SlideShare a Scribd company logo
1 of 191
Download to read offline
Advanced Site investigation
Prof . Dr / Mohamed Rabie
Dean of faculty of engineering - Helwan university
Advanced Site investigation
Prof . Dr / Mohamed Rabie
Dean of faculty of engineering -
Helwan university
1) determine the suitable type of foundation.
2) give necessary information about B.C. of soil,
expected settlement, safe & economic
design of foundation.
3) information's about existence of any
harmful material for the finding (as organic
material).
4) determine the most suitable method of
construct.
5) study any other conditions that may affect
the structure. (such as G.W.L, obstructions,
……).
6) Offshore geotechnical engineering study .
data collected
from site
Investigation
❑ Structure type and use.
❑ Local building code.
❑ Basement requirements.
❑ Span and length for bridges.
❑ Type of soil in the structure surrounding
area.
data collected
from site
Investigation
❑ Planning the boreholes.
❑ Performing test boreholes.
❑ Collecting samples at the desired depths
of the boreholes for observation.
❑ classify simples.
❑ Apply different test on soil .
120
m
Type of structure Spacing
Ordinary building 300 m2
Industry building 300-500m2
High way 250 -500 / m
Dams 50-200/m
120
m
Type of foundation Depth of Boring
Isolated footing 3-5 width of isolated
footing
Raft 2-3 width of Raft
Deep foundation 1.5 of excavation heigh
ordinary
borehole
advanced
borehole
Enables visual
inspection, locating
strata boundaries, and
access for undisturbed
block samples.
open pit
-The boring is advanced
by rotating the casing
pipes and the cutting
edge manually and
pushing down during
rotation
-The casing pipe is
available in sections one
to two meter long pipes
Manual Boreholes
-Borehole depths down
to 60 or 70 meters
-Piston samplers are
used to obtain sand
samples under the
water table in hollow
stem augers
Continuous Flight Auger
-three meters casing is
derived into the soil and
the soil from the inside
is removed by means of
chopping bit that is
attached to the drilling
rod
-Piston samplers are
used to obtain sand
samples under the
water table in hollow
stem augers
Wash boring
Advanced Site
Investigation
Test
Field & lab. Tests for clay & sand:
Site investigation tests
SPT Standard penetration test
CPT Cone penetration test
PMT Pressuremeter test
DMT Dilatometer Test
C&D Cross hole & Down hole
Test
SN Soil nailing advanced Test
Advanced Site
Investigation
1
SPT
SPT Standard penetration test
65 kg hammer
760 mm drop
anvil
split spoon sampler
drill rod
Count the number of blows required
for 300 mm penetration
Blow count
or
N-Value
SPT Standard penetration test
still has some
value
AR = 112%; use for
classification
mainly for granular soils; unreliable in clays
samples (disturbed) collected in split-spoon sampler
done within bore holes at 1.5 m depth intervals
N-value correlated to ’, E …
soil
I.D. = 35 mm
O.D.= 51 mm
SPT Standard penetration test
Factor affect on SPT test
SPT Standard penetration test
760 mm drop
anvil
split spoon sampler
drill rod
SPT Corrections
(N1)60 = CER CN N
Overburden
correctionEnergy
correction
Corrected
blow count Measured
blow count
SPT SPT Correlations in Clays
N60 cu (kPa) consistency visual identification
0-2 0 - 12 very soft Thumb can penetrate > 25 mm
2-4 12-25 soft Thumb can penetrate 25 mm
4-8 25-50 medium Thumb penetrates with moderate effort
8-15 50-100 stiff Thumb will indent 8 mm
15-30 100-200 very stiff Can indent with thumb nail; not thumb
>30 >200 hard Cannot indent even with thumb nail
not corrected for overburden
SPT SPT Correlations in Granular Soils
(N)60 Dr (%) consistency
0-4 0-15 very loose
4-10 15-35 loose
10-30 35-65 medium
30-50 65-85 dense
>50 85-100 very dense
not corrected for
overburden
SPT data from SPT & Soil properties
SPT SPT Advantages
• Simple & rugged device at low cost
• Suitable in many soil types
• Can perform in weak rocks
• Available worldwide
760 mm drop
anvil
split spoon sampler
drill rod
SPT SPT Disadvantages
• Disturbed sample(index tests only)
• Crude number for analysis
• Not applicable in soft clays and silts
• High variability and uncertainty
760 mm drop
anvil
split spoon sampler
drill rod
Advanced Site
Investigation
2
CPT
CPT Cone Penetration test
Dynamic cone
penetration test
(DCPT)
Static cone
penetration test
(SCPT)
closed end; no
samples
gives continuous measurements
pushed into the ground @ 2 cm/s
using cone instead of split spoon
similar to SPT; hammer driven
gives blow counts @ 1.5 m
depth intervals
CPT Dynamic Cone Penetration test
Better than SPT or SCPT in hard
soils such as dense gravels
Siva
As crude as SPT; relies on
correlations based on blow counts
Simple and rugged.
SPT
DCPT
Hollow (split spoon)
CPT Dynamic Cone Penetration test
CPT Dynamic Cone Penetration test
CPT Static Cone Penetration test
10 cm2 cross section
cone resistance (qc)
or tip resistance (qT)
friction ratio, fR =
fs
qc
 100 %
Typically 0 ———— 10%.
granular cohesive
CPT Piezocone Penetration test
A modern static cone; measures
pore water pressure also.
Pushed into the ground
CPT Static Penetration test
0
4
8
12
16
20
24
28
0 20 40 60
qt (MPa)
Depth(meters)
0
4
8
12
16
20
24
28
0 500 1000
fs (kPa) u b (kPa)
0
4
8
12
16
20
24
28
-200 0 200 400 600 800
qt
CPT Static Penetration test
Soil Behavior Type (Robertson et al., 1986; Robertson & Campanella, 1988)
1 – Sensitive fine grained 5 – Clayey silt to silty clay 9 – sand
2 – Organic material 6 – Sandy silt to silty sand 10 – Gravelly sand to sand
3 – Clay 7 – Silty sand to sandy silt 11 – Very stiff fine grained*
4 – Silty clay to clay 8 – Sand to silty sand 12 – Sand to clayey sand*
*Note: Overconsolidated or cemented
CPT Static cone Penetration test
correlation
k
voc
u
N
q
c
−
=
cone factor (15-20);
varies with cone
In Clays,
In Sands,
E = 2.5-3.5 qc (for young normally consolidated sands)
CPT Static cone Penetration test
CPT Cone Penetration test
BRIEF SURVEY OF SOIL PROFILING METHODS
• BEGEMAN METHOD (1965).
• SANGLERAT METHOD (1974).
• SCHMERTMANN METHOD (1978).
• DOUGLAS AND OLSEN METHOD (1981).
• VOS (1982).
• ROBERTSON METHOD (1986).
• ESLAMI AND FELLENIUS METHOD (1996).
CPT
Eslami-Fellenius CPTU Profiling and Soil Type Classification Method
• cases from 18 sources
• reporting data from 20 sites in 5 countries
• About half of the cases are from piezocone tests, CPTU, and include
pore pressure measurements (u2)
• Non-CPTU tests are from sand soils and were used with the
assumption that the U2-values are approximately equal to the neutral
pore pressure (u0).
Cone Penetration test
CPT
The data points were plotted in a Begemann type profiling chart and
envelopes were drawn enclosing each of the five soil types
Cone Penetration test
CPT
1.2.............).........2( uqq tE −=
Where:
qE= Effective” cone resistance
qt = Cone resistance corrected for pore water pressure on shoulder . (Eq.
2.2)
u2 = Pore pressure measured at cone shoulder
2.2.............).........1(2 aUqq ct −+=
where
qt = Cone resistance corrected for pore water pressure on shoulder
qc = Measured cone resistance
U2 = Pore pressure measured at cone shoulder
a = Ratio between shoulder area (cone base) unaffected by
the pore water pressure to total shoulder area
Cone Penetration test
CPT
Cone Penetration Test, CPTU, Method for Determining Axial . .
Pile Capacity
1-Schmertmann and Nottingham.
2-DeRuiter and Beringen (commonly called the "Dutch Method" or the
“European Method”).
3- Bustamante and Gianselli (commonly called the "LCPC Method" or the
“French Method”).
4- Meyerhof (method for sand).
5- Tumay and Fakhroo (method limited to piles in soft clay).
6- The ICP method.
7- Eslami and Fellenius
Cone Penetration test
CPT
Schmertmann and Nottingham
1.3......................cat qCr =
where
rt = pile unit toe resistance; an upper limit of 15 MPa is imposed.
C = correlation coefficient by the over-consolidation ratio, OCR.
qca = the filtered value obtained in the influence zone.
Cone Penetration test
CPT
qca = the filtered value obtained in the influence zone
extending from 8b above the pile toe (b is the pile
diameter) and 0.7b or 4b, as indicated .
Cone Penetration test
CPT Cone Penetration test
•Step 1 is determining two averages of cone stress within the zone
below the pile toe, one for a zone depth of 0.7b and one for 0.4b
along the path "a" through "b". The smallest of the two is retained.
•Step 2 is determining the smallest cone stress within the zone used
for the Step 1.
•Step 3 consists of determining the average of the two values per
Steps 1 and 2.
•Step 4 is determining the average cone stress in the zone above the
pile toe according to the minimum path shown in Fig. 7.6. (Usually,
just the average of the cone stress within the zone is good enough).
•Step 5, finally, is determining the average of the Step 3 and Step 4
values
CPT Cone Penetration test
2.3......................sfs fKr =
where
rs = pile unit shaft resistance; an upper limit of 120 KPa is imposed
Kf = a dimensionless coefficient
fs = sleeve friction
For Clay
CPT Cone Penetration test
For Sand
Where
rs = unit shaft resistance; an upper limit of 120 KPa is imposed
Kc = a dimensionless coefficient; a function of the pile type.
for open toe, steel piles Kc = 0.8 %
for closed-toe pipe piles Kc = 1.8 %
for concrete piles Kc = 1.2 %
qc = cone resistance
3.3......................ccs qKr =
CPT Cone Penetration test
LCPC
4.3......................caaLCPCt qCr =
where
rt = pile unit toe resistance; an upper limt of 15 MPa is imposed
CLCPC = correlation coefficient
qcaa = average of the average cone resistance in the influence zone
First, the cone resistance within the influence zone is averaged to qca.
Next, an average, qcaa, is calculated of the average of the qca-values that
are within a range of 0.7 through 1.3 of qca.
CPT Cone Penetration test
CPT Cone Penetration test
For driven steel piles and driven precast piles, the correlation coefficient,
CLCPC, ranges from 0.45 through 0.55 in clay and from 0.40 through 0.50 in
sand. For bored piles.
Coefficients of Unit Toe Resistance in the LCPC Method
Quoted from the CFEM (1992)
CPT Cone Penetration test
5.3......................JqKr CLCPCS =
where
rs = unit shaft resistance; for imposed limits see Table 3.3.2
KLCPC = a dimensionless coefficient; a function of the pile type and cone
resistance
J = upper limit value of unit shaft resistance
qc = cone resistance (note, uncorrected for pore pressure on cone shoulder)
CPT Cone Penetration test
Coefficients and Limits of Unit Shaft Resistance in the LCPC Method
Quoted from the CFEM (1992)
CPT Cone Penetration test
. Eslami and Fellenius
6.3......................Egtt qCr =
where
rt = pile unit toe resistance
Ct = toe correlation coefficient (toe adjustment factor)—equal to unity in
most cases
qEg = geometric average of the cone point resistance over the influence
zone after
correction for pore pressure
7.3......................
3
1
b
Ct =
where
b = pile diameter in.
CPT Cone Penetration test
8.3......................ESS qCr =
where
rt = pile unit toe resistance
Ct = toe correlation coefficient (toe adjustment factor)—equal to unity in
most cases
qEg = geometric average of the cone point resistance over the influence
zone after
correction for pore pressure
Shaft Correlation Coefficient.
CPT Case Study (Burullus Combined Cycle Power
Plant)
CPT Case Study (Burullus Combined Cycle Power
Plant)
CPT Case Study (Burullus Combined Cycle Power Plant)
Example of recorded shear wave seismograms for depth between 1-27 m For SCPT
CPT Case Study (BH imagine)
CPT Case Study (BH imagine)
CPT Case Study (BH imagine)
CPT Case Study (BH imagine)
CPT Case Study (BH imagine)
CPT Case Study (BH imagine)
CPT Case Study (BH imagine)
CPT Case Study (BH imagine)
CPT Case Study (BH imagine)
CPT Case Study (BH imagine)
CPT CPT Disadvantages
• High capital investment
• Requires skilled operator for field use
• Electronics must be calibrated &protected
• No soil samples
• Unsuited to gravelly soils and cobbles
CPT Cone Penetration test
Advanced Site
Investigation
3
PMT
PMT Pressuremeter Test
The pressuremeter test is a load test carried out
in-situ in a borehole.
An inflatable cylindrical probe is set at testing
depth in a pre-drilled borehole within a soil or rock
mass or by direct driving into the mass. The
method in depends on the materials’
characteristics.
PMT Pressuremeter Test
Expand a cylindrical probe inside a bore hole.
Gives strength, modulus, K0, cv…
Most rational of all in situ tests
For all soils
Siva
pressuremeter
PMT Pressuremeter Test
PMT Pressuremeter Test
PMT PMT Advantages
•One of the few in-situ tests that can assess directly
the state of horizontal stress in the soil
•Significant advantage for design of deep foundations
because capacity is directly related to the in-situ stress
•Can yield information on soil modulus and strength
PMT PMT Disadvantages
•PMT is a soil property test, not a logging tool, i.e. soil
must be characterized in advance of the test (same for
vane shear test)
•Drainage conditions in soils of intermediate
permeability generally unknown during the test
•Test accuracy subject to drilling procedures, insertion
techniques, and the human element in both
performance and interpretation
•Soil is tested in extension mode and results usually
different from compression mode because of soil
anisotropy
•More costly than SPT and VST
Advanced Site
Investigation
4
DMT
DMT Dilatometer Test
Advance @ 20 mm/s. Test every 200-300 mm.
Nitrogen tank for inflating the membrane.
Can identify soil (from a chart).
Gives E for different soil .
60 mm dia. flexible
steel membrane
Similar to
the cone
DMT Dilatometer Test
DMT Dilatometer Test
Dilatometer tests provide the deformation and
elastic moduli of bedrock and unconsolidated
rock in the borehole under in-situ conditions.
The rock properties which are determined from
dilatometer tests are important parameters for
the planning and dimensioning of tunnels,
caverns and other under-ground structures. The
deformation behavior of the rocks is measured
by expanding the borehole through multiple
load-unload cycles.
DMT Dilatometer Test
DMT Dilatometer Test
DMT Dilatometer Test
DMT Dilatometer Test
DMT DMT Advantages
• Simple and Robust Equipment
• Repeatable and Operator-Independent
• Quick and Economical
• Theoretical Derivations for elastic modulus,
strength, stress history
DMT DMT Disadvantages
• Difficult to push in dense and hard materials
• Primarily established on correlative relationships
• Needs calibration for local geologies
test Comparison between test
DMTVST
SPT
CPT
PMT
test Comparison cost between test
Relative Test Accuracy
RelativeCostperTest
Pocket penetrometer test
Relative Test Accuracy
RelativeCostperTest
Standard penetration test
Dynamic cone penetration test
Static cone penetration test
Pressuremeter test
Advanced Site
Investigation
5
Sesmic
test
These test methods are limited to the determination of
horizontally traveling
compression (P) and shear (S) seismic waves at test sites
consisting primarily of soil materials
(as opposed to rock).
Cross hole seismic test
Objectives of this test
• Determine the dynamic soil properties as a
function of depth.
(Shear modulus, Young’s modulus, and Poisson’s
ratio, or simply for the determination of anomalies
that might exist between boreholes.)
Wave propagation velocities can then be calculated from the
differences in arrival times at adjacent boreholes.
If the length between boreholes, L and the recorded time, t
then shear wave velocity,
vs = L/t.
--- The early arrival wave is identified as P-wave and the
later wave is S-wave.
Cross-hole test can provide reliable velocity
profile to depths of 30-60 m with use of
mechanical sources and for greater depths use
of explosive sources
The simplest Cross-hole test consists of 2 boreholes, one for
an energy source and another for a receiver. By fixing both the
source and the receiver at the same depth, the wave velocity
through soil/rock material between the holes is measured for
the depth. By testing at various depths a velocity profile
against depth can be obtained.
The use of two sets of receivers avoids the
issue of trigger accuracy, but increase the cost of this type of
test.
102
Source Receiver
L
2 boreholes arrangement
Source
Receiver
s
L
3 boreholes arrangement
Apparatus
1- energy sources:
to produce good P-wave data, the energy source must
transmit adequate energy to the medium in compression or
volume change.
Impulsive sources, such as
explosives, hammers, or air guns, are all acceptable P-wave
generators.
For good S waves, energy sources must be
repeatable and, although not mandatory reversible
The S-wave source must be capable of producing an S-wave
train with an amplitude at least twice that of the P-wave
train
2- Receivers.
The receivers intended for use in the cross hole
test shall be transducers having appropriate
frequency and sensitivity characteristics to
determine the seismic wave train arrival.
Typical examples include geophones and accelerometers
3- Recording System.
The system shall consist of separate amplifiers,
one for each transducer being recorded, having
identical phase characteristics and adjustable gain
control
Crosshole TestingOscilloscope
PVC-cased
Borehole
PVC-cased
Borehole
Downhole
Hammer
(Source) Velocity
Transducer
(Geophone
Receiver)
t
x
Shear Wave Velocity:
Vs = x/t
Test
Depth
ASTM D 4428
Pump
packer
Note: Verticality of casing
must be established by
slope inclinometers to correct
distances x with depth.
Slope
Inclinometer
Slope
Inclinometer
20/05/2014 105
Borehole Preparation
The preferred method for preparing a borehole set for cross hole testing incorporates three
boreholes in line, spaced 3.0 m [10 ft] apart, center-to-center on the ground surface. If,
however, it is known that S wave velocities will exceed 450 m/s [1500 ft/s], such as is often
encountered in alluvial materials, borehole spacing's may be extended to 4.5 m.
** Drill the boreholes to a diameter not exceeding 165 mm After the drilling is
completed, case the boring with either 75 or 100 mm
inside diameter PVC pipe or aluminum casing.
** Before inserting the casing close the bottom of the pipe with
a cap which has a one way ball-check valve capable of
accommodating 38 mm outside diameter grout pipe
Procedure
Results
Depth
(m)
Travel time msec Velocity m/sec
S-R1 S-R2 R1 – R2 S-R1 S-R2 R1 – R2
P P P P P PS S S S S S
S-R1 Source to Receiver 1
S-R2 Source to Receiver 2
R1-R2 Time difference between Receivers 1 and 2
Notes
•Preferred Method
Begin the cross hole test by placing the energy
source in an end hole at a depth no greater than
1.5 m.
Place the two receivers at the same elevation in
each of the designated receiver holes.
Check recording equipment and verify Timing.
Best results will be obtained by performing two
separate tests:
one optimized for P-wave recovery (fastest
sweep/recorder rate, higher gain settings)
and the second for S-wave recovery (slower
sweep/recorder rate, lower gain settings).
Results of cross-hole test
( project in Irbid, Jordan )
Advantages and Limitations
CHST method is the most accurate method for determining
material properties of rock and soil sites
■ Real‐time waveform display while testing
■ P‐S source used in CHS tests can impact in the vertical,
transverse, and radial directions
■ Thin layers, which are often invisible to surface
