SlideShare a Scribd company logo
1 of 67
Mergesort and Quicksort
Chapter 8
Kruse and Ryba
Sorting algorithms
• Insertion, selection and bubble sort have
quadratic worst-case performance
• The faster comparison based algorithm ?
O(nlogn)
• Mergesort and Quicksort
Merge Sort
• Apply divide-and-conquer to sorting problem
• Problem: Given n elements, sort elements into
non-decreasing order
• Divide-and-Conquer:
– If n=1 terminate (every one-element list is already
sorted)
– If n>1, partition elements into two or more sub-
collections; sort each; combine into a single sorted list
• How do we partition?
Partitioning - Choice 1
• First n-1 elements into set A, last element set B
• Sort A using this partitioning scheme recursively
– B already sorted
• Combine A and B using method Insert() (= insertion
into sorted array)
• Leads to recursive version of InsertionSort()
– Number of comparisons: O(n2)
• Best case = n-1
• Worst case = 2
)
1
(
2




n
n
i
c
n
i
Partitioning - Choice 2
• Put element with largest key in B, remaining elements
in A
• Sort A recursively
• To combine sorted A and B, append B to sorted A
– Use Max() to find largest element  recursive
SelectionSort()
– Use bubbling process to find and move largest element to
right-most position  recursive BubbleSort()
• All O(n2)
Partitioning - Choice 3
• Let’s try to achieve balanced partitioning
• A gets n/2 elements, B gets rest half
• Sort A and B recursively
• Combine sorted A and B using a process
called merge, which combines two sorted
lists into one
– How? We will see soon
Example
• Partition into lists of size n/2
[10, 4, 6, 3]
[10, 4, 6, 3, 8, 2, 5, 7]
[8, 2, 5, 7]
[10, 4] [6, 3] [8, 2] [5, 7]
[4] [10] [3][6] [2][8] [5][7]
Example Cont’d
• Merge
[3, 4, 6, 10]
[2, 3, 4, 5, 6, 7, 8, 10 ]
[2, 5, 7, 8]
[4, 10] [3, 6] [2, 8] [5, 7]
[4] [10] [3][6] [2][8] [5][7]
Static Method mergeSort()
Public static void mergeSort(Comparable []a, int left,
int right)
{
// sort a[left:right]
if (left < right)
{// at least two elements
int mid = (left+right)/2; //midpoint
mergeSort(a, left, mid);
mergeSort(a, mid + 1, right);
merge(a, b, left, mid, right); //merge from a to b
copy(b, a, left, right); //copy result back to a
}
}
Merge Function
Evaluation
• Recurrence equation:
• Assume n is a power of 2
c1 if n=1
T(n) =
2T(n/2) + c2n if n>1, n=2k
Solution
By Substitution:
T(n) = 2T(n/2) + c2n
T(n/2) = 2T(n/4) + c2n/2
T(n) = 4T(n/4) + 2 c2n
T(n) = 8T(n/8) + 3 c2n
T(n) = 2iT(n/2i) + ic2n
Assuming n = 2k, expansion halts when we get T(1) on right side;
this happens when i=k T(n) = 2kT(1) + kc2n
Since 2k=n, we know k=logn; since T(1) = c1, we get
T(n) = c1n + c2nlogn;
thus an upper bound for TmergeSort(n) is O(nlogn)
Quicksort Algorithm
Given an array of n elements (e.g., integers):
• If array only contains one element, return
• Else
– pick one element to use as pivot.
– Partition elements into two sub-arrays:
• Elements less than or equal to pivot
• Elements greater than pivot
– Quicksort two sub-arrays
– Return results
Example
We are given array of n integers to sort:
40 20 10 80 60 50 7 30 100
Pick Pivot Element
There are a number of ways to pick the pivot element. In this
example, we will use the first element in the array:
40 20 10 80 60 50 7 30 100
Partitioning Array
Given a pivot, partition the elements of the array
such that the resulting array consists of:
1. One sub-array that contains elements >= pivot
2. Another sub-array that contains elements < pivot
The sub-arrays are stored in the original data array.
Partitioning loops through, swapping elements
below/above pivot.
40 20 10 80 60 50 7 30 100
pivot_index = 0
[0] [1] [2] [3] [4] [5] [6] [7] [8]
too_big_index too_small_index
40 20 10 80 60 50 7 30 100
pivot_index = 0
[0] [1] [2] [3] [4] [5] [6] [7] [8]
too_big_index too_small_index
1. While data[too_big_index] <= data[pivot]
++too_big_index
40 20 10 80 60 50 7 30 100
pivot_index = 0
[0] [1] [2] [3] [4] [5] [6] [7] [8]
too_big_index too_small_index
1. While data[too_big_index] <= data[pivot]
++too_big_index
40 20 10 80 60 50 7 30 100
pivot_index = 0
[0] [1] [2] [3] [4] [5] [6] [7] [8]
too_big_index too_small_index
1. While data[too_big_index] <= data[pivot]
++too_big_index
40 20 10 80 60 50 7 30 100
pivot_index = 0
[0] [1] [2] [3] [4] [5] [6] [7] [8]
too_big_index too_small_index
1. While data[too_big_index] <= data[pivot]
++too_big_index
2. While data[too_small_index] > data[pivot]
--too_small_index
40 20 10 80 60 50 7 30 100
pivot_index = 0
[0] [1] [2] [3] [4] [5] [6] [7] [8]
too_big_index too_small_index
1. While data[too_big_index] <= data[pivot]
++too_big_index
2. While data[too_small_index] > data[pivot]
--too_small_index
40 20 10 80 60 50 7 30 100
pivot_index = 0
