SlideShare a Scribd company logo
1 of 35
Dimensionality Reduction
Fereshteh Sadeghi
CSEP 546
Motivation
• Clustering
• One way to summarize a complex real-valued data point with a single
categorical variable
• Dimensionality reduction
• Another way to simplify complex high-dimensional data
• Summarize data with a lower dimensional real valued vector
Motivation
• Clustering
• One way to summarize a complex real-valued data point with a single
categorical variable
• Dimensionality reduction
• Another way to simplify complex high-dimensional data
• Summarize data with a lower dimentional real valued vector
• Given data points in d dimensions
• Convert them to data points in r<d dimensions
• With minimal loss of information
Data Compression
(inches)
(cm)
Reduce data from
2D to 1D
Andrew Ng
Data Compression
Reduce data from
2D to 1D
(inches)
(cm)
Andrew Ng
Data Compression
Reduce data from 3D to 2D
Andrew Ng
Principal Component Analysis (PCA) problem formulation
Reduce from 2-dimension to 1-dimension: Find a direction (a vector )
onto which to project the data so as to minimize the projection error.
Reduce from n-dimension to k-dimension: Find vectors
onto which to project the data, so as to minimize the projection error.
Andrew Ng
Covariance
• Variance and Covariance:
• Measure of the “spread” of a set of points around their center of mass(mean)
• Variance:
• Measure of the deviation from the mean for points in one dimension
• Covariance:
• Measure of how much each of the dimensions vary from the mean with
respect to each other
• Covariance is measured between two dimensions
• Covariance sees if there is a relation between two dimensions
• Covariance between one dimension is the variance
Positive: Both dimensions increase or decrease together Negative: While one increase the other decrease
Covariance
• Used to find relationships between dimensions in high dimensional
data sets
The Sample mean
Eigenvector and Eigenvalue
Ax = λx
A: Square Matirx
λ: Eigenvector or characteristic vector
X: Eigenvalue or characteristic value
• The zero vector can not be an eigenvector
• The value zero can be eigenvalue
Eigenvector and Eigenvalue
Ax = λx
A: Square Matirx
λ: Eigenvector or characteristic vector
X: Eigenvalue or characteristic value
Example
Eigenvector and Eigenvalue
Ax - λx = 0
(A – λI)x = 0
B = A – λI
Bx = 0
x = B-10 = 0
If we define a new matrix B:
If B has an inverse:
BUT! an eigenvector
cannot be zero!!
x will be an eigenvector of A if and only if B does
not have an inverse, or equivalently det(B)=0 :
det(A – λI) = 0
Ax = λx
Example 1: Find the eigenvalues of
two eigenvalues: 1,  2
Note: The roots of the characteristic equation can be repeated. That is, λ1 = λ2 =…= λk.
If that happens, the eigenvalue is said to be of multiplicity k.
Example 2: Find the eigenvalues of
λ = 2 is an eigenvector of multiplicity 3.









5
1
12
2
A
)
2
)(
1
(
2
3
12
)
5
)(
2
(
5
1
12
2
2























 A
I











2
0
0
0
2
0
0
1
2
A
0
)
2
(
2
0
0
0
2
0
0
1
2
3








 