methods, can be detected with CS/DS investigations
■ Accuracy and resolution for these methods are
constant for all test depths, whereas the
accuracy and resolution of the surface methods decreases
with depth
Down-hole test
• Down-hole test is in-situ test methods
- to measure dynamic soil/rock properties
- to determine the interval velocities from
arrival times and relative arrival times of
compression (P) and vertically (SV) and horizontally
(SH) polarized shear
- to identify soil stratification
- to determine shear modulus, G =r.vs
The objective of seismic down-hole/up-hole tests
is to measure travel times of P and S-waves from the energy source to
the receiver.
These tests can be performed in single borehole.
A hole is drilled to the required depth at the testing site and a
vibrating source is created to determine shear wave velocity for
various soil layers.
In this case the waves will be travelling in vertical direction either
down or up depending on the location of the source of impulse.
Down-hole test
Source of impulse Receiver
Receiver Source of impulse
a) Down-hole test b) Up-hole test
116
Surface source S-wave arrival time, t
Depth, z
Transd. 1
Layer 1
Layer 2
Transd. 2
vs = dz/dt
Downhole TestingOscilloscope
Cased
Borehole
Test
Depth
Interval
Horizontal
Velocity
Transducers
(Geophone
Receivers)
packer
Pump
Horizontal Plank
with normal load
Shear Wave Velocity:
Vs = R/t
z1
z2
t
R1
2 = z1
2 + x2
R2
2 = z2
2 + x2
x
Hammer
© Paul Mayne/GT
Apparatus
1- energy sources:
to produce good P-wave data, the energy source must
transmit adequate energy to the medium in compression or
volume change.
Impulsive sources, such as
explosives, hammers, or air guns, are all acceptable P-wave
generators.
For good S waves, energy sources must be
repeatable and, although not mandatory reversible
- Shear Beam
A shear beam is a common form of an SH-wave
energy source. The beam can be metal or wood, and
•may be encased at the ends and bottom with a
steel plate
The center of the shear beam is placed on the
ground at a horizontal offset ranging from 1 to 3 m
(3 to 10 ft) from the receiver borehole
2- Receivers.
•Receivers—In the down hole seismic test, the
seismic receivers are installed vertically with depth
within a borehole or as part of the instrumentation
in a cone penetrometer probe.
The receivers intended for use in the test shall be
transducers having appropriate frequency and
sensitivity characteristics to determine the seismic
wave train arrival.
Typical transducer examples include geophones, which
measure particle velocity, and accelerometers, which
measure particle acceleration. Both geophones and
accelerometers are acceptable for down hole seismic
testing.
High precision, low noise (operational amplifier
integrated into sensor) accelerometers are generally
more accurate due to their desirable transient
response times (that is, delay, rise and peak times
(10)) and high bandwidths compared to geophones.
3-Recording System
The system shall consist of separate recording
channels, one for each transducer being recorded,
having identical phase characteristics and adjustable
gain control.
P and S-waves are determined from the plot
Based on the measured shear wave velocity, the strata may be
classified into different
categories as per the UBC Code (1997):
Results of Down-hole test
( project in Irbid, Jordan )
Advantages and Limitations
•DS method is cheaper than CS, since only one borehole is
required for testing.
•■ Real-time waveform display while testing
•■ Thin layers, which are often invisible to surface methods,
can be detected with CS/DS investigations
•■ Accuracy and resolution for CS/DS methods are constant
for all test depths, whereas the accuracy and resolution of
the surface methods decreases with depth
Choice between CS and DS Seismic Testing
Cross hole Method Down hole Method
Two or More Boreholes One Borehole
Predominantly P‐ and SV‐
Waves, but SH‐waves
Also Possible
Generate P‐ and SH‐Waves
More Expensive due to
Use 2 borehole or more
Accuracy Independent on the
Measurement Depth
Accuracy dependent on the
measurement depth
Advanced Site
Investigation
5
Soil nailing test
What's is the
meaning of soil
nailing
Introduction
• Soil nailing is a technique for stabilizing soil slopes
and excavations by installing a large number of closely spaced
passive inclusions into the in-situ soil mass.
History of Soil Nailing
• in the 1960's :- The origin of soil nailing comes from
rock bolting in tunneling with the “ New
Australian Tunneling Method ”
• This article describes this method as combination of
shotconcrete and fully bonded steel inclusions that
increased the stability of the excavation.
• IN EGYPT
Applications
❑New construction
1. Slope stabilization
2. Vertical or battered cuttings
3. Embankments
4. Support to existing or new gravity walls
5. Can be used for both permanent and
temporary applications
❑Remedial work
1. Repair of reinforced earth wall
2. Repair of masonary gravity wall
3. Repair of anchored walls
4. Stabilization of failed soil slopes
Applications
Slope stabilization Vertical or battered cuttings
Roadway widening under existing
bridges
Retaining walls
Applications
Roadway widening under existing bridges
Components of soil nails
• Soil nail segments
Ø = 32 or more
▪Steel Plate and
reinforcement for the
nail head
Components of soil nails
• Soil nail centralizers ▪Drilled hole before the
installation of the soil nail
Test of soil nailing
•For grout
1. Bleeding water
2. Flow cone efflux time
3. For crushing strength
•For soil nailing
1. Pullout test
2. Creep test
3. Non-destructive testing
4. Destructive testing
Testing for grout
• two in its fresh state and one once the grout has set and
hydrated. Once the grout has been sampled, the bleeding
water is measured at three different times to assess the rate of
bleeding.
Testing for grout
• The other test that is performed
on the fresh grout is the fluidity
test, which is performed with the
aid of a especial cone
Fluidity Cone
Cement Grout Test Sheet
Testing for grout
• Cube samples for grout
strength test
Testing for soil nailing
• Pullout Test
• Objective :
• the number of pullout tests as 2 % of the total number of working soil nails
subject to a minimum of two
• Pullout out tests required based on codes for quality control (destructive,
high-cost, time-consuming)
• verify design assumptions about the bond strength at the interface
between the ground and the cement grout sleeve
.
• Pullout tests carried out prior to the construction of working soil nails so
that the information gathered from the tests can be reviewed for making
design changes as needed
Pullout Test
• Components of soil nails
1. Test soil nailed
2. hydraulic jack
3. Dial gauges
4. Handheld oil pump
5. 700*700*6 mm steal seating plate
6. Steal channel reference
7. Load cell
8. Tripod
9. Frictionless support the hydraulic
Pullout Test
• Components of soil nails
Pullout Test
• Detail A-A
Testing Procedures For Pullout Test
4- Idealized loading test results
1-Installation of hydraulic jack for soil
nail loading test.
2- Dial gauges measure deformation.
3- Handheld oil pump for applying
hydraulic pressure
Pullout Test
The test soil nail shall be loaded in stages :-
1. from the initial load (Ta) via two intermediate test loads
(TDL1 and TDL2) to the maximum test load.
2. TDL1 is the allowable pullout resistance provided by the
bond length of the cement grout sleeve
3. TDL2 is TDL1 times the factor of safety against pullout failure
at soil-grout interface (FSG).
4. The maximum test load shall be 90 % of the yield load of the
test soil-nail reinforcement (Tp)
Pullout Test
5. Ta shall be TDL1 or 5 % of TP, whichever is smaller.
6. During the first two loading cycles, TDL1 and TDL2 shall
be maintained for 60 minutes for deformation
measurement. The measurement at each of the cycles
taken at time intervals of 1, 3, 6, 10, 20, 30, 40, 50 and
60 minutes.
7. In the last loading cycle, the test load shall be increased
gradually from Ta straight to the maximum test load and
then maintained for deformation measurement. The
measurement shall be taken at time intervals of 1, 3, 6,
10, 20, 30, 40, 50 and 60 minutes.
Pullout Test
8. If the test soil nail fails to sustain TDL1, TDL2, or the
maximum test load in any cycle. The measurements
shall be taken for a longer period where considered
necessary
• The limit of pullout test
The test soil nail is considered to be able to sustain the test load if the
difference of soil nail movements at 6 minutes and 60 minutes does not
exceed 2 mm or 0.1 % of the bond length of the test soil nail
soil nailing tests Chinese Embassy
Creep Test
• For soil nails designed to carry sustained loads and bonded in soil
• Objective : the test determine the susceptibility of long-term
creep of the soil nails
• Testing Procedures :-
1. The procedures for a creep test are similar to those for a
pullout test except that only one loading cycle is required.
Hence, it may be carried out as part of a pullout test
2. The test soil nail shall be loaded from Ta to the creep test load
(Tc).
Creep Test
1. The creep test load (Tc) is defined as the allowable pullout
resistance provided by the bond length of the cement grout sleeve
of the test soil nail times the factor of safety against pullout failure
at soil-grout interface
2. The creep period shall be deemed to begin when Tc is applied. The
load shall be maintained for 60 minutes for deformation
measurement. During the creep period, the measurement shall be
taken at time intervals of 1, 3, 6, 10, 20, 30, 40, 50 and 60 minutes
The limit of creep test
A. the difference of soil nail movements at 6 minutes
and 60 minutes during the creep period does not
exceed 2 mm or 0.1 % of the bond length of the test
soil nail
B. the overall trend of creep rate (i.e., soil nail
movement/log time) is decreasing throughout the
creep period
C. In no case should the soil nail tendon be stressed to
more than 80 percent of its minimum ultimate
tensile strength for grade 150 steel, or more than 90
percent of the minimum yield strength for grade 60
steel. Otherwise, an explosive failure of the steel
can occur.
Shotcrete Panel Testing :-
Objective :
• verify the compressive
strength of the in-place
shotcrete for permanent
wall facings
Requirements: - -
1. the test slab of size
(600 x 600 x 100mm panels)
2. shot gun concrete
3. shotcrete
Shotcrete Panel Testing :-
Testing Procedures
1. prepare the concrete and use
shot gun to push and spread
2. The panels are prepared
using the same
reinforcement,equipment,
mix design and shooting
orientation
3. Panels are shotcreted either
before or during the
production phase of the
shotcrete16 wall
Shotcrete Panel Testing :-
Testing Procedures
4. The panel is then cured in
the field or in a moist room
until ready for testing
5. Sawed cubes and beams
may also be prepared from
the panel and tested either
perpendicular orparallel to
the surface. Testing is done
at 7 and 28 days
History of Soil Nailing IN EGYPT
Project : Dar El-Mona Project
Client: El-Mona Company Child Care
Consultant: Soil Mechanics And Foundations Research
Laboratory Cairo University
Location : Cairo-Alexandria Desert Road
Budget: Approximately 800,000 LE
Duration: From February 2004 till May 2004
Type Of Works: Soil Nailing
Project
Description
A soil nailing system was proposed to support and
stabilize an existing stone gravity type wall having some
collapses. Bauer Egypt with the aid of its mother
company Bauer Spezialtiefbau in Germany designed and
installed a soil nailing system to stabilize the existing
gravity wall and prevent further future collapses along
the southern side of the project. The total area for
which the nailing system was installed was
approximately 1600 square meters. The total number of
soil nails installed for the project is 420 nails having
lengths varying from 6 to 11 meters
Advanced Site
Investigation
Case study
Quay wall
Introduction: Quay wall
Introduction: Quay wall systems
Introduction: Quay wall systems
• The project comprises the construction of approximately
630m of quay wall fully equipped to accommodate large
container vessels and dredging of an approximately 1000
× 280 m large berthing to a depth of -15.0m in a first
phase and to a depth of -17.0m in a second phase.
Case under study: the new multi-purpose
terminal at Damietta Port
Site location
• The bathymetric survey program was carried out
previously at the proposed project location shows that
the natural ground level at the location of the quay wall
is varying between 0.00 to -12.50 m .
Case under study: Existing site condition
• The backfilling to reach the quay wall finish level is
needed.
Case under study: Backfilling to reach the finish
level
• Two type of improvement are required one to improve
the backfilling and another to improve soft clay.
Case under study: Required soil improvement
technique
PVD to improve soft clayVibro compaction to improve backfilling
Outline of the structure system: Quay
wall system
Group 1 (vertical elements):
• Front wall with thickness of 1.0m and
tip level of -39.00.
• Rear wall shall be one row of
barrettes down to -39.00 with
dimensions of 2.50mx0.80m and
spacing of 4.00m.
• The intermediate vertical supporting
elements shall be two rows of
barrettes down to -42.00 with
dimensions of 2.50mx0.80m and
spacing of 4.00m.
Group 2 (Horizontal elements):
• Connecting girders 1.25mx2.50m depth at
spacing 4.00m.
• Cast in-situ slab 40cm thickness.
• Front capping beam 3.00m width and 2.50m
thickness.
• Rear capping beam 3.00m width and 2.50m
thickness.
Finite element analysis: 2D analysis
Finite element analysis: 3D analysis
Finite element analysis: Embedded pile element
. Schematization of single embedded pile
(PLAXIS 3D).
Principle of the embedded pile row 2D
Model (Sluis ,2012)
Finite element analysis: Embedded pile element
Friction values
base value
Finite element analysis: constitutive models
Yield surface for soft soil model in p-q planeHyperbolic stress-strain relation in primary
loading for standard drained triaxial test
Harding soil model and soft soil model had been used to
simulate The soft clay
Finite element analysis: soil parameters
Finite element analysis: construction stages
Verification of soft clay parameters: Soil test in
plaxis
The laboratory tests considered in the analysis are:
1- Triaxial test.
2- Odometer test.
Verification of soft clay parameters: calibration
of soil parameters
Comparison beteen2D and 3D finite element:
Lateral deformation
-40
-36
-32
-28
-24
-20
-16
-12
-8
-4
0
4
-0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0
Level(m)
Lateral Deformation (m)
3D-HSM
2D-HSM
-42
-38
-34
-30
-26
-22
-18
-14
-10
-6
-2
2
-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0
Level(m)
Lateral Deformation (m)
3D-HSM
2D-HSM
2D and 3D Lateral Deformation for Front wall. 2D and 3D Lateral Deformation for middle
Barrettes-First Row
Comparison beteen2D and 3D finite element:
Lateral deformation
2D and 3D Lateral Deformation for Rear
barrette
-42
-38
-34
-30
-26
-22
-18
-14
-10
-6
-2
2
-0.4 -0.3 -0.2 -0.1 0.0
Level(m)
Lateral Deformation (m)
3D-HSM
2D-HSM
2D and 3D Lateral Deformation for middle
Barrettes-Second Row
-40
-36
-32
-28
-24
-20
-16
-12
-8
-4
0
4
-0.3 -0.2 -0.1 0.0
Level(m)
Lateral Deformation (m)
3D-HSM
2D-HSM
Comparison beteen2D and 3D finite element:
Bending moment
2D and3D Bending Moment Diagram for
middle Barrettes-First Row
2D and 3D Bending Moment Diagram for
Front wall.
-40.00
-36.00
-32.00
-28.00
-24.00
-20.00
-16.00
-12.00
-8.00
-4.00
0.00
4.00
-2000 -1000 0 1000 2000 3000Level(m)
B.M.D (kN.m/m)
Sea Side - 2d-HSM
Earth Side -2d-HSM
Sea Side -3D-HSM
Earth Side -3D-HSM
-42.00
-38.00
-34.00
-30.00
-26.00
-22.00
-18.00
-14.00
-10.00
-6.00
-2.00
2.00
-3000 -2000 -1000 0 1000 2000 3000
Level(m)
B.M.D (kN.m/m)
Sea Side - 2d-HSM
Earth Side - 2d-HSM
Sea Side - 3D-HSM
Earth Side - 3D-HSM
Sea Side Earth Side
Comparison beteen2D and 3D finite element:
Bending moment
2D and3D Bending Moment Diagram for
Rear Barrette
2D and 3D Bending Moment Diagram for
middle Barrettes-second Row.
-42.00
-38.00
-34.00
-30.00
-26.00
-22.00
-18.00
-14.00
-10.00
-6.00
-2.00
2.00
-3000 -2000 -1000 0 1000 2000 3000Level(m)
B.M (kN.m/m)
Sea Side - 2d-HSM
Earth Side - 2d-HSM
Sea Side - 3D-HSM
Earth Side - 3D-HSM -42.00
-38.00
-34.00
-30.00
-26.00
-22.00
-18.00
-14.00
-10.00
-6.00
-2.00
2.00
-2000 -1000 0 1000 2000
Level(m)
B.M (kN.m/m)
Sea Side - 2d-HSM
Earth Side - 2d-HSM
Sea Side - 3D-HSM
Earth Side - 3D-HSM
Comparison between HSM and SSM finite
element: Lateral deformation
Lateral Deformation for middle Barrettes-
First Row
Lateral Deformation for Front wall.
-44
-40
-36
-32
-28
-24
-20
-16
-12
-8
-4
0
4
-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0
Level(m)
Lateral Deformation (m)
2D-HSM
2D-SSM
-44
-40
-36
-32
-28
-24
-20
-16
-12
-8
-4
0
4
-0.5 -0.4 -0.3 -0.2 -0.1 0.0
Level(m)
Lateral Deformation (m)
2D-HSM
2D-SSM
Comparison between HSM and SSM finite
element: Lateral deformation
Lateral Deformation for Rear barretteLateral Deformation for middle Barrettes-
Second Row.
-44
-40
-36
-32
-28
-24
-20
-16
-12
-8
-4
0
4
-0.5 -0.4 -0.3 -0.2 -0.1 0.0
Level(m)
Lateral Deformation (m)
2D-HSM
2D-SSM
-39
-36
-33
-30
-27
-24
-21
-18
-15
-12
-9
-6
-3
0
3
-0.3 -0.2 -0.1 0.0
Level(m)
Lateral Deformation (m)
2D-HSM
2D-SSM
Comparison between HSM and SSM finite
element: Bending moment
Bending Moment Diagram for middle
Barrettes-First Row
Bending Moment Diagram for Front wall.
-39.00
-35.00
-31.00
-27.00
-23.00
-19.00
-15.00
-11.00
-7.00
-3.00
1.00
-2000 -1000 0 1000 2000 3000Level
B.M.D (kN.m/m)
Sea Side - 2d-HSM
Earth Side -2d-HSM
Sea Side-2d-SSM
Earth side-2d-ssm
Sea Side Earth Side
-42.00
-38.00
-34.00
-30.00
-26.00
-22.00
-18.00
-14.00
-10.00
-6.00
-2.00
2.00
-4000 -2000 0 2000 4000
Level
B.M (kN.m/m)
Sea Side - 2d-HSM
Earth Side - 2d-HSM
Sea Side - 2d-SSM
Earth Side - 2D-SSM
Sea Side Earth Side
Comparison between HSM and SSM finite
element: Bending moment
Bending Moment Diagram for Rear
Barrette.
Bending Moment Diagram for middle
Barrettes-second Row.
-42.00
-38.00
-34.00
-30.00
-26.00
-22.00
-18.00
-14.00
-10.00
-6.00
-2.00
2.00
-4000 -2000 0 2000 4000
Level
B.M (kN.m/m)
Sea Side - 2d-HSM
Earth Side - 2d-HSM
Sea Side - 2d-SSM
Earth Side - 2D-SSM
Sea Side Earth Side
-39.00
-36.00
-33.00
-30.00
-27.00
-24.00
-21.00
-18.00
-15.00
-12.00
-9.00
-6.00
-3.00
0.00
3.00
-2000 -1000 0 1000 2000
Level
B.M (kN.m/m)
Sea Side - 2d-HSM
Earth Side - 2d-HSM
Sea Side - 2d-SSM
Earth Side - 2D-SSM
Sea Side Earth Side
• 3-D model gives lower internal forces, lateral
deformation and bending moments compared to 2-D
analysis.
• The lateral deformations of the walls and barrettes
initially increase significantly and then gradually decrease
towards the barrettes tip.
• The results of analysis of 2d analysis higher than 3d
analysis with percentage from 15% to 30%.
• Soil test in PLAXIS give close results compared to lab
tests.
• Both SSM and HSM are accepted to simulate soft clay.
Concluding Remarks
there where 2 case study
with
Eng / Alaa M. Abou Alez
Technical Office Manger New
Materity Hospital project - Kuwait
DR/Mohamed Rabie
-Prophesier of Geotechnical
engineering – Helwan
university
-Dean of faculty of
engineering – helwan
university
Thank You
Advanced Site Investigation Tests
Advanced Site Investigation Tests