[0] [1] [2] [3] [4] [5] [6] [7] [8]
too_big_index too_small_index
1. While data[too_big_index] <= data[pivot]
++too_big_index
2. While data[too_small_index] > data[pivot]
--too_small_index
3. If too_big_index < too_small_index
swap data[too_big_index] and data[too_small_index]
40 20 10 30 60 50 7 80 100
pivot_index = 0
[0] [1] [2] [3] [4] [5] [6] [7] [8]
too_big_index too_small_index
1. While data[too_big_index] <= data[pivot]
++too_big_index
2. While data[too_small_index] > data[pivot]
--too_small_index
3. If too_big_index < too_small_index
swap data[too_big_index] and data[too_small_index]
40 20 10 30 60 50 7 80 100
pivot_index = 0
[0] [1] [2] [3] [4] [5] [6] [7] [8]
too_big_index too_small_index
1. While data[too_big_index] <= data[pivot]
++too_big_index
2. While data[too_small_index] > data[pivot]
--too_small_index
3. If too_big_index < too_small_index
swap data[too_big_index] and data[too_small_index]
4. While too_small_index > too_big_index, go to 1.
40 20 10 30 60 50 7 80 100
pivot_index = 0
[0] [1] [2] [3] [4] [5] [6] [7] [8]
too_big_index too_small_index
1. While data[too_big_index] <= data[pivot]
++too_big_index
2. While data[too_small_index] > data[pivot]
--too_small_index
3. If too_big_index < too_small_index
swap data[too_big_index] and data[too_small_index]
4. While too_small_index > too_big_index, go to 1.
40 20 10 30 60 50 7 80 100
pivot_index = 0
[0] [1] [2] [3] [4] [5] [6] [7] [8]
too_big_index too_small_index
1. While data[too_big_index] <= data[pivot]
++too_big_index
2. While data[too_small_index] > data[pivot]
--too_small_index
3. If too_big_index < too_small_index
swap data[too_big_index] and data[too_small_index]
4. While too_small_index > too_big_index, go to 1.
40 20 10 30 60 50 7 80 100
pivot_index = 0
[0] [1] [2] [3] [4] [5] [6] [7] [8]
too_big_index too_small_index
1. While data[too_big_index] <= data[pivot]
++too_big_index
2. While data[too_small_index] > data[pivot]
--too_small_index
3. If too_big_index < too_small_index
swap data[too_big_index] and data[too_small_index]
4. While too_small_index > too_big_index, go to 1.
40 20 10 30 60 50 7 80 100
pivot_index = 0
[0] [1] [2] [3] [4] [5] [6] [7] [8]
too_big_index too_small_index
1. While data[too_big_index] <= data[pivot]
++too_big_index
2. While data[too_small_index] > data[pivot]
--too_small_index
3. If too_big_index < too_small_index
swap data[too_big_index] and data[too_small_index]
4. While too_small_index > too_big_index, go to 1.
40 20 10 30 60 50 7 80 100
pivot_index = 0
[0] [1] [2] [3] [4] [5] [6] [7] [8]
too_big_index too_small_index
1. While data[too_big_index] <= data[pivot]
++too_big_index
2. While data[too_small_index] > data[pivot]
--too_small_index
3. If too_big_index < too_small_index
swap data[too_big_index] and data[too_small_index]
4. While too_small_index > too_big_index, go to 1.
1. While data[too_big_index] <= data[pivot]
++too_big_index
2. While data[too_small_index] > data[pivot]
--too_small_index
3. If too_big_index < too_small_index
swap data[too_big_index] and data[too_small_index]
4. While too_small_index > too_big_index, go to 1.
40 20 10 30 7 50 60 80 100
pivot_index = 0
[0] [1] [2] [3] [4] [5] [6] [7] [8]
too_big_index too_small_index
1. While data[too_big_index] <= data[pivot]
++too_big_index
2. While data[too_small_index] > data[pivot]
--too_small_index
3. If too_big_index < too_small_index
swap data[too_big_index] and data[too_small_index]
4. While too_small_index > too_big_index, go to 1.
40 20 10 30 7 50 60 80 100
pivot_index = 0
[0] [1] [2] [3] [4] [5] [6] [7] [8]
too_big_index too_small_index
1. While data[too_big_index] <= data[pivot]
++too_big_index
2. While data[too_small_index] > data[pivot]
--too_small_index
3. If too_big_index < too_small_index
swap data[too_big_index] and data[too_small_index]
4. While too_small_index > too_big_index, go to 1.
40 20 10 30 7 50 60 80 100
pivot_index = 0
[0] [1] [2] [3] [4] [5] [6] [7] [8]
too_big_index too_small_index
1. While data[too_big_index] <= data[pivot]
++too_big_index
2. While data[too_small_index] > data[pivot]
--too_small_index
3. If too_big_index < too_small_index
swap data[too_big_index] and data[too_small_index]
4. While too_small_index > too_big_index, go to 1.
40 20 10 30 7 50 60 80 100
pivot_index = 0
[0] [1] [2] [3] [4] [5] [6] [7] [8]
too_big_index too_small_index
1. While data[too_big_index] <= data[pivot]
++too_big_index
2. While data[too_small_index] > data[pivot]
--too_small_index
3. If too_big_index < too_small_index
swap data[too_big_index] and data[too_small_index]
4. While too_small_index > too_big_index, go to 1.
40 20 10 30 7 50 60 80 100
pivot_index = 0
[0] [1] [2] [3] [4] [5] [6] [7] [8]
too_big_index too_small_index