 A
I
Eigenvector and Eigenvalue
Principal Component Analysis
Input:
Summarize a D dimensional vector X with K dimensional
feature vector h(x)
Set of basis vectors:
Principal Component Analysis
Basis vectors are orthonormal
New data representation h(x)
Principal Component Analysis
New data representation h(x)
Empirical mean of the data
• The top three principal components of SIFT descriptors from a set of images are computed
• Map these principal components to the principal components of the RGB space
• pixels with similar colors share similar structures
SIFT feature visualization
Original Image
• Divide the original 372x492 image into patches:
• Each patch is an instance that contains 12x12 pixels on a grid
• View each as a 144-D vector
Application: Image compression
PCA compression: 144D  60D
PCA compression: 144D  16D
16 most important eigenvectors
2 4 6 8 10 12
2
4
6
8
10
12
2 4 6 8 10 12
2
4
6
8
10
12
2 4 6 8 10 12
2
4
6
8
10
12
2 4 6 8 10 12
2
4
6
8
10
12
2 4 6 8 10 12
2
4
6
8
10
12
2 4 6 8 10 12
2
4
6
8
10
12
2 4 6 8 10 12
2
4
6
8
10
12
2 4 6 8 10 12
2
4
6
8
10
12
2 4 6 8 10 12
2
4
6
8
10
12
2 4 6 8 10 12
2
4
6
8
10
12
2 4 6 8 10 12
2
4
6
8
10
12
2 4 6 8 10 12
2
4
6
8
10
12
2 4 6 8 10 12
2
4
6
8
10
12
2 4 6 8 10 12
2
4
6
8
10
12
2 4 6 8 10 12
2
4
6
8
10
12
2 4 6 8 10 12
2
4
6
8
10
12
PCA compression: 144D ) 6D
2 4 6 8 10 12
2
4
6
8
10
12
2 4 6 8 10 12
2
4
6
8
10
12
2 4 6 8 10 12
2
4
6
8
10
12
2 4 6 8 10 12
2
4
6
8
10
12
2 4 6 8 10 12
2
4
6
8
10
12
2 4 6 8 10 12
2
4
6
8
10
12
6 most important eigenvectors
PCA compression: 144D  3D
2 4 6 8 10 12
2
4
6
8
10
12
2 4 6 8 10 12
2
4
6
8
10
12
2 4 6 8 10 12
2
4
6
8
10
12
3 most important eigenvectors
PCA compression: 144D  1D
60 most important eigenvectors
Looks like the discrete cosine bases of JPG!...
2D Discrete Cosine Basis
http://en.wikipedia.org/wiki/Discrete_cosine_transform
Dimensionality reduction
• PCA (Principal Component Analysis):
• Find projection that maximize the variance
• ICA (Independent Component Analysis):
• Very similar to PCA except that it assumes non-Guassian features
• Multidimensional Scaling:
• Find projection that best preserves inter-point distances
• LDA(Linear Discriminant Analysis):
• Maximizing the component axes for class-separation
• …
• …

More Related Content

Similar to principle component analysis pca - machine learning - unsupervised learning

Lecture32
Lecture32Lecture32
Lecture32zukun
 
Large Scale Machine Learning with Apache Spark
Large Scale Machine Learning with Apache SparkLarge Scale Machine Learning with Apache Spark
Large Scale Machine Learning with Apache SparkCloudera, Inc.
 
Introduction to Principle Component Analysis
Introduction to Principle Component AnalysisIntroduction to Principle Component Analysis
Introduction to Principle Component AnalysisSunjeet Jena
 
Kulum alin-11 jan2014
Kulum alin-11 jan2014Kulum alin-11 jan2014
Kulum alin-11 jan2014rolly purnomo
 
pcappt-140121072949-phpapp01.pptx
pcappt-140121072949-phpapp01.pptxpcappt-140121072949-phpapp01.pptx
pcappt-140121072949-phpapp01.pptxABINASHPADHY6
 
Data Mining Lecture_10(b).pptx
Data Mining Lecture_10(b).pptxData Mining Lecture_10(b).pptx
Data Mining Lecture_10(b).pptxSubrata Kumer Paul
 
DimensionalityReduction.pptx
DimensionalityReduction.pptxDimensionalityReduction.pptx
DimensionalityReduction.pptx36rajneekant
 
Week 12 Dimensionality Reduction Bagian 1
Week 12 Dimensionality Reduction Bagian 1Week 12 Dimensionality Reduction Bagian 1
Week 12 Dimensionality Reduction Bagian 1khairulhuda242
 
Principal component analysis and lda
Principal component analysis and ldaPrincipal component analysis and lda
Principal component analysis and ldaSuresh Pokharel
 
Support vector machine
Support vector machineSupport vector machine
Support vector machinePrasenjit Dey
 
Regression Analysis.pptx
Regression Analysis.pptxRegression Analysis.pptx
Regression Analysis.pptxShivankAggatwal
 
Principal Component Analysis (PCA) and LDA PPT Slides
Principal Component Analysis (PCA) and LDA PPT SlidesPrincipal Component Analysis (PCA) and LDA PPT Slides
Principal Component Analysis (PCA) and LDA PPT SlidesAbhishekKumar4995
 