More Related Content

What's hot

Max Sommers CV 2017
Max Sommers CV 2017Max Sommers CV 2017
Max Sommers CV 2017Max Sommers
 
Subsurface Investigation and Geotechnical Evaluation
Subsurface Investigation and Geotechnical EvaluationSubsurface Investigation and Geotechnical Evaluation
Subsurface Investigation and Geotechnical Evaluationmecocca5
 
Quality assurance for_deep_bored_piles
Quality assurance for_deep_bored_pilesQuality assurance for_deep_bored_piles
Quality assurance for_deep_bored_pilesInfocengrs63
 
Soil test sanepa housing
Soil test sanepa housingSoil test sanepa housing
Soil test sanepa housingAmritPrajapati4
 
Case study on burj khalifa FOUNDATION
Case study on burj khalifa FOUNDATIONCase study on burj khalifa FOUNDATION
Case study on burj khalifa FOUNDATIONShagun mahajan
 
CSC Benchmarking Resource Plays
CSC Benchmarking Resource PlaysCSC Benchmarking Resource Plays
CSC Benchmarking Resource Playsseifertm
 
Soil mechanics 2 (geotech engg) lab report
Soil mechanics 2 (geotech engg) lab reportSoil mechanics 2 (geotech engg) lab report
Soil mechanics 2 (geotech engg) lab reportMuhammad Bilal
 
UofA - FCMG IRC Poster Xiangyu Ehab FINAL
UofA - FCMG IRC Poster Xiangyu Ehab FINALUofA - FCMG IRC Poster Xiangyu Ehab FINAL
UofA - FCMG IRC Poster Xiangyu Ehab FINALXiangyu Li
 

What's hot (11)

149-Uludag[1]
149-Uludag[1]149-Uludag[1]
149-Uludag[1]
 