1. While data[too_big_index] <= data[pivot]
++too_big_index
2. While data[too_small_index] > data[pivot]
--too_small_index
3. If too_big_index < too_small_index
swap data[too_big_index] and data[too_small_index]
4. While too_small_index > too_big_index, go to 1.
40 20 10 30 7 50 60 80 100
pivot_index = 0
[0] [1] [2] [3] [4] [5] [6] [7] [8]
too_big_index too_small_index
1. While data[too_big_index] <= data[pivot]
++too_big_index
2. While data[too_small_index] > data[pivot]
--too_small_index
3. If too_big_index < too_small_index
swap data[too_big_index] and data[too_small_index]
4. While too_small_index > too_big_index, go to 1.
40 20 10 30 7 50 60 80 100
pivot_index = 0
[0] [1] [2] [3] [4] [5] [6] [7] [8]
too_big_index too_small_index
1. While data[too_big_index] <= data[pivot]
++too_big_index
2. While data[too_small_index] > data[pivot]
--too_small_index
3. If too_big_index < too_small_index
swap data[too_big_index] and data[too_small_index]
4. While too_small_index > too_big_index, go to 1.
40 20 10 30 7 50 60 80 100
pivot_index = 0
[0] [1] [2] [3] [4] [5] [6] [7] [8]
too_big_index too_small_index
1. While data[too_big_index] <= data[pivot]
++too_big_index
2. While data[too_small_index] > data[pivot]
--too_small_index
3. If too_big_index < too_small_index
swap data[too_big_index] and data[too_small_index]
4. While too_small_index > too_big_index, go to 1.
40 20 10 30 7 50 60 80 100
pivot_index = 0
[0] [1] [2] [3] [4] [5] [6] [7] [8]
too_big_index too_small_index
1. While data[too_big_index] <= data[pivot]
++too_big_index
2. While data[too_small_index] > data[pivot]
--too_small_index
3. If too_big_index < too_small_index
swap data[too_big_index] and data[too_small_index]
4. While too_small_index > too_big_index, go to 1.
5. Swap data[too_small_index] and data[pivot_index]
40 20 10 30 7 50 60 80 100
pivot_index = 0
[0] [1] [2] [3] [4] [5] [6] [7] [8]
too_big_index too_small_index
1. While data[too_big_index] <= data[pivot]
++too_big_index
2. While data[too_small_index] > data[pivot]
--too_small_index
3. If too_big_index < too_small_index
swap data[too_big_index] and data[too_small_index]
4. While too_small_index > too_big_index, go to 1.
5. Swap data[too_small_index] and data[pivot_index]
7 20 10 30 40 50 60 80 100
pivot_index = 4
[0] [1] [2] [3] [4] [5] [6] [7] [8]
too_big_index too_small_index
Partition Result
7 20 10 30 40 50 60 80 100
[0] [1] [2] [3] [4] [5] [6] [7] [8]
<= data[pivot] > data[pivot]
Recursion: Quicksort Sub-arrays
7 20 10 30 40 50 60 80 100
[0] [1] [2] [3] [4] [5] [6] [7] [8]
<= data[pivot] > data[pivot]
Quicksort Analysis
• Assume that keys are random, uniformly
distributed.
• What is best case running time?
Quicksort Analysis
• Assume that keys are random, uniformly
distributed.
• What is best case running time?
– Recursion:
1. Partition splits array in two sub-arrays of size n/2
2. Quicksort each sub-array
Quicksort Analysis
• Assume that keys are random, uniformly
distributed.
• What is best case running time?
– Recursion:
1. Partition splits array in two sub-arrays of size n/2
2. Quicksort each sub-array
– Depth of recursion tree?
Quicksort Analysis
• Assume that keys are random, uniformly
distributed.
• What is best case running time?
– Recursion:
1. Partition splits array in two sub-arrays of size n/2
2. Quicksort each sub-array
– Depth of recursion tree? O(log2n)
Quicksort Analysis
• Assume that keys are random, uniformly
distributed.
• What is best case running time?
– Recursion:
1. Partition splits array in two sub-arrays of size n/2
2. Quicksort each sub-array
– Depth of recursion tree? O(log2n)
– Number of accesses in partition?
Quicksort Analysis
• Assume that keys are random, uniformly
distributed.
• What is best case running time?
– Recursion:
1. Partition splits array in two sub-arrays of size n/2
2. Quicksort each sub-array
– Depth of recursion tree? O(log2n)
– Number of accesses in partition? O(n)
Quicksort Analysis
• Assume that keys are random, uniformly
distributed.
• Best case running time: O(n log2n)
Quicksort Analysis
• Assume that keys are random, uniformly
distributed.
• Best case running time: O(n log2n)
• Worst case running time?
Quicksort: Worst Case
• Assume first element is chosen as pivot.
• Assume we get array that is already in
order:
2 4 10 12 13 50 57 63 100
pivot_index = 0
[0] [1] [2] [3] [4] [5] [6] [7] [8]
too_big_index too_small_index
1. While data[too_big_index] <= data[pivot]
++too_big_index
2. While data[too_small_index] > data[pivot]
--too_small_index
3. If too_big_index < too_small_index
swap data[too_big_index] and data[too_small_index]
4. While too_small_index > too_big_index, go to 1.
5. Swap data[too_small_index] and data[pivot_index]
2 4 10 12 13 50 57 63 100