Paris data-geeks-2013-03-28
Paris data-geeks-2013-03-28Paris data-geeks-2013-03-28
Paris data-geeks-2013-03-28Ted Dunning
 
5 DimensionalityReduction.pdf
5 DimensionalityReduction.pdf5 DimensionalityReduction.pdf
5 DimensionalityReduction.pdfRahul926331
 
Unit 4_3 Correlation Regression.pptx
Unit 4_3 Correlation Regression.pptxUnit 4_3 Correlation Regression.pptx
Unit 4_3 Correlation Regression.pptxAppasamiG
 

Similar to principle component analysis pca - machine learning - unsupervised learning (20)

Lecture32
Lecture32Lecture32
Lecture32
 
An introduction to R
An introduction to RAn introduction to R
An introduction to R
 
SVD.ppt
SVD.pptSVD.ppt
SVD.ppt
 
Large Scale Machine Learning with Apache Spark
Large Scale Machine Learning with Apache SparkLarge Scale Machine Learning with Apache Spark
Large Scale Machine Learning with Apache Spark
 
Introduction to Principle Component Analysis
Introduction to Principle Component AnalysisIntroduction to Principle Component Analysis
Introduction to Principle Component Analysis
 
Kulum alin-11 jan2014
Kulum alin-11 jan2014Kulum alin-11 jan2014
Kulum alin-11 jan2014
 
Realtime Analytics
Realtime AnalyticsRealtime Analytics
Realtime Analytics
 
Data preprocessing
Data preprocessingData preprocessing
Data preprocessing
 
pcappt-140121072949-phpapp01.pptx
pcappt-140121072949-phpapp01.pptxpcappt-140121072949-phpapp01.pptx
pcappt-140121072949-phpapp01.pptx
 
Data Mining Lecture_10(b).pptx
Data Mining Lecture_10(b).pptxData Mining Lecture_10(b).pptx
Data Mining Lecture_10(b).pptx
 
DimensionalityReduction.pptx
DimensionalityReduction.pptxDimensionalityReduction.pptx
DimensionalityReduction.pptx
 
Week 12 Dimensionality Reduction Bagian 1
Week 12 Dimensionality Reduction Bagian 1Week 12 Dimensionality Reduction Bagian 1
Week 12 Dimensionality Reduction Bagian 1
 
Principal component analysis and lda
Principal component analysis and ldaPrincipal component analysis and lda
Principal component analysis and lda
 
Support vector machine
Support vector machineSupport vector machine
Support vector machine
 
Regression Analysis.pptx
Regression Analysis.pptxRegression Analysis.pptx
Regression Analysis.pptx
 
Principal Component Analysis (PCA) and LDA PPT Slides
Principal Component Analysis (PCA) and LDA PPT SlidesPrincipal Component Analysis (PCA) and LDA PPT Slides
Principal Component Analysis (PCA) and LDA PPT Slides
 
Paris data-geeks-2013-03-28
Paris data-geeks-2013-03-28Paris data-geeks-2013-03-28
Paris data-geeks-2013-03-28
 
5 DimensionalityReduction.pdf
5 DimensionalityReduction.pdf5 DimensionalityReduction.pdf
5 DimensionalityReduction.pdf
 
Unit 4_3 Correlation Regression.pptx
Unit 4_3 Correlation Regression.pptxUnit 4_3 Correlation Regression.pptx
Unit 4_3 Correlation Regression.pptx
 
Data Mining Lecture_9.pptx
Data Mining Lecture_9.pptxData Mining Lecture_9.pptx
Data Mining Lecture_9.pptx
 

Recently uploaded

The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...PsychoTech Services
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfagholdier
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhikauryashika82
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsTechSoup
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAssociation for Project Management
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxVishalSingh1417
 
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...Sapna Thakur
 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room servicediscovermytutordmt
 
social pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajansocial pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajanpragatimahajan3
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Celine George
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactPECB
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphThiyagu K
 

Recently uploaded (20)

Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across Sectors
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room service
 
social pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajansocial pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajan
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 

principle component analysis pca - machine learning - unsupervised learning

  • 2. Motivation • Clustering • One way to summarize a complex real-valued data point with a single categorical variable • Dimensionality reduction • Another way to simplify complex high-dimensional data • Summarize data with a lower dimensional real valued vector
  • 3. Motivation • Clustering • One way to summarize a complex real-valued data point with a single categorical variable • Dimensionality reduction • Another way to simplify complex high-dimensional data • Summarize data with a lower dimentional real valued vector • Given data points in d dimensions • Convert them to data points in r<d dimensions • With minimal loss of information
  • 5. Data Compression Reduce data from 2D to 1D (inches) (cm) Andrew Ng
  • 6. Data Compression Reduce data from 3D to 2D Andrew Ng
  • 7. Principal Component Analysis (PCA) problem formulation Reduce from 2-dimension to 1-dimension: Find a direction (a vector ) onto which to project the data so as to minimize the projection error. Reduce from n-dimension to k-dimension: Find vectors onto which to project the data, so as to minimize the projection error. Andrew Ng
  • 8.
  • 9. Covariance • Variance and Covariance: • Measure of the “spread” of a set of points around their center of mass(mean) • Variance: • Measure of the deviation from the mean for points in one dimension • Covariance: • Measure of how much each of the dimensions vary from the mean with respect to each other • Covariance is measured between two dimensions • Covariance sees if there is a relation between two dimensions • Covariance between one dimension is the variance
  • 10. Positive: Both dimensions increase or decrease together Negative: While one increase the other decrease
  • 11. Covariance • Used to find relationships between dimensions in high dimensional data sets The Sample mean
  • 12. Eigenvector and Eigenvalue Ax = λx A: Square Matirx λ: Eigenvector or characteristic vector X: Eigenvalue or characteristic value • The zero vector can not be an eigenvector • The value zero can be eigenvalue
  • 13. Eigenvector and Eigenvalue Ax = λx A: Square Matirx λ: Eigenvector or characteristic vector X: Eigenvalue or characteristic value Example
  • 14. Eigenvector and Eigenvalue Ax - λx = 0 (A – λI)x = 0 B = A – λI Bx = 0 x = B-10 = 0 If we define a new matrix B: If B has an inverse: BUT! an eigenvector cannot be zero!! x will be an eigenvector of A if and only if B does not have an inverse, or equivalently det(B)=0 : det(A – λI) = 0 Ax = λx
  • 15. Example 1: Find the eigenvalues of two eigenvalues: 1,  2 Note: The roots of the characteristic equation can be repeated. That is, λ1 = λ2 =…= λk. If that happens, the eigenvalue is said to be of multiplicity k. Example 2: Find the eigenvalues of λ = 2 is an eigenvector of multiplicity 3.          5 1 12 2 A ) 2 )( 1 ( 2 3 12 ) 5 )( 2 ( 5 1 12 2 2                         A I            2 0 0 0 2 0 0 1 2 A 0 ) 2 ( 2 0 0 0 2 0 0 1 2 3               A I Eigenvector and Eigenvalue
  • 16. Principal Component Analysis Input: Summarize a D dimensional vector X with K dimensional feature vector h(x) Set of basis vectors:
  • 17. Principal Component Analysis Basis vectors are orthonormal New data representation h(x)
  • 18. Principal Component Analysis New data representation h(x) Empirical mean of the data
  • 19.
  • 20.
  • 21.
  • 22.
  • 23. • The top three principal components of SIFT descriptors from a set of images are computed • Map these principal components to the principal components of the RGB space • pixels with similar colors share similar structures SIFT feature visualization
  • 24. Original Image • Divide the original 372x492 image into patches: • Each patch is an instance that contains 12x12 pixels on a grid • View each as a 144-D vector Application: Image compression
  • 27. 16 most important eigenvectors 2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12
  • 29. 2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12 6 most important eigenvectors
  • 31. 2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12 3 most important eigenvectors
  • 33. 60 most important eigenvectors Looks like the discrete cosine bases of JPG!...
  • 34. 2D Discrete Cosine Basis http://en.wikipedia.org/wiki/Discrete_cosine_transform
  • 35. Dimensionality reduction • PCA (Principal Component Analysis): • Find projection that maximize the variance • ICA (Independent Component Analysis): • Very similar to PCA except that it assumes non-Guassian features • Multidimensional Scaling: • Find projection that best preserves inter-point distances • LDA(Linear Discriminant Analysis): • Maximizing the component axes for class-separation • … • …