Max Sommers CV 2017
Max Sommers CV 2017Max Sommers CV 2017
Max Sommers CV 2017
 
Subsurface Investigation and Geotechnical Evaluation
Subsurface Investigation and Geotechnical EvaluationSubsurface Investigation and Geotechnical Evaluation
Subsurface Investigation and Geotechnical Evaluation
 
Quality assurance for_deep_bored_piles
Quality assurance for_deep_bored_pilesQuality assurance for_deep_bored_piles
Quality assurance for_deep_bored_piles
 
Ijetcas14 589
Ijetcas14 589Ijetcas14 589
Ijetcas14 589
 
Soil test sanepa housing
Soil test sanepa housingSoil test sanepa housing
Soil test sanepa housing
 
Case study on burj khalifa FOUNDATION
Case study on burj khalifa FOUNDATIONCase study on burj khalifa FOUNDATION
Case study on burj khalifa FOUNDATION
 
CSC Benchmarking Resource Plays
CSC Benchmarking Resource PlaysCSC Benchmarking Resource Plays
CSC Benchmarking Resource Plays
 
Soil mechanics 2 (geotech engg) lab report
Soil mechanics 2 (geotech engg) lab reportSoil mechanics 2 (geotech engg) lab report
Soil mechanics 2 (geotech engg) lab report
 
B.Sc. Summary
B.Sc. SummaryB.Sc. Summary
B.Sc. Summary
 
UofA - FCMG IRC Poster Xiangyu Ehab FINAL
UofA - FCMG IRC Poster Xiangyu Ehab FINALUofA - FCMG IRC Poster Xiangyu Ehab FINAL
UofA - FCMG IRC Poster Xiangyu Ehab FINAL
 

Similar to Advanced Site Investigation Tests

Bearing Capacity of Shallow Foundation SPT
Bearing Capacity of Shallow Foundation SPTBearing Capacity of Shallow Foundation SPT
Bearing Capacity of Shallow Foundation SPTLatif Hyder Wadho
 
TL_Cons_present_Kishanpur_20[1].08.09.ppt
TL_Cons_present_Kishanpur_20[1].08.09.pptTL_Cons_present_Kishanpur_20[1].08.09.ppt
TL_Cons_present_Kishanpur_20[1].08.09.pptAshokKumar561399
 
Bearing Capacity of Shallow Foundation
Bearing Capacity of Shallow FoundationBearing Capacity of Shallow Foundation
Bearing Capacity of Shallow FoundationLatif Hyder Wadho
 
Geotechnical testign methods ii as
Geotechnical testign methods ii asGeotechnical testign methods ii as
Geotechnical testign methods ii asieqa zainol
 
Presentation on standard penertation test
Presentation on standard penertation testPresentation on standard penertation test
Presentation on standard penertation testJoydeep Atta
 
INSITU TESTING Foundation Engineering Lecture Notes
INSITU TESTING Foundation Engineering Lecture NotesINSITU TESTING Foundation Engineering Lecture Notes
INSITU TESTING Foundation Engineering Lecture NotesBahzad5
 
Site investigation 5.pdf
Site investigation 5.pdfSite investigation 5.pdf
Site investigation 5.pdfRGamesSaudi
 
Foundation engineering
Foundation engineeringFoundation engineering
Foundation engineeringShaker Krupa
 
lecture_Exploration.ppt shear strength ppt soil mechanics and ppts
lecture_Exploration.ppt shear strength ppt soil mechanics and pptslecture_Exploration.ppt shear strength ppt soil mechanics and ppts
lecture_Exploration.ppt shear strength ppt soil mechanics and pptsShivarajkumar Goudar
 
Site investigation
Site investigationSite investigation
Site investigation1971995
 
Applications of Vane Shear Test in Geotechnical soil investigations
Applications of Vane Shear Test in Geotechnical soil investigationsApplications of Vane Shear Test in Geotechnical soil investigations
Applications of Vane Shear Test in Geotechnical soil investigationsAzdeen Najah
 
Site inveswtigation vandana miss
Site inveswtigation vandana missSite inveswtigation vandana miss
Site inveswtigation vandana missSHAMJITH KM
 
Cone Penetration Test
Cone Penetration TestCone Penetration Test
Cone Penetration TestMohd. Ikhwan
 
Site Investegation
Site InvestegationSite Investegation
Site InvestegationShah Naseer
 
Geological site investigation for Civil Engineering Foundations
Geological site investigation for Civil Engineering FoundationsGeological site investigation for Civil Engineering Foundations
Geological site investigation for Civil Engineering FoundationsDr.Anil Deshpande
 
Geotechnical investigation for road work
Geotechnical investigation for road workGeotechnical investigation for road work
Geotechnical investigation for road workRakesh Meena
 
==ENG15B00342Y_CVE309_END-OF -SEM-NEWTON WOLERU.pdf
==ENG15B00342Y_CVE309_END-OF -SEM-NEWTON WOLERU.pdf==ENG15B00342Y_CVE309_END-OF -SEM-NEWTON WOLERU.pdf
==ENG15B00342Y_CVE309_END-OF -SEM-NEWTON WOLERU.pdfnelziwalz
 

Similar to Advanced Site Investigation Tests (20)

Bearing Capacity of Shallow Foundation SPT
Bearing Capacity of Shallow Foundation SPTBearing Capacity of Shallow Foundation SPT
Bearing Capacity of Shallow Foundation SPT
 
TL_Cons_present_Kishanpur_20[1].08.09.ppt
TL_Cons_present_Kishanpur_20[1].08.09.pptTL_Cons_present_Kishanpur_20[1].08.09.ppt
TL_Cons_present_Kishanpur_20[1].08.09.ppt
 
Bearing Capacity of Shallow Foundation
Bearing Capacity of Shallow FoundationBearing Capacity of Shallow Foundation
Bearing Capacity of Shallow Foundation
 
Geotechnical testign methods ii as
Geotechnical testign methods ii asGeotechnical testign methods ii as
Geotechnical testign methods ii as
 
SPT and VST- By Daanyal Umar.pptx
SPT and VST- By Daanyal Umar.pptxSPT and VST- By Daanyal Umar.pptx
SPT and VST- By Daanyal Umar.pptx
 
Presentation on standard penertation test
Presentation on standard penertation testPresentation on standard penertation test
Presentation on standard penertation test
 
INSITU TESTING Foundation Engineering Lecture Notes
INSITU TESTING Foundation Engineering Lecture NotesINSITU TESTING Foundation Engineering Lecture Notes
INSITU TESTING Foundation Engineering Lecture Notes
 
Site investigation 5.pdf
Site investigation 5.pdfSite investigation 5.pdf
Site investigation 5.pdf
 
Foundation engineering
Foundation engineeringFoundation engineering
Foundation engineering
 
lecture_Exploration.ppt shear strength ppt soil mechanics and ppts
lecture_Exploration.ppt shear strength ppt soil mechanics and pptslecture_Exploration.ppt shear strength ppt soil mechanics and ppts
lecture_Exploration.ppt shear strength ppt soil mechanics and ppts
 
Site investigation
Site investigationSite investigation
Site investigation
 
Applications of Vane Shear Test in Geotechnical soil investigations
Applications of Vane Shear Test in Geotechnical soil investigationsApplications of Vane Shear Test in Geotechnical soil investigations
Applications of Vane Shear Test in Geotechnical soil investigations
 
Site inveswtigation vandana miss
Site inveswtigation vandana missSite inveswtigation vandana miss
Site inveswtigation vandana miss
 
Cone Penetration Test
Cone Penetration TestCone Penetration Test
Cone Penetration Test
 
Site Investigation.ppt
Site Investigation.pptSite Investigation.ppt
Site Investigation.ppt
 
Siteinvestigation
SiteinvestigationSiteinvestigation
Siteinvestigation
 
Site Investegation
Site InvestegationSite Investegation
Site Investegation
 
Geological site investigation for Civil Engineering Foundations
Geological site investigation for Civil Engineering FoundationsGeological site investigation for Civil Engineering Foundations
Geological site investigation for Civil Engineering Foundations
 
Geotechnical investigation for road work
Geotechnical investigation for road workGeotechnical investigation for road work
Geotechnical investigation for road work
 
==ENG15B00342Y_CVE309_END-OF -SEM-NEWTON WOLERU.pdf
==ENG15B00342Y_CVE309_END-OF -SEM-NEWTON WOLERU.pdf==ENG15B00342Y_CVE309_END-OF -SEM-NEWTON WOLERU.pdf
==ENG15B00342Y_CVE309_END-OF -SEM-NEWTON WOLERU.pdf
 

More from Egyptian Engineers Association

المحاضرة رقم 209 دكتور / يسرا الدسوقي عنوان المحاضرة Data Driven Management
 المحاضرة رقم 209 دكتور / يسرا الدسوقي  عنوان المحاضرة  Data Driven Management المحاضرة رقم 209 دكتور / يسرا الدسوقي  عنوان المحاضرة  Data Driven Management
المحاضرة رقم 209 دكتور / يسرا الدسوقي عنوان المحاضرة Data Driven ManagementEgyptian Engineers Association
 
المحاضرة رقم 208 مهندس / محمد ماجد حجازي عنوان المحاضرة Performance Measur...
 المحاضرة رقم 208 مهندس / محمد ماجد حجازي  عنوان المحاضرة  Performance Measur... المحاضرة رقم 208 مهندس / محمد ماجد حجازي  عنوان المحاضرة  Performance Measur...
المحاضرة رقم 208 مهندس / محمد ماجد حجازي عنوان المحاضرة Performance Measur...Egyptian Engineers Association
 
مبادرة #تواصل_تطوير المحاضرة رقم 205 م / محمود السعود استشاري إدارة مكاتب الم...
مبادرة #تواصل_تطوير المحاضرة رقم 205 م / محمود السعود استشاري إدارة مكاتب الم...مبادرة #تواصل_تطوير المحاضرة رقم 205 م / محمود السعود استشاري إدارة مكاتب الم...
مبادرة #تواصل_تطوير المحاضرة رقم 205 م / محمود السعود استشاري إدارة مكاتب الم...Egyptian Engineers Association
 
تواصل_تطوير المحاضرة رقم 203 مستشار / محمد خليفة عنوان المحاضرة Establish an...
تواصل_تطوير المحاضرة رقم 203 مستشار / محمد خليفة  عنوان المحاضرة Establish an...تواصل_تطوير المحاضرة رقم 203 مستشار / محمد خليفة  عنوان المحاضرة Establish an...
تواصل_تطوير المحاضرة رقم 203 مستشار / محمد خليفة عنوان المحاضرة Establish an...Egyptian Engineers Association
 
مبادرة #تواصل_تطوير المحاضرة رقم 200 أ. د/ هانىء محمود النقراشي عضو المجلس ال...
مبادرة #تواصل_تطوير المحاضرة رقم 200 أ. د/ هانىء محمود النقراشي عضو المجلس ال...مبادرة #تواصل_تطوير المحاضرة رقم 200 أ. د/ هانىء محمود النقراشي عضو المجلس ال...
مبادرة #تواصل_تطوير المحاضرة رقم 200 أ. د/ هانىء محمود النقراشي عضو المجلس ال...Egyptian Engineers Association
 
تواصل_تطوير المحاضرة رقم 199 مهندس / محمود الديب عنوان المحاضرة Enterprise A...
تواصل_تطوير المحاضرة رقم 199 مهندس / محمود الديب  عنوان المحاضرة Enterprise A...تواصل_تطوير المحاضرة رقم 199 مهندس / محمود الديب  عنوان المحاضرة Enterprise A...
تواصل_تطوير المحاضرة رقم 199 مهندس / محمود الديب عنوان المحاضرة Enterprise A...Egyptian Engineers Association
 
#تواصل_تطوير المحاضرة رقم 197 مهندس / محمد الشامي عنوان المحاضرة أمن المعلوم...
#تواصل_تطوير المحاضرة رقم 197 مهندس / محمد الشامي  عنوان المحاضرة أمن المعلوم...#تواصل_تطوير المحاضرة رقم 197 مهندس / محمد الشامي  عنوان المحاضرة أمن المعلوم...
#تواصل_تطوير المحاضرة رقم 197 مهندس / محمد الشامي عنوان المحاضرة أمن المعلوم...Egyptian Engineers Association
 
تواصل_تطوير المحاضرة رقم 195 مهندس / أحمد أمين عنوان المحاضرة "The Era of Fr...
تواصل_تطوير المحاضرة رقم 195 مهندس / أحمد أمين  عنوان المحاضرة "The Era of Fr...تواصل_تطوير المحاضرة رقم 195 مهندس / أحمد أمين  عنوان المحاضرة "The Era of Fr...
تواصل_تطوير المحاضرة رقم 195 مهندس / أحمد أمين عنوان المحاضرة "The Era of Fr...Egyptian Engineers Association
 
تواصل_تطوير المحاضرة رقم 194 دكتور / هشام ندا المدير الدولي لقسم الكباري بشرك...
تواصل_تطوير المحاضرة رقم 194 دكتور / هشام ندا المدير الدولي لقسم الكباري بشرك...تواصل_تطوير المحاضرة رقم 194 دكتور / هشام ندا المدير الدولي لقسم الكباري بشرك...
تواصل_تطوير المحاضرة رقم 194 دكتور / هشام ندا المدير الدولي لقسم الكباري بشرك...Egyptian Engineers Association
 
تواصل_تطوير المحاضرة رقم 193 المهندس / أكرم النجار استشاري إدارة المشاريع عنو...
تواصل_تطوير المحاضرة رقم 193 المهندس / أكرم النجار استشاري إدارة المشاريع عنو...تواصل_تطوير المحاضرة رقم 193 المهندس / أكرم النجار استشاري إدارة المشاريع عنو...
تواصل_تطوير المحاضرة رقم 193 المهندس / أكرم النجار استشاري إدارة المشاريع عنو...Egyptian Engineers Association
 