pivot_index = 0
[0] [1] [2] [3] [4] [5] [6] [7] [8]
too_big_index too_small_index
1. While data[too_big_index] <= data[pivot]
++too_big_index
2. While data[too_small_index] > data[pivot]
--too_small_index
3. If too_big_index < too_small_index
swap data[too_big_index] and data[too_small_index]
4. While too_small_index > too_big_index, go to 1.
5. Swap data[too_small_index] and data[pivot_index]
2 4 10 12 13 50 57 63 100
pivot_index = 0
[0] [1] [2] [3] [4] [5] [6] [7] [8]
too_big_index too_small_index
1. While data[too_big_index] <= data[pivot]
++too_big_index
2. While data[too_small_index] > data[pivot]
--too_small_index
3. If too_big_index < too_small_index
swap data[too_big_index] and data[too_small_index]
4. While too_small_index > too_big_index, go to 1.
5. Swap data[too_small_index] and data[pivot_index]
2 4 10 12 13 50 57 63 100
pivot_index = 0
[0] [1] [2] [3] [4] [5] [6] [7] [8]
too_big_index too_small_index
1. While data[too_big_index] <= data[pivot]
++too_big_index
2. While data[too_small_index] > data[pivot]
--too_small_index
3. If too_big_index < too_small_index
swap data[too_big_index] and data[too_small_index]
4. While too_small_index > too_big_index, go to 1.
5. Swap data[too_small_index] and data[pivot_index]
2 4 10 12 13 50 57 63 100
pivot_index = 0
[0] [1] [2] [3] [4] [5] [6] [7] [8]
too_big_index too_small_index
1. While data[too_big_index] <= data[pivot]
++too_big_index
2. While data[too_small_index] > data[pivot]
--too_small_index
3. If too_big_index < too_small_index
swap data[too_big_index] and data[too_small_index]
4. While too_small_index > too_big_index, go to 1.
5. Swap data[too_small_index] and data[pivot_index]
2 4 10 12 13 50 57 63 100
pivot_index = 0
[0] [1] [2] [3] [4] [5] [6] [7] [8]
too_big_index too_small_index
1. While data[too_big_index] <= data[pivot]
++too_big_index
2. While data[too_small_index] > data[pivot]
--too_small_index
3. If too_big_index < too_small_index
swap data[too_big_index] and data[too_small_index]
4. While too_small_index > too_big_index, go to 1.
5. Swap data[too_small_index] and data[pivot_index]
2 4 10 12 13 50 57 63 100
pivot_index = 0
[0] [1] [2] [3] [4] [5] [6] [7] [8]
too_big_index too_small_index
1. While data[too_big_index] <= data[pivot]
++too_big_index
2. While data[too_small_index] > data[pivot]
--too_small_index
3. If too_big_index < too_small_index
swap data[too_big_index] and data[too_small_index]
4. While too_small_index > too_big_index, go to 1.
5. Swap data[too_small_index] and data[pivot_index]
2 4 10 12 13 50 57 63 100
pivot_index = 0
[0] [1] [2] [3] [4] [5] [6] [7] [8]
> data[pivot]
<= data[pivot]
Quicksort Analysis
• Assume that keys are random, uniformly
distributed.
• Best case running time: O(n log2n)
• Worst case running time?
– Recursion:
1. Partition splits array in two sub-arrays:
• one sub-array of size 0
• the other sub-array of size n-1
2. Quicksort each sub-array
– Depth of recursion tree?
Quicksort Analysis
• Assume that keys are random, uniformly
distributed.
• Best case running time: O(n log2n)
• Worst case running time?
– Recursion:
1. Partition splits array in two sub-arrays:
• one sub-array of size 0
• the other sub-array of size n-1
2. Quicksort each sub-array
– Depth of recursion tree? O(n)
Quicksort Analysis
• Assume that keys are random, uniformly
distributed.
• Best case running time: O(n log2n)
• Worst case running time?
– Recursion:
1. Partition splits array in two sub-arrays:
• one sub-array of size 0
• the other sub-array of size n-1
2. Quicksort each sub-array
– Depth of recursion tree? O(n)
– Number of accesses per partition?
Quicksort Analysis
• Assume that keys are random, uniformly
distributed.
• Best case running time: O(n log2n)
• Worst case running time?
– Recursion:
1. Partition splits array in two sub-arrays:
• one sub-array of size 0
• the other sub-array of size n-1
2. Quicksort each sub-array
– Depth of recursion tree? O(n)
– Number of accesses per partition? O(n)
Quicksort Analysis
• Assume that keys are random, uniformly
distributed.
• Best case running time: O(n log2n)
• Worst case running time: O(n2)!!!
Quicksort Analysis
• Assume that keys are random, uniformly
distributed.
• Best case running time: O(n log2n)
• Worst case running time: O(n2)!!!
• What can we do to avoid worst case?
Improved Pivot Selection
Pick median value of three elements from data array:
data[0], data[n/2], and data[n-1].
Use this median value as pivot.
Improving Performance of
Quicksort
• Improved selection of pivot.
• For sub-arrays of size 3 or less, apply brute
force search:
– Sub-array of size 1: trivial
– Sub-array of size 2:
• if(data[first] > data[second]) swap them
– Sub-array of size 3: left as an exercise.

