 Price ($) Expected Revenue Optimal Price > $1000 Optimal Price = $∞ Optimal Price = $779
  • 35.
    Mean = 185 40 30 20 10 0 100 200 300 400 Price ($) Counts
  • 36.
    In conclusion, these forecasts suck. We are just getting warmed up!
  • 37.
    Beginner-Intermediate Intermediate-Advanced Advanced-Expert 2000 1500 1000 500 0 0 100 200 300 400 5000 100 200 300 400 5000 100 200 300 400 500 Price ($) Units Sold
  • 38.
    2011-06-01 2011-10-01 2012-02-012012-06-01 2012-10-01 2013-02-01 2013-06-01 2013-10-01 2014-02-01 Date Units Sold
  • 39.
    2011-06-01 2011-10-01 2012-02-012012-06-01 2012-10-01 2013-02-01 2013-06-01 2013-10-01 2014-02-01 Date Units Sold TIME?!
  • 40.
    Try something alittle smarter Units Soldi = α + β1(pricei) + β2(abilityi) + β3(monthi) + εi
  • 41.
    Beginner-Intermediate Intermediate-Advanced Advanced-Expert 15000 10000 5000 0 15000 10000 5000 0 15000 10000 5000 0 15000 10000 5000 0 15000 10000 5000 0 15000 10000 5000 0 15000 10000 5000 0 15000 10000 5000 0 15000 10000 5000 0 15000 10000 5000 0 15000 10000 5000 0 15000 10000 5000 0 1 2 3 4 5 6 7 8 9 10 11 12 0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000 Price ($) Expected Revenue
  • 42.
    Yeah, but whocares? •Do we need to throw everything out just because some assumptions are invalidated? •What is our goal? •Is it still better than what we did previously?
  • 43.
    Wrap it up. 1. Do the easiest thing first, and do it well. It’s how you’re going to learn the domain, and it’s your benchmark for improvement. 2. Test your assumptions, and invest time in building the tools needed to do that effectively. 3. Be cool, stay in school.
  • 44.
    Thanks bros!! NathanDecker, Brian Pratt & the Evo crew  Jason Gowans & Bryan Mayer  Elissa “Downtown” Brown, forecasting genius  John Foreman, MailChimp  #nordstromdatalab 
  • 45.
    Click-bait! 1. DataCarpentry: http://mimno.infosci.cornell.edu/b/articles/carpentry/ 2. Getting started with testthat. http://journal.r-project.org/archive/2011-1/ RJournal_2011-1_Wickham.pdf 3. Clean Code: http://www.amazon.com/Clean-Code-Handbook-Software- Craftsmanship/dp/0132350882/ 4. Quality Code: http://www.amazon.com/Quality-Code-Software-Principles- Practices/dp/0321832981 5. Revenue Management: http://www.amazon.com/Practice-Management- International-Operations-Research/dp/0387243763/ 6. Pricing and Revenue Optimization: http://www.amazon.com/Pricing-Revenue- Optimization-Robert-Phillips-ebook/dp/B005JTDOVE/ 7. Original G, Rob Hyndman: https://www.otexts.org/fpp and http:// robjhyndman.com/hyndsight/