تواصل_تطوير المحاضرة رقم 191 المهندس / تامر فودة عنوان المحاضرة " Supply Cha...
تواصل_تطوير المحاضرة رقم 191 المهندس / تامر فودة  عنوان المحاضرة " Supply Cha...تواصل_تطوير المحاضرة رقم 191 المهندس / تامر فودة  عنوان المحاضرة " Supply Cha...
تواصل_تطوير المحاضرة رقم 191 المهندس / تامر فودة عنوان المحاضرة " Supply Cha...Egyptian Engineers Association
 
تواصل_تطوير المحاضرة رقم 190 المهندس / أشرف نصير عنوان المحاضرة "إستراتيجيات...
تواصل_تطوير المحاضرة رقم 190 المهندس / أشرف نصير  عنوان المحاضرة "إستراتيجيات...تواصل_تطوير المحاضرة رقم 190 المهندس / أشرف نصير  عنوان المحاضرة "إستراتيجيات...
تواصل_تطوير المحاضرة رقم 190 المهندس / أشرف نصير عنوان المحاضرة "إستراتيجيات...Egyptian Engineers Association
 
المحاضرة رقم 189 المهندس / محمد العربي بعنوان "Digital Disruption Act- From...
 المحاضرة رقم 189 المهندس / محمد العربي  بعنوان "Digital Disruption Act- From... المحاضرة رقم 189 المهندس / محمد العربي  بعنوان "Digital Disruption Act- From...
المحاضرة رقم 189 المهندس / محمد العربي بعنوان "Digital Disruption Act- From...Egyptian Engineers Association
 
#تواصل_تطوير المحاضرة رقم 188 الاستاذ الدكتور / أكرم حسن استاذ واستشاري إدارة...
#تواصل_تطوير المحاضرة رقم 188 الاستاذ الدكتور / أكرم حسن استاذ واستشاري إدارة...#تواصل_تطوير المحاضرة رقم 188 الاستاذ الدكتور / أكرم حسن استاذ واستشاري إدارة...
#تواصل_تطوير المحاضرة رقم 188 الاستاذ الدكتور / أكرم حسن استاذ واستشاري إدارة...Egyptian Engineers Association
 
ilovepdf_#تواصل_تطوير المحاضرة رقم 187 أستاذ دكتور / مدحت كمال عبدالله عنوان ...
ilovepdf_#تواصل_تطوير المحاضرة رقم 187 أستاذ دكتور / مدحت كمال عبدالله عنوان ...ilovepdf_#تواصل_تطوير المحاضرة رقم 187 أستاذ دكتور / مدحت كمال عبدالله عنوان ...
ilovepdf_#تواصل_تطوير المحاضرة رقم 187 أستاذ دكتور / مدحت كمال عبدالله عنوان ...Egyptian Engineers Association
 
ilovepdf_ المحاضرة رقم 186 دكتور / اشرف حمدان بمشاركة الاستاذة /سارة سالم عنو...
ilovepdf_ المحاضرة رقم 186 دكتور / اشرف حمدان بمشاركة الاستاذة /سارة سالم عنو...ilovepdf_ المحاضرة رقم 186 دكتور / اشرف حمدان بمشاركة الاستاذة /سارة سالم عنو...
ilovepdf_ المحاضرة رقم 186 دكتور / اشرف حمدان بمشاركة الاستاذة /سارة سالم عنو...Egyptian Engineers Association
 
تواصل_تطوير المحاضرة رقم 185 دكتور / هبة محروس علي بعنوان "Between Environme...
تواصل_تطوير المحاضرة رقم 185 دكتور / هبة محروس علي  بعنوان "Between Environme...تواصل_تطوير المحاضرة رقم 185 دكتور / هبة محروس علي  بعنوان "Between Environme...
تواصل_تطوير المحاضرة رقم 185 دكتور / هبة محروس علي بعنوان "Between Environme...Egyptian Engineers Association
 
#تواصل_تطوير المحاضرة رقم 184 دكتور / شيماء محمد الشرقاوي بعنوان "مبادرة الت...
#تواصل_تطوير المحاضرة رقم 184 دكتور / شيماء محمد الشرقاوي  بعنوان "مبادرة الت...#تواصل_تطوير المحاضرة رقم 184 دكتور / شيماء محمد الشرقاوي  بعنوان "مبادرة الت...
#تواصل_تطوير المحاضرة رقم 184 دكتور / شيماء محمد الشرقاوي بعنوان "مبادرة الت...Egyptian Engineers Association
 
المحاضرة رقم 183 الاستاذ الدكتور / طارق عطية بعنوان "اعتماد المتحف المصري ا...
 المحاضرة رقم 183 الاستاذ الدكتور / طارق عطية  بعنوان "اعتماد المتحف المصري ا... المحاضرة رقم 183 الاستاذ الدكتور / طارق عطية  بعنوان "اعتماد المتحف المصري ا...
المحاضرة رقم 183 الاستاذ الدكتور / طارق عطية بعنوان "اعتماد المتحف المصري ا...Egyptian Engineers Association
 
المحاضرة رقم 182 الدكتور / أسامة أبوالمكارم مستشار التغيير والابداع المؤسسي ...
 المحاضرة رقم 182 الدكتور / أسامة أبوالمكارم مستشار التغيير والابداع المؤسسي ... المحاضرة رقم 182 الدكتور / أسامة أبوالمكارم مستشار التغيير والابداع المؤسسي ...
المحاضرة رقم 182 الدكتور / أسامة أبوالمكارم مستشار التغيير والابداع المؤسسي ...Egyptian Engineers Association
 

More from Egyptian Engineers Association (20)

المحاضرة رقم 209 دكتور / يسرا الدسوقي عنوان المحاضرة Data Driven Management
 المحاضرة رقم 209 دكتور / يسرا الدسوقي  عنوان المحاضرة  Data Driven Management المحاضرة رقم 209 دكتور / يسرا الدسوقي  عنوان المحاضرة  Data Driven Management
المحاضرة رقم 209 دكتور / يسرا الدسوقي عنوان المحاضرة Data Driven Management
 
المحاضرة رقم 208 مهندس / محمد ماجد حجازي عنوان المحاضرة Performance Measur...
 المحاضرة رقم 208 مهندس / محمد ماجد حجازي  عنوان المحاضرة  Performance Measur... المحاضرة رقم 208 مهندس / محمد ماجد حجازي  عنوان المحاضرة  Performance Measur...
المحاضرة رقم 208 مهندس / محمد ماجد حجازي عنوان المحاضرة Performance Measur...
 
مبادرة #تواصل_تطوير المحاضرة رقم 205 م / محمود السعود استشاري إدارة مكاتب الم...
مبادرة #تواصل_تطوير المحاضرة رقم 205 م / محمود السعود استشاري إدارة مكاتب الم...مبادرة #تواصل_تطوير المحاضرة رقم 205 م / محمود السعود استشاري إدارة مكاتب الم...
مبادرة #تواصل_تطوير المحاضرة رقم 205 م / محمود السعود استشاري إدارة مكاتب الم...
 
تواصل_تطوير المحاضرة رقم 203 مستشار / محمد خليفة عنوان المحاضرة Establish an...
تواصل_تطوير المحاضرة رقم 203 مستشار / محمد خليفة  عنوان المحاضرة Establish an...تواصل_تطوير المحاضرة رقم 203 مستشار / محمد خليفة  عنوان المحاضرة Establish an...
تواصل_تطوير المحاضرة رقم 203 مستشار / محمد خليفة عنوان المحاضرة Establish an...
 
مبادرة #تواصل_تطوير المحاضرة رقم 200 أ. د/ هانىء محمود النقراشي عضو المجلس ال...
مبادرة #تواصل_تطوير المحاضرة رقم 200 أ. د/ هانىء محمود النقراشي عضو المجلس ال...مبادرة #تواصل_تطوير المحاضرة رقم 200 أ. د/ هانىء محمود النقراشي عضو المجلس ال...
مبادرة #تواصل_تطوير المحاضرة رقم 200 أ. د/ هانىء محمود النقراشي عضو المجلس ال...
 
تواصل_تطوير المحاضرة رقم 199 مهندس / محمود الديب عنوان المحاضرة Enterprise A...
تواصل_تطوير المحاضرة رقم 199 مهندس / محمود الديب  عنوان المحاضرة Enterprise A...تواصل_تطوير المحاضرة رقم 199 مهندس / محمود الديب  عنوان المحاضرة Enterprise A...
تواصل_تطوير المحاضرة رقم 199 مهندس / محمود الديب عنوان المحاضرة Enterprise A...
 
#تواصل_تطوير المحاضرة رقم 197 مهندس / محمد الشامي عنوان المحاضرة أمن المعلوم...
#تواصل_تطوير المحاضرة رقم 197 مهندس / محمد الشامي  عنوان المحاضرة أمن المعلوم...#تواصل_تطوير المحاضرة رقم 197 مهندس / محمد الشامي  عنوان المحاضرة أمن المعلوم...
#تواصل_تطوير المحاضرة رقم 197 مهندس / محمد الشامي عنوان المحاضرة أمن المعلوم...
 
تواصل_تطوير المحاضرة رقم 195 مهندس / أحمد أمين عنوان المحاضرة "The Era of Fr...
تواصل_تطوير المحاضرة رقم 195 مهندس / أحمد أمين  عنوان المحاضرة "The Era of Fr...تواصل_تطوير المحاضرة رقم 195 مهندس / أحمد أمين  عنوان المحاضرة "The Era of Fr...
تواصل_تطوير المحاضرة رقم 195 مهندس / أحمد أمين عنوان المحاضرة "The Era of Fr...
 
تواصل_تطوير المحاضرة رقم 194 دكتور / هشام ندا المدير الدولي لقسم الكباري بشرك...
تواصل_تطوير المحاضرة رقم 194 دكتور / هشام ندا المدير الدولي لقسم الكباري بشرك...تواصل_تطوير المحاضرة رقم 194 دكتور / هشام ندا المدير الدولي لقسم الكباري بشرك...
تواصل_تطوير المحاضرة رقم 194 دكتور / هشام ندا المدير الدولي لقسم الكباري بشرك...
 
تواصل_تطوير المحاضرة رقم 193 المهندس / أكرم النجار استشاري إدارة المشاريع عنو...
تواصل_تطوير المحاضرة رقم 193 المهندس / أكرم النجار استشاري إدارة المشاريع عنو...تواصل_تطوير المحاضرة رقم 193 المهندس / أكرم النجار استشاري إدارة المشاريع عنو...
تواصل_تطوير المحاضرة رقم 193 المهندس / أكرم النجار استشاري إدارة المشاريع عنو...
 
تواصل_تطوير المحاضرة رقم 191 المهندس / تامر فودة عنوان المحاضرة " Supply Cha...
تواصل_تطوير المحاضرة رقم 191 المهندس / تامر فودة  عنوان المحاضرة " Supply Cha...تواصل_تطوير المحاضرة رقم 191 المهندس / تامر فودة  عنوان المحاضرة " Supply Cha...
تواصل_تطوير المحاضرة رقم 191 المهندس / تامر فودة عنوان المحاضرة " Supply Cha...
 
تواصل_تطوير المحاضرة رقم 190 المهندس / أشرف نصير عنوان المحاضرة "إستراتيجيات...
تواصل_تطوير المحاضرة رقم 190 المهندس / أشرف نصير  عنوان المحاضرة "إستراتيجيات...تواصل_تطوير المحاضرة رقم 190 المهندس / أشرف نصير  عنوان المحاضرة "إستراتيجيات...
تواصل_تطوير المحاضرة رقم 190 المهندس / أشرف نصير عنوان المحاضرة "إستراتيجيات...
 
المحاضرة رقم 189 المهندس / محمد العربي بعنوان "Digital Disruption Act- From...
 المحاضرة رقم 189 المهندس / محمد العربي  بعنوان "Digital Disruption Act- From... المحاضرة رقم 189 المهندس / محمد العربي  بعنوان "Digital Disruption Act- From...
المحاضرة رقم 189 المهندس / محمد العربي بعنوان "Digital Disruption Act- From...
 
#تواصل_تطوير المحاضرة رقم 188 الاستاذ الدكتور / أكرم حسن استاذ واستشاري إدارة...
#تواصل_تطوير المحاضرة رقم 188 الاستاذ الدكتور / أكرم حسن استاذ واستشاري إدارة...#تواصل_تطوير المحاضرة رقم 188 الاستاذ الدكتور / أكرم حسن استاذ واستشاري إدارة...
#تواصل_تطوير المحاضرة رقم 188 الاستاذ الدكتور / أكرم حسن استاذ واستشاري إدارة...
 
ilovepdf_#تواصل_تطوير المحاضرة رقم 187 أستاذ دكتور / مدحت كمال عبدالله عنوان ...
ilovepdf_#تواصل_تطوير المحاضرة رقم 187 أستاذ دكتور / مدحت كمال عبدالله عنوان ...ilovepdf_#تواصل_تطوير المحاضرة رقم 187 أستاذ دكتور / مدحت كمال عبدالله عنوان ...
ilovepdf_#تواصل_تطوير المحاضرة رقم 187 أستاذ دكتور / مدحت كمال عبدالله عنوان ...
 
ilovepdf_ المحاضرة رقم 186 دكتور / اشرف حمدان بمشاركة الاستاذة /سارة سالم عنو...
ilovepdf_ المحاضرة رقم 186 دكتور / اشرف حمدان بمشاركة الاستاذة /سارة سالم عنو...ilovepdf_ المحاضرة رقم 186 دكتور / اشرف حمدان بمشاركة الاستاذة /سارة سالم عنو...
ilovepdf_ المحاضرة رقم 186 دكتور / اشرف حمدان بمشاركة الاستاذة /سارة سالم عنو...
 
تواصل_تطوير المحاضرة رقم 185 دكتور / هبة محروس علي بعنوان "Between Environme...
تواصل_تطوير المحاضرة رقم 185 دكتور / هبة محروس علي  بعنوان "Between Environme...تواصل_تطوير المحاضرة رقم 185 دكتور / هبة محروس علي  بعنوان "Between Environme...
تواصل_تطوير المحاضرة رقم 185 دكتور / هبة محروس علي بعنوان "Between Environme...
 