More Related Content

Similar to quicksort.ppt

Similar to quicksort.ppt (20)

Merge sort and Quick sort
Merge sort and Quick sortMerge sort and Quick sort
Merge sort and Quick sort
 
Quick sort
Quick sortQuick sort
Quick sort
 
Array 2
Array 2Array 2
Array 2
 
Array ADT(Abstract Data Type)|Data Structure
Array ADT(Abstract Data Type)|Data StructureArray ADT(Abstract Data Type)|Data Structure
Array ADT(Abstract Data Type)|Data Structure
 
Sorting
SortingSorting
Sorting
 
Arrays
ArraysArrays
Arrays
 
Data Structure Sorting
Data Structure SortingData Structure Sorting
Data Structure Sorting
 
Chapter 8 advanced sorting and hashing for print
Chapter 8 advanced sorting and hashing for printChapter 8 advanced sorting and hashing for print
Chapter 8 advanced sorting and hashing for print
 
Insert Sort & Merge Sort Using C Programming
Insert Sort & Merge Sort Using C ProgrammingInsert Sort & Merge Sort Using C Programming
Insert Sort & Merge Sort Using C Programming
 
search_sort Search sortSearch sortSearch sortSearch sort
search_sort Search sortSearch sortSearch sortSearch sortsearch_sort Search sortSearch sortSearch sortSearch sort
search_sort Search sortSearch sortSearch sortSearch sort
 
07+08slide.pptx
07+08slide.pptx07+08slide.pptx
07+08slide.pptx
 
Mergesort
MergesortMergesort
Mergesort
 
Introduction to Algorithms
Introduction to AlgorithmsIntroduction to Algorithms
Introduction to Algorithms
 
Slides ads ia
Slides ads iaSlides ads ia
Slides ads ia
 
Data Structure and Algorithms Arrays
Data Structure and Algorithms ArraysData Structure and Algorithms Arrays
Data Structure and Algorithms Arrays
 
IA-advanced-R
IA-advanced-RIA-advanced-R
IA-advanced-R
 
Heap, quick and merge sort
Heap, quick and merge sortHeap, quick and merge sort
Heap, quick and merge sort
 
ds 2Arrays.ppt
ds 2Arrays.pptds 2Arrays.ppt
ds 2Arrays.ppt
 
Chapter 10.ppt
Chapter 10.pptChapter 10.ppt
Chapter 10.ppt
 
16-sorting.ppt
16-sorting.ppt16-sorting.ppt
16-sorting.ppt
 

More from DeepakM509554

osi-tcp.pptx..................................
osi-tcp.pptx..................................osi-tcp.pptx..................................
osi-tcp.pptx..................................DeepakM509554
 
pumping-lemma-181ptx01 mmmmmmmmmmmmmm1153118.p
pumping-lemma-181ptx01 mmmmmmmmmmmmmm1153118.ppumping-lemma-181ptx01 mmmmmmmmmmmmmm1153118.p
pumping-lemma-181ptx01 mmmmmmmmmmmmmm1153118.pDeepakM509554
 
Undecidable problem.pptxUndecidable problemUndecidable problem
Undecidable problem.pptxUndecidable problemUndecidable problemUndecidable problem.pptxUndecidable problemUndecidable problem
Undecidable problem.pptxUndecidable problemUndecidable problemDeepakM509554
 
Online EC- Citizen User Manual for Karnataka
Online EC- Citizen User Manual for KarnatakaOnline EC- Citizen User Manual for Karnataka
Online EC- Citizen User Manual for KarnatakaDeepakM509554
 
DATABASE MANAGEMENT SYSTEM ARCHITECTURE
DATABASE    MANAGEMENT SYSTEM	 ARCHITECTUREDATABASE    MANAGEMENT SYSTEM	 ARCHITECTURE
DATABASE MANAGEMENT SYSTEM ARCHITECTUREDeepakM509554
 
Heart_Circulation.pptx
Heart_Circulation.pptxHeart_Circulation.pptx
Heart_Circulation.pptxDeepakM509554
 
quick sort by deepak.pptx
quick sort by deepak.pptxquick sort by deepak.pptx
quick sort by deepak.pptxDeepakM509554
 
scheduling-algorithms.pdf
scheduling-algorithms.pdfscheduling-algorithms.pdf
scheduling-algorithms.pdfDeepakM509554
 
CSE680-07QuickSort.pptx
CSE680-07QuickSort.pptxCSE680-07QuickSort.pptx
CSE680-07QuickSort.pptxDeepakM509554
 

More from DeepakM509554 (9)

osi-tcp.pptx..................................
osi-tcp.pptx..................................osi-tcp.pptx..................................
osi-tcp.pptx..................................
 
pumping-lemma-181ptx01 mmmmmmmmmmmmmm1153118.p
pumping-lemma-181ptx01 mmmmmmmmmmmmmm1153118.ppumping-lemma-181ptx01 mmmmmmmmmmmmmm1153118.p
pumping-lemma-181ptx01 mmmmmmmmmmmmmm1153118.p
 
Undecidable problem.pptxUndecidable problemUndecidable problem
Undecidable problem.pptxUndecidable problemUndecidable problemUndecidable problem.pptxUndecidable problemUndecidable problem
Undecidable problem.pptxUndecidable problemUndecidable problem
 
Online EC- Citizen User Manual for Karnataka
Online EC- Citizen User Manual for KarnatakaOnline EC- Citizen User Manual for Karnataka
Online EC- Citizen User Manual for Karnataka
 
DATABASE MANAGEMENT SYSTEM ARCHITECTURE
DATABASE    MANAGEMENT SYSTEM	 ARCHITECTUREDATABASE    MANAGEMENT SYSTEM	 ARCHITECTURE
DATABASE MANAGEMENT SYSTEM ARCHITECTURE
 
Heart_Circulation.pptx
Heart_Circulation.pptxHeart_Circulation.pptx
Heart_Circulation.pptx
 
quick sort by deepak.pptx
quick sort by deepak.pptxquick sort by deepak.pptx
quick sort by deepak.pptx
 
scheduling-algorithms.pdf
scheduling-algorithms.pdfscheduling-algorithms.pdf
scheduling-algorithms.pdf
 
CSE680-07QuickSort.pptx
CSE680-07QuickSort.pptxCSE680-07QuickSort.pptx
CSE680-07QuickSort.pptx
 