#تواصل_تطوير المحاضرة رقم 184 دكتور / شيماء محمد الشرقاوي بعنوان "مبادرة الت...
#تواصل_تطوير المحاضرة رقم 184 دكتور / شيماء محمد الشرقاوي  بعنوان "مبادرة الت...#تواصل_تطوير المحاضرة رقم 184 دكتور / شيماء محمد الشرقاوي  بعنوان "مبادرة الت...
#تواصل_تطوير المحاضرة رقم 184 دكتور / شيماء محمد الشرقاوي بعنوان "مبادرة الت...
 
المحاضرة رقم 183 الاستاذ الدكتور / طارق عطية بعنوان "اعتماد المتحف المصري ا...
 المحاضرة رقم 183 الاستاذ الدكتور / طارق عطية  بعنوان "اعتماد المتحف المصري ا... المحاضرة رقم 183 الاستاذ الدكتور / طارق عطية  بعنوان "اعتماد المتحف المصري ا...
المحاضرة رقم 183 الاستاذ الدكتور / طارق عطية بعنوان "اعتماد المتحف المصري ا...
 
المحاضرة رقم 182 الدكتور / أسامة أبوالمكارم مستشار التغيير والابداع المؤسسي ...
 المحاضرة رقم 182 الدكتور / أسامة أبوالمكارم مستشار التغيير والابداع المؤسسي ... المحاضرة رقم 182 الدكتور / أسامة أبوالمكارم مستشار التغيير والابداع المؤسسي ...
المحاضرة رقم 182 الدكتور / أسامة أبوالمكارم مستشار التغيير والابداع المؤسسي ...
 

Recently uploaded

Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionDr.Costas Sachpazis
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxJoão Esperancinha
 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxPoojaBan
 
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdfCCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdfAsst.prof M.Gokilavani
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024Mark Billinghurst
 
Electronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfElectronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfme23b1001
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVRajaP95
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidNikhilNagaraju
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...VICTOR MAESTRE RAMIREZ
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile servicerehmti665
 
Concrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxConcrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxKartikeyaDwivedi3
 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...srsj9000
 
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEINFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEroselinkalist12
 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineeringmalavadedarshan25
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxwendy cai
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfAsst.prof M.Gokilavani
 
DATA ANALYTICS PPT definition usage example
DATA ANALYTICS PPT definition usage exampleDATA ANALYTICS PPT definition usage example
DATA ANALYTICS PPT definition usage examplePragyanshuParadkar1
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerAnamika Sarkar
 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx959SahilShah
 
Introduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECHIntroduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECHC Sai Kiran
 

Recently uploaded (20)

Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptx
 
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdfCCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024
 
Electronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfElectronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdf
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfid
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile service
 
Concrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxConcrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptx
 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
 
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEINFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineering
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptx
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
 
DATA ANALYTICS PPT definition usage example
DATA ANALYTICS PPT definition usage exampleDATA ANALYTICS PPT definition usage example
DATA ANALYTICS PPT definition usage example
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx
 
Introduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECHIntroduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECH
 

Advanced Site Investigation Tests

  • 1.
  • 2. Advanced Site investigation Prof . Dr / Mohamed Rabie Dean of faculty of engineering - Helwan university
  • 3. Advanced Site investigation Prof . Dr / Mohamed Rabie Dean of faculty of engineering - Helwan university
  • 4. 1) determine the suitable type of foundation. 2) give necessary information about B.C. of soil, expected settlement, safe & economic design of foundation. 3) information's about existence of any harmful material for the finding (as organic material). 4) determine the most suitable method of construct. 5) study any other conditions that may affect the structure. (such as G.W.L, obstructions, ……). 6) Offshore geotechnical engineering study .
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11. data collected from site Investigation ❑ Structure type and use. ❑ Local building code. ❑ Basement requirements. ❑ Span and length for bridges. ❑ Type of soil in the structure surrounding area.
  • 12. data collected from site Investigation ❑ Planning the boreholes. ❑ Performing test boreholes. ❑ Collecting samples at the desired depths of the boreholes for observation. ❑ classify simples. ❑ Apply different test on soil .
  • 13. 120 m Type of structure Spacing Ordinary building 300 m2 Industry building 300-500m2 High way 250 -500 / m Dams 50-200/m
  • 14. 120 m Type of foundation Depth of Boring Isolated footing 3-5 width of isolated footing Raft 2-3 width of Raft Deep foundation 1.5 of excavation heigh
  • 16. Enables visual inspection, locating strata boundaries, and access for undisturbed block samples. open pit
  • 17. -The boring is advanced by rotating the casing pipes and the cutting edge manually and pushing down during rotation -The casing pipe is available in sections one to two meter long pipes Manual Boreholes
  • 18. -Borehole depths down to 60 or 70 meters -Piston samplers are used to obtain sand samples under the water table in hollow stem augers Continuous Flight Auger
  • 19. -three meters casing is derived into the soil and the soil from the inside is removed by means of chopping bit that is attached to the drilling rod -Piston samplers are used to obtain sand samples under the water table in hollow stem augers Wash boring
  • 21. Field & lab. Tests for clay & sand:
  • 22. Site investigation tests SPT Standard penetration test CPT Cone penetration test PMT Pressuremeter test DMT Dilatometer Test C&D Cross hole & Down hole Test SN Soil nailing advanced Test
  • 24. SPT Standard penetration test 65 kg hammer 760 mm drop anvil split spoon sampler drill rod Count the number of blows required for 300 mm penetration Blow count or N-Value
  • 25. SPT Standard penetration test still has some value AR = 112%; use for classification mainly for granular soils; unreliable in clays samples (disturbed) collected in split-spoon sampler done within bore holes at 1.5 m depth intervals N-value correlated to ’, E … soil I.D. = 35 mm O.D.= 51 mm
  • 26. SPT Standard penetration test Factor affect on SPT test
  • 27. SPT Standard penetration test 760 mm drop anvil split spoon sampler drill rod SPT Corrections (N1)60 = CER CN N Overburden correctionEnergy correction Corrected blow count Measured blow count
  • 28. SPT SPT Correlations in Clays N60 cu (kPa) consistency visual identification 0-2 0 - 12 very soft Thumb can penetrate > 25 mm 2-4 12-25 soft Thumb can penetrate 25 mm 4-8 25-50 medium Thumb penetrates with moderate effort 8-15 50-100 stiff Thumb will indent 8 mm 15-30 100-200 very stiff Can indent with thumb nail; not thumb >30 >200 hard Cannot indent even with thumb nail not corrected for overburden
  • 29. SPT SPT Correlations in Granular Soils (N)60 Dr (%) consistency 0-4 0-15 very loose 4-10 15-35 loose 10-30 35-65 medium 30-50 65-85 dense >50 85-100 very dense not corrected for overburden
  • 30. SPT data from SPT & Soil properties
  • 31. SPT SPT Advantages • Simple & rugged device at low cost • Suitable in many soil types • Can perform in weak rocks • Available worldwide 760 mm drop anvil split spoon sampler drill rod
  • 32. SPT SPT Disadvantages • Disturbed sample(index tests only) • Crude number for analysis • Not applicable in soft clays and silts • High variability and uncertainty 760 mm drop anvil split spoon sampler drill rod
  • 34. CPT Cone Penetration test Dynamic cone penetration test (DCPT) Static cone penetration test (SCPT) closed end; no samples gives continuous measurements pushed into the ground @ 2 cm/s using cone instead of split spoon similar to SPT; hammer driven gives blow counts @ 1.5 m depth intervals
  • 35. CPT Dynamic Cone Penetration test Better than SPT or SCPT in hard soils such as dense gravels Siva As crude as SPT; relies on correlations based on blow counts Simple and rugged. SPT DCPT Hollow (split spoon)
  • 36. CPT Dynamic Cone Penetration test
  • 37. CPT Dynamic Cone Penetration test
  • 38. CPT Static Cone Penetration test 10 cm2 cross section cone resistance (qc) or tip resistance (qT) friction ratio, fR = fs qc  100 % Typically 0 ———— 10%. granular cohesive
  • 39. CPT Piezocone Penetration test A modern static cone; measures pore water pressure also. Pushed into the ground
  • 40. CPT Static Penetration test 0 4 8 12 16 20 24 28 0 20 40 60 qt (MPa) Depth(meters) 0 4 8 12 16 20 24 28 0 500 1000 fs (kPa) u b (kPa) 0 4 8 12 16 20 24 28 -200 0 200 400 600 800 qt
  • 41. CPT Static Penetration test Soil Behavior Type (Robertson et al., 1986; Robertson & Campanella, 1988) 1 – Sensitive fine grained 5 – Clayey silt to silty clay 9 – sand 2 – Organic material 6 – Sandy silt to silty sand 10 – Gravelly sand to sand 3 – Clay 7 – Silty sand to sandy silt 11 – Very stiff fine grained* 4 – Silty clay to clay 8 – Sand to silty sand 12 – Sand to clayey sand* *Note: Overconsolidated or cemented
  • 42. CPT Static cone Penetration test correlation k voc u N q c − = cone factor (15-20); varies with cone In Clays, In Sands, E = 2.5-3.5 qc (for young normally consolidated sands)
  • 43. CPT Static cone Penetration test
  • 44. CPT Cone Penetration test BRIEF SURVEY OF SOIL PROFILING METHODS • BEGEMAN METHOD (1965). • SANGLERAT METHOD (1974). • SCHMERTMANN METHOD (1978). • DOUGLAS AND OLSEN METHOD (1981). • VOS (1982). • ROBERTSON METHOD (1986). • ESLAMI AND FELLENIUS METHOD (1996).
  • 45. CPT Eslami-Fellenius CPTU Profiling and Soil Type Classification Method • cases from 18 sources • reporting data from 20 sites in 5 countries • About half of the cases are from piezocone tests, CPTU, and include pore pressure measurements (u2) • Non-CPTU tests are from sand soils and were used with the assumption that the U2-values are approximately equal to the neutral pore pressure (u0). Cone Penetration test
  • 46. CPT The data points were plotted in a Begemann type profiling chart and envelopes were drawn enclosing each of the five soil types Cone Penetration test
  • 47. CPT 1.2.............).........2( uqq tE −= Where: qE= Effective” cone resistance qt = Cone resistance corrected for pore water pressure on shoulder . (Eq. 2.2) u2 = Pore pressure measured at cone shoulder 2.2.............).........1(2 aUqq ct −+= where qt = Cone resistance corrected for pore water pressure on shoulder qc = Measured cone resistance U2 = Pore pressure measured at cone shoulder a = Ratio between shoulder area (cone base) unaffected by the pore water pressure to total shoulder area Cone Penetration test
  • 48. CPT Cone Penetration Test, CPTU, Method for Determining Axial . . Pile Capacity 1-Schmertmann and Nottingham. 2-DeRuiter and Beringen (commonly called the "Dutch Method" or the “European Method”). 3- Bustamante and Gianselli (commonly called the "LCPC Method" or the “French Method”). 4- Meyerhof (method for sand). 5- Tumay and Fakhroo (method limited to piles in soft clay). 6- The ICP method. 7- Eslami and Fellenius Cone Penetration test
  • 49. CPT Schmertmann and Nottingham 1.3......................cat qCr = where rt = pile unit toe resistance; an upper limit of 15 MPa is imposed. C = correlation coefficient by the over-consolidation ratio, OCR. qca = the filtered value obtained in the influence zone. Cone Penetration test
  • 50. CPT qca = the filtered value obtained in the influence zone extending from 8b above the pile toe (b is the pile diameter) and 0.7b or 4b, as indicated . Cone Penetration test
  • 51. CPT Cone Penetration test •Step 1 is determining two averages of cone stress within the zone below the pile toe, one for a zone depth of 0.7b and one for 0.4b along the path "a" through "b". The smallest of the two is retained. •Step 2 is determining the smallest cone stress within the zone used for the Step 1. •Step 3 consists of determining the average of the two values per Steps 1 and 2. •Step 4 is determining the average cone stress in the zone above the pile toe according to the minimum path shown in Fig. 7.6. (Usually, just the average of the cone stress within the zone is good enough). •Step 5, finally, is determining the average of the Step 3 and Step 4 values
  • 52. CPT Cone Penetration test 2.3......................sfs fKr = where rs = pile unit shaft resistance; an upper limit of 120 KPa is imposed Kf = a dimensionless coefficient fs = sleeve friction For Clay
  • 53. CPT Cone Penetration test For Sand Where rs = unit shaft resistance; an upper limit of 120 KPa is imposed Kc = a dimensionless coefficient; a function of the pile type. for open toe, steel piles Kc = 0.8 % for closed-toe pipe piles Kc = 1.8 % for concrete piles Kc = 1.2 % qc = cone resistance 3.3......................ccs qKr =
  • 54. CPT Cone Penetration test LCPC 4.3......................caaLCPCt qCr = where rt = pile unit toe resistance; an upper limt of 15 MPa is imposed CLCPC = correlation coefficient qcaa = average of the average cone resistance in the influence zone First, the cone resistance within the influence zone is averaged to qca. Next, an average, qcaa, is calculated of the average of the qca-values that are within a range of 0.7 through 1.3 of qca.
  • 56. CPT Cone Penetration test For driven steel piles and driven precast piles, the correlation coefficient, CLCPC, ranges from 0.45 through 0.55 in clay and from 0.40 through 0.50 in sand. For bored piles. Coefficients of Unit Toe Resistance in the LCPC Method Quoted from the CFEM (1992)
  • 57. CPT Cone Penetration test 5.3......................JqKr CLCPCS = where rs = unit shaft resistance; for imposed limits see Table 3.3.2 KLCPC = a dimensionless coefficient; a function of the pile type and cone resistance J = upper limit value of unit shaft resistance qc = cone resistance (note, uncorrected for pore pressure on cone shoulder)
  • 58. CPT Cone Penetration test Coefficients and Limits of Unit Shaft Resistance in the LCPC Method Quoted from the CFEM (1992)
  • 59. CPT Cone Penetration test . Eslami and Fellenius 6.3......................Egtt qCr = where rt = pile unit toe resistance Ct = toe correlation coefficient (toe adjustment factor)—equal to unity in most cases qEg = geometric average of the cone point resistance over the influence zone after correction for pore pressure 7.3...................... 3 1 b Ct = where b = pile diameter in.
  • 60. CPT Cone Penetration test 8.3......................ESS qCr = where rt = pile unit toe resistance Ct = toe correlation coefficient (toe adjustment factor)—equal to unity in most cases qEg = geometric average of the cone point resistance over the influence zone after correction for pore pressure Shaft Correlation Coefficient.
  • 61. CPT Case Study (Burullus Combined Cycle Power Plant)
  • 62. CPT Case Study (Burullus Combined Cycle Power Plant)
  • 63. CPT Case Study (Burullus Combined Cycle Power Plant) Example of recorded shear wave seismograms for depth between 1-27 m For SCPT
  • 64.
  • 65.
  • 66. CPT Case Study (BH imagine)
  • 67. CPT Case Study (BH imagine)
  • 68. CPT Case Study (BH imagine)
  • 69. CPT Case Study (BH imagine)
  • 70. CPT Case Study (BH imagine)
  • 71. CPT Case Study (BH imagine)
  • 72. CPT Case Study (BH imagine)
  • 73. CPT Case Study (BH imagine)
  • 74. CPT Case Study (BH imagine)
  • 75. CPT Case Study (BH imagine)
  • 76. CPT CPT Disadvantages • High capital investment • Requires skilled operator for field use • Electronics must be calibrated &protected • No soil samples • Unsuited to gravelly soils and cobbles
  • 79. PMT Pressuremeter Test The pressuremeter test is a load test carried out in-situ in a borehole. An inflatable cylindrical probe is set at testing depth in a pre-drilled borehole within a soil or rock mass or by direct driving into the mass. The method in depends on the materials’ characteristics.
  • 80. PMT Pressuremeter Test Expand a cylindrical probe inside a bore hole. Gives strength, modulus, K0, cv… Most rational of all in situ tests For all soils Siva pressuremeter
  • 83. PMT PMT Advantages •One of the few in-situ tests that can assess directly the state of horizontal stress in the soil •Significant advantage for design of deep foundations because capacity is directly related to the in-situ stress •Can yield information on soil modulus and strength
  • 84. PMT PMT Disadvantages •PMT is a soil property test, not a logging tool, i.e. soil must be characterized in advance of the test (same for vane shear test) •Drainage conditions in soils of intermediate permeability generally unknown during the test •Test accuracy subject to drilling procedures, insertion techniques, and the human element in both performance and interpretation •Soil is tested in extension mode and results usually different from compression mode because of soil anisotropy •More costly than SPT and VST
  • 86. DMT Dilatometer Test Advance @ 20 mm/s. Test every 200-300 mm. Nitrogen tank for inflating the membrane. Can identify soil (from a chart). Gives E for different soil . 60 mm dia. flexible steel membrane Similar to the cone
  • 88. DMT Dilatometer Test Dilatometer tests provide the deformation and elastic moduli of bedrock and unconsolidated rock in the borehole under in-situ conditions. The rock properties which are determined from dilatometer tests are important parameters for the planning and dimensioning of tunnels, caverns and other under-ground structures. The deformation behavior of the rocks is measured by expanding the borehole through multiple load-unload cycles.
  • 93. DMT DMT Advantages • Simple and Robust Equipment • Repeatable and Operator-Independent • Quick and Economical • Theoretical Derivations for elastic modulus, strength, stress history
  • 94. DMT DMT Disadvantages • Difficult to push in dense and hard materials • Primarily established on correlative relationships • Needs calibration for local geologies
  • 95. test Comparison between test DMTVST SPT CPT PMT
  • 96. test Comparison cost between test Relative Test Accuracy RelativeCostperTest Pocket penetrometer test Relative Test Accuracy RelativeCostperTest Standard penetration test Dynamic cone penetration test Static cone penetration test Pressuremeter test
  • 98. These test methods are limited to the determination of horizontally traveling compression (P) and shear (S) seismic waves at test sites consisting primarily of soil materials (as opposed to rock). Cross hole seismic test
  • 99. Objectives of this test • Determine the dynamic soil properties as a function of depth. (Shear modulus, Young’s modulus, and Poisson’s ratio, or simply for the determination of anomalies that might exist between boreholes.)
  • 100. Wave propagation velocities can then be calculated from the differences in arrival times at adjacent boreholes. If the length between boreholes, L and the recorded time, t then shear wave velocity, vs = L/t. --- The early arrival wave is identified as P-wave and the later wave is S-wave. Cross-hole test can provide reliable velocity profile to depths of 30-60 m with use of mechanical sources and for greater depths use of explosive sources
  • 101.
  • 102. The simplest Cross-hole test consists of 2 boreholes, one for an energy source and another for a receiver. By fixing both the source and the receiver at the same depth, the wave velocity through soil/rock material between the holes is measured for the depth. By testing at various depths a velocity profile against depth can be obtained. The use of two sets of receivers avoids the issue of trigger accuracy, but increase the cost of this type of test.
  • 103. 102 Source Receiver L 2 boreholes arrangement Source Receiver s L 3 boreholes arrangement
  • 104. Apparatus 1- energy sources: to produce good P-wave data, the energy source must transmit adequate energy to the medium in compression or volume change. Impulsive sources, such as explosives, hammers, or air guns, are all acceptable P-wave generators. For good S waves, energy sources must be repeatable and, although not mandatory reversible The S-wave source must be capable of producing an S-wave train with an amplitude at least twice that of the P-wave train
  • 105. 2- Receivers. The receivers intended for use in the cross hole test shall be transducers having appropriate frequency and sensitivity characteristics to determine the seismic wave train arrival. Typical examples include geophones and accelerometers 3- Recording System. The system shall consist of separate amplifiers, one for each transducer being recorded, having identical phase characteristics and adjustable gain control
  • 106. Crosshole TestingOscilloscope PVC-cased Borehole PVC-cased Borehole Downhole Hammer (Source) Velocity Transducer (Geophone Receiver) t x Shear Wave Velocity: Vs = x/t Test Depth ASTM D 4428 Pump packer Note: Verticality of casing must be established by slope inclinometers to correct distances x with depth. Slope Inclinometer Slope Inclinometer 20/05/2014 105
  • 107. Borehole Preparation The preferred method for preparing a borehole set for cross hole testing incorporates three boreholes in line, spaced 3.0 m [10 ft] apart, center-to-center on the ground surface. If, however, it is known that S wave velocities will exceed 450 m/s [1500 ft/s], such as is often encountered in alluvial materials, borehole spacing's may be extended to 4.5 m. ** Drill the boreholes to a diameter not exceeding 165 mm After the drilling is completed, case the boring with either 75 or 100 mm inside diameter PVC pipe or aluminum casing. ** Before inserting the casing close the bottom of the pipe with a cap which has a one way ball-check valve capable of accommodating 38 mm outside diameter grout pipe Procedure
  • 108.
  • 109. Results Depth (m) Travel time msec Velocity m/sec S-R1 S-R2 R1 – R2 S-R1 S-R2 R1 – R2 P P P P P PS S S S S S S-R1 Source to Receiver 1 S-R2 Source to Receiver 2 R1-R2 Time difference between Receivers 1 and 2
  • 110. Notes •Preferred Method Begin the cross hole test by placing the energy source in an end hole at a depth no greater than 1.5 m. Place the two receivers at the same elevation in each of the designated receiver holes. Check recording equipment and verify Timing.
  • 111. Best results will be obtained by performing two separate tests: one optimized for P-wave recovery (fastest sweep/recorder rate, higher gain settings) and the second for S-wave recovery (slower sweep/recorder rate, lower gain settings).
  • 112.
  • 113. Results of cross-hole test ( project in Irbid, Jordan )
  • 114. Advantages and Limitations CHST method is the most accurate method for determining material properties of rock and soil sites ■ Real‐time waveform display while testing ■ P‐S source used in CHS tests can impact in the vertical, transverse, and radial directions ■ Thin layers, which are often invisible to surface methods, can be detected with CS/DS investigations ■ Accuracy and resolution for these methods are constant for all test depths, whereas the accuracy and resolution of the surface methods decreases with depth