Recently uploaded

Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile servicerehmti665
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )Tsuyoshi Horigome
 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSRajkumarAkumalla
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Christo Ananth
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
Analog to Digital and Digital to Analog Converter
Analog to Digital and Digital to Analog ConverterAnalog to Digital and Digital to Analog Converter
Analog to Digital and Digital to Analog ConverterAbhinavSharma374939
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escortsranjana rawat
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSSIVASHANKAR N
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidNikhilNagaraju
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130Suhani Kapoor
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Dr.Costas Sachpazis
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024hassan khalil
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escortsranjana rawat
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxpurnimasatapathy1234
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)Suman Mia
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSCAESB
 

Recently uploaded (20)

Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile service
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCRCall Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
Analog to Digital and Digital to Analog Converter
Analog to Digital and Digital to Analog ConverterAnalog to Digital and Digital to Analog Converter
Analog to Digital and Digital to Analog Converter
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfid
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptx
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentation
 

quicksort.ppt

  • 2. Sorting algorithms • Insertion, selection and bubble sort have quadratic worst-case performance • The faster comparison based algorithm ? O(nlogn) • Mergesort and Quicksort
  • 3. Merge Sort • Apply divide-and-conquer to sorting problem • Problem: Given n elements, sort elements into non-decreasing order • Divide-and-Conquer: – If n=1 terminate (every one-element list is already sorted) – If n>1, partition elements into two or more sub- collections; sort each; combine into a single sorted list • How do we partition?
  • 4. Partitioning - Choice 1 • First n-1 elements into set A, last element set B • Sort A using this partitioning scheme recursively – B already sorted • Combine A and B using method Insert() (= insertion into sorted array) • Leads to recursive version of InsertionSort() – Number of comparisons: O(n2) • Best case = n-1 • Worst case = 2 ) 1 ( 2     n n i c n i
  • 5. Partitioning - Choice 2 • Put element with largest key in B, remaining elements in A • Sort A recursively • To combine sorted A and B, append B to sorted A – Use Max() to find largest element  recursive SelectionSort() – Use bubbling process to find and move largest element to right-most position  recursive BubbleSort() • All O(n2)
  • 6. Partitioning - Choice 3 • Let’s try to achieve balanced partitioning • A gets n/2 elements, B gets rest half • Sort A and B recursively • Combine sorted A and B using a process called merge, which combines two sorted lists into one – How? We will see soon
  • 7. Example • Partition into lists of size n/2 [10, 4, 6, 3] [10, 4, 6, 3, 8, 2, 5, 7] [8, 2, 5, 7] [10, 4] [6, 3] [8, 2] [5, 7] [4] [10] [3][6] [2][8] [5][7]
  • 8. Example Cont’d • Merge [3, 4, 6, 10] [2, 3, 4, 5, 6, 7, 8, 10 ] [2, 5, 7, 8] [4, 10] [3, 6] [2, 8] [5, 7] [4] [10] [3][6] [2][8] [5][7]
  • 9. Static Method mergeSort() Public static void mergeSort(Comparable []a, int left, int right) { // sort a[left:right] if (left < right) {// at least two elements int mid = (left+right)/2; //midpoint mergeSort(a, left, mid); mergeSort(a, mid + 1, right); merge(a, b, left, mid, right); //merge from a to b copy(b, a, left, right); //copy result back to a } }
  • 11. Evaluation • Recurrence equation: • Assume n is a power of 2 c1 if n=1 T(n) = 2T(n/2) + c2n if n>1, n=2k
  • 12. Solution By Substitution: T(n) = 2T(n/2) + c2n T(n/2) = 2T(n/4) + c2n/2 T(n) = 4T(n/4) + 2 c2n T(n) = 8T(n/8) + 3 c2n T(n) = 2iT(n/2i) + ic2n Assuming n = 2k, expansion halts when we get T(1) on right side; this happens when i=k T(n) = 2kT(1) + kc2n Since 2k=n, we know k=logn; since T(1) = c1, we get T(n) = c1n + c2nlogn; thus an upper bound for TmergeSort(n) is O(nlogn)
  • 13. Quicksort Algorithm Given an array of n elements (e.g., integers): • If array only contains one element, return • Else – pick one element to use as pivot. – Partition elements into two sub-arrays: • Elements less than or equal to pivot • Elements greater than pivot – Quicksort two sub-arrays – Return results
  • 14. Example We are given array of n integers to sort: 40 20 10 80 60 50 7 30 100
  • 15. Pick Pivot Element There are a number of ways to pick the pivot element. In this example, we will use the first element in the array: 40 20 10 80 60 50 7 30 100
  • 16. Partitioning Array Given a pivot, partition the elements of the array such that the resulting array consists of: 1. One sub-array that contains elements >= pivot 2. Another sub-array that contains elements < pivot The sub-arrays are stored in the original data array. Partitioning loops through, swapping elements below/above pivot.
  • 17. 40 20 10 80 60 50 7 30 100 pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index
  • 18. 40 20 10 80 60 50 7 30 100 pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index 1. While data[too_big_index] <= data[pivot] ++too_big_index
  • 19. 40 20 10 80 60 50 7 30 100 pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index 1. While data[too_big_index] <= data[pivot] ++too_big_index
  • 20. 40 20 10 80 60 50 7 30 100 pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index 1. While data[too_big_index] <= data[pivot] ++too_big_index
  • 21. 40 20 10 80 60 50 7 30 100 pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index 1. While data[too_big_index] <= data[pivot] ++too_big_index 2. While data[too_small_index] > data[pivot] --too_small_index
  • 22. 40 20 10 80 60 50 7 30 100 pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index 1. While data[too_big_index] <= data[pivot] ++too_big_index 2. While data[too_small_index] > data[pivot] --too_small_index