  • 115. Down-hole test • Down-hole test is in-situ test methods - to measure dynamic soil/rock properties - to determine the interval velocities from arrival times and relative arrival times of compression (P) and vertically (SV) and horizontally (SH) polarized shear - to identify soil stratification - to determine shear modulus, G =r.vs
  • 116. The objective of seismic down-hole/up-hole tests is to measure travel times of P and S-waves from the energy source to the receiver. These tests can be performed in single borehole. A hole is drilled to the required depth at the testing site and a vibrating source is created to determine shear wave velocity for various soil layers. In this case the waves will be travelling in vertical direction either down or up depending on the location of the source of impulse.
  • 117. Down-hole test Source of impulse Receiver Receiver Source of impulse a) Down-hole test b) Up-hole test 116
  • 118. Surface source S-wave arrival time, t Depth, z Transd. 1 Layer 1 Layer 2 Transd. 2 vs = dz/dt
  • 119. Downhole TestingOscilloscope Cased Borehole Test Depth Interval Horizontal Velocity Transducers (Geophone Receivers) packer Pump Horizontal Plank with normal load Shear Wave Velocity: Vs = R/t z1 z2 t R1 2 = z1 2 + x2 R2 2 = z2 2 + x2 x Hammer © Paul Mayne/GT
  • 120. Apparatus 1- energy sources: to produce good P-wave data, the energy source must transmit adequate energy to the medium in compression or volume change. Impulsive sources, such as explosives, hammers, or air guns, are all acceptable P-wave generators. For good S waves, energy sources must be repeatable and, although not mandatory reversible
  • 121. - Shear Beam A shear beam is a common form of an SH-wave energy source. The beam can be metal or wood, and •may be encased at the ends and bottom with a steel plate The center of the shear beam is placed on the ground at a horizontal offset ranging from 1 to 3 m (3 to 10 ft) from the receiver borehole
  • 122. 2- Receivers. •Receivers—In the down hole seismic test, the seismic receivers are installed vertically with depth within a borehole or as part of the instrumentation in a cone penetrometer probe. The receivers intended for use in the test shall be transducers having appropriate frequency and sensitivity characteristics to determine the seismic wave train arrival. Typical transducer examples include geophones, which measure particle velocity, and accelerometers, which measure particle acceleration. Both geophones and accelerometers are acceptable for down hole seismic testing.
  • 123. High precision, low noise (operational amplifier integrated into sensor) accelerometers are generally more accurate due to their desirable transient response times (that is, delay, rise and peak times (10)) and high bandwidths compared to geophones. 3-Recording System The system shall consist of separate recording channels, one for each transducer being recorded, having identical phase characteristics and adjustable gain control.
  • 124. P and S-waves are determined from the plot
  • 125. Based on the measured shear wave velocity, the strata may be classified into different categories as per the UBC Code (1997):
  • 126. Results of Down-hole test ( project in Irbid, Jordan )
  • 127. Advantages and Limitations •DS method is cheaper than CS, since only one borehole is required for testing. •■ Real-time waveform display while testing •■ Thin layers, which are often invisible to surface methods, can be detected with CS/DS investigations •■ Accuracy and resolution for CS/DS methods are constant for all test depths, whereas the accuracy and resolution of the surface methods decreases with depth
  • 128. Choice between CS and DS Seismic Testing Cross hole Method Down hole Method Two or More Boreholes One Borehole Predominantly P‐ and SV‐ Waves, but SH‐waves Also Possible Generate P‐ and SH‐Waves More Expensive due to Use 2 borehole or more Accuracy Independent on the Measurement Depth Accuracy dependent on the measurement depth
  • 130. What's is the meaning of soil nailing
  • 131. Introduction • Soil nailing is a technique for stabilizing soil slopes and excavations by installing a large number of closely spaced passive inclusions into the in-situ soil mass.
  • 132. History of Soil Nailing • in the 1960's :- The origin of soil nailing comes from rock bolting in tunneling with the “ New Australian Tunneling Method ” • This article describes this method as combination of shotconcrete and fully bonded steel inclusions that increased the stability of the excavation. • IN EGYPT
  • 133. Applications ❑New construction 1. Slope stabilization 2. Vertical or battered cuttings 3. Embankments 4. Support to existing or new gravity walls 5. Can be used for both permanent and temporary applications ❑Remedial work 1. Repair of reinforced earth wall 2. Repair of masonary gravity wall 3. Repair of anchored walls 4. Stabilization of failed soil slopes
  • 134.
  • 135. Applications Slope stabilization Vertical or battered cuttings Roadway widening under existing bridges Retaining walls
  • 137. Components of soil nails • Soil nail segments Ø = 32 or more ▪Steel Plate and reinforcement for the nail head
  • 138. Components of soil nails • Soil nail centralizers ▪Drilled hole before the installation of the soil nail
  • 139. Test of soil nailing •For grout 1. Bleeding water 2. Flow cone efflux time 3. For crushing strength •For soil nailing 1. Pullout test 2. Creep test 3. Non-destructive testing 4. Destructive testing
  • 140. Testing for grout • two in its fresh state and one once the grout has set and hydrated. Once the grout has been sampled, the bleeding water is measured at three different times to assess the rate of bleeding.
  • 141. Testing for grout • The other test that is performed on the fresh grout is the fluidity test, which is performed with the aid of a especial cone Fluidity Cone
  • 143. Testing for grout • Cube samples for grout strength test
  • 144. Testing for soil nailing • Pullout Test • Objective : • the number of pullout tests as 2 % of the total number of working soil nails subject to a minimum of two • Pullout out tests required based on codes for quality control (destructive, high-cost, time-consuming) • verify design assumptions about the bond strength at the interface between the ground and the cement grout sleeve . • Pullout tests carried out prior to the construction of working soil nails so that the information gathered from the tests can be reviewed for making design changes as needed
  • 145. Pullout Test • Components of soil nails 1. Test soil nailed 2. hydraulic jack 3. Dial gauges 4. Handheld oil pump 5. 700*700*6 mm steal seating plate 6. Steal channel reference 7. Load cell 8. Tripod 9. Frictionless support the hydraulic
  • 146. Pullout Test • Components of soil nails
  • 148. Testing Procedures For Pullout Test 4- Idealized loading test results 1-Installation of hydraulic jack for soil nail loading test. 2- Dial gauges measure deformation. 3- Handheld oil pump for applying hydraulic pressure
  • 149. Pullout Test The test soil nail shall be loaded in stages :- 1. from the initial load (Ta) via two intermediate test loads (TDL1 and TDL2) to the maximum test load. 2. TDL1 is the allowable pullout resistance provided by the bond length of the cement grout sleeve 3. TDL2 is TDL1 times the factor of safety against pullout failure at soil-grout interface (FSG). 4. The maximum test load shall be 90 % of the yield load of the test soil-nail reinforcement (Tp)
  • 150. Pullout Test 5. Ta shall be TDL1 or 5 % of TP, whichever is smaller. 6. During the first two loading cycles, TDL1 and TDL2 shall be maintained for 60 minutes for deformation measurement. The measurement at each of the cycles taken at time intervals of 1, 3, 6, 10, 20, 30, 40, 50 and 60 minutes. 7. In the last loading cycle, the test load shall be increased gradually from Ta straight to the maximum test load and then maintained for deformation measurement. The measurement shall be taken at time intervals of 1, 3, 6, 10, 20, 30, 40, 50 and 60 minutes.
  • 151. Pullout Test 8. If the test soil nail fails to sustain TDL1, TDL2, or the maximum test load in any cycle. The measurements shall be taken for a longer period where considered necessary • The limit of pullout test The test soil nail is considered to be able to sustain the test load if the difference of soil nail movements at 6 minutes and 60 minutes does not exceed 2 mm or 0.1 % of the bond length of the test soil nail
  • 152.
  • 153. soil nailing tests Chinese Embassy
  • 154. Creep Test • For soil nails designed to carry sustained loads and bonded in soil • Objective : the test determine the susceptibility of long-term creep of the soil nails • Testing Procedures :- 1. The procedures for a creep test are similar to those for a pullout test except that only one loading cycle is required. Hence, it may be carried out as part of a pullout test 2. The test soil nail shall be loaded from Ta to the creep test load (Tc).
  • 155. Creep Test 1. The creep test load (Tc) is defined as the allowable pullout resistance provided by the bond length of the cement grout sleeve of the test soil nail times the factor of safety against pullout failure at soil-grout interface 2. The creep period shall be deemed to begin when Tc is applied. The load shall be maintained for 60 minutes for deformation measurement. During the creep period, the measurement shall be taken at time intervals of 1, 3, 6, 10, 20, 30, 40, 50 and 60 minutes
  • 156. The limit of creep test A. the difference of soil nail movements at 6 minutes and 60 minutes during the creep period does not exceed 2 mm or 0.1 % of the bond length of the test soil nail B. the overall trend of creep rate (i.e., soil nail movement/log time) is decreasing throughout the creep period C. In no case should the soil nail tendon be stressed to more than 80 percent of its minimum ultimate tensile strength for grade 150 steel, or more than 90 percent of the minimum yield strength for grade 60 steel. Otherwise, an explosive failure of the steel can occur.
  • 157. Shotcrete Panel Testing :- Objective : • verify the compressive strength of the in-place shotcrete for permanent wall facings Requirements: - - 1. the test slab of size (600 x 600 x 100mm panels) 2. shot gun concrete 3. shotcrete
  • 158. Shotcrete Panel Testing :- Testing Procedures 1. prepare the concrete and use shot gun to push and spread 2. The panels are prepared using the same reinforcement,equipment, mix design and shooting orientation 3. Panels are shotcreted either before or during the production phase of the shotcrete16 wall
  • 159. Shotcrete Panel Testing :- Testing Procedures 4. The panel is then cured in the field or in a moist room until ready for testing 5. Sawed cubes and beams may also be prepared from the panel and tested either perpendicular orparallel to the surface. Testing is done at 7 and 28 days
  • 160. History of Soil Nailing IN EGYPT Project : Dar El-Mona Project Client: El-Mona Company Child Care Consultant: Soil Mechanics And Foundations Research Laboratory Cairo University Location : Cairo-Alexandria Desert Road Budget: Approximately 800,000 LE Duration: From February 2004 till May 2004 Type Of Works: Soil Nailing Project Description A soil nailing system was proposed to support and stabilize an existing stone gravity type wall having some collapses. Bauer Egypt with the aid of its mother company Bauer Spezialtiefbau in Germany designed and installed a soil nailing system to stabilize the existing gravity wall and prevent further future collapses along the southern side of the project. The total area for which the nailing system was installed was approximately 1600 square meters. The total number of soil nails installed for the project is 420 nails having lengths varying from 6 to 11 meters
  • 165. • The project comprises the construction of approximately 630m of quay wall fully equipped to accommodate large container vessels and dredging of an approximately 1000 × 280 m large berthing to a depth of -15.0m in a first phase and to a depth of -17.0m in a second phase. Case under study: the new multi-purpose terminal at Damietta Port Site location
  • 166. • The bathymetric survey program was carried out previously at the proposed project location shows that the natural ground level at the location of the quay wall is varying between 0.00 to -12.50 m . Case under study: Existing site condition
  • 167. • The backfilling to reach the quay wall finish level is needed. Case under study: Backfilling to reach the finish level
  • 168. • Two type of improvement are required one to improve the backfilling and another to improve soft clay. Case under study: Required soil improvement technique PVD to improve soft clayVibro compaction to improve backfilling
  • 169. Outline of the structure system: Quay wall system Group 1 (vertical elements): • Front wall with thickness of 1.0m and tip level of -39.00. • Rear wall shall be one row of barrettes down to -39.00 with dimensions of 2.50mx0.80m and spacing of 4.00m. • The intermediate vertical supporting elements shall be two rows of barrettes down to -42.00 with dimensions of 2.50mx0.80m and spacing of 4.00m. Group 2 (Horizontal elements): • Connecting girders 1.25mx2.50m depth at spacing 4.00m. • Cast in-situ slab 40cm thickness. • Front capping beam 3.00m width and 2.50m thickness. • Rear capping beam 3.00m width and 2.50m thickness.
  • 170. Finite element analysis: 2D analysis
  • 171. Finite element analysis: 3D analysis
  • 172. Finite element analysis: Embedded pile element . Schematization of single embedded pile (PLAXIS 3D). Principle of the embedded pile row 2D Model (Sluis ,2012)
  • 173. Finite element analysis: Embedded pile element Friction values base value
  • 174. Finite element analysis: constitutive models Yield surface for soft soil model in p-q planeHyperbolic stress-strain relation in primary loading for standard drained triaxial test Harding soil model and soft soil model had been used to simulate The soft clay
  • 175. Finite element analysis: soil parameters
  • 176. Finite element analysis: construction stages
  • 177. Verification of soft clay parameters: Soil test in plaxis The laboratory tests considered in the analysis are: 1- Triaxial test. 2- Odometer test.
  • 178. Verification of soft clay parameters: calibration of soil parameters
  • 179. Comparison beteen2D and 3D finite element: Lateral deformation -40 -36 -32 -28 -24 -20 -16 -12 -8 -4 0 4 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 Level(m) Lateral Deformation (m) 3D-HSM 2D-HSM -42 -38 -34 -30 -26 -22 -18 -14 -10 -6 -2 2 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 Level(m) Lateral Deformation (m) 3D-HSM 2D-HSM 2D and 3D Lateral Deformation for Front wall. 2D and 3D Lateral Deformation for middle Barrettes-First Row
  • 180. Comparison beteen2D and 3D finite element: Lateral deformation 2D and 3D Lateral Deformation for Rear barrette -42 -38 -34 -30 -26 -22 -18 -14 -10 -6 -2 2 -0.4 -0.3 -0.2 -0.1 0.0 Level(m) Lateral Deformation (m) 3D-HSM 2D-HSM 2D and 3D Lateral Deformation for middle Barrettes-Second Row -40 -36 -32 -28 -24 -20 -16 -12 -8 -4 0 4 -0.3 -0.2 -0.1 0.0 Level(m) Lateral Deformation (m) 3D-HSM 2D-HSM
  • 181. Comparison beteen2D and 3D finite element: Bending moment 2D and3D Bending Moment Diagram for middle Barrettes-First Row 2D and 3D Bending Moment Diagram for Front wall. -40.00 -36.00 -32.00 -28.00 -24.00 -20.00 -16.00 -12.00 -8.00 -4.00 0.00 4.00 -2000 -1000 0 1000 2000 3000Level(m) B.M.D (kN.m/m) Sea Side - 2d-HSM Earth Side -2d-HSM Sea Side -3D-HSM Earth Side -3D-HSM -42.00 -38.00 -34.00 -30.00 -26.00 -22.00 -18.00 -14.00 -10.00 -6.00 -2.00 2.00 -3000 -2000 -1000 0 1000 2000 3000 Level(m) B.M.D (kN.m/m) Sea Side - 2d-HSM Earth Side - 2d-HSM Sea Side - 3D-HSM Earth Side - 3D-HSM Sea Side Earth Side
  • 182. Comparison beteen2D and 3D finite element: Bending moment 2D and3D Bending Moment Diagram for Rear Barrette 2D and 3D Bending Moment Diagram for middle Barrettes-second Row. -42.00 -38.00 -34.00 -30.00 -26.00 -22.00 -18.00 -14.00 -10.00 -6.00 -2.00 2.00 -3000 -2000 -1000 0 1000 2000 3000Level(m) B.M (kN.m/m) Sea Side - 2d-HSM Earth Side - 2d-HSM Sea Side - 3D-HSM Earth Side - 3D-HSM -42.00 -38.00 -34.00 -30.00 -26.00 -22.00 -18.00 -14.00 -10.00 -6.00 -2.00 2.00 -2000 -1000 0 1000 2000 Level(m) B.M (kN.m/m) Sea Side - 2d-HSM Earth Side - 2d-HSM Sea Side - 3D-HSM Earth Side - 3D-HSM
  • 183. Comparison between HSM and SSM finite element: Lateral deformation Lateral Deformation for middle Barrettes- First Row Lateral Deformation for Front wall. -44 -40 -36 -32 -28 -24 -20 -16 -12 -8 -4 0 4 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 Level(m) Lateral Deformation (m) 2D-HSM 2D-SSM -44 -40 -36 -32 -28 -24 -20 -16 -12 -8 -4 0 4 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 Level(m) Lateral Deformation (m) 2D-HSM 2D-SSM
  • 184. Comparison between HSM and SSM finite element: Lateral deformation Lateral Deformation for Rear barretteLateral Deformation for middle Barrettes- Second Row. -44 -40 -36 -32 -28 -24 -20 -16 -12 -8 -4 0 4 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 Level(m) Lateral Deformation (m) 2D-HSM 2D-SSM -39 -36 -33 -30 -27 -24 -21 -18 -15 -12 -9 -6 -3 0 3 -0.3 -0.2 -0.1 0.0 Level(m) Lateral Deformation (m) 2D-HSM 2D-SSM
  • 185. Comparison between HSM and SSM finite element: Bending moment Bending Moment Diagram for middle Barrettes-First Row Bending Moment Diagram for Front wall. -39.00 -35.00 -31.00 -27.00 -23.00 -19.00 -15.00 -11.00 -7.00 -3.00 1.00 -2000 -1000 0 1000 2000 3000Level B.M.D (kN.m/m) Sea Side - 2d-HSM Earth Side -2d-HSM Sea Side-2d-SSM Earth side-2d-ssm Sea Side Earth Side -42.00 -38.00 -34.00 -30.00 -26.00 -22.00 -18.00 -14.00 -10.00 -6.00 -2.00 2.00 -4000 -2000 0 2000 4000 Level B.M (kN.m/m) Sea Side - 2d-HSM Earth Side - 2d-HSM Sea Side - 2d-SSM Earth Side - 2D-SSM Sea Side Earth Side
  • 186. Comparison between HSM and SSM finite element: Bending moment Bending Moment Diagram for Rear Barrette. Bending Moment Diagram for middle Barrettes-second Row. -42.00 -38.00 -34.00 -30.00 -26.00 -22.00 -18.00 -14.00 -10.00 -6.00 -2.00 2.00 -4000 -2000 0 2000 4000 Level B.M (kN.m/m) Sea Side - 2d-HSM Earth Side - 2d-HSM Sea Side - 2d-SSM Earth Side - 2D-SSM Sea Side Earth Side -39.00 -36.00 -33.00 -30.00 -27.00 -24.00 -21.00 -18.00 -15.00 -12.00 -9.00 -6.00 -3.00 0.00 3.00 -2000 -1000 0 1000 2000 Level B.M (kN.m/m) Sea Side - 2d-HSM Earth Side - 2d-HSM Sea Side - 2d-SSM Earth Side - 2D-SSM Sea Side Earth Side
  • 187. • 3-D model gives lower internal forces, lateral deformation and bending moments compared to 2-D analysis. • The lateral deformations of the walls and barrettes initially increase significantly and then gradually decrease towards the barrettes tip. • The results of analysis of 2d analysis higher than 3d analysis with percentage from 15% to 30%. • Soil test in PLAXIS give close results compared to lab tests. • Both SSM and HSM are accepted to simulate soft clay. Concluding Remarks
  • 188. there where 2 case study with Eng / Alaa M. Abou Alez Technical Office Manger New Materity Hospital project - Kuwait
  • 189. DR/Mohamed Rabie -Prophesier of Geotechnical engineering – Helwan university -Dean of faculty of engineering – helwan university Thank You