  • 23. 40 20 10 80 60 50 7 30 100 pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index 1. While data[too_big_index] <= data[pivot] ++too_big_index 2. While data[too_small_index] > data[pivot] --too_small_index 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index]
  • 24. 40 20 10 30 60 50 7 80 100 pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index 1. While data[too_big_index] <= data[pivot] ++too_big_index 2. While data[too_small_index] > data[pivot] --too_small_index 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index]
  • 25. 40 20 10 30 60 50 7 80 100 pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index 1. While data[too_big_index] <= data[pivot] ++too_big_index 2. While data[too_small_index] > data[pivot] --too_small_index 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index] 4. While too_small_index > too_big_index, go to 1.
  • 26. 40 20 10 30 60 50 7 80 100 pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index 1. While data[too_big_index] <= data[pivot] ++too_big_index 2. While data[too_small_index] > data[pivot] --too_small_index 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index] 4. While too_small_index > too_big_index, go to 1.
  • 27. 40 20 10 30 60 50 7 80 100 pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index 1. While data[too_big_index] <= data[pivot] ++too_big_index 2. While data[too_small_index] > data[pivot] --too_small_index 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index] 4. While too_small_index > too_big_index, go to 1.
  • 28. 40 20 10 30 60 50 7 80 100 pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index 1. While data[too_big_index] <= data[pivot] ++too_big_index 2. While data[too_small_index] > data[pivot] --too_small_index 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index] 4. While too_small_index > too_big_index, go to 1.
  • 29. 40 20 10 30 60 50 7 80 100 pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index 1. While data[too_big_index] <= data[pivot] ++too_big_index 2. While data[too_small_index] > data[pivot] --too_small_index 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index] 4. While too_small_index > too_big_index, go to 1.
  • 30. 40 20 10 30 60 50 7 80 100 pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index 1. While data[too_big_index] <= data[pivot] ++too_big_index 2. While data[too_small_index] > data[pivot] --too_small_index 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index] 4. While too_small_index > too_big_index, go to 1.
  • 31. 1. While data[too_big_index] <= data[pivot] ++too_big_index 2. While data[too_small_index] > data[pivot] --too_small_index 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index] 4. While too_small_index > too_big_index, go to 1. 40 20 10 30 7 50 60 80 100 pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index
  • 32. 1. While data[too_big_index] <= data[pivot] ++too_big_index 2. While data[too_small_index] > data[pivot] --too_small_index 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index] 4. While too_small_index > too_big_index, go to 1. 40 20 10 30 7 50 60 80 100 pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index
  • 33. 1. While data[too_big_index] <= data[pivot] ++too_big_index 2. While data[too_small_index] > data[pivot] --too_small_index 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index] 4. While too_small_index > too_big_index, go to 1. 40 20 10 30 7 50 60 80 100 pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index
  • 34. 1. While data[too_big_index] <= data[pivot] ++too_big_index 2. While data[too_small_index] > data[pivot] --too_small_index 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index] 4. While too_small_index > too_big_index, go to 1. 40 20 10 30 7 50 60 80 100 pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index
  • 35. 1. While data[too_big_index] <= data[pivot] ++too_big_index 2. While data[too_small_index] > data[pivot] --too_small_index 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index] 4. While too_small_index > too_big_index, go to 1. 40 20 10 30 7 50 60 80 100 pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index
  • 36. 1. While data[too_big_index] <= data[pivot] ++too_big_index 2. While data[too_small_index] > data[pivot] --too_small_index 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index] 4. While too_small_index > too_big_index, go to 1. 40 20 10 30 7 50 60 80 100 pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index
  • 37. 1. While data[too_big_index] <= data[pivot] ++too_big_index 2. While data[too_small_index] > data[pivot] --too_small_index 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index] 4. While too_small_index > too_big_index, go to 1. 40 20 10 30 7 50 60 80 100 pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index
  • 38. 1. While data[too_big_index] <= data[pivot] ++too_big_index 2. While data[too_small_index] > data[pivot] --too_small_index 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index] 4. While too_small_index > too_big_index, go to 1. 40 20 10 30 7 50 60 80 100 pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index
  • 39. 1. While data[too_big_index] <= data[pivot] ++too_big_index 2. While data[too_small_index] > data[pivot] --too_small_index 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index] 4. While too_small_index > too_big_index, go to 1. 40 20 10 30 7 50 60 80 100 pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index
  • 40. 1. While data[too_big_index] <= data[pivot] ++too_big_index 2. While data[too_small_index] > data[pivot] --too_small_index 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index] 4. While too_small_index > too_big_index, go to 1. 5. Swap data[too_small_index] and data[pivot_index] 40 20 10 30 7 50 60 80 100 pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index
  • 41. 1. While data[too_big_index] <= data[pivot] ++too_big_index 2. While data[too_small_index] > data[pivot] --too_small_index 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index] 4. While too_small_index > too_big_index, go to 1. 5. Swap data[too_small_index] and data[pivot_index] 7 20 10 30 40 50 60 80 100 pivot_index = 4 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index
  • 42. Partition Result 7 20 10 30 40 50 60 80 100 [0] [1] [2] [3] [4] [5] [6] [7] [8] <= data[pivot] > data[pivot]
  • 43. Recursion: Quicksort Sub-arrays 7 20 10 30 40 50 60 80 100 [0] [1] [2] [3] [4] [5] [6] [7] [8] <= data[pivot] > data[pivot]
  • 44. Quicksort Analysis • Assume that keys are random, uniformly distributed. • What is best case running time?
  • 45. Quicksort Analysis • Assume that keys are random, uniformly distributed. • What is best case running time? – Recursion: 1. Partition splits array in two sub-arrays of size n/2 2. Quicksort each sub-array
  • 46. Quicksort Analysis • Assume that keys are random, uniformly distributed. • What is best case running time? – Recursion: 1. Partition splits array in two sub-arrays of size n/2 2. Quicksort each sub-array – Depth of recursion tree?
  • 47. Quicksort Analysis • Assume that keys are random, uniformly distributed. • What is best case running time? – Recursion: 1. Partition splits array in two sub-arrays of size n/2 2. Quicksort each sub-array – Depth of recursion tree? O(log2n)
  • 48. Quicksort Analysis • Assume that keys are random, uniformly distributed. • What is best case running time? – Recursion: 1. Partition splits array in two sub-arrays of size n/2 2. Quicksort each sub-array – Depth of recursion tree? O(log2n) – Number of accesses in partition?
  • 49. Quicksort Analysis • Assume that keys are random, uniformly distributed. • What is best case running time? – Recursion: 1. Partition splits array in two sub-arrays of size n/2 2. Quicksort each sub-array – Depth of recursion tree? O(log2n) – Number of accesses in partition? O(n)
  • 50. Quicksort Analysis • Assume that keys are random, uniformly distributed. • Best case running time: O(n log2n)
  • 51. Quicksort Analysis • Assume that keys are random, uniformly distributed. • Best case running time: O(n log2n) • Worst case running time?
  • 52. Quicksort: Worst Case • Assume first element is chosen as pivot. • Assume we get array that is already in order: 2 4 10 12 13 50 57 63 100 pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index
  • 53. 1. While data[too_big_index] <= data[pivot] ++too_big_index 2. While data[too_small_index] > data[pivot] --too_small_index 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index] 4. While too_small_index > too_big_index, go to 1. 5. Swap data[too_small_index] and data[pivot_index] 2 4 10 12 13 50 57 63 100 pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index
  • 54. 1. While data[too_big_index] <= data[pivot] ++too_big_index 2. While data[too_small_index] > data[pivot] --too_small_index 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index] 4. While too_small_index > too_big_index, go to 1. 5. Swap data[too_small_index] and data[pivot_index] 2 4 10 12 13 50 57 63 100 pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index
  • 55. 1. While data[too_big_index] <= data[pivot] ++too_big_index 2. While data[too_small_index] > data[pivot] --too_small_index 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index] 4. While too_small_index > too_big_index, go to 1. 5. Swap data[too_small_index] and data[pivot_index] 2 4 10 12 13 50 57 63 100 pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index
  • 56. 1. While data[too_big_index] <= data[pivot] ++too_big_index 2. While data[too_small_index] > data[pivot] --too_small_index 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index] 4. While too_small_index > too_big_index, go to 1. 5. Swap data[too_small_index] and data[pivot_index] 2 4 10 12 13 50 57 63 100 pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index
  • 57. 1. While data[too_big_index] <= data[pivot] ++too_big_index 2. While data[too_small_index] > data[pivot] --too_small_index 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index] 4. While too_small_index > too_big_index, go to 1. 5. Swap data[too_small_index] and data[pivot_index] 2 4 10 12 13 50 57 63 100 pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index
  • 58. 1. While data[too_big_index] <= data[pivot] ++too_big_index 2. While data[too_small_index] > data[pivot] --too_small_index 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index] 4. While too_small_index > too_big_index, go to 1. 5. Swap data[too_small_index] and data[pivot_index] 2 4 10 12 13 50 57 63 100 pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index
  • 59. 1. While data[too_big_index] <= data[pivot] ++too_big_index 2. While data[too_small_index] > data[pivot] --too_small_index 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index] 4. While too_small_index > too_big_index, go to 1. 5. Swap data[too_small_index] and data[pivot_index] 2 4 10 12 13 50 57 63 100 pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] > data[pivot] <= data[pivot]
  • 60. Quicksort Analysis • Assume that keys are random, uniformly distributed. • Best case running time: O(n log2n) • Worst case running time? – Recursion: 1. Partition splits array in two sub-arrays: • one sub-array of size 0 • the other sub-array of size n-1 2. Quicksort each sub-array – Depth of recursion tree?
  • 61. Quicksort Analysis • Assume that keys are random, uniformly distributed. • Best case running time: O(n log2n) • Worst case running time? – Recursion: 1. Partition splits array in two sub-arrays: • one sub-array of size 0 • the other sub-array of size n-1 2. Quicksort each sub-array – Depth of recursion tree? O(n)
  • 62. Quicksort Analysis • Assume that keys are random, uniformly distributed. • Best case running time: O(n log2n) • Worst case running time? – Recursion: 1. Partition splits array in two sub-arrays: • one sub-array of size 0 • the other sub-array of size n-1 2. Quicksort each sub-array – Depth of recursion tree? O(n) – Number of accesses per partition?
  • 63. Quicksort Analysis • Assume that keys are random, uniformly distributed. • Best case running time: O(n log2n) • Worst case running time? – Recursion: 1. Partition splits array in two sub-arrays: • one sub-array of size 0 • the other sub-array of size n-1 2. Quicksort each sub-array – Depth of recursion tree? O(n) – Number of accesses per partition? O(n)
  • 64. Quicksort Analysis • Assume that keys are random, uniformly distributed. • Best case running time: O(n log2n) • Worst case running time: O(n2)!!!
  • 65. Quicksort Analysis • Assume that keys are random, uniformly distributed. • Best case running time: O(n log2n) • Worst case running time: O(n2)!!! • What can we do to avoid worst case?
  • 66. Improved Pivot Selection Pick median value of three elements from data array: data[0], data[n/2], and data[n-1]. Use this median value as pivot.
  • 67. Improving Performance of Quicksort • Improved selection of pivot. • For sub-arrays of size 3 or less, apply brute force search: – Sub-array of size 1: trivial – Sub-array of size 2: • if(data[first] > data[second]) swap them – Sub-array of size 3: left as an exercise.